Loading...
Specifications (12) Structural Calculations JUN 19 2012 for CITYOFTIG BUILDING Full Lateral & Gravity Analysis of Plan B 1332 Lot 61 , Summer Creek Townhomes St el c,5ra( )(A CZ—enf //052 3l v/43 Tigard, OR .— ZuSTZG ot?--cam /o(PC � f 3 !AS/(3 11/4,4ST2 t Z-cal ? //e ?ost (3 , f 0 7 1dr AM 3 Prepared for City of Tigard Pulte Group A• •r•v•d Plans By `�' Date-W-311'2- April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** OFFICE COPY Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. SZQucTUR41. G 1 NEF O 12,320 � { ye,OREGON = F Y 15,�g���\Q EXPIRES'12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper 1HP Houf Peterson Ri<<hellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 1 Structural Calculations ' '',. - for Full Lateral & Gravity Analysis of Plan C 1 186 Lot 62, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. $iRucrurt 4. ,4Ck,.. 1 P R a V e., U� Net fir 4 44.4 12,320 0 cj1 OREGON .c � tte C )'15,16 .4. �V t Nr J. EN. ' EXPIRES*12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original ASHarper Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St.Suite 100 • Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 Structural Calculations r :r for Full Lateral & Gravity Analysis of Plan C 1186 Lot 63, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. gin T W41. PRO 1 ue �� *GINE4 ' 12,320 Old vie (` Y 15,19 4- ' . Ey EXPIRES&12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper g Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1141 1133 NW Wall St.Suite 201 • Bend, OR 97701 ♦ [P] 541.318.1161 • [F] 541.318.1141 Structural Calculations } - ; for Full Lateral & Gravity Analysis of .. Plan B 1332 Lot 64, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. si,tucxuR44 P Opt sft ‘,1,0 I NEED ` 4 12.320 A tp OREGON 11,4,41(dt 44r 75,1 ' J. E EXPIRESa 12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper Houf Peterson Ri h llis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1141 • [F] 360.750.1141 1133 NW Wall St.Suite 201 ♦ Bend, OR 97701 ♦ [P] 541.318.1161 • [F] 541.318.1141 Structural CalculatioriV---' ' '-". 19 H1Y. for Full Lateral & Gravity Analysis of Plan B 1332 Summer Creek Town homes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP Houi Peterson Righellis Inc. K,• 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F]503.221.1171 1104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1141 • [F] 360.750.1141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed,ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map 51: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,f's: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x&4x Wood Beams & Posts: DF-L#2 6x&Greater Wood Beams &Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams-u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works-Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B KAA Houf PetersonJob# CEN-090 Client: Pulte Group Righellis Inc. ElICINcE lf•N":EFo Designer: AMC Date: June 2010 Pg.# L.AN DSEAPE ARCH:TEC FS�SJ R':ciCft DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5-psf Plywood RRF:= 5-psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5•psf Ceiling RIN:= 1•psf Insulation RDL= 15-psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME:= 1.5•psf Mech&Elec FMS:= 1.5-psf Misc FIN:= .5-psf Finish&Insulation FCLG:= 2.5-psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX_Wallwt:= 12-psf INT_Wallwt:= 10•psf Roof Live Load RLL:= 25•psf Floor Live Load FLL:= 40•psf Harper Project: Summer Creek Townhomes UNIT B Houf Peterson 44s, Client: Pulte Group Job# CEN-090 Righellis Inc, h ,VEERS. LA,„; RS Designer: AMC Date: June 2010 Pg.# �NGb.,,iP�AA C,k1T�Ci� rJR�E"Oft6 Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748•ft2.1.12 RFWT:= RDL-Roof Area RFWT= 12566-lb Floor Weight Floor Area2nd:= 605•ft2 FLRWT2nd FDL•Floor_Area2nd FLRwT2nd= 7865-lb Floor Area3rd 600-ft2 FLRWT3rd FDL•Floor_Area3rd FLRWT3rd= 7800-lb Wall Weight EX Wall Area:= (2203)4ft2 INT Wall Area:= (906)-ft2 WALLWT:= EX_Wallwt•EX_Wall_Area+ INT Wallwt•INT_Wall_Area WALLWT=35496-lb WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) ha:= 32 Mean Height Of Roof Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct•(hn)X Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Si := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT B C- Houf PetersonJob# CEN-090 Client: Pulte Group Rlghellis Inc. E GiNEERS•PLANNERS Designer: AMC Date: June 2010 Pg.# LANOSCAF FFC-ii TE=T9.S3tiE'YO - SMS:= Fa-Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2-SMS Sds:= Sds=0.705 (EQU 11.4-3,ASCE 7-O5) 3 SM1 := Fv-S1 SM1 =0.584 (EQU 11.4-2,ASCE 7-05) 2-SM1 Shc := Sd1 =0.389 (EQU 11.44,ASCE 7-05) 3 Cst:= S Ie Cst=0.108 (EQU 12.8-2,ASCE 7M5) R ...need not exceed... Cs Shc'Ie Csm,, =0.223 (EQU 12.8-3,ASCE 7-05) max .— Ta R ...and shall not be less then... C1 := if(0.044•Sds.Ie <0.01,0.01,0.044-Sds'le) ( 1 (EQU 12.8-5&6,ASCE 7-05) 0.5•S1 lel C2:= if I Sl <0.6,0.01, `\ R Csmin:= if(Ci >C2,C1,C2) Csmm=0.031 Cs:= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs=0.108 V:= Cs-WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V-0.7 E =4840 lb (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT B E a Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# .n.NDS O..FE ARCH.ECt$.$UR•.erORC Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II I� := 1.00 Importance Factor (Table 6-1,ASCE 7-05) 11,1=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.16•ft Zone A&B Horizontal Length Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) or a2 = .4hn2ft a2=25.6ft but not less than... a2min 3.2.ft a2min=6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB 3.21psf PnetzoneC 14.4psf PnetzoneD 3.1psf Vertical PnetzoneE —8.8•psf PnetzoneF:= —12•13sf PnetzoneG —6.4•psf PnetzoneH:= —9.7•psf Basic Wind Force PA:= PnetzoneA'Iw'X PA= 19.9•psf Wall HWC PB:= PnetzoneB'Iw'X PB=3.2-psf Roof HWC PC:= PnetzoneC'Iw'X Pc= 14.4-psf Wall Typical PD:= PnetzoneD'INV X PD=3.3-psf Roof Typical PE:= PnetzoneE'kr'X PE=—8.8•psf PF:= PnetzoneF'Iw'X PF=—12-psf PC,:= PnetzoneG'Iw'X PC,=—6.4-psf PH:= PnetzoneH'Iw'X PH=—9.7-psf Harper Project: Summer Creek Townhomes UNIT B ' Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. cN NEERS_ OI b•S Designer: AMC Date: June 2010 Pg.# -;MOSi:dP'u ARCH'TECifJ RvFYO£:S Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59+29)•ft2 WSAILZoneB: (6 + 0 + 23).ft2 WSAILZoneC (429 + 355 + 339)•ft2 WSAILZoneD (0 +0 + 4)412 WA:= WSAILZoneA•PA WA= 2846 lb WB WSAILZoneB•PB WB=93 lb WC:= WSAII-ZoneC-PC WC= 161711b WD:= WSAILZoneD'PD WD= 13 lb Wind_Force:= WA+ WB+ WC+ WD Wind_Forcemin:= 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 19123 lb Wind_Forcemin= 12990 lb WSAILZoneE 43•ft2 W SAILZoneF 43•ft2 WSAILZoneG 334•ft2 WSAILZoneH 327•ft2 WE:= WSAII-ZoneE'PE WE =—378 lb WF:= WSAILZoneF'PF WF=—516 lb WG:= WSAII-ZoneG•PG WG =—21381b WH:= WSAILZoneH'PH WH=—31721b Upliftnet WF+ WH + (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneGg.6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 3- Harper Project: Summer Creek Townhomes UNIT B $P. Houf Peterson Client: Pulte Grou Righellis Inc. p Job# CEN-090 e:FE . z,;N t, P S Designer: AMC Date: June 2010 Pg.# ` thNC P. aR FS♦ R'EYORS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 RFS:= RDL•Roof Area RFWT= 12566•Ib Floor Weight Floor_Area2nd= 605 ft2 FLR,44:= FDL•Floor_Area2nd FLRwT2nd = 7865•lb Floor_Area3rd=600 ft2 Fti„L,R = FDL•Floor_Area3rd FLRWT3rd=7800-lb Wall Weight EX,Wal1,ArNa;= (2203)•ft2 INT Wall Area= 906 ft2 Wim= EX_Wallwt•EX_Wall_Area+ INT Wa11wt•INT_Wall_Area WALLWT=35496•lb WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) tin= 32 Mean Height Of Roof Ie = I Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct=0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period X := Ct•(hn) Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) F,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT B t ' 1WW i• Houf Peters©n Client: Pulte Group Job# CEN-090 Righellis Inc. ,.N INFERS�PLAMtv'RS Designer: AMC Date: June 2010 Pg.# _q V.^:Si r.i'E xF;'H :E,'Ss5':RtiE YOBS S Fa Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) S 2-SMS Sds=0.705 (EQU 11.4-3,ASCE 7-05) := 3 S Fv•S1 SM1 =0.584 (EQU 11.4-2,ASCE 7-05) 2•SMl= 3 Shc =0389 (EQU 11.4-4,ASCE 7-05) „Svw Cst:— Sds•le Cst= 0.108 (EQU 12.8-2,ASCE 7-05) ^^wv R ...need not exceed... Cs - Shc•le Csmax = 0.223 (EQU 12.8-3,ASCE 7-05) �- 1-7—aa ...and shall not be less then... Nom:= if(0.044•Sds-le <0.01,0.01,0.044•Sds•le) 0.5•S1 leJ Aca (EQU 12.8-5&6,ASCE 7-05) := if S1 <0.6,0.01, R C Com:= if(CI > C2,C1,C2) Csmin =0.031 Cs:= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs =0.108 V:= Cs'WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V.0.7 E =4840 lb (Allowable Stress) Nw 1-- Harper Project: Summer Creek Townhomes UNIT B P. Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. �E_R> r p;kEgS Designer: AMC Date: June2010 Pg.# .1 CS EARLHf Sic R;E VGRS Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:H Imo,= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) • a.2 = 2•.1.16.ft Zone A&B Horizontal Len h Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) , := .4hn2ft or a2=25.6 ft but not less than... 92 yia:= 3.2-ft a2min=6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9-psf PnetzoneB =3.2-psf PnetzoneC = 14.4.psf PnetzoneD=3.3•psf Vertical PnetzoneE=—8.8-psf PnetZoneF=—12.psf PnetzoneG=—6.4-psf PnetzoneH=—9.7•psf Basic Wind Force Pte:= PnetzoneA'Iw'X PA = 19.9•psf Wall HWC ,:= PnetzoneB'Iw•X PB=3.2.psf Roof HWC Pte:= PnetzoneC'Iw'X Pc= 14.4-psf Wall Typical Pte:= PnetzoneD'Iw'X PD=3.3•psf Roof Typical PnetzoneE'Iw.X PE =—8.8•psf PnetzoneF'Iw'X PF=—12•psf ,:= PnetzoneG'Iw'X PG =—6.4-psf 1314\:= PnetzoneH'Iw'X PH=—9.7•psf g -Lo.4?) Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righeilis Inc. Designer: AMC Date: June 2010 Pg.# ,-5 0SCRPE ARCPTECTS•SURJEVORS Determine Wind Sail In Longitudinal Direction WN := (58+ 59+ 21)-ft2 tflmAjgowx:= (0 + 0 + 51)-ft2 WSN := (98+ 99+ 34)42 WSN� :_ (0 + 0 + 114)412 WSAILZoneA'PA WA=2746 lb W WSAILZoneB'PB WB= 163 lb WSAILZonec-PC WC=3326 lb W WSAILZoneD'PD WD=376 lb WinN = WA+ WB+ WC+ WD WindAm4 Forc = 10-psf-(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=6612 lb Wind Forcemin= 5340 lb 151-ft2 Maw,: ;,L 138-ft2 WSJ := 242-ft2 WAA := 216-ft2 WSAILZoneE'PE WE =—1329 lb W �= WSAILZoneF'PF WF=—16561b W WSAILZoneG'PG WG=—15491b NWS:= WSAILZoneB-PH WH=—2095 lb U li := WF+ WH+ (WE + WG) + RDL-[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE + WSAILZoneG)}.6.1.12 Upliftnet=901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION '- Lc\ Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force=l 19123 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E=I 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D 6 Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm,Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width ft (lbs) Width ft (lbs) Width ft (lbs) A15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 t ) -1. . Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SM,= 0.58 Equ.11.4-2,ASCE 7-05 Sps= 0.71 Equ.11.4-3,ASCE 7-05 Sol= 0.39 Equ.11.4-4,ASCE 7-05 Cs= 0.11 Equ.12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(lb)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vtioor 2(Ib)= 711 100.0% Yes Vfloor 3(lb)= 1595 85.3% Yes Vroof(Ib)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear*= ( 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. I Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(psf) Pressure(lbs) FMIESNIIIIIIIIIIIIIIMPIN Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E= -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force=l 6612 lbs I Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs E=I 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm m Dia lbs Diaphragm (lbs) (lbs) Width ft Width ft Width ft 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(T,)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMg 1.06 Equ.11.4-1,ASCE 7-05 SMS= 0.58 Equ. 11.4-2,ASCE 7-05 Sos= 0.71 Equ. 11.4-3,ASCE 7-05 Spf= 0.39 Equ.11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(Ib)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(lb)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces 1Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vfloor2(Ib)= 711 100.0% Yes Vfloor 3(lb)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear*= ( 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 ox 8.00 2.28 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 723 Single 1.40 IV 103 8 4.58 8.58 1.75 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 4.58 13.08 1.75 ox 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 109 8 3.88 3.88 2.06 ox 8.00 2.80 723 Single 1.40 IV 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79 1.33 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 202 9 3.00 9.79 3.00 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 5.00 5.00 1.80 ox 9.00 3.14 18.00 2.77 1183 Double 1.40 VII 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 ox 8.00 2.77 275 Single 1.40 I 302 8 3.21 10.08 2.49 ox 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 ox 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) g.-- L t Harper HodPeterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story 6 Panel Shear Panel Mo MR Upliftl Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type (ft-k) (ft-k) (k) (11) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) 101 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1.26 419 545 0.30 1.31 EIMINEMI IV 102 8 3.88 3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 III 0.22 0.97 Single 0.97 I 103 8 4.58 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 Il - 104 8 4.00 8.58 2.00 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.23 1.00 Single 1.00 II 107 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 0.26 1.15 Single 1.00 I 108 8 8.50 13.08 0.94 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 NA 2.13 Single 1.00 I 109 8 3.88 3.88 2.06 OK 8.00 0.33 0.00 85 111 0.22 0.97 Single 0.97 I 110 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 031 Double 0.31 NG 111 8 2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NG 112 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG 201 9 6.79 9.79 1.33 OK 9.00 0.28 18.00 1.26 157 205 0.46 1.51 Single 1.00 I 202 9 3.00 9.79 3.00 OK 9.00 0.28 18.00 1.26 157 205 0.20 0.67 Single 0.67 II 203 9 5.00 5.00 1.80 OK 9.00 0.55 18.00 1.28 366 476 0.34 1.11 Single 1.00 IV 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OK 8.00 1.26 125 162 0.34 1.72 Single 1.00 I 302 8 3.21 10.08 2.49 OK 8.00 1.26 125 162 0.16 0.80 Single 0.80 I 303 8 5.00 10.00 1.60 OK 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II 305 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 17.71 Total 6 1st Floor Bays= 4.43 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 14.99 Total 6 2nd Floor Bays= 3 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= 20.08 Total 6 3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.3 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pif) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 207 9 11.50 11.50 0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 208 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 306 8 10.00 10.00 0.80 ox _ 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 307 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type 'T (ft) (ft) (ft) ht k ht k ht k (klt) (pit) (plt) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 1 55.17 96.89 -0.24 207 9 11.50 11.50 0.78 OK 9.00 0.72 18.00 1.22 0.81 169 169 NA 2.56 Single 1.00 I 28.42 53.69 -0.34 208 9 11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 I 31.56 53.69 -0.06 306 8 10.00 10.00 0.80 OK 8.00 1.22 035 122 122 NA 2.50 Single 1.00 I 9.76 17.40 -0.07 307 8 10.00 10.00 0.80 oK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 1 9.76 17.40 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= 6.38 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= l.a Total 2nd Floor Wall Length= 2100 Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L'*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls gear E a�� �''�.. �"" �: ::�� ar+. '� �.�c s. rn' fillel O WaA,T e tit 101 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 102 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 103 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 107 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 108 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 202 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY1 Longitudinal Shearwalls �P 3 ' =c "`� ' aaT rat!)