Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (10)
/frt 57--Aol v -Do/ l l g-6� 721,crn-i i Structural Calculations for The Lateral Analysis of the McAdams Residence Remodel Located at 11665 S.W. Kathryn St. Tigard, Oregon 97223 RECEIVED / J;, 242010 Prepared for CITY OF TIGARD Gary Dahl BUILDING D VISION August 6, 2009 JOB NUMBER MSP-32 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is + assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 25 sheets total including this cover sheet. , NEj 56238PE OREGON c!,;(p 126 � (0 QV DNP� EXPIRES:12-31-2009 leHarper Houf Peterson Righellis Inc. ENOINE BRS.PLANI4ERS LANGBCAPE A.CN,recrs.BNRVEyos3 12901 SE 97th Ave. Suite 180 ♦ Clackamas, OR 97015 • [P] 503.785.1131 • [F] 503.785.1141 205 SE Spokane St. Suite 200 ♦ Portland, OR 97202 ♦ [P] 503.221 .1131 • [F] 503.221.1 171 1 104 Main St. Suite 100 • Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria ' Project Scope: Lateral Analysis of the McAdams Residence Remodel located at 11665 S.W. Kathryn St. Tigard, Oregon. Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, Iv : 1 2006 IBC /2007 OSSC Occupancy Category: II Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch. 20 Importance, IE: 1 ASCE 7-05 Table 1 1.5-1 Ss: 0.935 USGS Spectral Response Map Si: 0.337 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength, fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 Wood Beams & Posts: DF-L #2 Design Assumptions l, Allowable soil bearing pressure (qa) : 1500 psf Assumed Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 l Harper Project: McAdams Residence Remodel ,tt ' Houf Peterson Client: Gary Dahl Job# MSP-032 Righellis Inc. ENO!NEERS•PLANNERS Designer: AMC Date: Aug 2009 Pg.# LANDSCAPE ANCNI rECTS•SURVEYORS • DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5.psf Framing RPL:= 1.5•psf Plywood RRF:= 5•psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1•psf Misc RCG := 2.5•psf Ceiling RIN:= 1•psf Insulation RDL= 15•psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME := 1.5•psf Mech&Elec FMS := 1.5.psf Misc FIN := .5•psf Finish&Insulation FCLG:= 2.5.psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX_Wallwt:= 12.psf INT_Wallwt:= 10.psf Roof Live Load RLL:= 25•psf Floor Live Load FLL:= 40•psf 1 Harper Project: McAdams Residence Remodel Houf Peterson Client: Gary Dahl Job# MSP-032 Righellis Inc. cticHEE.S•PLANNERS--- Designer AMC Date: Aug 2009 Pg.# LAI.USC/,'E 4RCHIrECIS•SUlivE`CiiS Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 1605.ft2.1.04 RFWT := RDL•Roof Area RFwr= 25038.1b Floor Weight Floor Area:= 1325412 FLRWT := FDL•Floor Area FLRWT= 17225.1b Wall Weight EX Wall Area:= 2382•ft2 INT Wall Area:= (4.5.32+ 8.106)•ft2 WALLWT:= EX_WallWt•EX_Wall_Area+ INT_Wa11 t INTWallArea WALLWT=38504•lb WTTOTAL=80767 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 20.833 Mean Height Of Roof . Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) := 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct•(hn)c Ta=0.20 < 0.5 (EQU 12.8-7,ASCE 7-05) St := 0.337 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS:= 0.935 Max EQ, 5%damped, spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fe:= 1.126 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,:= 1.725 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) 2 Alk Harper Project: McAdams Residence Remodel _ Wilk Houf Peterson Client: Gary Dahl Job# MSP-032 Righellis Inc. --- ENO,NEERS•PLANNERS --- Designer: AMC Date: Aug 2009 Pg.