_'°s OIdo$ Ci00; p Ref A a �, �alle A -v g - `- 441 Its $ it i 105 259 1/2"APA Rated P1 'd w/8d Nails 0 6/12 339 44 Sim'son None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 207 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 ' Simpson None 0 208 191 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 I Simpson None 0 306 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 i aSimpson None 0 307 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 0 e Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kit k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.9: 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6.51 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9.21 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8.1, 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201 L 201R 6.71 6.71 12.65 12.7: 108 8 1.1667 8.5 13.08 2.28, 3.14 2.77 8.19 626 0.1 0.078, 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.61 110 8 1.1667 1.25 4.5 2.22 3.14 2,77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 23.31 111 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.71 112 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 21.9 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39.13 9.72 5.02 4.90 5.32 301L 301R 1.45 1.40 6.35 6.7 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 i 3021 302r 1.67, 1.72 6.77 7.2, 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56,42 6.39 4.08 10.52 10.80 303L 303R 1.61 1.32 12.13 12.1: 301 8 6.88 10.09 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 1.45 1.40 1.45 1.41 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468, 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1.7: 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44 1.61 1.32 1.61 1.3: 304 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 2.1: 305 8 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 2.13 1.90 2.13 1.91 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3,88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2,2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25, 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 9.87 7.32 111 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 203R,304L -2.99 2.91 5.74 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 13.83 9.72 5.02 0.75 1.37 301L 301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 1.35 203 9 1.1667 5.00 5.00 0.8 1.297 2.077 415 0.172 0.848 0.385 20.18 6.39 4.08 2.89 3.30 303L 303R 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.20 302 8 3.21 10.09 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 0.21 0.29 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.32 304 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.72 0.90 0.72 0.90 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line t V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HD12 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 • 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 2.88 I 1 W c„-kp '..--- g Qzo L.CL l A45)CI l' ''.71377-fiS S's-hx3-P• :ona foo-t-,,s roar 1,)Vfn -;., 0 F....x1rSS = 1\\ .-)\ - o _ i O�...5\ ) \ -1,.:1‘ • b -, 04. k.1 > -zt- .,1Sq 0k\ o c 1}Q A 'h KS ,•0 0141 4...x 1 cnsc„ zk1 0t'0 -* tical 31 1`x'9 #0 VcS •t *•iiZ c� �SS to, cg1 '©' 4171 3. 5c•0 # t 9 f31 k.,),-.5\MSS CAI -gjA -`o-a --4-T /..r„,,u,s:-.' ti'-)Q jVAA \Q,`rA )L1l,ct 36 Li.. -VA b(A SSa.i_1-± -- 5v,:j4g i o -11 Cd -h' i71 k Oc\--0(0h0-0)01v,) z Fl m z 71 -tS cat:. st-c "L ...,:. Q901-KS.-1.0.0)(,,c;"0\) ° $ . 1a c----=\\--1, ` 'e ..'f, — (-r)c /2) iQ'C ZItt)4 0 3Zfr47 .'0;lc-U-04 (Z• 01) S10'09 "IDI 1\\ WOM n 0 3 -7i cl..1.`S 1:7, 1GA0i c 7-1 sck --;1 b1-1'0 = X 9 0`0)k__zI‘c) Z -AS SO!--A i%1' (ZCK_5 O'OkS"b1) 4 (S'O)(L-C20'Oki ti)) -Di 0 iG c>c `, ,eke 'c ` ,-e1 -ztfix.10.0)tZI1l) 4 ("'Z.�zK2ke•Cikg1)-4 z - k7111-Xsko.0xei,e) }czfo,Xs`o'�'x ,6\) 1 5 ox�,00�(kkZ) -�Q S'O)t Ir=0) 'b\} a m ' \\1 --V1 tic's m o sa a• = to-01 � o -1g "A ticL•1 = (zio(`szo-o) s'bt))-t o• c(s7o)cs'bt)x,sz•k) -,Q �c1` 7:-k O4'1 cl,Iq ce.V° - -4 (;kc oX.s'bk)) +(Qt O•O� Z)4Sk0'O0 9 s'b,) 1) u M O Z _ E c-,4i. N 0 ,Zi. `=, 1 =`E-E'C -JO ( 011-C',S11 iStQ 3a :103foad ..oN eof 0 0 c.).\Cgrn �-31tlo ')'\N\ :A9 10t34 - : k tra tb-z_ I I I\ _ MEI L:114 =-14- 31; 7"- © 0 101 ENV{ 0 102 1 T 1 0 1e3 10 -1 ..� _ ... ——4 :tjr . t I l Y1? �� � -- `�1 t t t vt ) 0 190e sae t oe MIME MIS r is i r i — T Bo \ 32_ . i 1 !,1 0 ' , 0 , . .3, . •-•_ ,, ...',. - .--- - - - - -9 ` I. 1''.- In III I i i . , I I I .i. t j 1 ' ? 1 t . 1 e- t ! 40 t , i i I CI) ....-""" 'AtteMiltinAhltW' 3o' Atom C.) 3o,-I B- L:131- .--, $ BY . \\A r DATE ....- JOB NO ( IC' -Oct 6 PROJECT: 9,00 ,_,^'-4.../ 5 1.4,,k --- — — ''' RE. De i• f:- — ,__. - OPTION) 1 ..1 0 11110MV O W AllfAIIINNIA I- ILI — O [Rt13 Ur ti 0,J 1111114-111 . ', `• \ .1'" 2 Epp." - (3J7 ------ 9 i2 cl' :' 1-0? ?,..ps--ri,- i5-5'' 10/11116..... Li 57}) X .2 Ill 0 -..i..),.'-'!-..) P/ )c E., CC a. ..... ...• -3,0. at 2.2z.. z 0 .F. H 7-, (-:-) --` ' - " ' TQ??-P-,;:-::, e -113' ... • 2_ z D 2 0 t) lk ---T '?•-‘,-,:.° 1401‘0‘, gl...;:- '',4 c"l'iA, ilk 1 0-0 2 O 0 _ L.i 7._ • -. )4-, ,---f. - 0 0 1 H EL I - r-------7 ,----t- ,.... i,__, ,„,e--------•,,,,, -4: I--7•L-- --, _ I-4— ,—, 0 6 , C.) •- - Ill 17) - i - -:: 1 = = :e. --.=•- Agahh...* _.) - 1 I DATE 0 \ Cy" 2_;- VU Jos NO.. ct... 1...1 —(...., P ROJ ECT: RE: fjp i ) -'-'.4., • 7-, •-- 1::: ,j:i'' ',)0 CI CC\ '':::..t7'-' 2.-t,. .-a----,--1174-- 'Li 6 WO - ? c\....00?...... . 2 r,-, ,.77,11 1,..1- '4-44 t 44 444-'-4.^' ' i Li C < CC 0 0 Z . - ,- - -.,- .r, -a' —ao,Q w 0 pi ..,..._-_,_,_,--i ...,_, - .1_(y-;-;),_ c....7c-; ,,:,--_-n ', c .,..)- ,• -t-,, --- • z 0 17 V---V-------Te' o 2 r A _ ,, 4j ei(6't 4A.r,‘... 4 VirA}--:A.::: - : — ,-; ' ' '' Pr{;Ck2;- --- I _ix \-1 r1-17.7,-A -..- 1',47 ._/ r- • • U.I . 7- Z .-- o --r- , o 1 • — ii I I.-, - - 0 -• i --07- /- ,,,---)(002 ,,,,„0-- --,.? „7' --• !' . ' I ,- - ,0,.. ....; r , , a ,,,....,,,.. ,....i "........ ,...._1....?,,_.,,...z...,........,....1---` k...:',..,,,....,,,,,..;, ) = ;•'.0'..1) ‘,-N4'4' "----77--- ---_ 4 dt."--s L...i. ''_ 0 '- 0 • --.. -: .. ,,,,, .... . / Al''''' 4 '4.7 /,'1 'A1-'7 1 k- ', .. ,r,':', 'A,- ,-.-,....-i, '.., ', :2, ---:::: 'T --, „ , -0•I '0* , ',..„0' ' ‘1'. 0-,,, ,--0 ' 00- 0.0. = - 0. i-.,.1. . ,-,. '''-' .i,... . •v ',,, ...,-.0 - 1 ILIcrtft;:ed -• r , “,_ r -- ,-,.- ) ,.......„ 1(4 0`-i-2,,,,,,,,/ -1-. - -,, i ,...: i V 2: .4.. G.---'7 .4 .7,,,...* , 0 - '''''' / — ,- ..... f ,00--,0--t \,...,-:, r e 0 Y.---- 8._ L.20) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Woodworks®Sizer 7.1 June 28,2010 10:52:50 COMPANY I PROJECT RESULTS by GROUP- NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF r Mnf Trusses Not designed by request (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 208 By Others Not designed by request ' (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 206 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 204 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 2x4 @16.0 SUGGESTED SSECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jst Not designed by request landing Lumber-soft D.Fir-L No.2 2X6 @16.0 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 208 Lumber n-ply D.Fir-L No.2 1- 2x8 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 By Others Not designed by request By Others 2 Not designed by request (2) 2010 Lumber n-ply D.Fir-L No.2 2- 2010 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 206 @16.0 Typ Wall 204 Lumber Stud Hem-Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request _ deck joists Lumber-soft D.Fir-L No.2 2x8 @16.0 Mnf Jst Not designed by request 3.125014 LSL LSL 1.55E 2325Fb 3.5x14 4x8 Lumber-soft D.Fir-L No.2 4x8 3.125x10.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.125x16.5 GL Glulam-Balanced West Species 20F-V7 DF 5.125x16.5 (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 4012 Lumber-soft D.Fir-L No.2 4012 3.1250141) LSL 1.55E 2325Fb 3.5x14 (2) 206 Lumber n-ply Hem-Fir No.2 3- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Nem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 206 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values deck joists j42 Bending 0.41 Mnf Jst Mnf Jst Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 2x8 b7 Bending 0.21 1.75x19 LSL b14 Bending 0.57 3.125014 LSL b21 Shear 0.41 4x8 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125x16.5 GL b26 Bending 0.21 (2) 2x10 b15 Bending 0.93 4x12 b22 Shear 0.16 3.125x141) b23 Deflection 0.09 Ftg Ftg Not designed by request • (2) 2x6 c2 Axial 0.34 (3) 2x6 c64 Axial 0.59 6x6 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 (3) 204 c44 Axial 0.84 Typ Wall w15 Axial 0.28 Fnd Fnd Not designed by request Typ Wall 2x4 cal Axial 0.33 DESIGN NOTES: 1. Please verify rify that the default deflection limits are appropriate for yourapplication. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding esponding duration factor. Add anempty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd= actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT-UP BEAMS: it is sumed that each ply is a single continuous member (that is, no buttjoints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. :t WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 28,2010 10:56:39 Concept b24Dde: Beam View Floor 2 : 8 ' M ■ e.5. 4 a tUL'' _ -_ 4",-£, 44 b252,3_ v.i t yam.` � V in .__: _.. - _ "_ to • .... _- -iia. n ti "� i b21 b6 b26 b20RGb22 , b23 cB 38.-,`:C ,3(:.;,.}z �G 7C _rr s, i.Dv DEDEDo 'D DD- c _L i '-EES _ 1 34' .z ,2 2 2.22s 2,2'2 t2_._ ,.3 2_ _ '. 4� "--4.-'''C F.. _ .= r_ .,u i t WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:32 Concept b24_. I : Beam View Floor 2 : 8 ' U i b1 P leu_n b21 b26 b20—b22 b23 ■ r ..e-,. �u-3 a ,.��_..^ _ _ ... v�.-... ..... _ � .. u+. � �-�z. L3— (/',-).2, WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:34 Co-c60ept Mode : Ccc59imn View Floor 2 : 8 ' 4s u c57 c1 c2 c46 c58 tet; � r mow -_ ,:-..,3-0 c47 0 c55 c48 . 5-50-0x c63 c50c , c54 " '-'c68 15J 1c53 „ . c52 c51 !a 50,. ; c7 c56 c40 c64 c36 c39 _ RE_.E,' CC IT _CC �. ` ,._,C,C:.;k1'..,::0 C''C'....•v .C v _.vt1s._, 'rD DIT,L ✓ t1 ~'.v 1 ' 1 _ E FE r r' t' C E t:::-.-_-E:„:::11.a-'EHZ Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:29 Concept Mode : Beam View Floor 3 : 17 ' ,y F b7 , maw= wasall===lingsla n b12 v t b8 b25514 b13 e: I 1311 • am V b10 b9 ,1 �. .. 3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:27 Concept Mode : Column View Floor 3 : 17 ' ;_,, c14 c15 t;_.. ,.y .yam 1 c38 c16_• c25 _, c61 _ ,c43 ._ I J. c23 - c67 c22 . c24 '-"' c26 - c45 c44 c21 c20c19 18 . f., M WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:23 Concept Mode : Beam View Roof: 25 ' L b15 • b16 b27 _ r b18 swam r _ �.- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:25 Concept Mode : Column View Roof: 25 ' 105i- J,. c27 c28 { Of c29 e. c30 t r c66 ', c65 7. c34 c35 J ,. .; -00 JiVZ t i;, R.—r ! f / COMPANY PROJECT tit WoodWorksSOFtW FORWOOD DESIGN June 28,2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load i Type Distribution Magnitude Location [ft] Units Start End Start End l w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3 c14 Dead Point 1074 2.50 lbs 4 c19 Rf.Live Point 1601 2.5D lbs 5 j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL 160.0 plf MAXIMUM R: rr-R4 „war 4f ",�' , , ' C a £ ' '"�.r y ;;z �"« *- - "°' ,-4 . „,,, iilcorni ,,' aiiitit .x 4 d1.. "s ,tet, , ''''P'"`-''''' L"� s,,Wit' ,?� c,-.�. <.m`„ r m 'r�,,,"`"� . 5:- ,�;•�� ';*,�'y - - A WM 0 31 A Dead 1048 1539 I Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n-ply, •D.Fir-L, No.2,2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)Fi'n using NDS 2005 Criterion Analysis Value DesgValue Analysis/Design Shear fv* = 127 v = 207 fv*/Fv' = 0.62 Bending(+) fb = 581 Fb' = 1138 fb/Fb' = 0.51 Live Defl'n 0.01 = <L/999 L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1C-t0 .00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 2 Fcp' 625 1.00 1.00 - 1.00 1.00 E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - 1.00 1.00 2 Shear : LC #2 = D+L, V = 3627, V design* = 2356 lbs Bending(+) : LC #2 = D+L, M = 2073 lbs ft Deflection: LC #2 = D+L EI= 158e06 lb int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that 1 each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. Q l 0 COMPANY PROJECT fit WoodWorks' SOFT'ARE FOR WOOD DESIGN June 28,2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS lbs and BEARING LENGTHS in : � ev I ai ,:2 ' :„;..v F ,. x � :sx sr s '" s � 4 #., s c,v_„,,, ' + „„ fit .,:- � ' 1 v. av . ;; '. A mss: .3 , a.- ,# • Ip' 61 54 Dead 54 120 Live 120 174 Total 174 Bearing: #2 Load Comb #2 0.50* Length 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2,2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 FV' = 180 fv/Fv' = 0.05 Bending(+) fb = 120 Fb' = 1080 fb/Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# 1 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 174, V design = 139 lbs Bending(+) : LC #2 = D+L, M = 262 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C--construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT III Woodworks° SOFTWARE FOR WOOD DESIGf. June 28,2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c30 Dead Point 59 3.50 lbs 2_c30 Snow Point 75 3.50 lbs 3_w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6 jl4 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 b12 Live Point 469 5.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): id � � c , .� x mak, * x. � N : i .,.47f ,W . '-'-',> .,,,,,7-wr-to s;; , , �0' 61 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length 0.69 0.93 Lumber n-ply, D.Fir-L, No.2, 2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 180 fv*/Fv' = 0.37 Bending(+) fb = 556 Fb' = 990 fb/Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1744, V design* = 1232 lbs Bending(+): LC #2 = D+L, M = 1984 lbs-ft Deflection: LC #2 = DCL EI= 158e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: ' 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT Of WoodWorks® SOFIWARE FOR WOOD DESIGN June 28,2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 bs 3_c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REPrTinwie nw A DcADIMf I cwrr`Tue t • ��„z _ Alt: Y a2+- 14;4 .gym, ' s i., '':;4;.: :: ., " ; , ,, ; x - tom . 7 "` Io 146 Dead 63 146 Live 85 110 Total 148 Bearing: #2 Load Comb #2 0.5#2 Length 0.50* 'Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis-vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 12 Fv' = 207 fv/Fv' = 0.06 Bending(+) fb = 82 Fb' = 1242 fb/Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 256, V design = 169 lbs Bending(+) : LC #2 = D+L, M = 179 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 0 t_ I11 COMPANY PROJECT 1 WoodWorks� SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf MAXIMUM REPrT 1-e IfI..`"......4 D ADIkir clan-ruler.,. . �, a "` " & f 244 ��� 4 _44 Ue 10 Dead 146 63 Live 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 207 fv/Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb/Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S) , V = 229, V design = 148 lbs Bending(+) : LC #3 = D+.75(L+S) , M = 157 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT Il 1 WoodWorkse SOFTWARE€OR WOOD DESIGN June 28,2010 10:36 b14 ' Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) a.` - - "_,,,,,.,„,,,„-----..---,,c-,?---,mo . ' 1 "- . r ,„.,,�.®.3 '�tta .�^ zr3 w---r '.".°" ,a-- om ,�. «,a '` w ��r - X 4: :;.1 -- . ,,,,-.7.,,,7:M.-,: - .---- .n. . A • 0 8'-6'i 685 Dead 553 1878 Live 1522 2563 Total 2076 Bearing: #2 Load Comb #2 1.83 Length 1.48 LSL, 1.55E, 2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 126 Fv' = 310 fv/Fv' = 0.41 Bending(+) fb = 1324 Fb' = 2325 fb/Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L/750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 2563, V design = 2064 lbs Bending(+) : LC #2 = D+L, M = 6308 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. (n \VI- COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS lbs and BEARING LENGTHS in : ps k,' 4 • • 10' 64 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 1.34 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 101 Fv' = 207 fv/Fv' = 0.49 Bending(+) fb = 1055 Fb' = 1138 fb/Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 ` - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2508, V design = 1864 lbs Bending(+) : LC #2 = D+L, M = 3762 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. g15- COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DES1GN June 28,2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REf^T'^"'� '' cCwnrwrr I Cwrr,-ruc i �� sw 4 s g r eta r;a � ar�+�` m -.. " ,..,"• ,s - a '" �` .z 'x kap.»+» t:r-»f 34 10' 53 Dead 71 65 Live 91 118 Total 162 Bearing: #2 Load Comb #2 0.50* Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 180 fv/Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 - - Fcp' 625 - 1.00 1.00 - - 1.00 1.00 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 2 Shear : LC #2 = D+L, V = 162, V design = 99 lbs Bending(+) : LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT III WoodVVorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location lft] Pat- Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2 w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3_w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4-w62 Live Partial UD 320.0 320.0 2.00 6.00 No 5w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7-c44 Dead Point 1940 1.50 No 8_044 Snow Point 2853 1.50 No 9 j20 Dead Partial UD 104.0 104.0 6.50 10.00 No lO 320 Live Partial UD 320.0 320.0 6.50 10.00 No 11_j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14 j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16_j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 658 0.00 No 20-b23 Snow Point 195 0.00 No MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ° rn-- 7' h ,-e- r;. - m � Ns' , -� -- . ...- � z. � wz. + 7, om q; ;. Tea - -.-,,,e'-«.m " • te- a 44- - .„-_,-,,,,,, f,,. ..,:i.„47,1-._-_,-,,..,-,_:-.,:1-....c- 2 _' E,-- ate ' r �" e - �-"'a: *:. r g 'a _, a.. a-e- s-- fiML'' ♦ �! 0' 2' • Dead 5581 101 Live 5266 1311 Total 10847 2508 Bearing: 3819 Load Comb #0 #3 #2 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 139 Fv' = 356 fv*/Fv' = 0.39 Bending(+) fb = 717 Rb' = 2325 fb/Fb' = 0.31 Bending(-) fb = 600 Fb' = 2632 fb/Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L/180 0.26 Total -0.03 = L/788 0.20 = L/120 0.15 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fop' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #4 = D+S, V = 7237, V design* = 4536 lbs Bending(+): LC #2 = D+L, M = 6833 lbs-ft Bending(-1: LC #4 = D+S, M = 5720 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 4.The critical deflection value has been determined using maximum back-span deflection.Cantilever deflections do not govern design. 0 r_ I --1 COMPANY PROJECT ill WoodWorksOD SOFIWARfFORWOODDESJCW June 28,2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft1 Units Start End Start End 1 w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2 w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3 j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4_148 Live Partial UD 220.0 220.0 1.00 2.50 plf 5 j47 Dead Full UDL 42.5 plf 6_j47 Live Full UDL 62.5 lbs 7 b23 Dead Point 700 1.00 8 b23 Snow Point 195 1.00 lbs MAXIMUM RE ., ir,.X- tis 174;<';01.:'-0s-• -4 .€lt r+ '-. 7.-, fes y.r � � 4.-,j-,-6 ,a, s .,-,. kz, ��,. x ", ..--.- rx ak' � 71. . r? x ,� ; tom, � .s� S t : '� ..m t ;£�.;„S % s jz ;- art- : 1,z ti s - 4L,.<,...75':'- <, ' '"" ,''''' - i . 2'-6'1 10' 807 572 Dead 683 Live 341 1379 Total 1024 Bearing: #3 Load Comb #3 0.63 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L,No.2,4x12" Self-weight of 9.35 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design 0.14 Shear fv = 30 Fv' = 207 fv/Fv' = 0.14 Bending(+) fb = 159 Fb' = 1138 fb/Fb' = 0.01 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.13 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci LC# Fv' 180 1.15 1.00 1.00 - - - 1.00 1.00 17010 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 3 Fcp' 625 - 1.00 1.00 _ 1.00 1.00 - E' 1.6 million 1.00 1.00 1.00 1.00 3 Emin' 0.58 million 1.00 1.00 1.00 1.00 3 Shear LC #3 = D+.75(L+S), V = 1024, V design = 778 lbs Bending(+) : LC #3 = D+.75(L+S), M = 978 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 664e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. I2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. gam- (e1 !e, COMPANY PROJECT fit WoodWorks® SOFTWARE FOR WOOD DESG.Y June 28,2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4 c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7_c20 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 10 c21 Rf.Live Point 110 9.50 lbs 11-w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : _ .,,,�, ..e,--_- --. 4,,, T-% - " ' A A l0' 1 1 i Dead 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports LSL, 1.55E,2325Fb, 3-1/2x14" Self-weight of 15.31 Of included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 356 fv/Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb/Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending(+) : LC #2 = D+L, M = 2028 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 3r. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3 j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7 j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : rcii. 7-- - .a ., .. 4 ,.. b ._- , ,,.. .,, L. 10, 164 442 Dead 442 1280 Live 1280 1280 Total 1722 Bearing: #2 Load Comb #2 Length 0.85 0.85 Glulam-Unbal.,West Species,24F-V4 DF, 3-118x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: 1 Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 ib-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i 1 WoodWorks® SOFtWARF FOR WOOD DESIGN June 28,2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS (Ihsl and BFARING LFNGTHS lint ,tk „'� .� 4x a ; ' 10' 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0:13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. r2 _T ► COMPANY PROJECT 1`l WoodWorks® soFHWAREFOR WOOD DESIGN June 28,2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [£t] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6-c14 Rf.Live Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Rf.Live Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11-w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12-w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17-j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j.43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 ' plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23-j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 29 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26-j47 Live Partial UD 160.0 160.0 14.50 16.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): IR la 161 Dead 4328 4101 5376 Live 5296 9477 I Total 9624 Bearing: #2 Load Comb #2 2.84 Length 2.89 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 305 fv/Fv' = 0.52 Bending(*) fb = 2301 Fb' = 2760 fb/Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 9624, V design = 8063 lbs Bending(+): LC #2 = D+L, M = 36854 lbs-ft Deflection: LC #2 = D+L EI= 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). /2 J ,✓N` I 1 COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : " r A 10. A 15'-6{ Dead 583 2397 Live 393 2044 Total 976 Bearing: 4441 Load Comb #2 #2 Length 0.50* 1.33 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 305 fv/Fv' = 0.18 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - 2 Shear : LC #2 = D+S, V = 4441, V design = 3070 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Deflection: LC #2 = D+S EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0' 8' Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 221 Fc' = 980 fc/Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc/Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3655 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT ti 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 b12 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): .'_. ;.. f 'r," ' ,as:�,z,ab � � .... _ 'IQs€ ,; ,..,''-, 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails; Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 Fc' = 380 fc/Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1942 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. ,R- COMPANY PROJECT 1` WoodWorks® sOF7W4RE FOR WOOD DEOcsr June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2—b21 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0, 8' Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 12705 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT lit WoodWorks' SOFTWARE FOR WOOD DESIGN June 28,2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): W4a at'r a" s3 "`n L ' °` sx .w,, x, 2. `5 a v« " 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb:1.00 x 9.00=9.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 306 Fc' = 363 fc/Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc/Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 4823 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2_c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 8' 0' Lumber n-ply, Hem-Fir, No.2,2x6",3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener: nails;wheee permitted(. r to online.00 ;Ke x Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: help);applied Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 259 Fc' = 439 fc/Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc/Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6404 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. BY- Nk\te\(-...„ DATE )3k, ao 10 JOB NO C 3 )CI,0 PROJECT: RE: Zea - L) LakroA --eactians _J betriAn a‘C LKJOA as0 3 li• w F- w O 2 30,__0,,m 9,5 -> Do • ao 2 W 1• ,--J 1'c%\ 0 WIt \ k_)kijk 0 2 0 o z E 6 O I Co (L2 ell •F. - , ;-•+ Cut (11) (L) . _ nY1 COMPANY PROJECT 1 WoodWorks° soFiwAREFORW0000WOICN June 28,2010 10:19 b25 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf lb- w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 131w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15_342 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 342 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_344 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_344 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 345 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23346 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24-j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_347 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 347 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 20313.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): g -,. ,. g' *,,, a,,4s -, , .e;0� t, _,.. 4. ._,,, ..�..... .*4:0,,.�..,,,, ;, .-'�'Nx'4., - _ .+4* 1,,,. ,..ad-%_wb i ,,..X*5.3.aii ab,Man *F<_. ...9.: .=..F. .x. ...0". „�' At Io' 161 4101 Dead 4328 4096 Live 7703 2458 Uplift 8197 Total 12031 Bearing: #6 Load Comb #4 2.#6 Length 3.61 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 1986 Fb' = 2760 fb/Fb' = 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 0.80 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC #6 = D+S, M = 31814 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) ' Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3 3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT ill WoodWorkse SOFTWARE FOR WOOD DESIGN June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10. 101 Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27 1.23 • Glulam-Bal.,West Species, 24F-V8 DF, 5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 978 Fb' = 2160 fb/Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #1 = D only, M = 15667 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I-impact C-construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 0 l ' 1 COMPANY PROJECT 1 WoodWorks° SOFTWARE FOR woos DESIGN June 28,2010 10:20 b25 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft[ Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3-w26 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6-c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11-w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 342 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17-343 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18-343 Live Partial UD 160.0 160.0 4.50 5.50 plf 19-344 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20-j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 213 45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22-345 Live Partial UD 160.0 160.0 5.50 7.50 plf 23-j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24-346 Live Partial UD 160.0 160.0 13.00 14.50 plf 25-j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26-j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 2038.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) ,?." s a"" vt5..,, �s.,r'4�nsae•+a ar, `. r+. ^fi a"L f ,, .,,A,5,wro +, m,,- �.h+.+s e *.a.- -a- a ,a�wsa., r: +sc;='N-y = ..+.w r '., -M"",s = ��-+vs�.°�....a ,..�,� ,., t�,. �. .� � -�.�„�- ..wu�s,: .a^"�w`!�_ F ..�-.�, ,,,,,,4,7-1---,�_r .�w,z n ...e�r x._> , , _�.,.1.�3.�f, -�3TOW-. 2. 161 10' 4101 Dead 4328 4101 Live 4016 Uplift 2321 11864 Total 8344 Bearing: #4 Load Comb #6 3.#4 Length 2.50 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 2949 Fb' = 3640 fb/Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 . ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D+S, V = 6344, V design = 6983 lbs Bending(+): LC #4 = D+.75(L+S+W), M = 47228 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT II It II Wood Wo SOFTWARE FOR WOOD DESIGN June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End l w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs ' 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): �� �._ ,.���,.<;r" � .�.�-,� ,�� �_.� ,���''.„ ;,7,.,,,,,-_,_:-L._,,,�. � nes:,.,��.,_. �_�, ,,.s-�r�„p� .,� "",, �,,,.�..,X bo, 161 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam-Bal.,West Species,24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 1905 Fb' = 3840 fb/Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L/525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+) : LC #2 = .6D+W, M = 30517 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-in2 • Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT I i WoodWorkse SOFTWARE FOR WOOD DESIGN June 28,2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 pif 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : la 15'-6'1 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam-Bal.,West Species, 20F-V7 DF,5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC #4 = .6D+W, M = 48956 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 0 _7 ,9 Li I COMPANY PROJECT 1 WoodWorks SOFIWARE FOR WOOD DESIGN June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : cb-�rs<. 'kiR..ma.ww. ' .+...SST- u� 'e sv.n�h-�,r�r...�.. ..��-+a..,,a-. zw.< .»..:w.Y_ ,sy 4 e 69..�r-r HN ��z 10 15'-6'1 Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal.,West Species,20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC'#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). / _/- e")(._ ,..„......- COMPANY PROJECT I WoodWorks- SOI"TWARE FOR WOOD DESIGN June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs lbs W1.2 Wind Point 13500 15.50 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): aud` . TeiY 3 .-xeY:w�afl TSM"",:b°' ..w'' ''''.. ..y�' .*'`,7. 4�#aw*5 7.':.kk-*- 't i---' te s*s�. HG� =Y.� y" �ma✓,�ax Y,--. ,,,, �RAilss,t #as#§saa »' 3hT * '.YY- €-F`✓ h,a=Tax' a, c W K3`•'§'&1T� .. 1 Y , ei a , +.rr,.. 4 pp- yip "`_>y*y"" a `�. -TK:Fb.'c.i,F...d 3&we'E._ s, ... ksi=` Y'�P$r:�.ss�."', 3a...,,,-,...4-,-,..,-,.. az. i.,4-4,-,-,,,;-,,,,,,,,-,..,..,--..,--,.. .,,.'TY-,P Ls£ A15'-6't 10' 2397 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 Bearing: #2 Load Comb #2 1.#2 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species,20F-V7 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - -- 1.00 - - 4 E' 1.6 million 1.00 1.00 - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - Shear : LC #4 = .6D+W, V = 7647, V design = 7647 lbs Bending(+): LC #2 = D+S, M = 9454 lbs-ft Bending(-): LC #4 = .6D+W, M = 42496 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). t2_if ltat _ COMPANY PROJECT 010111. I Woodworks® SOFIWARE FOR WOOD DESIGN June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : Y iw 4^t,. N' Xx # r ft a...F, &*. .r fin m'S, ..5.+ nx,..r zro! := , ..ter =NZ.:,., ,-------------,---,---m,,-,.....,--- ev..,..x.-_EE4;-sc..,-,.,�,..e,s..�maswm ,<,--+..,*k��.k.->..,,,,nv. '',0,-,,,S",,,,,,,,,,,*-,..�ea4.ri,.»..-spm AM, �"M'L1 10' 15'-6'i Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 Length 0.50* 0.72 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 267 Fb' = 1797 fb/Fb' = 0.15 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 7647, V design = 7647 lbs Bending(+) : LC #1 = D only, M = 5167 lbs-ft Bending(-) : LC #2 = .6D+W, M = 42496 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). Harper Project: •T .'' .t'. Houf Peterson Client Job# Righellis Inc. E N4IN EERSNNDate: Pg.# L AN OS::AYc ARCH:i•t9c F9A�s'Eti4RSL'E Vf Rs Designer: QedL best gr\ Wdl 10- lb •8•ft•20-ft Wdl= 1600.1b ft2 Seismic Forces Site Class=D Design Catagory=D Wp Wdl Ip:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa•.= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Sml := Fv'Si Sds•_ 2-S ms Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements &Body Of Connections ap:= 1.0 Rp := 2.5 (Table 13.5-1, ASCE 7-05) FFp — .4apRS_ds 1p•(1 + 2.1•W p EQU. 13.3-1 Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= •3•Sds'Ip•Wp EQU. 13.3-3 Fes:= if(Fp>Fpmax,Fpmax)if(Fp <Fpmin,Fpmin,Fp)) F =338.5171-lb Miniumum Vertical Force 0.2-Sds Wdl=225.6781•lb Harper Project: Houf Peterson Client: Job# Righellis Inc. Designer: Date: ENGiM E45 , i HSPQ # ta_vns ..r�aRceCt rrS• u.t:Evc R'� D Wdl := 10• lb •8-ft•20•ft Wdl = 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl 1p:= 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa-Ss Smi := FvSi 2Sms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) .4ap-Sds•IP z Fp:= R (1 + 2•h)-WP EQU. 13.3-1 Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= •3•Sds-lp•Wp EQU. 13.3-3 F,:= if(Fp >Fpmax,FPmax,if(Fp <Fpmim FPmin,Fp)) F =338.5171•lb Miniumum Vertical Force 0.2•Sds•Wdl=225.6781•lb Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To Li FROM Li MEMO To FILE 1] PHONE NO.: PHONE CALL:0 MEETING:Li X -13 CO m M -< 2. rn 1 I 3' -. 11. C 0 • t 1 tp —4 11 c i C (t li 03 0 (I' I-- ()) S ....0 3 Oa ,...$) _ .... 4 Co, * —0 1(A (4 "'"" a\ rs- II Or —1 _lc- co rr, ..i01 LI 9-) D 1, co z 0 ,...„ 1 ,. ,._ 6 ,....0 0 i V BY. Arr (.0 W\ DATE 16\ NI 0 JOB NO.:#X Pi'" (Eh---09 0 PROJECT: RE: 0 -\ ) pi-1,--,, k A, C ()2 r--\C ______ • [2x L E o A _ . •• Dett.1,46 -1 (3 V . "- 17 0 III 0 2 N A k L. C Pr-Pq c v1---y (i L a C-31-nrilap:) 0 Li . (I. 3)((ag*Ir01 i) ;.--- i(o .(0(?-3" WhVi! i 0 ._, I < u I -. ! „ 0 w o z • a w o I " x ec ci_ Z • a Z ---,-' .0 - (1 6/a. I.(.,-'sVilai 1 ). A (2 bo,arf 1--- i < F,6 0 ° A 1 LP /I : -- ---- ',,,r-------7---- 0 1 i co,cr------f - 1 , o i 2 .. 2 d Coo c 4 Al). - (0 t ic)Li•F- ,.,_ • i — Ei 6 i 1 le cf. ki0 ,A,c T tic, li C-.•:, v....A , i ___ ______,. . . .l< P ei 71 0 \I - ,,,z., , :,‘ cvz. • . . • . , 0 -, ,..., . .• ; i ,e^, a • e T(i) 0 .L , .. •., .:, , clgi "a 141 .'`' 2_0 1-.' ' _ c--5-- 'W/FL 4:' 410 1-1-- r–. ts_ 2- )t 2 \i. eI --c ) — - , - ,,... „, 1,. • Z = (24 .f•- 1:14 il: : :-. Clkia\J l' hi) 1,00& '- • :: 30'3114- X4112_1‘ e- ti" 0,C . < 101 ( 1,, I ( Node sk 1A . BY. RIT\ Dyini DATE \O( 0 Joe No C 6 t j 43q0 PROJECT: RE:C1 W - -1 0 LI Z :L 4 O Lil -"-^ ••:4-' v. F- w o 2 m ,/ _ 20O* Lii 0 Li \ , <0 O ,,, u z _-=.-- BLE-a.) UI *INI z T=C -= St(wittvi -- aLloo*:- o - z use- 51rf\?eoorr HOu4 10Nies,,o':--, _ kfn00., o o .z.._, O ---,--- .e..-J - z o rt d LI_ Z lil O 6 O I t-c)(41 CP',..77)i--- ,,q I- 0_ M=. aoo 4 (400-) 200 - 3000 4t-1 Ki , „ ..,...7r..., 1 T-7- C gboo ftiki 1 1 --- cagG-#- aaVo 4. .,',.40o ,., E Z : 1 ---->7 -7,-- 7 , f e-1 Harper HP HoufPeterson COMMUNICATION RECORD Righellis Inc. To 0 FROM 0MEMO TO FILE EI•IGINEEi', r f'LAII;IER LA,C'.-,:AE:':ARCHITECT.,+EGr+.VEv',, PHONE NO.: PHONE CALL:Ej MEETING:0 23 'o CO O II n ,,.5 1--- y , 0 11 3 L s Q0 0 0 G . i, � ; n o 1t� m ...., e e.....-,_ J ,...... .... _, T5:2-› } a b o z 0 � 0 narper Houf Peterson 0.FIP Righellis Inc. To El FROM El COMMUNICATION RECORD MEMO TO FILE 0 E CINCE 1 +PLA 1,ER La D t ,PF A,C11ITLL r,.SU+V_rL1R- PHONE NO.: PHONE CALL:11 MEETING:El -u CO ...:i:› -I $1.5 .m.....4..a..„,.. eli l..) a"c3) (P, --.4 Nt. 4 N. 11.1111111 "N.IIIIIIIIIIIIt u."*t ;141 -1. CP4„,„„,, ....-.-....,.,...,........ til kJ C, .............s. o .7) C 'elr V CN V' li 32) 1 . 7 Li C. IN 1 0 1 ,4 N 0 0 -V Z 0 Cr, e (31 1 0 --Z”) ".0 COMPANY PROJECT 1 WoodWorks° • SOFTWARE FON WOOD DESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : IO' A Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. t,\ (Z) COMPANY PROJECT i i WoodWorks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10' Si Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 `Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 22,2010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 25 ' ■ • / , _. 1280 L 1280 L A 442 D 442 D `'' co.- v K w K v 12272089 L 1601 L a a 10481539 D 1074 D , 13 may. :. ... _. .. ... _ ' , v.. • 75 L -,--- '6' 59D c, 1408 L 1232E 514 D 556 D o. • 1080 L 640 L . ` 409 D 792 E aRn i 99 D� -l_ 1522 L 99 D 553 D ••s 98D 225 75 L . 27. _,, 73D San 2192E 1311 D 3 220 L ., .D, -o .. 3 ( L- 55 L >� 109 58 D , 021 L 2450 2 1 D 5581 D u sB o° �C ..`,cco t",c,cc .cac v C -3 Lc xc.:c ',,r,__.DDL.}u... )Df3.Di,_,_)?_._E=2EEEEi-EEELEEC=Y_. z E .,-� ' ' z 4 ^� =� -s (`` r 22'22'24'25 28 Z J 4=34414,5'48 c3 5t, 35 54 65 38 17 72 74 _ D Liac.-ioui-- -Feomc gç \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 Concept Mode: Reactions at Base of Structure View Floor 3 : 17 ' IN • a_ , 3 1280 L 1280 L a _ 442D 442D _. '--'_J to ,..„, „ , l 376 L 5296L _ -'- 4328 D 4101 D : c %.,. 75Lr_, 59 D cc-1 765 L� 1036 E 277D 483 D _, - 640E _ ,-, 208 774 L aan i - 99 DO -.; 1020 L 99 D 368 D 98 D 75 L 225 1 73 D c v 2186E 1298D c .15V 94 L 084 L J L 94L i 306 L4 D. 41062L 73 D7E2515 D5 D 5647 D .3 Ca r `C' a r)P t u41 L.r D—I Ds- c } EEEE n E Et..Z 00- kNie'1 IN t ©uT ReptiL LO PID Plain Concrete Isolated Square Footing Design: Fl fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density Ysoil 100-pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5647-lb Pd1:= Totaldi Totalll:= 7062-lb P11 := Total11 Ptl= Pdl+ P11 Ptl= 12709-lb Footing Dimensions tf:= 12-in Footing thickness Width:= 42-in Footing width A:= Width2 Footing Area gnet:= gall -tf•Iconc net= 1350•psf Pt1 Aregd gnet Are dg =9.414•ft2 < A= 12.25-ft2 GOOD Widthreqd:=. Are,70 Widthreqd =3.07-ft < Width =3.50 ft GOOD Ultimate Loads ,:= Pdl+tf-A-icon Pu:= 1.4•Pd1+ 1.7•P11 Pu=22.48-kips Pu qu:_ — qu= L84-ksf A Beam Shear bcoi 5.5-in (4x4 post) d:= tf—2-in := 0.85 b:= Width b =42-in Vn:_ — fc psi b d Vn=23.8-kips 3 V b'bcol b Vu= 9.77-kips < Vn=23.8-kips GOOD u qu'( 2 Two-Way Shear bs:— 5.5-in Short side column width bL:= 5.5-in Long side column width b0:= 2-(bs + d) + 2•(bL+ d) bo=62-in (3c:= 1.0 Vim.= 4 + 8 fc•psi•b•d Vu=71.4-kips C3 3'k Vn,nax:= x•2.66• fc psi•b•d Vmnax=47.48-kips 1,14:= qu•[b2 �bc01+ d)2] Vu= 19.42-kips < Vnmax =47.48-kips GOOD Flexure 2 (b -2bcol (21l mu:= qu I I I•b Mu= 7.43-ft-kips 0.65 13-d2 :_ S=0.405-ft3 S Ft:= 5.4. fc•psi Ft= 162.5-psi Mu ft:= ft= 127.36•psi< Ft= 162.5-psi GOOD Use a 3'-6"x 3'-6"x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity "Ycone:= 150•pcf Concrete density 'Ysoil:= 100.pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 4101.1b Pdl:= Total(/' Totalll:= 5376-lb 1111:= Totalll Pt1:= Pdl+ Pll Pti = 9477•lb Footing Dimensions tf:= 10•in Footing thickness Width:= 36•in Footing width A:= Width2 Footing Area gnet:= gall —tf'"lconc gnet= 1375•psf Pd Areqd (net Areqd = 6.892•ft2 < A=9•ft2 GOOD Widthreqd:= Areqd Widthreqd =2.63.ft < Width=3.00 ft GOOD Ultimate Loads := Pd1+ tf'A''Iconc Pu:= 1.4•Pdl+ 1.7•Pll Pu= 16.46-kips Pu qu:= A qu= 1.83•ksf Beam Shear bcoi;= 5.5•in (4x4 post) d:= tg–2•in 40:= 0.85 b:= Width b =36-in Vn:_ 0.4• fc-psi•b•d Vn= 16.32•kips 3 () -b b –bcol Vuqu Vu= 6.97-kips < Vn= 16.32•kips GOOD 2 Two-Way Shear bS:= 5.5-in Short side column width bL:_ 5.5-in Long side column width b„:= 2-(bS + d) + 2•(bL+ d) bo= 54-in 13c:= 1.0 V -= (4 + 8 )-1 fc•pst•b-d Vn=48.96-kips �'I 3 3.(3c Vnmax:= 41:1' 2.66• fc psi•b•d V,m = 32.56-kips [b2—(b + d)2] vu= 14.14-kips < V , = 32.56-kips GOOD col ,y,14,;= qu' Flexure _ 2 (b –2 1bcvl 1 qu' I b Mu=4.43-ft-kips Mu (2 I 0.65 \ \ /. b-d2 S:_ S=0.222•ft3 Ft:= 5.0• fc•psi Ft= 162.5-psi Mu ft= 138.42-psi< Ft= 162.5-psi GOOD ft:= — vise a 3'-0" x 3'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoil:= 100•pcf Soil density ga11:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total di:= 2515-lb Pd1:= Totaldl Total!':= 3606-lb Pll:= Totalll Ptl Pdl+ Pll Ptl=6121-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area 9net gall —tf'lconc gnet= 1375•psf Ptl Areqd (hetAreqd=4.452•ft2 < A=6.25412 GOOD Widthreqd:= Areqd Widthreqd = 2.11-ft < Width =2.50 ft GOOD Ultimate Loads = Pd1+ tfA''Yconc Pu:= 1.4•Pdl+ 1.7•P11 Pu= 10.74-kips Pu qu:= A qu= 1.72•ksf Beam Shear bcoi:_ 5.5.in (4x4 post) d:= tf—2•in 4) := 0.85 b:= Width b =30•in Vn:= (1)•-4 34• fc psi b•d Vn= 13.6•kips — 1 Vu:= qu(b bcoiI•b Vu=4.39•kips < Vn= 13.6•kips GOOD l 2 J Two-Way Shear bs:_ 5.5•in Short side column width bL= 5.5•in Long side column width bo:= 2.(bS+ d) + 2.(bL+ d) bo= 54-in (3c:= 1.0 �• 4 + 8 cl• fc•psi•b•d Vn=40.8•kips (3 3•(3 Vnmax:= 4).2.66• fc•psi•b•d Vnmax=27.13-kips = qu.[b2 —(bcoi+ d)2] Vu= 8.57•kips < Vnmax=27.13-kips GOOD Flexure 2 b —2 bcoi 1 mu:= qu (2)•b Mu=2.24-ft-kips 0.65 b-d2 ^s-:= S=0.185 ft3 Ft:= 5.4 fc psi Ft= 162.5•psi Mu ft:= _ ft= 83.98-psi < Ft= 162.5-psi GOOD S 'Use a 2'-6"x 2'-6"x 10" plain concrete footing \q\ C DATE: 33 H auto JOB NO:C [ ae O AA •VS vvvIEA1AfP! lV7 A.aD5 o.aOsx PROJECT: 1!� 'V 6/ '`} RE: U‘N r�1i 1 a6 a,'1s �` 4 y' 5,5bi K.. Li• z - 1- T,Ii----1, O W �. L• ❑ I--1} I o:}s-\--4. 51 1 11+6.151 io r i ❑ J cc a U O w U o uj a Chive t 0 ,vloi = 1°t , - - 4aos CIO = 13q.of 1 iTU L _ y a0(p FS _ ave L4 '. t, ... 0 Li_IZ _ _N__\ aq?, Srs 1, 1tP1 v-yx,,,x = q C , • a s lf) 1.l (IS k-st 4.1.s_--arc. ...-i 2c) 3(33-)( )- (4; -> O• U 0 �N a ) AC- FA Bentley* Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:48 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load.etz\ M33=81.13[Kip`ft] M33=-23.24[Kip*ft] ii X Benttey- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:49 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load 2.etz\ M33=48.59[Kip*ft] • M33=-54.65[Kip-ft] i . MO '; „ - - t-, („7-14_111, n ='„ --„: " --t:'-'1 :--i-A-C-G -.-=' \-1 ' 710 J,01 Z),) ,r2„- C,-11 - r-' CM , = N A Cr)4.— 9 72 (.7,... .X060i5(g.;°)/LOCO I 0.1)Q07-: \) 0 ao D -,‘ O '-1 S(a < czt to)'Q - c9G ob.n)(,(4.-k.Vil-)o Q ---•-• ‘-'VI 0 172,1'&s4-4:\ ell Z-bc14`0 :: (,7-171,,POOI.,9 C')/' (.COO'ClI\A--LO'\) ,? O b Cr2-.-. • 'ell Ct,21\ =C V °- ....,V 0 t;e,\ a ..s Attr ) 'COI ht bSg 4 :5")t 0 02:1d \ (' /c 4-2,f‘ -SA) 0LVOcl -.AtTo)010'0„ = v.vi 0 2 0 L.,, a ii N" -\ ----etV)(900S71/4,90 (1/4:SPOrOn,..:Ari 0) .-:Tr' 0 - z _ rn cy s) Z 71 i r p '0'0 e-- (-) 3 hA,-., /".., '4= \...X\r,:P VI,/ \--.1 I \IX3 C Z 131 1.1 0.0t1 '''' <'-- "D k › j--), cl 11S-- 4.-2.-t, 4,ur\ 8 O 0, irlk h rn o 0 0 x 3 0 71 -1 i T11 CI 21 Z - 1 VI QA S'lt 7 X C*1. c 0 r -71114.' ./r....... :•-•:...'...:.......... :- -..=..:•....., -1, 1--1 1--, il 4‘, L...i 1 ! - JAA-0O3I,- V001. ick,..k013, ,31 ' J - 1031-021d (:) "1) :oN filOr 01Qt CI\Cc. :21%10 BY DATE: JOB NO.' PROJECT: RE: U J iT- C --Rem f Load Lu z 5 :53 ° W 2000 O 2 1-00 w - I O ` 0 Mor = 54 , Z Me- L( 4- a. (6,3,4) fq . 1-A42 - ( C)+ a(GO' 9 cc 0 rr. x = GI., 4_ ( M i ,1 , C1Z, m ...� O• 49'� < its ; . 01(...., s t 002,t a is 2( t. z O v CJ = Q; 411.4 x_ 12 PAr- Bentley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Rear Load 2.etz\ M33=36.82[Kip*ft] M33=-5022[Kip-ft] ACI 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 17.00 inches hef= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin= 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor 4i= 0.75 strength reduction factor Calculations Calculations ANC= 408 in` AN = 1296 in` AN()= 2601 in` AN()= 1296 in` Nb= 92,139 pounds Nb = 55,121 pounds Wed,N= 0.7265 Wed,N— 1.00 Nth= 10,500 pounds Nth= 55,121 pounds 4 Neb= 7,875 pounds 4Neb= 41,341 pounds Combined Capacity of Stem Wall and Foundation 4Ncb= 49,216 0.75(1)Neb= 36,912 g, 1c • Concrete Side Face Blow Out Givens Abrg= 2.75 in` fc= 3000 psi cm;n= 18.00 inches = 0.75 strength reduction factor Calculations Nth= 261,589 pounds 4)Nsb= 196,192 pounds Concrete Pullout Strength Givens Abrg= 2.75 in` f c= 3000 psi = 0.75 strength reduction factor Calculations Np= 66,000 pounds 4)Np= 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 = 0.80 strength reduction factor Calculations Ns= 44,254 pounds SNS= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches cmin= 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANc= 68 in` AN = 1296 in` ANO= 110.25 in` ANo = 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N= 1.00 Ncb= 4,399 pounds Ncb = 55,121 pounds 4Ncb= 3,299 pounds Oct,= 41,341 pounds Combined Capacity of Stem Wall and Foundation (01%Jcb= 44,640 0.754Ncb= 33,480 Concrete Side Face Blow Out Givens Abrg= 2.15 m` fc= 3000 psi cmIfl= 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds 4)Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg= 2.15 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds 4)Np= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds SNS= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks hc -Ec.? = cr7 CY1 COI it) rre __3(701S' -Ana Gqz\ c...z)coi'3crk.G) ook 0'1 0)1h (71.i.i.)XX ) 71--)d 001 cl)cZt) 1 )rrf-' )'06. CQ\ -' '?-;r0,4 VA) 1.AVOS 4:1 -E1' 1 7:1 .;:• 671- 0 rri)0S1 5 M001 _4 ce.1-) N; .e " • CD cn ON 0 C, 0( X ) Ose- Xj1) (.-roo) r-1-) os))(1)12-) LA) 5 c..sE = ( 7'1,0(7-v, os9 \ 3s ,o("sr) 1c CD0q"._ -0 H , 0 1.\o'k -c).• 0 Z 0 Zi :. 0 3 11S) C;)Q. r)`) MOOSA Cis)) 4 CY) • eldoosi jcs'cA '.7.7)0S dc3‘97 x•\0Q.X ;14 (1)001 4 ir;- \ 'f)00) 3-`a on ZP•342) -o P1 =rid C41 --- )( dOS' )c- l/ ) 0 (..1110(.1taroi 0S9 rvicpp, F E JOQI 7S: qo os6c4.9c5:1•ak zy1-3 • 0 \CC n --S16 OCE )seiTI)liSf 3 ° m --I m 0 z - SCOU rn !(19, jc) S?9 ; IlDrn :3E1 10310LId 0 OQ (A) ON 8O 0 IQ c . 21ea Structural Calculations 19 : r2 for Full Lateral & Gravity Analysis of Plan C 1 186 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper g >f";'. Houf Peterson Ritthellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F]503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit C Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 1 1.5-1 Ss: 0.942 USGS Spectral Response Map 51: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x &4x Wood Beams &Posts: DF-L#2 6x&Greater Wood Beams &Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT C y'-a Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ---- ENGtYEERStN PLANNERS Designer: AMC Date: June 2010 Pg.# LANDS-APE Aft Ci:'fEC E5•9lft'.EYQftS DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5.psf Plywood RRF:= 5•psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5•psf Ceiling RIN:= 1•psf Insulation RDL= 15•psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME:= 1.5.psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5•psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX_Wallwt:= 12•psf INT_Wallwt:= 10•psf Roof Live Load RLL:= 25•psf Floor Live Load FLL:= 40•psf Harper Project: Summer Creek Townhomes UNIT C Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. N vF ft P 4 Designer: AMC Date: June 2010 Pg.# :AVCS A F Aft..Nt E..f$�SR fE Y^T< Transverse Seismic Forces Site Class=D Design Catagory D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748412-1.12 RFr:= RDL•Roof Area RFWT= 12566-lb Floor Weight Floor_Area2nd:= 605-ft2 FLRWT2nd:= FDL•Floor_Area2nd FLRWT2nd= 7865-lb Floor_Area3rd:= 600-ft2 FLRWT3rd FDL-Floor_Area3rd FLRWT3rd=7800-lb Wall Weight EX Wall Area:= (2203)-ft2 INT Wall Area:= (906)•ft2 WALLWT:= EX_Wallwt-EX_Wall_Area+ INT Wallwt-INT_Wall_Area WALLWT=35496-lb WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct := .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:_ .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ci-(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Si := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) n 1 1 Harper Project: Summer Creek Townhomes UNIT C a. ' .• Houf PetersonJob# CEN-090 Client: Pulte Group Righellis Inc. — £NN G I N F F S„«N F,s — Designer: AMC Date: June 2010 Pg.# I ANOSGAf'= ARCN!Te CFS�SUftt cYC1R5 SMS Fa-Ss SMS= 1.058 (EQU 11.4-1,ASCE 7-05) 2•SMS Sds:= Sds=0.705 (EQU 11.4-3,ASCE 7-05) 3 SMi := Fv Si SMI =0.584 (EQU 11.4-2,ASCE 7-05) 2•SM1 Sdi := Shc =0.389 (EQU 11.4-4,ASCE 7-05) 3 e Cst:_ Sds Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Cs Shc'Ie Csmax =0.223 (EQU 12.8-3,ASCE 7-05) max .– Ta R ...and shall not be less then... C1 := if(0.044•Sds•Ie<0.01,0.01,0.044•Sds'le) (EQU 12.8-5&6,ASCE 7-05) 0.5•Si-le) C2 := if Si <0.6,0.01, JI R Csmin:= if(Ci >C2,Ci,C2) Csmin=0.031 Cs:= if(Cst<Csmin,Csmm,if(Cst<Csmax,Cst,Csmax)) Cs =0.108 V:= Cs•WTTOTAL V= 6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) i'_ 1 ?–, Harper Project: Summer Creek Townhomes UNIT C Houf'Nuti Peterson Client: Pulte Grou Righellis Inc. p Job# CEN-090 E N a a a M1_ S Designer: AMC Date: June 2010 Pg.# Ia NC£�. F ARC_K T CT E',•Oft5 Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2-.1.16•ft Zone A&B Horizontal Length Smaller of... a2= 3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2:= .4-1%.2-ft or a2=25.6 ft but not less than... a2mm:= 3.2•ft a2mm=6ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetZoneA 19.9•psf PnetZoneB 3.2•psf Pnetzonec:= 14.4•psf PnetZoneD 3.3-psf Vertical PnetzoneE —8.8•psf PnetzoneF 12•psf PnetzoneG —6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA:= PnetzoneA.Iw•X PA= 19.9•psf Wall HWC PB:= PnetzoneB•Iw•X PB=3.2•psf Roof HWC PC:= PnetzoneC•Iw•X Pc= 14.4•psf Wall Typical PD:= PnetzoneD'Ivy'X PD=3.3•psf Roof Typical PE:= PnetzoneE*Ivy'X PE =—8.8.psf PF:= PnetzoneF'Iw.X PF =—12•psf Pc,:= PnetzoneGlw.X PG =—6.4•psf PH:= PnetzoneH.Iw.X PH =—9.7•psf Harper Project: Summer Creek Townhomes UNIT C a >e, Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Date: June 2010 Pg.