# _ LANDSCAPE ARCH, EC1B•BURVEVORB SMS := Fa•SS SMg = 1.053 (EQU 11.4-1,ASCE 7-05) 2 3MS Sds Sds=0.702 (EQU 11.4-3,ASCE 7-05) SM1 := Fv.Si SMl =0.581 (EQU 11.4-2,ASCE 7-05) Sd1 2 3M1 Shc =0.388 (EQU 11.4-4,ASCE 7-05) Cs:= Sds Cs =0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Csmax := Shc'le Csmax =0.306 (EQU 12.8-3,ASCE 7-05) Ta•R ...and shall not be less then... C R J 0.5•S1.1el Csnrin := if Si <0.6,0.01, Csmin =0.01 (EQU 12.8-5&6,ASCE 7-05) ,,:= CS•WTTOTAL V= 8721 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=6105lb (Allowable Stress) Harper Project: McAdams Residence Remodel Houf Peterson Client: Gary Dahl Job# MSP-032 Righellis Inc. Designer: AMC Date: Aug 2009 Pg.# ENGINEERS•PLANNERS LANDSCAPE ANCNIIECTS•SNNVEVVRtl Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:H Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=20.833 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2..1.40•ft Zone A&B Horizontal LengthSmaller of... a2— 8 ft (Fig 6-2 note 10,ASCE 7-05) — 4-h,;2•ft or a2= 16.666 ft but not less than... a2m;n:= 3.2.ft a2nun=6ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetyAneA:= 22.0.psf PnetzoneB= —5.8.psf Pnetzonec:= 14.6.psf PnetzoneD:= —3.2•psf Vertical PnetzooeE:= —19.1•psf PnetzoneF= —13.3•psf Pneta,neG:= —13.3.psf Pnetu,DeH:= —10.1•psf Basic Wind Force PA := PnetzoneA'Iw'X PA=22.psf Wall HWC PB:= PnetzoneB•Iw.X PB=—5.8.psf Roof HWC Po := PnetzOnec.Iw.X Po= 14.6•psf Wall Typical PD := PnetzoneD'Iw'X PD=—3.2-psf Roof Typical PE := PnetzoneE'Iw-X PE =—19.1.psf PF:= PnetzoneF'lv,,•X PF =—13.3•psf Pc, := PnetzoneG•lµ,•X Pc, = —13.3•psf PH := PnetzoneH'IW.X PH = —10.1•psf Harper Project: McAdams Residence Remodel G4 '~'• Houf Peterson Client: Gary Dahl Job# MSP-032 Righellis Inc. ENGINEERS•PLANNERS Designer: AMC Date: Aug 2009 Pg.# LANDSCAPE ARCHITECTS•SURVEYORS Determine Wind Sail In Transverse Direction WSAII,ZoneA (76+ 41)•ft2 WSAILzoneB (0+ 33)•ft2 WSA1Lzenec := (281 + 185)•ft2 WSAILZoneD (0 + 60)•ft2 WA= WSAI-ZoneA•PA WA=2574 lb WB WSAILZoneB•PB WB=—191 lb Wc WSAII-ZoneC•PC WC=6804 lb WD:= WSAII-ZoneD•PD WD=—192 lb Wind_Force:= WA+ WB+ Wc+ WD Wind_Forcemin:= 10•psf•(WSAILZoneA+ WSJ ZoneB + WSAILzonec + WSAILZoneD) Wind_Force= 8994 lb Wind_Forcemin= 6760 lb WSAZoneE:= 275•ft2 WSAILZoneF 133•ft2 WSAILZoneG:= 763•ft2 WSAILZoneH 431•ft2 WE WSAI-ZoneE•PE WE=—5253lb WF WSAWZoneF•PF WF=—1769 lb WG, := WSAILZoneG•PG WG=—10148 lb WH= WSAII-ZoneH•PH WH =—43531b Upliftnet:= WF+ WH + (WG + WE) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneG+ WSA1LZoneE)]••6.1.04 Upliftnet=—6528 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: McAdams Residence Remodel P° HoufPeterson Client: Gary Dahl Job# MSP-032 Righellis Inc. — ------E NG!NEERRS•--- ---•- Designer: AMC Date: Aug 2009 Pg.