# - Designer: AMC EN-�ENE 4ITECTNWEBS L ANWSCAP e.AftC:iITEGTS•Sllft YEY6ft5 Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59+29).ft2 WSAILZoneB:= (6+0 + 23)•ft2 . WSAILZoneC:= (429 + 355 + 339)•ft2 WSJ-ZoneD:= (0 + 0 + 4)4(2 WA:= WSAILZoneA-PA WA=2846 lb WB:= WSAII-ZoneB'PB WB=93 lb WC:= WSAILZoneC'PC W C= 161711b WD:= WSAII-ZoneD'PD WD= 13 lb Wind_Force:= WA+ WB+ We+ WD Wind Forcemin:= 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC+ WSAILZoneD) Wind_Force= 19123 lb Wind_Forcemin= 12990 lb WSAII-ZoneE 43•112 WSAILZoneF:= 43•ft2 WSAILZoneG 334•ft2 WSAILZoneB 327•ft2 WE:= WSAILZoneE'PE WE =—378 lb WF:= WSAILZoneF'PF WF =—516 lb WG:= WSAII-ZoneG'PG WG =—21381b WH:= WSAILZoneH'PH WH=—3172 lb Upliftnet:= WF+ WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZonea'.6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) I W DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDON I CALCULATION Harper Project: Summer Creek Townhomes UNIT C Flouf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# LAN0534Fa Afi C,IT_...>•Si,4,EYt.(25 Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 Now= RDL•Roof Area RFvrF= 12566-lb Floor Weight Floor_Area2nd=605 ft2 F, KTaiNIA:= FDL-Floor Area2nd FLRWT2nd=7865-lb Floor Area3rd=600 ft2 Jb = FDL•Floor_Area3rd FLRWT3rd= 7800-lb Wall Weight EX Wall Area:= (2203)412 INT Wall Area=906 ft2 WNL:= EX_Wallm-EX_Wall_Area+ INT Wallwt•INT_Wall_Area WALLwT=35496.1b WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn=32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5,ASCE 7-05) Rw:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct=0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period := Ct•(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) F,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT C :- Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. - - Designer: AMC Date: June 2010 Pg.# cts- fNE •P A4 'Eft 4V^.5. {?.— ;.f CHITECTS•S<:RJEVORS A§ := Fa-Ss SMS= 1.058 (EQU 11.4-1,ASCE 7-05) 2•SMS (EQU 11.4-3,ASCE 7-05) S nn�,sv'- Sds=0.705 3 ASZ:= Fv-S1 SMl =0.584 (EQU 11.4-2,ASCE 7-05) 2•SM1Ack,v= 3 Shc =0.389 (EQU 11.4-4,ASCE 7-05) Cst:= Sds-le Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Cs Shc•le Csm =0.223 (EQU 12.8-3,ASCE 7-05) n = ax Taa ...and shall not be less then... C, := if 0.044•Sds-le <0.01,0.01,0.044-Sds-le) (EQU 12.8-5&6,ASCE 7-05) rr 0.5-Si-11 , S1 <0.6,0.01,:= ifIR C := if > C2,C1,C2) Csmin=0.031 cs = if(Cst<Csmn,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs=0.108 := Cs•WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT C . >{ Hoof Peterson Client: Pulte Grou Righellis Inc. P Job# CEN-090 Designer: AMC Date: June 2010 Pg.# _ANCSCARE ANCHI'E:;:?•SURIF YGR. Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II IN = 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) aa2 2•.1.16•ft Zone A&B Horizontal Length Smaller of.. a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) or a2:= .4•hn 2•ft a2= 25.6 ft but not less than... a2 := 3.2•ft a2min= 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9-psf PnetzoneB =3.2-psf PnetzoneC = 14.4•psf PnetzoneD=3.3-psf Vertical PnetzoneE=—8.8•psf PnetzoneF=—12•psf PnetZoneG=—6.4•psf PnetzoneH=—9.7•psf Basic Wind Force Pte:= PnetzoneA'Iw.X PA= 19.9•psf Wall HWC Pte:= PnetzoneB'Iw'X PB=3.2•psf RoofHWC Pte:= PnetzoneClw'X PC= 14.4•psf Wall Typical Pte:= PnetzoneD'Iw'X PD =3.3-psf Roof Typical Pte:= PnetzoneE'Iw.X PE =—8.8•psf PnetzoneF'Iw.X PF=—12-psf Pin:= PnetzoneG'Iw'X PC, =—6.4.psf := PnetzoneH•Iw.X PH=—9.7.psf Harper Project: Summer Creek Townhomes UNIT C Houf Peterson Client: Pulte Group Job# CEN 090 Righellis Inc. ------,_--ENG,„EERS•PLANNERS---— Designer: AMC Date: June 2010 Pg.# i.A NCSCAPE:.RCHl FEC'S•.,RJE'i URS Determine Wind Sail In Longitudinal Direction WS '= (58+ 59+ 21)•ft2 WS := (0 + 0 + 51)•ft2 W A := (98+ 99+ 34)-ft2 W := (0 + 0 + 114)•ft2 W WSAILZoneA•PA WA= 2746 lb W WSAILZoneB•PB WB= 163 lb W WSAILZoneC•PC WC=3326 lb Wim= WSAILZoneD•PD WD= 376 lb Wind = WA+ WB+ WC+ WD Wind Forc vi = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=6612 lb Wind_Forcem1,= 5340 lb Wim = 151•ft2 WSN g9 := 138•ft2 WWSnN AR'• n:= 242•.ft2 Max, y := 216-ft2 Wim:= WSAILZoneE-PE WE =—1329 lb Wg= WSAILZoneFPF WF=—1656 lb = WSAILZoneG-PG WG=—1549 lb Wim:= WSAILZoneH•PH WH=—2095 lb U li := WE+ WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)]••6.1.12 Upliftnet=901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION n 1 (x Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure(psf) ( ) Pressure(lbs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force=1 19123 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E=I 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm m Diaphragm ( ) (lbs) (lbs) lbs Diaphragpg ) Width(ft) Width it)) Width(ft) 1 A 15.83 2321 6.58 1150 19.00 2773 B 19.00 2785 18.00 3143 0.00 0 C 14.92 2186 11.42 1994 19.00 2773 E= 49.75 7291 36 6286 38.00 5546 i' _ 1 In Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(T,)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMs 1.06 Equ.11.4-1,ASCE 7-05 SM1= 0.58 Equ.11.4-2,ASCE 7-05 Sin= 0.71 Equ. 11.4-3,ASCE 7-05 SD1= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(lb)= 19665 Vertical Dist of Seismic Forces !Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vnoor 2(lb)= 711 100.0% Yes Vfloor 3(Ib)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 124 105 326 168 314 1185 B 273 259 0 369 775 0 C 129 169 371 174 506 1349 Sum 526 533 697 711 1595 2534 Total Base Shear*= 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 lw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E_ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force= 6612 lbs Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs E= 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm (lbs) Width ft Width ft Width ft 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 ( _ 1 v Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SMI= 0.58 Equ. 11.4-2,ASCE 7-05 SDS= 0.71 Equ. 11.4-3,ASCE 7-05 Spy= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(Ib)= 12566 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces 1Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vfloor 2(lb)= 711 100.0% Yes Vfloor3(Ib)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear*= 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. ri— 1 Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (ph) (ft-k) (ft-k) (k) 101 8 5.17 5.17 1.55 ox 8.00 2.32 18.00 1.15 27.00 2.77 1209 Double 1.40 VII 102 8 4.00 4.00 2.00 ox 8.00 2.79 8.00 3.14 1482 Double 1.40 VIII 103 8 3.83 7.33 2.09 ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 104 8 3.50 7.33 2.29 OK 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 105 8 4.25 12.75 1.88ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 106 8 8.50 12.75 0.94 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 107 8 1.25 1.25 6.40 8.00 2.19 18.00 1.15 27.00 2.77 4887 Double 1.40 NG 108 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 109 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 110 8 1.00 3.50 8.00 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 201 9 5.58 9.17 1.61 ox 9.00 1.15 18.00 2.77 428 Single 1.40 II 202 9 3.58 9.17 2.51 ox 9.00 1.15 18.00 2.77 428 Single 1.40 II 202A 9 3.50 3.50 2.57 OK 9.00 3.14 898 Double 1.40 VI 203 9 7.00 7.00 1.29 ox 9.00 1.99 18.00 2.77 681 Single 1.40 IV 301 8 6.00 10.00 1.33 ox 8.00 2.77 277 Single 1.40 I 302 8 4.00 10.00 2.00 OK 8.00 2.77 277 Single 1.40 I 303 8 4.96 9.92 1.61 ox 8.00 2.77 280 Single 1.40 I 304 8 4.96 9.92 1.61 ox 8.00 2.77 280 Single 1.40 I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) /II 1 Harper Hoof Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 f ransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo M5 Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type (ft-k) (ft-k) (k)T (ft) (ft) (ft) ht k ht k ht k (ktt) (plf) (plf) 101 8 5.17 5.17 1.55 OK 8.00 0.17 18.00 0.31 27.00 1.19 323 419 0.31 1.29 Single 1.00 III 102 8 4.00 4.00 2.00 OK 8.00 0.37 8.00 0.78 0.00 286 372 0.24 1.00 Single 1.00 III 103 8 3.83 733 2.09 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.23 0.96 Single 0.96 II 104 8 3.50 7.33 2.29 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.21 0.88 Single 0.88 III 105 8 4.25 12.75 1.88 OK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 0.26 1.06 Single 1.00 I 106 8 8.50 12.75 0.94 OK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 NA 2.13 Single 1.00 I 107 8 1.25 1.25 6.40 8.00 0.27 18.00 0.51 27.00 1.19 1572 2044 0.08 0.31 Double 0.31 NG 108 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 0.31 Double 0.31 NG 109 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 031 Double 031 NG 110 8 1.00 3.50 8.00 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.06 0.25 Double 0.25 NG 201 9 5.58 9.17 1.61 OK 9.00 0.31 18.00 1.19 164 213 0.28 1.24 Single 1.00 I 202 9 3.58 9.17 2.51 OK 9.00 0.31 18.00 1.19 164 213 0.18 0.80 Single 0.80 H 202A 9 3.50 3.50 2.57 OK 9.00 0.78 0.00 221 288 0.18 0.78 Single 0.78 III 203 9 7.00 7.00 1.29 OK 9.00 0.51 18.00 1.19 242 314 0.36 1.56 Single 1.00 II 301 8 6.00 10.00 1.33 OK 8.00 1.19 119 154 0.30 1.50 Single 1.00 I 302 8 4.00 10.00 2.00 OK 8.00 1.19 119 154 0.20 1.00 Single 1.00 I 303 8 4.96 9.92 1.61 OK 8.00 1.19 119 155 0.25 1.24 Single 1.00 1 304 8 4.96 9.92 1.61 OK 8.00 1.19 119 155 0.25 1.24 Single 1.00 1 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= t6.50 Total#1st Floor Bays= 4.13 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 19.67 Total#2nd Floor Bays= 4 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= 19.92 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overtuming Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 1 Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Fir. From 3rd Fir. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 204 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 205 9 11.50 11.50 0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 305 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 306 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift T From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type Panel Lgth. (ft-k) (ft-k) (k) (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) 105 8 12.75 12.75 0.631 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 I OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 NA 2.56 Single 1.00 I .42 53.69 2204 05 1 9 1 11.50( 11.50 0.781 OK 1 1 9.00 1 0.88 1 18.00 1.32 0.81 19 1.22 0.81 1 1 191 1 NA 1 2.56 { Single1 1.00 I 381.56 53.69 1 -0.06 305 810.00 10.00 0.80 OK 8.00 1.22 0035 132 1 132 1 NA 1 250 Single 1.00 I 0.52 1 17.40 1 -00.001 306 1 8 1 10.00 1 10.00 0.801 OK 1 1 1 1 1 8.00 1 1.32 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= 638 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= t.0 Total 2nd Floor Wall Length= 23.00 Total#2nd Floor Bays= Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= tt0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= t 0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY1 Transvere Shearwalls 101 1209 2 Layers 1/2"APA Rated P1 w'd w/8d Nails • 3/12 1276 _ 102 1482 2 La ers 1/2"APA Rated PI w'd w/8d Nails 0 2/12 1667 103 948 2 La ers 1/2"APA Rated Plyw'd w/8d Nails • 4/12 990 _= 104 948 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 105 490 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 106 490 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 107 Simpson Strongwall 108 Simpson Strongwall 109 Simpson Strongwall 110 Simpson Strongwall 201 428 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 202 428 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 202A 898 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 203 681 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 301 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 280 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 280 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARYI Longitudinal Shearwalls 1- 1 105 259 1/2"APA Rated PI 'd w/8d Nails , 6/12 339 44 Sim.son None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 204 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12339 Simpson None 0 205 191 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 i > ;'" Simpson None 0 305 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 -; Simpson None 0 306 132 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 8 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. ansverse Wind Uplift Design lit C :ar H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total iel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 01 8 1.1667 5.21 5.21 2.321 1.15 2.773 6.244 1199 0.1 0.192 0.208 54.53 2.36 2.44 11.28 11.27 201 L 201 R 4.97 5.11 16.25 16.38 02 8 1.1667 4.00 4.00 2.785 3.143 5.928 1482 0.092 0.192 51.09 1.50 0.74 14.34 14.47 14.34 14.47 93 8 1.1667 3.83 7.33 2.186 1.994 2.773 6.953 948 0.1 0.24 0.078 31.98 1.65 1.03 9.30 9.41 203R(l/2) 3.83 9.30 13.24 04 8 1.1667 3.50 7.33 2.186 1.994 2.773 6.953 948 0.1 0.078 0.192 29.20 0.89 1.28 9.56 9.48 9.56 9.48 05 8 1.1667 4.58 13.08 2.321 1.15 2.773 6.244 477 0.1 0.192 0.078 19.10 1.93 1.41 4.39 4.47 201L 201R 4.97 5.11 9.36 9.58 06 8 1,1667 8.50 13.08 2.321 1.15 2.773 6.244 477 0.1 0.078 0.384 35.43 4.28 6.88 4.11 3.91 202L 202R 5.35 5.22 9.46 9.13 D7 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.192 0.045 14.64 0.28 0.09 18.77 18.92 18.77 18.92 08 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.045 0.192 14.64 0.09 0.28 18.92 18.77 18.92 18.77 D9 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.24 0.208 14.64 0.38 0.34 18.70 18.73 203R 7.65 18.70 26.38 10 8 1.1667 1.00 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.208 0.192 11.71 0.26 0.24 19.81 19.83 304R 1.65 19.81 21.48 01 9 1.1667 5.875 9.75 1.15 2.773 3,923 402 0.172 0.432 0.156 23.22 5.51 3.88, 3.39 3.56 301L 301R 1.58 1.55 4.97 5.11 02 9 1.1667 3.875 9.75 1.15, 2.773 3.923 402 0.172 0.156 0.432 15.32 1.90 2.97 3.66 3.49 302L 302R 1.69 1.72 5.35 5.22 A 9 1.1667 3.833 3.833 3.143 3.143 820 0.142 0.816 28.29 4.17 1.04 6.73 7.22 6.73 7.22 D3 9 1.1667 7.083 7.083 1.994 2.773 4.767 673 0.172 0.468 0.192 46.14 7.63 5.67 5.87 6.03 303L 303R 1.65 1.62 7.52 7.65 DI 8 5.958 9.916 2.773 2.773 280 0.24 0.384 0.432 13.33 6.55 6.83 1.58 1.55 1:58 1.55 02 8 3.958 9.916 2.773 2.773 280 0.24 0.432 0.384 8.85 3.59 3.40 1.69 1.72 1.69 1.72 03 8 4.958 9.916 2.773 2.773 280 0.24 0.384 0.432 11.09 4.85 5.09 1.65 1.62 1.65 1.62 04 8 4.958 9.916 2.773 2.773 280 0.24 0.432 0.384 11.09 5.09 4.85 1.62 1.65 1.62 1.65 readsheet Column Definitions&Formulas Shear Panel Length Shear Panel Height II Length=Sum of Shear Panels Lengths in Shear Line Panel Shear)=Sum of Line Load/Total L (Overturning Moment)=Wall Shear*Shear Application ht (Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) lift(Mo-Mr)/(L-6 in) 1 r cJ ansverse Seismic Uplift Design lit C ar H Joist L Wail Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total el Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking cr Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft • kft kft k k k k k k 01 8 1.1667 5.21 5.21 0.168 0.314 1.185 1.667 320 0.1 0.192 0.208 15.08 2.36 2.44 2.75 2.74 201 L 201 R 0.65 0.85 3.40 3.59 02 8 1,1667 4.00 4.00 0.369 0.775 1.144 286 0.092 0.192 0 10.06 1.50 0.74 2.49 2.68 0 0 2.49 2.68 03 8 1.1667 3.83 7.33 0.174 0.506 1.349 2.029 277 0.1 0.24 0.078 9.62 1.65 1.03 2.44 2.61 0 203R(1/2) 1.01 2.44 3.62 04 8 1.1667 3.50 7.33 0.174 0.506 1.349 2,029 277 0.1 0.078 0.192 8.78 0.89 1.28 2.66 2.54 0 0 2.66 2.54 05 8 1.1667 4.58 13.08 0.168 0.314 1.185 1.667 127 0.1 0.192 0.078 5.28 1.93 1.41 0.87 0.98 201L 201R 0.65 0.85 1.52 1.84 06 8 1.1667 8.50 13.08 0.168 0.314 1,185 1.667 127 0.1 0.078 0.384 9.80 4.28 6.88 0.74 0.45 202L 202R 1.22 1.02 1.97 1.47 07 8 1.1667 1.25 4.75 0,174 0.506 1.349 2.029 427 0.048 0.192 0.045 4.84 0.28 0.09 6.12 6.34 0 0 6.12 6.34 08 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.045 0.192 4.84 0.09 0.28 6.34 6.12 0 0 6.34 6.12 09 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.1 0.24 0.208 4.84 0.38 0.34 6.00 6.05 0 203R 2.02 6.00 8.07 10 8 1.1667 1.00 4.75 0.174 0.506 1.349 2.029 427 0.1 0.208 0.192 3.87 0,26 0,24 7.28 7.31 0 304R 0.21 7.28 7.52 101 9 1.1667 5.88 9.75 0.314 1.185 1.499 154 0.172 0.432 0.156 8.96 5.51 3.88 0.68 0.93 301L 301R -0.03 -0.08 0.65 0.85 102 9 1.1667 3.88 9.75 0.314 1.185 1.499 154 0.172 0.156 0.432 5.91 1.90 2.97 1.09 0.84 302L 302R 0.14 0.18 1.22 1.02 2A 9 1.1667 3.83 3.83 0.775 0.775 202 0.142 0.816 0 6.98 4.17 1.04 0.84 1.57 0 0 0.84 1.57 103 9 1.1667 7.08 7.08 0.506 1.349 1.855 262 0.172 0.468 0.192 18.27 7.63 5.67 1.61 1.86 303L 303R 0.21 0.16 1.82 2.02 301 8 0 5.96 9.92 1.185 1.185 120 0.24 0.384 0.432 5.70 6.55 6.83 -0.03 -0.08 0 0 -0.03 -0.08 302 8 0 3.96 9.92 1.185 1.185 120 0.24 0.432 0.384 3.78 3.59 3.40 0.14 0.18 0 0 0.14 0.18 303 8 0 4.96 9.92 1.349 1.349 136 0.24 0.384 0.432 5.40 4.85 5.09 0.21 0.16 0 0 0.21 0.16 304 8 0 4.96 9.92 1.349 1.349 136 0.24 0.432 0.384 5.40 5.09 4.85 0.16 0.21 0 0 0.16 0.21 preadsheet Column Definitions&Formulas =Shear Panel Length =Shear Panel Height 'all Length=Sum of Shear Panels Lengths in Shear Line (Panel Shear)=Sum of Line Load/Total L [o(Overturning Moment)=Wall Shear*Shear Application ht [r(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) plift T =(Mo-Mr)/(L-6 in) 9 ANSVERSE UPLIFT CALCULATIONS-SUMMARY IIT C ear Controlling Total Holdown Holdown Good Control Total Holdown Good For nel Case Uplift a or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 16.25 Holdown HDI9 w DF 19.07 Wind 16.38 HD19 w DF 19.07 102 Wind 14.34 Holdown HDU14 14.93 Wind 14.47 HDU14 14.93 103 Wind 9.30 Holdown 1-1DU14 14.93 Wind 13.24 HDU14 14.93 104 Wind 9.56 Holdown HDU14 14.93 Wind 9.48 HDU14 14.93 105 Wind 9.36 Holdown HDU14 14.93 Wind 9.58 HDUI4 14.93 106 Wind 9.46 Holdown HDUI4 14.93 Wind 9.13 HDU14 14.93 107 Wind 18.77 Holdown None 0.00 Wind 18.92 None 0.00 108 Wind 18.92 Holdown None 0.00 Wind 18.77 None 0.00 109 Wind 18.70 Holdown None 0.00 Wind 26.38 None 0.00 110 Wind 19.81 Holdown None 0.00 Wind 21.48 None 0.00 201 Wind 4.97 Strap MST48x2 5.75 _Wind 5.11 MST48x2 5.75 202 Wind 5.35 Strap MST48x2 5.75 Wind 5.22 MST48x2 5.75 ?A Wind 6.73 Strap MST60x2 8.11 Wind 7.22 MST60x2 8.11 203 Wind 7.52 Strap MST60x2 8.11 Wind 7.65 MST60x2 8.11 301 Wind 1.58 Strap MST48 2.88 Wind 1.55 MST48 2.88 302 Wind 1.69 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.65 Strap MST48 2.88 Wind 1.62 MST48 2.88 304 Wind 1.62 Strap MST48 2.88 Wind 1.65 MST48 2.88 l a 102 • • 1 0 lU o - ptit � 2 I �. V. V ( 1 i`►V'?J 'jam 3 1Q 1 -: 1 t Nn g01 X01 oke bOF Zo1 '10 Sol 1 2,01 ao a 0 1 A 3 8 �(� c6 . 1 • J s I aoa A i . . . j 1 i I a • VNCj C - 2No P L00 R- G.ew 01\ ,-1 _, c) c--) 1 \0% i0 , . - : . ( } ( 2 } ! / . ; } ( . \ i . . —- } } .- { I . . { ! \ | r - i (�. . ! ' , . . . . . . . § ( jr- | . . . . . } } . p---. . --� } { { | | . H� .. . ..: � . .. . . . [ - * } L . . \ \ ] 2 \ r . .. . . . : . 6 O w \ / ril oS . .� _ . 6' \ 6 � a � . . \ % . / 2 . \ \ ; \ e rs» . •. > � ®©© c 0 . . .. .... . . ZOE 102 .,4 By: DATE: )1.3\2, 2,01 0 JOB NO PROJECT: RE' C_NI COL- ..00ki\rt,faL.C31Y) A-14100r6Ce-r- 0 7 w - Li z P W - \-Jr2c\\ At O 2 Lk Ct 74-S is 2 1= LINE v,,.)pce.12.. e 18. 0\--,„fe.r- 0 , x < 0 w = Er- ¢ Lt tsi PT o _ , L\c..\az ‘.)??eg- A-Ttiory7.4C-efs La Li rvc O --)3M-',A. L. - --, ‘.-- E ..,Ws':0..--kkn-e..Clk5,5•E' ", Is cc 0 • Z1....11N e LAtke C.- — M-1(ii) ri 6 0 1 Lvc\e„ C. 1- a_ L\re ?), t - ,1c)60 i zlat _ ' C. (c,aGN- 1,4 G,to x v2.L3c.,1,, Ck139 Lc. ,„ •-,,,, ,.:; a) •- -, 0 0,\O\OCALea_ (412, di o 0-47 0_off\ Ca:00o 8 E=.:-_,, ,= , ct .59 : x g4 :.!•::. ,k)(7) \otuc.tc Iltn,3 re4Tcl , ' -t.-Apitvicit,_ci"\._ 6 Y..', BY X WL....., DATE: Joe No. 61''''''-' 13�_ .0 -0 9_o PROJECT: RE .A \S I`2..1 R ) 's 1 O eJ OC S 1-4 e t`-R._ ?z- - 0?-,.1 Si 11--'-c-K. 'mac, iJ r II• Z O w H LA • 2 AVo,\ LOcCs 2 ❑ 17,1 WC\1\ \0 (as'm•-e. \5",.1, ° CLY>C 0,01z�+C ' 0. Z�s12) = °'IS-a ��ps D . o z Z a 5 .\1 \O` E SC"Me 0 C- 10-} ° 0 Loo, kOc# 0.SCume l5t (,Vi i((154) 3.} 0.02) -Fc b)(0-0 iS S - ( (0.011\ 15)4"1i. I` jt0.J =- .ao DLv z ( )Co.oZ S >L«t 2 - (\6)(0,oa..s>l iz) = \.°1\2s S- 7 2 ;a CA\ = Ur \\3 oU Wo 1\O \2.‘,r (3-7)(°'731-\::)'1.,,,) 4-(I5-)(-.�� ., ' ) -1C1 2(0=f3''-S)0(ej �i * (i'75.\/4.1‘12.-YO''':)' .L � ,.Ot3 V...,v>( Clo,OZs (--k> +-Ct (0t32_SY'/2. _ ,el, \(.. sL IL ZW DZ D = S r ss ��1S ;C c tJtAi T P a'f1 ct,r Akkoff 9(-, .- . 'ZfL '`Ek, \O - 1S X - 15n01* ®, 6 5\b-i- st 0..-- ,G1 to°I 5 '-J'S X \l( S# ©,-,)3 s-UL!-S* ar'.b \\0 .„r,ax-4 1,095* 6,4.2. a(.o} 0.t4 O\s•, S1-eur- \�9\�?0 \03t \'30(„, '> \ L # t,c EL,o to ltc� \1s \ Qct :,moi . xxx - • \\ ., Jp f S?t \k,. moi:- 0 �E.stc- j SH ‘e-Pt i Q.''.tT\,tS ; c--. --i-4 - t, -a44 Kip U)a i\ l- S ec.r 10 t 'S11 14 1% b(3/ tt 0\C. \0c1 1.,--'t-'6 4.. 1'I-41) #t- - . OV___ r y l_— \ ,-, Kati 1 v 4 cm 0 P --- 0 - 0 = b " n 0 H 0 01 c m Z -17 O A . O 3 n 0 3 3 C -Aoa tdt =0-L Z CA7'r S0S1= ,�'�'v 4-z ice_ ? f_ -t fin u titA. 0 H why) ov))17 p? )o c1 3° Cr -1-‘T \00 6 Z 0.1"\y'r-(' 't-4 hiOp 7.zr''')N -i, v� o -vt€16E r 13 of .= 4qv} W.9.30)u\ -,o!C 3I In 071 mZ ° 'i EL .7- (\:-z)(11Q1)� SAY 04 X01 E n 103 road 0 N'a/ ) 0 31V0 f J,���� A8 N aOr D\qe, 1 �f ; a'7e-->.1 tilb -' — --- i C,,, -)c.° -J.44 (s‘,1-11 c-c-,(_0-1) -0( 010,i .09ccp,X-.,-Ici. ass) , ..- , c4,2-,..- , --) .S1-l = ''-' 'e - I-- - Q 44-977'.7S67r - 'k 0 + 0 4.- (.76 cr)c 4 0 °Vt.' S .J.-( -.7...,--- 1 1C)) ,S,_ ' 9-.r. 4., 57.:,.• -4. (:-,+:,9:0) C:-,'1-,P 4 .,..:,..‘e,*-, = 7 _= ------T: = = - -• o AD 1".--m 0 = s'b` p (4-41 i !:4 A......eti Q 0 IS,47t:S :: ."4 „...N I 1.1 r..,, = 7.: t Vo. a-FT,--------1 • i 1 -'11 _ -4--- t /1 , -- J\-- -/ I 1 ,1 4 i Z 71 V I\ 0 xi umnitammu 3 . „S1T 77(----Y1 — xNcf-Lk‘ t 7..'e Iv v n 0 . 3 C 1.• Nte Z 1 CO /1 d‘ 1 --I 0 7, --)\--j)c.. \o\ 6,,c, -_-.1 \ \ -O --‘ - --7-N C-':'-'..- id 'i3...11 C() V.C)Vz1 d•ci, T O X 1T1 Z C) m 0 n x 0 V71-) 1 a(l‘k 0\ r',0\f\I , o IA10,-,,'1 LI m 3 K 0 m -I 00-1± G--1)4 , ';')',.„kJ-, 0),: 7.1 , Z - .. M 1,1 C-...V '''''''-'• .' i '. ' ',....1, 1:7_1 . Z li 0 I 1 dC :,a 103 FOL1,,,1 0 b 0- N ) -ONCOV 0\ L\..-- -9a ----)\ii\IV :A8 ••••• ,1 1 C.-• I I./ u-D),:fi, 0 Cr-,) \---)N , ,_. ---2:-‘o ' ' 'IQ, < 1C;d Oi z-- (. r ) 7SC1 SI ---- :-.cs.Sk't-f\ IX1A-isao.Sgr::: .,,_;'nji cn , 0 0 -'..: • tf — ---,----. _= -zNI'l 47,Q5 490 77 - i'S c-,--,e0ti = .. ., _ 1 ' --/- , lovt, 1 i 0 O — . L z -ri P ,T) - CD 1..._ ,41, o r-, L. A1 :'1 '._.1 tu,, c)-) 1,21,1 ,'a S•3 LArri a.aol. .,,,I,„:,,,,,i..;.:_ ,:,-,,,:-,1 ,_: .7.,\ ,,,,i, (DO-.. 074 ',ci'k.,.\-,i\c=1 N.J.•<,.;‘'::::...et,......1 > -I -0 x ,DiCtc;S?)43_ Cf: Cr) i 0 z n im n xi t.-)ç kr-4130—xl 1/411c ✓ 0 Is_yak c..„?...1.-ki-la. 6.0i_ --"V4-1 ...41b... 1b1, -Ito .71 IN t OR_ n r, „41f.4- .lIS'\ i. - 11111FAIM- NO Flial(f) car61 3 0 m H .EFAINNIKA, CI 0 pop.-M-4.1 , 2. m . 0 F , _ 7. Notlao .. m I 7 7 Cs J..D31-02,1d Q-100- N a ) :oN ElOr 0\---- LI .--- 3.1'VCI • it% AS '.i ,-- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:26:08 COMPANY ( PROJECT RESULTS by GROUP-NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 -ROOF Mnf Trusses Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR = Mnf Jut Not designed by request (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x8 By Others Not designed by request By Others 2 Not designed by request 4x6 Lumber-soft D.Fir-L No.2 4x6 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 206 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 204 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR =Mnf Trusses Not designed by request Deck Joist Lumber-soft D.Fir-L No.2 208 @16.0 Mnf Jst Not designed by request Landing Lumber-soft D.Fir-L No.2 2x6 @16.0 (2) 208 Lumber n-ply D.Fir-L No.2 2- 2x8 408 Lumber-soft D.Fir-L No.2 408 By Others Not designed by request 3.125x10.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.25x14 PSL PSL 2.0E 2900Fb 5.25x14 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 206 Lumber n-ply Hem-Fir No.2 2- 2x6 4x4 Lumber Post Hem-Fir No.2 4x4 4x6 Lumber Post Hem-Fir No.2 • 4x6 606 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values Deck Joist je Bending 0.41 Mnf Jst Mnf Jst Not designed by request Landing j27 Bending 0.17 (2) 2X8 bl Bending 0.96 408 619 Bending 0.05 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b12 Deflection 0.83 (2) 2x10 b6 Bending 0.85 5.25x14 PSL 618 Deflection 0.79 406 b21 Bending 0.88 1.75x14 LSL b23 Bending 0.71 Ftg Ftg Not designed by request (2) 2x6 c10 Axial 0.88 404 042 Axial 0.04 4x6 c50 Axial 0.25 (3) 2x6 c16 Axial 0.87 6x6 c23 Axial 0.48 (2) 2x4 c28 Axial 0.84 (3) 2x4 c12 Axial 0.41 Typ Wall w12 Axial 0.24 Fnd Fnd Not designed by request ----- DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for yourapplication. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. • 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd=actual breadth o actual depth. • 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT-UP BEAMS: it is assumed umed that each ply i single continuous member (that is, no buttjoints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:53 Concept b2 de : Beam View Floor 2 : 8 ' ur'; __ ,_ - 44_` v.: uswignifl=lisszessfionsiss -c--,.--, n b21 .--.- 1-C b10 r ' b18 may; b191b20_ z r � '. ( # g2uJ �z>,..,,...C'OEDDF2,T�232.;,3JDLL3)iTrr^ E_ CE t_ _ ,_L V .,rt w . ft f C..-� ma c.r�E r.J _ "<- r 4 17, ' { } 44 ,22A_ 5 -'.3. ;.... D . . ,7 7 1;2 '' (Z r L V 1 J V WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-REAR LOAD WoodWorks®Sizer 7.1 June 28,2010 13:26:28 Concept b2 de : Beam View Floor 2 : 8 ' b18 �_t) 4 <-n. amssranaull 5ry G v b24 is b23 :az b10 u 9 b11 b19 b211b20 111h r 4 13`i' >Z i 3 � _ 4 T- U r ��eo\r Lock& WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:55 Coc24ept Mode: Column View Floor 2 : 8 ' c25 ..:' 4 ]is:: �.. _ ,_. _. :?'-3c1 c2 c38 - _c ,4 c50c51 _; Es;. Li - r `c33 L7 " y c34 t c35 c47 sc19 c91 - _-- c36 11 c18 c22 G8 .. c23 c41 :`_., 3 c42 f c43 • C',",.• r r 1 s, f.'"5✓ al:L..3^ '' iD' 4}T'tC EF r c r _L._ .. l_ L.I Woodworks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:49 Concept Mode : Beam View Floor 3 : 17 ' n -- ... :.. a,-a 44 40b4 4J ,ry ti T a b22 b24 :23 ■ b16 y ,. b14 b17 A! p3 � ` 1 r - r r��- -��. /" l d, WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:46 Concept Mode: Column View Floor 3 : 17 ' n r _ .. 4:-u- c9 010 d " i- y _ 6, Ly`-b G48 a19 Li LOU c28 I-` ' c12 - c11 c27 -f, c26 L t^ a c39 c40 L nC DE"'"-"'a y' } u..i u� t.. . EEE E .0 ET ,e 4. 'c r 1 tJ 32 t. 4 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:41 Concept Mode : Beam View Roof: 25 ' 4,6 v 6 < :1 b5 rt4 ti ... _ 6,3-t; b 5? c+'- Y v b6 1111 z 2 1 c am_ C _ 7<24 2 .� ' _ 1 �_ .'?i` ' es. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:44 Concept Mode: Column View Roof: 25 ' �,, 4s 4 `", c13 c14 �u ., v o -.0 v c16 c15 14i er it F3BvE-2`.S 5 00C,C.:,C„EC:22iCC C1CC,C.(2.-CC(2."0 EC CaCC CD DEEDED[MECO ED DC,DDOC DC CLYDE DEE EF E EE eEEEE-11:E-E ir27:2;4.-..EFREZ - L.7 S_. '4< ; .2 22.2_ -,2t2?_ _ -.v -_tq4144V44.I,E5�,. v_,,F , _,.. . -, . . ti /' 1_4'1 COMPANY PROJECT i i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:20 j8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 13.3 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : 5:7,7,,, 4,14. F i 10' 84 Dead 64 64 Live 213 213 Total 277 277 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for joists is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 2x8" Spaced at 16"c/c;Self-weight of 2.58 plf included in loads; Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 32 Fv' = 180 fv/Fv' = 0.18 Bending(+) fb = 506 Fb' = 1242 fb/Fb' = 0.41 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.09 = <L/999 0.40 = L/240 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 277, V design = 235 lbs Bending(+) : LC #2 = D+L, M = 554 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wipd I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ,- /_ 6 COMPANY PROJECT r i WoodWorks® SOFFWARE FOR WOOD DESIGN June 28,2010 13:21 j27 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 17.3 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS lm) t r,v .- a%. §,. uz1,;f - jam ,,'- a-"c�Cdt as t,-;`lam�r�z sw �,� �z � :;71,;f. �`Y��r � wa. -,--,,,-..-„,,,,„•,-.,f;-.,,,-,-,1::-=,, � t ? '' .:.- 'W.,--'• .44 +ea ,xco .' . �q J 5 4 -� ., .`71-1-77-..,;V, 0 ..4':.'''',',.:_:.''''' : .. .A P.4-::,,s±t,"s '',411,i,,,,,-',t'',:71%'0;,,,,''4,,,'as_ It.-4;,7,‘„24.--, i, ., 4 ZS 4i 10' 39 Dead 39 107 Live 107 107 Total 145 Bearing: #2 Load Comb #2 0.5#2 Length 0.50* *Min.bearing length for joists is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 2x6" Spaced at 16"c/c;Self-weight of 1.96 plf included in loads; Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 180 fv/Fv' = 0.11 Bending(+) fb = 230 Fb' = 1345 fb/Fb' = 0.070.17 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.07 Total Defl'n 0.01 = <L/999 0.20 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 _ - E' 1.6 million 1.00 1.00 - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 145, V design = 112 lbs Bending(+) : LC #2 = D+L, M = 145 lbs-ft Deflection: LC #2 = D+L EI= 33e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1 COMPANY PROJECT ill WoodWorks® SOFIWARF FOR WOOD DESIGN June 28,2010 13:26 b11 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 2_w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 3_c46 Dead Point 938 5.00 lbs 4 c46 Rf.Live Point 1350 5.00 lbs MAXIMUM RE • • : . xis . s= . _ . wn�,.. =te^ " -.c •t•-_...3.- -•,-• -.,-F _ -v ate, ; �- ..... "'ra m--- _''--'�" >"i -+,�^- �,,,�, -k',-z--''-„,:7--,--7:•:!'----: -� - ..a - �'-�- .,s ,"�' --r, � ` �as�� -sem« --,t,-,-,,-3-7;,,,.� " tig �."-r-- 7 „yy..y • g =•;--g-_-,,.,„.,- 1, x..5^.2 ... ''',...7‘-t-, ... it ... J` r-.-7 .e -„,:,,,_,--..t- !s ' s, 1,,,,- _ .4. • i----;-,.--.-4-,..ate„. .-. i Y aa---- `"a"- w.a,-• ,.` - •-" .;� ,- a----• --1--.--- -72:„ -". >--_,-;•_--.7-_,4---.„;-•r`•"--4 -,-°-',-:,--1-1---4-----L ''� -."`w .�c.� , • I 0' 61 2298 Dead 1673 Live 1575 2475 Total 3248 4773 Bearing: Load Comb #2 #2 Length 2.32 3.41 LSL, 1.55E,2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv* = 207 Fv' = 356 fv*/Fv' = 0.58 Bending(+) fb = 1159 Fb' = 2674 fb/Fb' = 0.43 0.20 = L/360 0.15 Live Defl'n 0.03 = <L/999 Total Defl'n 0.07 = L/980 0.30 = L/240 0.24 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 1.00 - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 1.00 1.00 2 Fcp' 800 - - 1.00 - - 1.00 - - - 1.00 - - - E' 1.5 million - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 4773, V design* = 3386 lbs Bending(+) : LC #2 = D+L, M = 5520 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S =snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT ii 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:21 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 402.0 402.0 0.00 1.50 plf f. 2 w33 Rf.Live Partial UD 450.0 450.0 1.003 1. 50 Pbs 3_c9 Dead Point 965 lbs 4_c9 Rf.Live Point 1470 1.50 5 j9 Dead Full UDL 47.7 plf 6 j9 Live Full UDL 160.0 plf Load7 Live Full UDL 40.0 plf Load8 Dead Full UDL 13.0 plf MAXIMUM RI •;.47.--1-2,!0, u.,y�'*..�,a�. , a z,;.�s �r � -� -a,� k x.�r�. n �;�. � �'` ` $ ,-°:.' ' �. a '' h -' ! 3 $Ram '5 a44' T+ ""s, ,,:,-; i"`�,• ,,,'''1,-:-,,f.:,,,:',:,'` ' ' Via' ","4 a4 s , �'. ^ .a ''' .. LI 31 1 0' 742 Dead 1043 1204 Live 1541 1946 Total 2585 Bearing: #2 Load Comb #2 1.04 Length 1.38 Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 135 Fv' = 207 fv/Fv' = 0.65 Bending(+) fb = 1196 Fb' = 1242 fb/Fb' = 0.96 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.14 Total Defl'n 0.03 = <L/999 0.15 = L/240 0.19 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1C.1010 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - 1.00 1.00 E' 1.6 million 1.00 1.00 - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - 1.00 1.00 2 Shear : LC #2 = D+L, V = 2585, V design = 1961 lbs Bending(+): LC #2 = D+L, M = 2619 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT Ot 111 I I WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 13:18 b12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j8 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2 j8 Live Partial UD 160.0 160.0 0.00 4.50 plf 3 j9 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j9 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 j10 Dead Partial UD 47.7 47.7 7.50 16.00 plf 6 j10 Live Partial UD 160.0 160.0 7.50 16.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : � - I 10' 164 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam-Unbal.,West Species, 24F-V4 DF, 3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV C£u Cr C£rt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT i WoodWorks@ SOE!WARE FOR WOOD DESIGN June 28,2010 13:17 b17 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf MAXIMUM REACTIONS lbs and BEARING LENGTHS in �'.. ...._ • .w , ---..,..z.--,-;:.-- "+ a mw. i - a '- ", --` -r:r- a.-. -. te , -- -- �m- _,- s: " e., � ..,i. :- s- t,-a+-- - 74 Wii,q � � a -" �'' „`.�� mss "y,..«" y - -.Fa7.---:-.7t7':;*-- e `rear.. � `vim` � � - ►�� CI • 1•0, 7'-6'1 1656 Dead 843 1927 Live 997 3584 Total 1841 Bearing: #4 Load Comb #4 2.56 Length 1.31 LSL, 1.55E,2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 20.05: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 Fv' = 356 fv/Fv' = 0.45 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' = 0.57 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - 1.00 1.00 4 Fb'+ 2325 1.15 - 1.00 1.000 1.00 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #4 = D+S, M = 7198 lbs-ft Deflection: LC #4 = D+S EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. .1 COMPANY PROJECT II I 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 28,2010 13:51 b18 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Rf.Live Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Rf.Live Partial UD 450.0 450.0 15.00 16.00 plf 5_w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Rf.Live Partial UD 450.0 450.0 14.50 15.00 plf 7-w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11-c39 Rf.Live Point 1147 7.00 lbs 12-c40 Dead Point 1656 14.50 lbs 13-c40 Rf.Live Point 2077 14.