# - LANDSCAPE AXCXti ECCTS•SR9 UXYEYDXS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area2:= 1246ft2 N ,F ,•�,:= RDL•Roof Area2 RFWT= 18690•lb Floor Weight Floor Area2 := 993ft2 F := FDL•Floor_Area2 FLRWT= 12909•lb Wall Weight PX,Wall.Via:= 2146•ft2 INT Wall Area=992 ft2 �:= EX_Wall,,t EX_Wall_Area+ INT Wallwi•INT_Wall_Area WALLWT= 35672•lb WTTOTAL= 67271 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn=20.833 Mean Height Of Roof Ie= 1.00 Component Importance Factor (11.5,ASCE 7-05) A,:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) gsv:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) AA:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period := Ct•(hn)" Ta=0.20 < 0.5 (EQU 12.8-7,ASCE 7-05) Si =0.337 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss= 0.935 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.126 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F.= 1,725 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: McAdams Residence Remodel k t';• Houf Peterson Client: Gary Dahl Job# MSP-032 Righel lis Inc. Designer: AMC Date: Aug 2009 Pg.# EN6,NEERS♦PLANNERS - LANDSCAPE ARCHITECT S♦SURVEYORS 4&:= Fa•Ss SMS = 1.053 (EQU 11.4-1,ASCE 7-05) 2 SMS , S= 3 Sds=0.702 (EQU 11.4-3,ASCE 7-05) Fv•Si SM1 =0.581 (EQU 11.4-2,ASCE 7-05) 2•SM1 3 Sdi =0.388 (EQU 11.4-4,ASCE 7-05) Cs = S R Ie Cs=0.108 (EQU 12.8-2,ASCE 7-05) ...need not exceed... Cs •_ Shc le Cs 0.306 (EQU 12.8-3,ASCE 7-05) nwv`Aiv; Ta•R max = ...and shall not be less then... 0.5•Si•Ie1 := if(Si <0.6,0.01, R J Csmi„=0.01 (EQU 12.8-5&6,ASCE 7-05) V= Cs•WTTOTAL V= 7264 lb (EQU 12.8-1,ASCE 7-05) F;= V.0.7 E=5085 lb (Allowable Stress) Harper Project: McAdams Residence Remodel r• Houf Peterson Client: Gary Dahl Job# MSP-032 Righellis Inc. Designer: AMC Date: Aug 2009 Pg. # ENGINEERS• SEERS LAHOSCAPE ARCHIIECTSESVRVEEOHS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category: H Iw= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 20.833 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) = 2..1.40•ft Zone A&B Horizontal Length Smaller of... g a2- 8ft (Fig 6-2 note 10,ASCE 7-05) 4•hn•2 ft or ' ^' a2= 16.666 ft — 3 2 ft out not less than... Switv: a2min=6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA=22•psf PnetzoneB=—5.8•psf Pnetzonec= 14.6•psf PnetzoneD=—3.2•psf Vertical PnetzoneE= —19.1•psf PnetzoneF= —13.3•psf PnetzOneG=—13.3.psf PnetzoneH=—10.1•psf Basic Wind Force Pam:= PnetzoneA'I ,.X PA =22•psf Wall HWC Pam:= PnetzoneB•Iw•X PB=-5.8.psf Roof HWC Pam:= Pnet 0 c•I ,'X Pc= 14.6•psf Wall Typical P4,:= PnetzoneD'Iw'X PD= —3.2•psf Roof Typical := PnetzoneE'Iw'X PE = —19.1•psf , := PnetzoneF'Iw'X PF=—13.3•psf Pam:= PnetzoneG•Iw•X Pc, =—13.3•psf • Pam:= PnetzoneH'Iw'X PH =—10.1•psf Harper Project: McAdams Residence Remodel E€ Houf Peterson � ; .. Client Gary Dahl Job# MSP-032 Righellis Inc. EN4NEER$ PIANNG RS - -- Designer: AMC Date: Aug 2009 Pg.# LANDSCAPE ATtCNITECT616URVEYORS Determine Wind Sail In Longitudinal Direction ,yS = (77+ 32)•ft2 Sw = (0+ 52)•ft2 , y Q:= (307 + 191)-ft2 nMM 1 ,= (0+ 71).ft2 ,W,M,,x,:= WSA1LzoneA'PA WA=2398 lb , ,:= WSAILZoneB'PB WB=—302 lb , c,= WSAII-ZoneC'PC WC= 72711b = WSAILZoneD'PD WD=—227 lb Win Force:= WA+ WB+ WC+ WD Wi d For e = 10•psf•(WSAILZoneA+ WSAILZoneB + WSJ Zones + WSAILZoneD) Wind Force=9140 lb Wind_Forcemi„=7300 lb aSogozow,&:= 154•ft2 N1nx�wwA aexr'= 154•ft2 20 4va:= 544•ft2 ,yam = 3774t2 := WSJ ZoneE'PE WE=—2941 lb = WSAILZoneF'PF WF=—2048 lb = WSJ ZoneG'PG WG=—7235 lb ,W,N„g:= WSJ ZoneH'PH WH =—3808 lb Tplsv:= WF+ WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH + (WSAIL20neE + WSAILZoneG)]'1.04•.6 Uplift1et=—4529 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7-05) Mean Roof Height, H (ft)= 20.833 Roof Pitch= 4 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf 1= 1.00 Iw= 1.00 Wind Sail Wind (ft2) Pressure Net Design Wind Pressure(psf) (Ibs) Zone A= 22.0 117 2574 Wall High Wind Zone Horizontal Zone B = -5.8 33 -191 Roof High Wind Zone Wind Forces Zone C = 14.6 466 6804 Wall Typ Zone Zone D = -3.2 60 -192 Roof Typ Zone Zone E = -19.1 275 -5253 Roof Windward High Wind Zone Vertical Zone F= -13.3 133 -1769 Roof Leeward High Wind Zone Wind Forces Zone G= -13.3 763 -10148 Roof Windward Typ Wind Zone Zone H = -10.1 431 -4353 Roof Leeward Typ Wind Zone Total Wind Force= 8994 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2382 ft2 Uplift due to Wind Forces= -21522 lbs Resisting Dead Load= 15198 lbs -6324 Lbs Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Upper Floor Diaphragm(ft2): Zone A Zone B Zone C Zone D 76 0 281 0 Upper Floor Diaphragm Shear= 5775 lbs Roof Diaphragm Shear= 3220 lbs Wind Distribution To Shearwall Lines UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (Ibs) Width(ft) Width(ft) A 24.58 3828 24.58 2134 B 12.50 1946 12.50 1085 E= 37.08 5775 37.08 3220 Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System, R= 6.5 Table 12.2-1, ASCE 7-05 Ct= 0.020 Other Fa= 1.13 Fv= 1.73 Mean Roof Height, H(ft)= 20.833 Period(Ta)= 0.20 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS= 1.05 Equ. 11.4-1,ASCE 7-05 SM1= 0.58 Equ. 11.4-2,ASCE 7-05 Sos= 0.70 Equ. 11.4-3,ASCE 7-05 SD1= 0.39 Equ. 11.4-4, ASCE 7-05 Cs = 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.31 Equ. 12.8-3, ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 9 Roof Diaphragm Height(ft)= 20.833 Floor 2 Wt(Ib)= 17225 Roof Wt(lb)= 25038 Wall Wt(Ib)= 38504 Trib. Floor 2 Diaphragm Wt(Ib)= 44320 Trib. Roof Diaphragm Wt(Ib)= 36447 Vertical Dist of Seismic Forces Cumulative %total of base shear Rho Check to Shearwalls(Ibs) to shearwalls Req'd? Vfioor2(Ib)= 2103 100.0% Yes Vroof(lb)= 4002 65.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Floor 2 Roof Floor 2 Line Roof Line Floor 2 Roof Shear Shear Shear Shear sgft sgft k k k k A 825 1003 2.10 4.00 1.31 2.50 B 500 602 2.10 4.00 0.79 1.50 Sum 1325 1605 2.10 4.00 Total Base Shear*= 6105 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 11 • Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6, ASCE 7-05) Mean Roof Height, H(ft)= 20.833 Roof Pitch = 4 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf = 1.00 Iw= 1.00 Wind Sail Wind ft2 Pressure Net Design Wind Pressure (psf) ( ) (Ibs) Zone A= 22.0 109 2398 Wall High Wind Zone Horizontal Zone B= -5.8 52 -302 Roof High Wind Zone Wind Forces Zone C= 14.6 498 7271 Wall Typ Zone Zone D= -3.2 71 -227 Roof Typ Zone Zone E= -19.1 154 -2941 Roof Windward High Wind Zone Vertical Zone F= -13.3 154 -2048 Roof Leeward High Wind Zone Wind Forces Zone G= -13.3 544 -7235 Roof Windward Typ Wind Zone Zone H= -10.1 377 -3808 Roof Leeward Typ Wind Zone Total Wind Force= 9140 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2382 ft2 Uplift due to Wind Forces= -16033 lbs Resisting Dead Load= 11659 lbs E_ -4373 Lbs Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Upper Floor Diaphragm(ft2): Zone A Zone B Zone C Zone D 77 0 I 307 ` 0 Upper Floor Diaphragm Shear= 6176 lbs Roof Diaphragm Shear= 2964 lbs Wind Distribution To Shearwall Lines UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Width (ft) Width (ft) ► :;. .a- • ► y ;> 1 20.00 3088 20.00 1482 2 20.00 3088 20.00 1482 40.00 6176 40.00 2964 Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class = D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System, R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.13 Fv= 1.73 Mean Roof Height, H(ft)= 20.833 Period(Ta)= 0.20 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMs= 1.05 Equ. 11.4-1,ASCE 7-05 SM1= 0.58 Equ. 11.4-2,ASCE 7-05 Sps= 0.70 Equ. 11.4-3,ASCE 7-05 Sol= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.31 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 9 Roof Diaphragm Height(ft)= 20.833 Floor 2 Wt(lb)= 12909 Roof Wt(Ib)= 19422 Wall Wt(Ib)= 35672 Trib. Floor 2 Diaphragm Wt(Ib)= 38012 Trib. Roof Diaphragm Wt(Ib)= 29991 Vertical Dist of Seismic Forces Cumulative %total of base shear Rho Check to Shearwalls(Ibs) to shearwalls Req'd? Vnoor 2(lb)= 1819 100.0% Yes Vroof(lb)= 3321 64.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Floor 2 Roof Floor 2 Line Roof Line Floor 2 Roof Shear Shear Shear Shear sgft sgft k k k k 1 484 666 1.82 3.32 0.89 1.78 2 509 580 1.82 3.32 0.93 1.55 Sum 993 1246 1.82 3.32 Total Base Shear*= 5140 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 1� Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k (klf) (p1f) (ft-k) (ft-k) (k) 102 9 21.00 21.00 0,43 ox 9.00 3.83 18.00 2.13 0.24 284 Single 1.40 I 72.86 52.70 2.01 103 9 34.83 34.83 0.26 ox 9.00 1.95 18.00 1.09 0.27 87 Single 1.40 I 37.04 161.38 -1.74 201 8 11.75 22.25 0.68 ox 8.00 2.13 0.08 96 Single 1.40 I 9.02 5.52 0.51 202 8 10.50 22.25 0.76 ox 8.00 2.13 0.08 96 Single 1.40 I 8.06 4.41 0.54 203 8 34.00 34.00 0.24 ox 8.00 1.09 0.10 32 Single 1.40 I 8.68 55.49 -0.73 Spreadsheet Column Definitions& Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) • 1 `I Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel M0 MR Uplift Panel Lgth. From 2nd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k (klf) (plt) (pH) (ft-k) (ft-k) (k) 102 9 21.00 21.00 0.43 OK 9.00 1.31 18.00 2.50 0.37 181 181 NA 4.67 Single 1.00 1 56.79 82.47 0.36 103 9 34.83 34.83 0.26 ox 9.00 0.79 18.00 1.50 0.39 66 66 NA 7.74 Single 1.00 I 34.11 234.18 -3.10 201 8 11.75 22.25 0.68 OK 8.00 2.50 0.22_ 112 112 NA 2.94 Single 1.00 I 10.56 14.84 0.15 202 8 10.50 22.25 0.76 OK 8.00 2.50 0.22 112 112 NA 2.63 Single 1.00 I 9.44 11.85 0.23 203 8 34.00 34.00 0.24 OK 8.00 1.50 0.22 44 44 NA 8.50 Single 1.00 1 12.00 124.85 -1.88 Rho Calculation Does the upper floor shearwalls resist more than 35%of the total Transverse base shear? Yes Does the roof shearwalls resist more than 35%of the total transverse base shear? Yes Total Lower Floor Wall Length= 55.e3 Total#Lower Floor Bays= 12.41 Are 2 bays minimum present along each wall line? Yes Lower Floor Rho= 1.0 Total Upper Floor Wall Length= 56.23 Total#Upper Floor Bays= 14 Are 2 bays minimum present along each wall line? Yes Upper Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line R/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load•L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 1 Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k (k1f) (plf) (ft-k) (ft-k) (k) 104 9 29.33 29.33 0.31 ox 9.00 3.09 18.00 1.48 0.21 156 Single 1.40 I 54.47 92.07 -0.03 105 9 8.67 11.67 1.04 ox 9.00 3.09 18.00 1.48 0.45 392 Single 1.40 II 40.46 17.07 3.70 106 9 3.00 11.67 3.00 ox 9.00 3.09 18.00 1.48 0.45 392 Single 1.40 II 14.01 2.05 5.11 204 8 8.5 17.00 0.94 ox 8.00 1.48 0.10 87 Single 1.40 I 5.93 3.47 0.48 204a 8 8.5 17.00 0.94 ox 8.00 1.48 0.10 87 Single 1.40 - I 5.93 3.47 0.48 205 8 5.25 17.00 1.52 ox 8.00 1.48 0.38 87 Single 1.40 I 3.66 5.29 0.10 206 8 6 17.00 1.33 ox 8.00 1.48 0.13 87 Single 1.40 I 4.18 2.27 0.51 207 8 5.75 17.00 1.39 ox 8.00 1.48 0.29 87 Single 1.40 I 4.01 4.76 0.22 Spreadsheet Column Definitions& Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5 *(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From Roof Load Strength' Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k (kit) (plf) (plf) (ft-k) (ft-k) (k) 104 9 29.33 29.33 0.31 OK 9.00 0.89 18.00 1.78 0.27 91 91 NA 6.52 Single 1.00 I 40.05 117.88 -1.06 105 9 8.67 11.67 1.04 ox 9.00 0.93 18.00 1.55 I.00 213 213 0.21 1.93 Single 1.00 I 26.94 37.56 0.54 106 9 3.00 11.67 3.00 OK 9.00 0.93 18.00 1.55 1.05 213 213 0.07 0.67 Single 0.67 II 9.33 4.70 2.60 204 8 8.50 17.00 0.94 OK 8.00 1.78 0.16 105 105 NA 2.13 Single 1.00 I 7.12 5.64 0.47 204a 8 8.50 17.00 0.94 OK 8.00 1.78 0.16 105 105 NA 2.13 Single 1.00 I 7.12 5.64 0.47 205 8 5.25 17.00 1.52 OK 8.00 1.55 0.49 91 91 0.15 1.31 Single 1.00 I 3.83 6.74 -0.05 206 8 6.00 17.00 1.33 OK 8.00 1.55 0.23 91 91 0.18 1.50 Single 1.00 I 4.38 4.16 0.34 207 8 5.75 17.00 1.39 OK 8.00 1.55 0.39 91 91 0.17 1.44 _ Single 1.00 I 4.19 6.50 0.06 Rho Calculation Does the upper floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the roof shearwalls resist more than 35%of the total longitudinal base shear? Yes Total Lower Floor Wall Length= n.00 Total#Lower Floor Bays= 9.11 Are 2 bays minimum present along each wall line? Yes Lower Floor Rho= t.o Total Upper Floor Wall Length= 34.00 Total#Upper Floor Bays= 9 Are 2 bays minimum present along each wall line? Yes Upper Floor Rho= 1.o Spreadsheet Column Definitions&Formulas L=Shear Panel Length A=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 1� Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls - Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For ,4 - V(pl f) (p Qb �` y' ) 102 284 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 2012 Simpson HTT16 2856 103 87 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 =f Simpson None 0 201 112 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 507 Simpson None 0 _ 202 112 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 541 Simpson None 0 203 44 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 i 4 1 ? Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. 1?) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V(plf) . 104 156 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 • )i, Simpson None 0 105 392 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 3700 Simpson 11DQ8 w 3HF 6645 106 392 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 5112 Simpson HDQ8 w 3HF 6645 204 105 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 481 Simpson None 0 205 91 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 102 Simpson None 0 206 91 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 513 Simpson None 0 207 91 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 , 220 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. BY: ]J(J//��}}������f���6e1 CO)1S(Cr) DATE: Y / -C) JOB NO.. msf OF PROJECT. Cs RE: C ,_ +YYI�v0 ,E .T. e ..i.A AnC. 0r4 (Yf1 -1 rIc it'C.-i 1 ❑ ❑ J W 4TTi (0 �OkcO�ai -- . . . tO3E o W 5/5" 0 `fh re6 g.h� E,v r6Ded l0'' TaiL0 314 I 0 4 o 1 O\\ red uct icry s Tor *e. dtsiarrce ckpe Irrck. L ❑ 1-6k 1{o uJ 1 G.c.-hic 4 . OIL! 0 J Cr U 0 w id 0 o DQ8 vo1�.Ol Jr\ -� T 3`--OO4 Z Ile)" 0 --I`Vnrd Rod ier,'Y)dl '5" r'o 11o,,a., . 516 S'# 0 a 1 rrdkyL oys, .Tear edc3c. dosE-ar,,c CA pp(sec . 4 -7-c o uJ 7 TO.c tuck t : a 0k. Z 2 f 0 U n f O C b. Z W ❑ z 0 H a = m o 6 m i 0. ' O a x BY: ,`,_ - -- emse row) DATE: 0 Otto f 0 CI JOB NO.' MS? P OF PROJECT: ,f RE: i i-en \I D Sh-e.ar Ps nc.lf-\or , A}- E.x.i. i riC3 COncxef e J• Z II F O wi- Ill t o 2 Ca9ac1� oc 'i-:53 Axmc.l-off E:vy `v.,nd b" L f J 00 a a;ta; 7.580 4t/ ot-r 0 W fedvc far. ._Sc ,r Fcl,ca;.e. ,.s, tarife = (0.3alo.go ) = 0.988 a V_(81g Itfbo(.r)( t.`33) IOPi'� #tbaLr- Z S pac ing l O8 4 it,....._ Q i u �_�_� :T.�_ \Ivyl�,eS o u 5 �8 o,c, Z ao6 2 2 0 U o Wq\I " f3 '' acts 'P1....F 2 ix• o `` W • o CA far l'- o P `le ,ei PomOn0Y- E a r (►i O = F- vrra .)C f(3, ... 05(-4 N; r g) LT` r,0_, t. `rt - 1 ?8 W */ K�o 1.r 3 v be 3a"o,C. ,) ..�-- - 3 INC ftt• ,. o � 0 Q - y0. a ;W w� w x a, l • 0 L VOW, *,4 I 0 (03 0 p - MMO CI ,A <:)a . • . . ( )--,..-- , .,..., , .---..1.....4).-- f L a k,........1-j . 114 • ... • , - 1, / \ , • 1'1 1 1 k; I = ii 1 ; ..... ,ii.i .i Z 3 iLl 3 _ - _ r, , - a01 • \ L. 1 I, ,.:e,--te...W.eg 4.11..1 1.ti"',...,.., '..-...?woe-, . ' 2_ „...j II\ ‘ 1 UPPER f: LOotZ, i, 7 ............._...................._....._________. . a..7., i BeamChek v2007 licensed to:Gary Dahl Home Design Reg# 7992-66415 mcadams Date:6/23/09 Selection 6x 12 DF-L#2 Lu =0.0 Ft Conditions NDS 2001 Min Bearing Area R1=4.8 in2 R2=4.8 in2 (1.5)DL Defl= 0.05 in Data Beam Span 9.0 ft Reaction 1 LL 2088# Reaction 2 LL 2088# Beam Wt per ft 15.37 # Reaction 1 TL 3008# Reaction 2 TL 3008# Bm Wt Included 138 # Maximum V 3008# Max Moment 6767'# Max V(Reduced) 2367# TL Max Defl L/240 TL Actual Defl L/862 LL Max Defl L/360 LL Actual Defl L/>1000 Attributes Section(in3) Shear(in2) TL Defl (in) LL Defl Actual 121.23 63.25 0.13 0.08 Critical 92.81 20.89 0.45 0.30 Status OK OK OK OK Ratio 77% 33% 28°/0 251)/0 Fb(psi) Fv(psi) E(psi x mil) Fc (psi) Values Reference Values 875 170 1.3 625 Adjusted Values 875 170 1.3 625 Adjustments CF Size Factor 1.000 Cd Duration 1.00 1.00 Cr Repetitive 1.00 Ch Shear Stress N/A Cm Wet Use 1.00 1.00 1.00 1.00 CI Stability 1.0000 Rb=0.00 Le =0.00 Ft Kbe=0.0 Loads Uniform LL:464 Uniform TL: 653 =A Uniform Load A Q Q R1 =3008 R2=3008 SPAN =9 FT Uniform and partial uniform loads are lbs per lineal ft. 4 BeamChek v2007 licensed to: Gary Dahl Home Design Reg# 7992-66415 mcadams Date:6/08/09 Selection 5-1/8x 13-1/2 GLB 24F-V4 DF/DF Lu=0.0 Ft Conditions NDS 2001 Min Bearing Area R1=7.9 in2 R2=7.9 in2 (1.5) DL Defl= 0.17 in Recom Camber=0.25 in Data Beam Span 16.0 ft Reaction 1 LL 4000# Reaction 2 LL 4000# Beam Wt per ft 16.81 # Reaction 1 TL 5135# Reaction 2 TL 5135# Bm Wt Included 269# Maximum V 5135# Max Moment 20538'It Max V(Reduced) 4412# TL Max Defl L/240 TL Actual Defl L/346 LL Max Defl L/360 LL Actual Defl L/493 Attributes Section(in3) Shear(in2) TL Defl(in) LL Defl Actual 155.67 69.19 0.55 0.39 Critical 102.69 27.58 0.80 0.53 Status OK OK OK OK Ratio 66% 40% 69% 73% Fb(psi) Fv(psi) E(psi x mil) Fc (psi) Values Reference Values 2400 240 1.8 650 Adjusted Values 2400 240 1.8 650 Adjustments Cv Volume 1.000 Cd Duration 1.00 1.00 Cr Repetitive 1.00 Ch Shear Stress N/A Cm Wet Use 1.00 1.00 1.00 1.00 CI Stability 1.0000 Rb=0.00 Le=0.00 Ft Kbe=0.0 Loads Uniform LL:500 Uniform TL: 625 =A • Uniform Load A 0 0 R 1 =5135 R2=5135 SPAN= 16 FT Uniform and partial uniform loads are lbs per lineal ft. BeamChek v2007 licensed to:Gary Dahl Home Design Reg#7992-66415 mcadams Date: 6/08/09 Selection r5-118x 10-1/2 GLB 24F-V4 DFIDF Lu=0.0 Ft _ l Conditions NDS 2001 Min Bearing Area R1=5.9 in2 R2=5.9 in2 (1.5) DL Defl= 0.11 in Recom Camber=0.16 in Data Beam Span 12.0 ft Reaction 1 LL 3000# Reaction 2 LL 3000# Beam Wt per ft 13.08# Reaction 1 TL 3828# Reaction 2 TL 3828# Bm Wt Included 157# Maximum V 3828# Max Moment 11485'# Max V(Reduced) 3270# • TL Max Defl L/240 TL Actual Defl L/389 LL Max Defl L/360 LL Actual Defl L/550 Attributes Section(in3) Shear(in2) IL Defl(in) LL Defl Actual 94.17 53.81 0.37 0.26 Critical 57.43 20.44 0.60 0.40 Status OK OK OK OK Ratio 61% 38% 62% 65% Fb(psi) Fv(psi) E (psi x mil) Fol.(psi) Values Reference Values 2400 240 1.8 650 Adjusted Values 2400 240 1.8 650 Adjustments Cv Volume 1.000 Cd Duration 1.00 1.00 Cr Repetitive 1.00 Ch Shear Stress N/A Cm Wet Use 1.00 1.00 1.00 1.00 CI Stability 1.0000 Rb= 0.00 Le=0.00 Ft Kbe= 0.0 Loads Uniform LL:500 Uniform TL: 625 =A Uniform Load A R1 =3828 R2= 3828 SPAN= 12 FT Uniform and partial uniform loads are lbs per lineal ft. BeamChek v2007 licensed to:Gary Dahl Home Design Reg#7992-66415 mcadams Date:6/29/09 Selection 5-1/8x 16-1/2 GLB 24F-V4 DF1DF Lu=0.0 Ft Conditions NDS 2001 Min Bearing Area R1= 10.0 in2R2= 10.0 in2 (1.5) DL Defl= 0.21 in Recom Camber=0.31 in Data Beam Span 19.33 ft Reaction 1 LL 5026# Reaction 2 LL 5026# Beam Wt per ft 20.55# Reaction 1 TL 6481 # Reaction 2 TL 6481 # Bm Wt Included 397 # Maximum V 6481 # Max Moment 31319'# Max V(Reduced) 5559# TL Max Deft L/240 TL Actual Deft L/342 LL Max Defl L/360 LL Actual Dell L/491 Attributes Section (in') Shear(in2) TL Deft(in) LL Deft Actual 232.55 84.56 0.68 0.47 Critical 160.33 34.74 0.97 0.64 Status OK OK OK OK Ratio 69% 41% 70% 73% Fb(psi) Fv(psi) E(psi x mil) Fc l (psi) Values Reference Values 2400 240 1.8 650 Adjusted Values 2344 240 1.8 650 Adjustments Cv Volume 0.977 Cd Duration 1.00 1.00 Cr Repetitive 1.00 Ch Shear Stress N/A Cm Wet Use 1.00 1.00 1.00 1.00 CI Stability 1.0000 Rb=0.00 Le=0.00 Ft Kbe=0.0 Loads Uniform LL:520 Uniform TL: 650 =A Uniform Load A R1 =6481 R2=6481 SPAN= 19.33 FT Uniform and partial uniform loads are lbs per lineal ft.