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : .. , -I • A 'A 1 0' 161 Dead 3950 3630 Live 3994 3956 Total 7944 7586 Bearing: Load Comb #2 #2 Length 2.77 2.64 Glulam-Unbal.,West Species, 16F-E3 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 117 Fv' = 247 fv/Fv' = 0.47 Bending(+) fb = 1443 Fb' = 1831 fb/Fb' = 0.79 Live Defl'n 0.21 = L/935 0.53 = L/360 0.38 Total Defl'n 0.49 = L/391 0.80 = L/240 0.61 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 215 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1600 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fcp' 560 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.79 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 7944, V design = 6613 lbs Bending(+) : LC #2 = D+L, M = 27966 lbs-ft Deflection: LC #2 = D+L EI= 3070e06 1b-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). t I - COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:26 b18.1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Rf.Live Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Rf.Live Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6_c10 Rf.Live Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 pif 8-w64 Rf.Live Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : � . � r .:77;:,;;-.7- 1-7-.7,771.7-:::w+i ' ---- � ... .ate, t-, t �.,. . - war," -; .'S �.2 ,zr "V _ st- ,;,.2-,,,,/,',",-.,..,-,'", .:,,I, x,. A A 2047 Dead 1977 2047 Live 3226 3189 Total 5204 Bearing: #2 Load Comb #2 2.58 Length 2.56 Glulam-Unbal.,West Species, 24F-V4 DF, 3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 195 Fv' = 305 fv/Fv' = 0.64 Bending(+) fb = 2004 Fb' = 2760 fb/Fb' = 0.73 Live Defl'n 0.18 = L/627 0.32 = L/360 0.57 Total Defl'n 0.34 = L/335 0.47 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf rt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 5236, V design = 4256 lbs Bending(+) : LC #2 = D+L, M = 9589 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 00°144 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:21 b19 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j24 Dead Full UDL 51.0 plf 2 j24 Live Full UDL 75.0 plf MAXIMUM RE' - • awl w { s.r tr � k z A I • 31 O' Dead 86 86 Live 112 112 Total 198 198 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 7 Fv' = 180 fv/Fv' = 0.04 Bending(+) fb = 58 Fb' = 1170 fb/Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 198, V design = 118 lbs Bending(+) : LC #2 = D+L, M = 149 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are approriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:17 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif.) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Partial UD 78.0 78.0 0.00 7.00 plf 2_j14 Live Partial UD 240.0 240.0 0.00 7.00 plf 3_j29 Dead Partial UD 78.0 78.0 7.00 10.50 plf j29 Live Partial UD 240.0 240.0 7.00 10.50 plf 5_j31 Dead Partial UD 26.0 26.0 7.00 10.50 plf 6_j31 Live Partial UD 80.0 80.0 7.00 10.50 plf 7 b24 Dead Point 409 7.00 lbs 8-b24 Live Point 1080 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) - - 77 °tea --o- 1.l a.'r .::-...i7,,,..: ,,,-.... . r. 0 10'-6'1 (0 798 Dead 601 2213 Live 1667 2213 Total 2268 Bearing: #2 Load Comb #2 2.12 Length 1.62 LSL, 1.55E,2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 154 Fv' = 310 fv/Fv' = 0.50 Bending(+) fb = 1658 Fb' = 2325 fb/Fb' = 0.500.71 Live Defl'n 0.18 = L/714 0.35 = L/360 0.52 Total Defl'n 0.27 = L/462 0.52 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf rt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 E' 1.5 million - 1.00 - - 1.00 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 3012, V design = 2515 lbs Bending(+) : LC #2 = D+L, M = 7897 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. i3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. i► / _ \4Z COMPANY PROJECT 1 WoodWorks® SO£IWAR£FOR WOOD DESIGN June 28,2010 13:17 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf • MAXIMUM RE,CTIONS (lbsl and BFARING LFNGTHS 1inl mxa �� a ate' 3 '. ` 1T t .� .�, der a x „fir' sx.:a .4i s �r , , A 10' 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. r COMPANY PROJECT fili WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:22 c10 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c14 Dead Axial 938 (Eccentricity = 0.00 in) 2_c14 Rf.Live Axial 1350 (Eccentricity = 0.00 in) 3 b4 Dead Axial 47 (Eccentricity = 0.00 in) 4 b4 Live Axial 120 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0 , r 9' Lumber n-ply, Hem-Fir, No.2,2x6",2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Value Analysis/Design Axial fc = 151 'Design Fc' = 172 fc/Fc' 0.88 I Axial Bearing fc = 151 Fc* = 1644 fc/Fc* = 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.104 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2485 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. I 1..,11-1 COMPANY PROJECT i 1 Woodworks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:25 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b23 Dead Axial 601 (Eccentricity = 0.00 in) 2 b23 Live Axial 1667 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 0' 9' Lumber n-ply, Hem-Fir, No.2,2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 146 Fc' = 356 fc/Fc' = 0.41 Axial Bearing fc = 146 Fc* = 1495 fc/Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.238 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2297 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT r i WoodWorks® SOFTWARE FOM WOOD DESIGN June 28,2010 13:23 c16 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b6 Dead Axial 938 (Eccentricity = 0.00 in) 2 b6 Rf.Live Axial 1350 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0' 17' Lumber n-ply, Hem-Fir, No.2, 2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails; Ke x Lb: 1.00 x 17.00=17.00[ft];Ke x Ld: 1.00 x 17.00=17.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 96 Fc' = 110 fc/Fc' = 0.87 Axial Bearing fc = 96 Fc* = 1644 fc/Fc* = 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.067 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2375 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. r_ n COMPANY PROJECT fl l WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:25 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b18 Dead Axial 3978 (Eccentricity = 0.00 in) 2-b18 Rf.Live Axial 3994 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): • o $ Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 265 Fc' = 548 fc/Fc' = 0.48 Axial Bearing fc = 265 Fc* = 661 fc/Fc* = 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 8022 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. T r-N COMPANY PROJECT 1 Woodworks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:23 c28 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b24 Dead Axial 409 (Eccentricity = 0.00 in) 2 b24 Live Axial 1080 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): rt,�«, .$,„- '-, aR" & ny' ;r tom- .., , T _ • 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4",2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 144 Fc' = 171 fc/Fc' = 0.84 Axial Bearing fc = 144 Fc* = 1495 fc/Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1509 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT di' WoodWorks® SOFIWARE FOR WOOD DESIGN June 28,2010 13:22 c42 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b19 Dead Axial 86 (Eccentricity = 0.00 in) 2 b19 Live Axial 112 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 8' Lumber Post, Hem-Fir, No.2,4x4" Self-weight of 2.53 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 18 Fc' = 470 fc/Fc' = 0.04 Axial Bearing fc = 18 Fc* = 1495 fc/Fc* = 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 218 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 13:22 c50 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c48 Dead Axial 599 (Eccentricity = 0.00 in) 2 c48 Live Axial 1660 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): Lumber Post, Hem-Fir, No.2,4x6" Self-weight of 3.98 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 119 Fc' = 468 fc/Fc' = 0.25 Axial Bearing fc = 119 Fc* = 1430 fc/Fc* = 0.08 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.327 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2291 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. C — (�,�� BY Ni\i‘u DATE JOB NO. Ceo 09 0 PROJECT: RE: at' W ‘C Ftea-C, arIS J 0 b\-A-- wait 30,A 0 O 2 • F-1 \DVb woAk ao3 J 0 0 S rri \, Je it:I-6)141co ri 4,..„.4 4 \\1e C 0,k0%, a 2 0 Z E o H EL C.) 0.) ••-•. • , X i2 4 ___ COMPANY PROJECT i WoodWorks® SOFIWARE FOR WOOD RESIGN June 28,2010 13:36 b17 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End l_w49 Dead Partial UD 402.0 402.0 4.00 7.50 pit 2 w49 Snow Partial UD 450.0 450.0 4.00 7.50 pit 31-c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 pit wind Wind Point 2240 4.00 lbs lbs)and BEARING LENGTHS (in) MAXIMUM REACTIONS( ,�,``+v+ - 'i. a r.r,,,,, „'' 'mss' s.,,. `....t .'e'er- z -- r.,.7., 'r ro x -p.,_T -t. �' : -: x.8"' -,?� ma a.a ..,�-: � a2.. .r.'-' ,'-,------ "' -�'.'1'.."4;777-7":7::/.gk.,� "'-,-;,:•:.4....,7"-77''''' ''..7;";- tea. -� s ', .+ .... "9 - ''-,.C` -'" nim ate _ "-; ,tt '''°4 .a - , - -� , A 0 7'-6.1 1656 Dead 843 2454 Live 1645 4110 Total 2488 Bearing: #4 Load Comb #4 2.94 Length 1.78 LSL, 1.55E,2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 Fv' = 356 fv/Fv' = 0.45 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.25 = L/360 0.34 Total Defl'n 0.15 = L/580 0.37 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf.1:1 rt Ci CLC# Fv' 310 1.15 - 1.00 - 1.n00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fc 800 - 1.00 - - 1.00 p - 1.00 - - 4 E' 1.5 milli -on - 1.00 - - 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - Shear : LC #6 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #6 = D+S, M = 7198 lbs ft Deflection: LC #4 = D+.75(L+S+W) EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. l► I 't ek- COMPANY PROJECT WoodWorks® SOFIWARE FOR WOOD DESIGN June 28,2010 13:36 b17 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3_c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point -2240 4.00 lbs MAXIMUM REACTIONS lbs and BEARING LENGTHS in : 1 0' T-61 Dead 843 1656 Live 997 1927 Uplift 528 189 Total 1841 3584 Bearing: Load Comb #6 #6 Length 1.31 2.56 LSL, 1.55E,2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; • Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 Fv' = 356 fv/Fv' = 0.45 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' = 0.57 Bending(-) fb = 469 Fb' = 1114 fb/Fb' = 0.42 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fb'- 2325 1.60 - 1.00 0.299 1.00 - 1.00 1.00 - - 8 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 6 Emin' 0.80 million - 1.00 - - - - 1.00 - - 6 Shear : LC #6 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #6 = D+S, M = 7198 lbs-ft Bending(-) : LC #8 = .6D+W, M = 2235 lbs-ft Deflection: LC #6 = D+S EI= 620e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. /' /_'1 <It COMPANY PROJECT i 1 WoodWorks(g) SOFTWARE FOR WOOD DESIGN June 28,2010 13:41 b18 tel Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 51w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 11_c39 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 12 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in)lar...,,,,,IT...s7T, ►A • 10' 161 Dead 3950 3630 Live 5866 3956 Uplift 15887586 Total 9816 Bearing: Load Comb #3 #2 Length 2.95 2.28 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x16-1/2" . Self-weight of 19.47 plf included in toads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design - Shear fv = 117 Fv' = 305 fv/Fv' = 0.38 Bending(+) fb = 1443 Fb' = 2747 fb/Fb' = 0.53 Bending(-) fb = 1354 Fb' = 2743 fb/Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb' 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D+S, V = 7944, V design = 6613 lbs Bending(+) : LC #2 = D+S, M = 27966 lbs-ft Bending(-): LC #4 = .6D+W, M = 26233 lbs-ft Deflection: LC #4 = .6D+W EI= 3453e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. • 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). /` r . 17 fl COMPANY PROJECT di' WoodWorks SOFTWARE FOR WOOD DFS,GN June 28,2010 13:41 b18 Ic2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type ' Distribution Magnitude Location [ftl Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 643 7.00 lbs 11 c39 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : .,„ � o 13:,.v ,,,,,,.,,,:w. a- ,M."^.., R, , .�, WY45» m.✓Y,ke `ti-ML.4.1 ,,,,l,, , _,. ,.i KCS^F.. er-,'. . ,,,,,,,„.,r '. 10y 1Bt Dead 3950 3630 Live 3994 - 5838 Uplift 1396 Total 7944 9468 Bearing: Load Comb #2 #3 Length 2.38 2.84 Glulam-Unbal.,West Species,24F-V4 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 168 Fv' = 424 fv/Fv' = 0.40 Bending(+) fb = 2579 Fb' = 3822 fb/Fb' = 0.67 Live Defl'n 0.41 = L/467 0.53 = L/360 0.77 Total Defl'n 0.58 = L/331 0.80 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 3 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(S+W), V = 10637, V design = 9461 lbs Bending(+): LC #3 = D+.75(S+W), M = 49976 lbs-ft Deflection: LC #3 = D+.75(S+W) EI= 3453e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C-construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). n 1 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:41 b18 Ic2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2-c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4-w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 511,454 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7-w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8-w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf l0 c39 Dead Point 843 7.00 lbs 12-c40 'Dead Point 1656 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): -- e -:-:,=-z-.._________------------,;--, -r ,. - . - :,�. F- Io' 161 3630 Dead 3950 3670 Live 960 Uplift 1396 7300 Total 4910 Bearing: #3 Load Comb #2 2.19 Length 1.47 Glulam-Unbal.,West Species,24F-V4 DF,5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 135 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 2202 Fb' = 3822 fb/Fb' = 0.58 Live Defl'n 0.31 = L/614 0.53 = L/360 0.59 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(S+W), V = 8361, V design = 7630 lbs Bending(+): LC #4 = .6D+W, M = 42673 lbs-ft Deflection: LC #3 = D+.75(S+W) EI= 3453e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). l I7 COMPANY PROJECT i 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 13:42 b18 Ic1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 pif 10 c39 Dead Point 843 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ' _ c.. 4 ms',, �<,.-. ��� %,�z"*r:,- ss»:�s A 10' 161 Dead 3950 3630 Live 3591 1065 Uplift 1588 Total 7541 4695 Bearing: Load Comb #3 #2 Length 2.26 1.41 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 305 fv/Fv' = 0.24 Bending(+) fb = 933 Fb' = 2747 fb/Fb' = 0.34 Bending(-) fb = 1354 Fb' = 2743 fb/Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D+S, V = 4910, V design = 4172 lbs Bending(+) : LC #2 = D+S, M = 18077 lbs-ft Bending(-) : LC #4 = .6D+W, M = 26233 lbs-ft Deflection: LC #4 = .6D+W EI= 3453e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). T n /Z COMPANY PROJECT tit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:43 beam under 202a LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point 7380 0.00 lbs Wind2 Wind Point -7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : 10' 164 Dead 565 302 Live 1646 427 Uplift 1538 Total 2211 729 Bearing: Load Comb #3 #2 Length 0.84 0.50* *Min.bearing length for beams is 1/2"for exterior supports PSL,2.0E,2900Fb, 3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 160 Fv' = 464 fv/Fv' = 0.34 Bending(+) fb = 324 Fb' = 2433 fb/Fb' = 0.13 Bending(-) fb = 2163 Fb' = 2842 fb/Fb' = 0.76 Live Defl'n -0.46 = L/415 0.53 = L/360 0.87 Total Defl'n -0.42 = L/456 0.80 = L/240 0.53 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.00 - 1.00 0.839 1.00 - 1.00 1.00 - - 2 Fb'- 2900 1.60 - 1.00 0.613 1.00 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 5224, V design = 5224 lbs Bending(+) : LC #2 = D+L, M = 3088 lbs-ft Bending(-) : LC #4 = .6D+W, M = 20612 lbs-ft Deflection: LC #4 = .6D+W EI= 1601e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. /' i TI t ] COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:43 beam under 202a LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point -7380 0.00 lbs Wind2 Wind Point 7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : • • A Ip 161 Dead 565 302 Live 427 1696 Uplift 1380 Total 992 1950 Bearing: Load Comb #2 #4 Length 0.50* 0.74 *Min.bearing length for beams is 1/2"for exterior supports PSL, 2.0E, 2900Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 464 fv/Fv' = 0.39 Bending(+) fb = 2352 Fb' = 2842 fb/Fb' = 0.83 Live Defl'n 0.44 = L/435 0.53 = L/360 0.83 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 6000, V design = 5909 lbs Bending(+) : LC #4 = .6D+W, M = 22412 lbs-ft Deflection: LC #4 = .6D+W EI= 1601e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. i , _.. .- COMPANY PROJECT 1104 diWoodWorks SOFT WARf FOR WOOD DESIGN June 28,2010 13:44 b18 REAR LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3 c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point 6190 1.00 lbs W2 Wind Point -6190 7.00 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS in e+v4 ,mak ,. ?:<,. �- ? ",.Z v ' r --� zr,-,4�.., . e ''''X x *: -,a ' , .r` '��s =-: : ��. « .,a sh"". »s=. ^rte 'STM a c-R.,-,-',7"-',--1 -V�za v x � a E AA ♦ I 0' g-61 2047 Dead 1977 23914 Live 5352 2667 Uplift 2667 Total 7329 Bearing: #3 Load Comb #4 2.19 Length 3.61 Glulam-Unbal.,West Species,24F-V4 DF,3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 297 Fv' = 424 fv/Fv' = 0.70 Bending(+) fb = 1693 Fb' = 2760 fb/Fb' = 0.61 Bending(-) fb = 1580 Fb' = 2844 fb/Fb' = 0.56 Live Defl'n 0.14 = L/837 0.32 = L/360 0.43 Total Defl'n 0.29 = L/386 0.47 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fb'- 1850 1.60 1.00 1.00 0.961 1.000 1.00 1.00 1.00 1.00 - 8 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #4 = D+.75(L+S+W), V = 7329, V design = 6491 lbs Bending(+): LC #3 = D+.75(L+S), M = 8104 lbs-ft Bending(-): LC #8 = .6D+W, M = 7558 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 15.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). i COMPANY PROJECT i 1 Wood Works® SOFTWARE EOR WOOD DESIOV June 28,2010 13:44 b18 REAR LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4_c9 Snow Point 1470 1.00 lbs 5_c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point -6190 1.00 lbs W2 Wind Point 6190 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ,,,Z4,;;,-. -,4.17.,,,,., � � w V .� �' � ;� r ��+.x�'',.--7..'A.m s a�- - psi-44,u t� ,�rsw� '-Vo- mak. ^*s. � �.7:7-55'7C� T,t�.s `Y��. r>�w ;'�#,:�°rs �a`��+� :'74itak44- i' ,>.1b°r-_sf_` M.:..-- ,. x4`,g'�, a�.�vY'a``_. 'nz "yam"`^:'>' 0' 6, 9'-6'1 Dead 1977 2047 Live 2420 5324 Uplift 2709 Total 4397 7371 Bearing: Load Comb #3 #4 Length 2.16 3.63 Glulam-Unbal.,West Species,24F-V4 DF,3-118x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 299 Fv' = 424 fv/Fv' = 0.70 Bending(+) fb = 3225 Fb' = 3840 fb/Fb' = 0.84 Live Defl'n 0.24 = L/468 0.32 = L/360 0.77 Total Defl'n 0.40 = L/283 0.47 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D+.75(L+S+W), V = 7371, V design = 6533 lbs Bending(+) : LC #4 = D+_75(L+S+W), M = 15434 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). /*- f i '1 harper Project: flout'Peterson. Client: Job# Rtghellis Inc. S C EN4IN EER IiR Designer: Date: Pg.# TS LANDSCAPE ARCH;if FS• R:E'lIIR9 De(AL_ D-es t c3� Wdl 10' lb '8 ft-20-ft Wdl= 1600.11' ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip:_ 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S 0.942 Max EQ, 5% damped, spectral responce acceleration at short period s z 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa Ss Sm := Fv-S Sds._ 2-S Max Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) Fp • = .4ap Sds lRP P C1 + 2-1-W p EQU. 13.3-1 Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3•Sds"lp•Wp EQU. 13.3-3 Fes= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2-Sds"Wdl=225.6781.1b Harper Project: •01.• Houf Peterson Client: Job# Righellis Inc. - ENGINEERS .AN NESS— --- ----- Designer: Date: Pg.# 1AN 65,.AP'" AH(.t 1" C 2.t lJ4S 10• lb 8-ft-20•ft Wdl = 1600.1b Wdl ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip:_ 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Sml := Fv-S1 2-S ms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1,ASCE 7-05) .4ap-Sds Fp :_ RP `.(1 + 2 hl•Wp EQU. 13.3-1 JJ Fpmax 1.6-Sds-Ip•Wp EQU. 13.3-2 Fpmin:= •3•Sds-P.Wp EQU. 13.3-3 if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) F =338.5171-lb Miniumum Vertical Force 0.2-Sds•Wdl=225.6781.1b lxA Harper COMMUNICATION RECORD HP " Houf Peterson Righellis Inc. To r] FROM Ei MEMO To FILE IA PHONE NO.: PHONE CALL:0 MEETING:LI X -0 W .. 2 ,..... E 6 r> 11 C -4 Ulis 11 Co1 v ..\ ----0 3 3 Its— ...$) SI 4 * co, —0 :$5. (11 ?' (,.Ay...1.) 3 6- ---) It ,rt- 11 r" --I el) •.r7,, \ . 1..' 4 c.... ...---- CS' 4.0.0 \I 1 . ono.... , a 1 N. 7F,- - ii; \t' , z o .., \ (4, _ BY: Arct, , e;i1_, egN r g - DATE: i\, ' \ ,„r . •-• \ ,/t -,..,'•-• # ...., PROJECT: RE- (--;------ [21(.. 0 0 /• c w - DEGY-tr4-.1 L7_ V o w i-r'Nr/ ( I L a Cr i (1. 53)(taq*inal i) tc,a. o winc ! 1 cc a (.) = 0 z 1 • a La I Z ,1 -1‘IZ" ce a. tv CAPIAC IT'l \ , , z 9 -7,2 a I ia y't4 F.6 \,- _ z Jo\sT-5 1 0 A 2 = r---4\ pi....c ; , 0 , 0 , i C spa c rxa \of'Avin ee n fNCt:, 1 0 i 2 co \ IN-F- Li. z w 0 6 I i i 0 1 .0 A r i u a.\ __-,_ „(,,ci 5 pt---- 1 1I 1 _ _ ___). . P — ei. 0 -T-T LEST -9„.. i . ) -.,...,-. \,,to 9,— ' -) 1-1=- , • i! 1 (2.) SI r )(N) S-7)3 ' 4- 'Y,41:(, i cn = ;-1 a) 0* -.= e t• 2 'i a : • n-- ,,f).. i' --- - i,,a 2_ i..> Z .- . •-•-• 30°k -14 (\111(o) = a31 *Fir*. lot f\(\?5(NNk 3D14- X 42 1 _ e- till 01c , 40 4i - -' O c _ r,411 rtarper HP Houf Peterson K2. Righellis Inc. To 0 FROM 0 COMMUNICATION RECORD MEMO TO FILE 0 ENnIPItE11:,•PLANNEN: LA,D.:IiIAFE ARCHITECTS,SURI/r2Y0`.3 PHONE NO• PHONE CALL:El MEETING:0 —I 71 rsi -0 M CD 75 -•- 0) (--) tl ii 6- 7., tfi 6) it '3)9) ..T, 0 .-<, (- il " 4) ... „. ,......, c o Q ft (1 0 .....),„# ,...re° L., CO 8 0 V' j co ...z 0 ro, _ 0.) 0- ''t (--) ...., (11—0 ,..-- ...z O , , r 7•11" (-5 ‘iii 6 0 t; P"'".• 1) fr CP c8 "4:,,,, (f) CI — -i '• CI a .--• V o E 1 94. f rt ....- 0 t-- ...... .Q...) P „--, . ..44, ...t. r r--, E c, o ) ?fi .....\) t 41 1 fl 0 4 ,_.--- k:-,.: .-. . ....r., f-, ......) 00 1 1 11/4_._...._ —4--) .--..\- -;P: _ i I', 1‘ er-• -- rl I rill\ 1 I —I 1\3 ---I 0 0 , IV g 2 (----1 <._ . ! • Ins. ,-i--- Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To 0 FROM 0 MEMO TO FILE 0 ENGIAIEEP PLAI,ERS LA it, ILAIA.,.ARCHITECT..+Sll,,,,,, PHONE NO.: PHONE CALL:0 MEETING:0 XI "1:1 ED rn ZI 75 70 H 2 rn 7.1 , if 1---- 0 17,,.... it '- 3 SD r. -..c. .._. 0 8 ° Q ......_ 0 0 0, 0 0 Q=. ) 6 11 # 7 '‘.------) ,..- r---, d . cil ._J7)--, 4 6 1...) .....,..,(..''''. in VI rj 1 - ,..a. --i () ,J Fn. I ... , . 1, ) ,..„ i , 0 to Z i . 0 .. N.- ..... ........„. . , i . .. narper HP Houf Peterson K) Righellis Inc. To FROM 0 COMMUNICATION RECORD . MEMO TO FILE E] FO,NEE,1+::+PLAN::Eli,s LA,[1' F A,GIIITECTS+SU'VE:VOR:: PHONE NO.: PHONE CALL:0 MEETING:0 M -0 CO FI M -‹ 0 Ill o 71 ..:• . ;,,..R.--. S —NI ....-til ' 4..., al .... „.01\ ......., › `,.....,, 'N T ••• r"-* -----.,-....-- C -- ---. (SI •...' , 1. 1 NZ) 19 (11 ,......1 5\ ; r-c'N V',..--1 0 c ) C . I. 3? --,4 rz), t....; . ,..„ C... I ( ) 1 r i, N 0 03 10 z p 0 as. .,.. . VVI . V I'M COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10 a 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 WoodWorks'� SOFTWARE FOX WOOD DESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : l0. 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2, 2x6" Self-weight of 1.7 pff included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Desi Value Analysis/Design Shear fv = 19 = 150 fv/Fv' = 0.13 Bending(+) fb = 256 = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 • = L/360 0.16 Total Defl'n 0.03 = <L/999 • = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. r- . If WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 22,2010 14:24:15 Concept Mode: Reactions at Base of Structure View Floor 2 : 8 ' 1280L 1280E 4:, 442 D 442 D , u, ,% 4 _„ 15411204L1470L -V 2 1047746 D)992 D K'-<-^ ..,.'<-,--_, i. -- 11660L 553E 599 D 200 D ":: AIMM 1080 L 640En 409 D 208 D i L.-., 480E - 1667E 300 0 . 1100 L98 D L < • 409 D 409 D 75 L is u 24 D _ i . 994 113 L j 3956 L 4-v. 3978 1 8113 L k-3658 D :633 D�3386 D \-------- -h. !'S; f .„: __-_,vii C,LT:_ ...0 :CC_CC f :11—'6D;)D i.it_,:JT r:-r.....46-... v-_._,_:-11_.__EEEE _`Cr.G _ _`-_t_.vw_..._ '2 ,r a . _. LU ' -c7 5 c ) i. l 2 -,3 -":-.3 i ,_ ,!._2.222,, 221.t.j. .._ .... .- .z ./y[ .c _ _ .77..., ',7 .'' 4 c"((rs(\\ 1()() CS\ Q07‘ J741..k)()L3k-- ...-7 Wood Works® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-REAR LOAD WoodWorks®Sizer 7.1 June 22,2010 14:22:33 Concept Mode : Reactions at Base of Structure View Floor 2 : 8 ' --- 1280 L 1280L - - `,- 442 D 442 D -,-4-_ '1:;`,2" 111113Fr 26U i War;31 89 L 1977 De ' 2047 D ..<z)-; --,-. '--,- '8 . ...,, -.. .-.... .2068 L 689 L 6, 731 D 244 D _-_--- -'-- I. z---, 1080L 640L 409 D 208 D = 480 L _--:-. 1776 L . 300L1 ,-,.- 1080 L98 D L , 409 D 409 D (.," , --,- (iL) N 24D --; .-- ---- 1 _ An I Int;9077 L 13 L 113 L.____ in......... --- .z. --, 113 LI-4113 L23 D8 D1656 D :6 Di DUBS D -t _ Ea=BF.BOCCI CCC Cf(„Ce=CC.OCCCO=2 COCC'CCCODC,2,D=7-2,q2E2A2121-2:"ThE)-1-'3. DD,-D‘DDDE':-r-E-t--PE Taw-,'=,==.7,----4:7--E:2722TEcE-E7--7 2 4 6 5, 1 .) 12'1 z =,;=., - 2:. 2 24 23c 23 20 ,:, 4 a ; - 42 ,7. .,' ' - - 2 6 , ' _:,7 J.4, — ' ' 1,4-5.55:5-6 3 5 5 2 6673: --7-, 6E-."7-..-- ----7;7- ....... Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy.= 60000-psi Reinforcing steel strength ES:= 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density "(soil:= 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 3978-lb Pdl:= Totaldi Total11:= 3994-lb P11:= Totalll Pg:= Pal+ P11 Pt!=7972-lb Footing Dimensions tf:= 10•in Footing thickness Width:= 30•in Footing width A:= Width2 Footing Area gnet gall —tf'1'conc net= 1375•psf Ptl Areqd gnet Areqd = 5.798.ft2 < A= 6.25•ft2 GOOD Widthreqd Areqd Widthreqd =2.41-ft < Width =2.50 ft GOOD Ultimate Loads Atcl' '= Pdl+ tf'A'lconc P,:= 1.4•Pd1+ 1.7•P11 Pu= 13.45-kips Pu q„:= A qu=2.15•ksf Beam Shear bee':= 5.5-in (4x4 post) d:= tf—2-in := 0.85 b:= Width b =30•in Vn:_ 4, 34 fc psi b d Vn= 13.6-kips b —bcol Vu:= qu .b Vu= 5.49-kips < Vn= 13.6-kips GOOD 2 Two-Way Shear bs:- 5.5•in Short side column width bL:_ 5.5-in Long side column width bo:= 2•(bs+ d) + 2-(bL+ d) bo= 54-in Rc:= 1.0 V 4 + 8 fc•psi-b•d Vn=40.8-kips = � (3 30c Vnmax x-2.66• fc•psi-b•d Vnmax =27.13•kips Vim= qu[b2 —(bc0i+ d)2] Vu= 10.73-kips < Vnmax =27.13•kips GOOD Flexure b —bcol 2 Mu gut( jI }b —1Mu=2.8•ft•kips 2 2 ti:= 0.65 b.d2 S=0.185 ft3 nS"":_ 6 Ft:= 5.4)• fc•psi Ft= 162.5-psi Mu ft:_ _ ft= 105.14•psi< Ft= 162.5-psi GOOD Use a 2'-6"x 2'-6"x 10" plain concrete footing �, � , BY: A Vc- DATE: \( .may Ot. t 1 JOB NO:r) 3 ,`� ^ r 9 0 PROJECT: RE' SVem Coo-1-m3 J_ Z $ cies By limos � F • 2 asct(tz?sc')= 300 91.. uof c' 2\eveks)(k3 sc) = a af..) p'.. toor � a 401N (iso eccx'I.1q 6l,t)_ 333 PLP 5\--em O W (8Ii ( tSOpCc'(w = 100 W PLS U z W D Z LL o 63 r OZ Iev D 1$1(44 ti? . �. b� PAF _Y kcor O 2 MCA% Gbp VSoO pc = lscxpLP • w o I I + 1C t,il ISC�4t� U ) - 1 .0(a % L. 1S, ' ' 0E• o • Z Z e Y'e o C ' c.- . cc lex..) i ! ''!`‘cyf-3 0 OI = a DL° s C,L1 300 p c ( )(7-kevf:S)C�.,� �� = a34 P.E- . k --- 40,N Ci ,r132)C6/12.) = 333 p s cSo W I00(4) (l8ps F ) _ �� � c fry) p LP TL o a3 t 100vJ a3 13 +- {OL,AJ G l;000) xxx c..43 1 1 urf F} Sa,rne as. rntrvz IUU � r TLJe \39J ‘00Lki -- 1,0G - w PG,(kuQJCAi °L oasciz.)a' = (000 pw (a)(2 X 13'2-) _ 'l(o j7! ., toG�— p °�a 7 F �, `I;z�( l► 333p_c 5}Q l C� ,2xt50 tA)1 IOO LL t?jkz)C4.0)(z) \iv) PL-- , 4cvi- VL a(:)a9 f 100w LA) " 1,b1-1- use a4 (ti) BY DATE- JOB NO PROJECT: RE: k C Unit tiJaCt 5,15‘t, 11] 11\ X L 1(2.1°14 kt.AD4I 1‘2,1'c''ck 1S.58M 0 E tbi1 tt" ie-7J te"" tC,"•,/ 0 2 7. 45 ccU , cc 0_ C\evecL Net+u-inloc,3 0 Mor M9.4_ A-ct A- O (i1) 4o ,0-6 ic9t # ; °ED LI tAor 0 0 C71111- 0.612Ck 3 t- ) 0 c.; = Ile 40 ntteu HarperHouf Peterson Ri hellis Inc. Current Date:6/22/2010 10:53 AM g Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Front Load.etz\ M33=83.44[Kip*ft] M33=-12.21 [Kip*ft] A Bentley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:54 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Front Load 2.etz\ M33=43.5[Kip*ft] M33=-40.04[Kip'ft] A BY: PAIV._ DATE: 1 1� &O 0 JOB No C x "r 0 PROJECT: RE: U J a- C -Rear Load El IICCrc w Z 54.53 c 0 w o w LW' tour w 0 0 Lu Z W a.0 0 Mor = 54 ,S ..ft \ : DLCGO 4- a, (6.-6q) CIL DL z Mia = °Ion (.t•17-)-) = 3(.40- f'991,--- 1` o l5CSLI,; `// ' g(a.LL 1)1_ OL G . 12k. wp Ac\ Ei)' x s ! , 5 %`i4. of M \JILl 4., LCOS, t` o, i o WN r2, .(„ a �~ c� O .bn an Bent-Leg Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Rear Load 2.etz\ M33=36.82 IKIP*ft] M33=-50.22[Kip'ft] A ( c10 BY: DATE' •-soti aoo JOB No PROJECT: RE: Unil- C - \n\-cr iar SL) 51,ocitfit. o W W 0 2 - •t 0 W (Lij0rj Cb.ecY_ Ovecturni Mor 51, 09 -_•C'E •4:a(2..) + ),LL (4)4, Ak423L t- 41.52 -1--Y131_ 0 (i51VICIT < qi3L t- LIDL 13 0.-1- k_ips b' 4.a.51 Q.5/ 0 2e1 d — 0 — 0 I I- 0- g(442. 3 , • g cia 4 .64 TIP (I, Be , Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 1:17 PM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Interior.etz\ M33=60.31 [Kip*ft] M33=-63.58E-12[1-"-Cil') M33=-18.91E-10[Kip-ft] M33=-21.22[Kip"ft] { 9 /' _'C'a't n r into PA 'moo ent1.e Y Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 1:17 PM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Interior 2.etz\ M33=55.84[Kip*ftj • M33=65.17E-11[Kip*ft) M33=21 46E-11 [Kirft] M33=-25.6[Kip*ft] i X Z-- 71 1-71 BY k 94\,..(........." DATE JOB NO. c_z_e,0-090 PROJECT: RE: InVeri3r V'(... .)1-.1 r9 st k'' 5 ?, 4 - 5 'c 30 i ci-,-). E IN\rp r.t. , w 0 2 2 L1 E , w O L., L., 0 (1) # s e vz" oc. , A -...- I .:Day-I-1- o < at.-- (0--iY,404(xxi)/0,5(1061_41..s/(2) ,. .,- 0. (00 0 - , 6 AA lel r; 0,Ct 0(it 22;\L20 I 00 0-)(Q1`*'.."° 1t2) 2 O 7. \,L1'/ ,' ID "(-c• > i,oI o E -rfvk, (1) t:0"./ f IV OC, Pis-; O,550 t 0 o-t- 2 _..,# , . Cc 0 Li. Z a :.-_-_.- (.0isstext,07a0)i6($000:)C(t aS x‘t) ":".. o_ "da3 I Pi Øf\i-t-_-_• 0 ,90( ,c5t.,)0.6foo0)(2,-)--°:1-niz.1) =--- 'av-ck_. Asyyl,,, - , OcitiA goo( ... 4 :N C)11)62-) •-, A5 f coy = P104e, \3 Z AS ge tin(U)3.1) -."-. 50,3rD. 4,8 9 (1) *or @ lid(' Top 4 '0,56-0in 1-1 a) •--, --;: a! 4 •'" ,---. 17, 7-f,‘, -- ao-' (0.3q-;;)(cio,o0oya,s(3c,,Q0,-.)(3)(1,7) 0 - ° / ) - - ,,,' .1 t 7 T_ f tF-L.;-. r.,4-1'./ S TOID Asl: 0 559 t 0,S-?.)90.o,000--) Mo,E)-x 3000)(3 y 22.) --- o, (409 øwr\ .-..:: ()PIO(O,Se)9)(c.o,ocio )C9, i _ o4-5 / ) lijk''r'i =. '-'- . -2. \: CC >" iv , ,‘'. ..1. cl • BY .11. IA c......../ DATE. 113 af.3(0 JOB No PROJECT: R E: DNA-, C .......,--...;_ . fin ..__ ___1 • _. -1:-c,:terkai.47-- ,,,),,) ''*-t(•ant II il o w i-- w Cafc(? --r-. ,k,rt-Ant; MoT ...--- S ,09 "-- — 0 _J c4)(2)c4-1,a\soFcF,y2_) 7-_--3a•‘00--t* ct < o w I.L.1 0 i MR, =_--( ,a-4-;•42). -I- 6 ,(4,6÷-3. 4) -t- DILA) cf+ z CO 0 4 0 Mt g.-:. (:) 7_i- . _. )(..t,„, ) -r( ii.L. 48 4'\-ii % -.= 1- z 0'T 2 0 n , 2 O . CC d z 1 w ,-- z 0 O I I- 0- -..- M '1 t,5 --t-- 9- -.2) Oct _ ...........--_-_- ----: 4.57 Pc 0 (- .a 4- I, L4. , ------,1 t v2.„--- (.' 4,-9 2:\'‘ e = 0,5-Li- c t %',,_ '\5'--1,.... ( 5 .' -) ) . ). I. e , o 6 :,: - t-, •.,„, i .,...e ..ii -- - c/D i-. -E1' ct 0 . •- ...= 0 ..- f.- r‘ . 17.. C_.... ..- ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches cmin = 2.25 inches cmin= 18.00 inches lllc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations ANc— = 68 in` AN= 1296 in` 0 AN = 110.25 in` AN°= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N— 1.00 Ncb= 4,399 pounds Ncb= 55,121 pounds 4Ncb= 3,299 pounds Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation +Ncb= 44,640 0.754Ncb= 33,480 k" 11 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc= 3000 psi cmin= 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds 4Nsb= 173,393 pounds • Concrete Pullout Strength Givens Abrg= 2.15 in` f c= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds SNP= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds SNS= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks ( - .1- I AC1318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 17.00 inches hef= 12.00 inches (into the Foundation) Stem = 8.00inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width= 36.00 inches cmin = 2.25 inches cm;n= 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations ANc= 408 in` AN= 1296 in` ANO= 2601 in` ANO= 1296 in` Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Wed,N= 1.00 Nib= 10,500 pounds Ncb= 55,121 pounds +NOb= 7,875 pounds 4 NOb= 41,341 pounds Combined Capacity of Stem Wall and Foundation +NOb= 49,216 0.754NOb= 36,912 Concrete Side Face Blow Out Givens Abrg= 2/5 in` fc= 3000 psi cm;, = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 261,589 pounds 4Nsb= 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np = 66,000 pounds SNP= 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 = 0.80 strength reduction factor Calculations Ns= 44,254 pounds SNS= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks