Loading...
Specifications MST2012-00074 11023 SAGE TER MST2012-00075 11015 SAGE TER MST2012-00076 11007 SAGE TER MST2012-00077 10999 SAGE TER Structural n Calculatio __ _ . - , ' ‘ , ., _00. 4 ; for Full Lateral & Gravity Analysis ofy Unit B, Front Load & Rear Load Phase 2 Summer Creek Townhomes Prepared for Pulte Group April 6, 2011 JOB NUMBER: CEN-090 ***Limitations Engineer was retained, inlimitedcapacity for this projec;*.:Dfesasigmnei..s based upon informatiornliparboivlifiydsd by the client, who.is solelyresponsible for the accuracyNo responsibility and/or sheets, assumed by, or is to be assigned9to the engineer foritems beyond that shown on sheets total including this cover sheet. 41;51"3544*(so PRoff/f. OFFICE COPY ,, GINE.4.4, vi2,320 ,r--- 4 ti 9 'EXPIRES:12-31-2011 J This Packet of Calculations is Null and Void if Signature above is not Original liarper .111P ' WO Peterscm Righeilis Inc. — . • , 205 SE SpokaneWA St. Suite 200 . Portland, OR 9720298R660 ,* [11 503.221.1131 . [F] 503.221.1171 1104 Main St. Suite 100 • Vancouver, [P] 360.450,1141 • [F] ] 360,750.1141 1133 NW Wall St. Suite 201 • Bend, OR 97701 . [P] 541.318.1161 s [F] 541.318.1141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2009 IBC/2010 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed,ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs Mall Studs): Hem-Fir#2 2x&4x Wood Bums &Posts: DF-L#2 bx&Greater Wood Beams &Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi,FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B • HP IP- Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5-psf Framing RPL:= 1.5-psf Plywood RRF:= 5.psf Roofing RME:= 1.5-psf Mech&Elec RMS:= 1-psf Misc RCG:= 2.5-psf Ceiling RIN:= 1-psf Insulation RDI, = 15-psf Floor Dead Load FFR:= 3-psf Framing FPL:= 4-psf Sheathing FME:= 1.5-psf Mcch&Elec FMS:= 1.5-psf Misc FIN:= .5-psf Finish&Insulation FCLG:= 2.5-psf Ceiling FDL= 13.psf Wall Dead Load WOOD EX_Wallm:= 12-psf INT_Wallwt:= 10.psf Roof Live Load RLL:= 25-psi' Floor Live Load FLU:= 40.psf L\ Harper Project: Summer Creek Townhomes UNIT B .* Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 7484124.12 REwr:= RDL.Roof Area RFwr= 12566.1b Floor Weight Floor_Area2ad:= 605.ft2 FLRwr2ad:= FDL-F1oor_Area2nd FLRwT2nd =7865-lb Floor_Area3rd:= 600412 FLRword:= FDL Floor_Area3rd FLRw-r3rd= 7800.1b Wall Weight EX Wall Area:= (2203)412 INT_Wall_Area:= (906)-ft2 WALLwr:= EX_Wallwt.EX_Wall_Area+ INT_Wallwt.INT_Wall_Area WALLwr= 35496-lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) h := 32 Mean Height Of Roof Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) C .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Cc(har Ta = 0.27 < 0.5 (EQU 12.8-7, ASCE 7-05) S1 := 0.339 Max EQ,5%damped, spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss:= 0.942 Max EQ, 5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) F,:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) , . Harper Project: Summer Creek Townhomes UNIT 13 ,. HP :, Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# SMS:= Fa.S, SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2SMS Sds:— 3 Sds = 0.705 (EQU 11.4-3,ASCE 7-05) SMI := Fv•Si SMI =0.584 (EQU 11.4-2,ASCE 7-05) 2.SM! Sd] :— SdI =0.389 (EQU 11.4-4,ASCE 7-05) 3 Sds.le Cst:— R Cst=0.108 (EQU 12.8-2,ASCE 7-05) ...need not exceed... sari, Csma, := Csi„,, = 0.223 (EQU 12.8-3,ASCE 7-05) Ta.R ...and shall not be less then... C1 :--- if(0.044.Sds•le<0.01,0.01,0.044.Sds41 ) (EQU 12.8-5&6,ASCE 7-05) C2 := if S1 <0.6,0.01, ( "'Si.° R j Csmu, := if(C 1 >C2,C f,C2) CSmin =0.031 Cs:= if(Cst<Csmin,Csmm,if(Cst<Csm„,Cst,Csm )) Cs =0.I 08 ,,Y„„:= Cs'WTTOIAL V =69141b (EQU 12.8-1,ASCE 7-05) E:= V.0.7 E=4840 lb (Allowable Stress) Lc Harper Project: Summer Creek Townhomes UNII-13 1 • VI' :- Houf Peterson Client: Pulte Group Job 0 CEN-090 Righellis Inc. Date: June 2010 Pg.# ,, -.- ,c`:,47E'',\V`.V.':,c,..% Designer: AMC Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category: II 1„:= 1.00 Importance Factor (Table 6-I,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller a2:= 2-.1-16ft- Zone A&B Horizontal Length a2 foft _Or (Fig 6-2 note 10,ASCE 7-05) = 3.2 /a;= .4-hn•2-fl a2 = 25.6 ft but not less than... a2n-nn:= 3•2 ft a2min =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal Pnet„,,A:= 19.9.psf PnetwB:= 3.2.psf Pnetznnec:= 14,413sf Prieti(JneD:= 3.3.psf Vertical PrietzonnE:= —8.8-psf Pnet7oneF:= —12.psf Pnetvaneo:= —6.4.psf Pnetzoneli:= —9•7'Psf Basic Wind Force PA:= PnetioneN iw'X PA = 19 9-psf • Wall HWC P13:= PnetomeB-1„-X PB= 3.2.psf Roof HWC Pc:= Pnet„nec•lw•X Pc= 14 4-psf . Wall'Typical F1):= Pnct7oneD•lw.X 131) = 3.3-psf Roof Typical PE:= PnetoncE,•Iw•X PE = —8.8-psf PF:= Pnet-LoneF Iv,.X Pi:= —1 2.ps f PG:= Prict7oneG'lw'X PG = --6.4-psi PH:= Pnetzoncl riw-X P11 ., —9.7-psf U" Ilarper Project: Summer Creek Townhomes UNIT B UP 0, Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# Determine Wind Sail In Transverse Direction wsAiLzoneA (55 + 59+ 29).112 WSAILZoncB:= (6 + 0 + 23)4/2 WSAILzonec:= (429 + 355 + 339).112 WSAILzon,D:= (0 + 0 + 4)4t2 WA := WSAILzonm-PA WA = 2846 lb WB:= WSA1L7,„B-PB WB =93 lb WC:= WSAILZonee-PC Wc = 161711b WD:= WSAILzoneD-PD WD = 131b Wind Force:= WA + WB + Wc + WD Wind_Forcemin 10.psf.(WSAILzo„A + WSAILzomB + WSAILzo„,c + WSA11.2„eD) Wind Force= 19123 lb WindForce „ = 12990 lb WSAILzt,„E:= 43-ft2 WSAILZancF:= 4.3`ft2 WSAILzoneG:= 334.ft2 WSA1Lzo„,B 327.112 WE WSA1L4oncE.PE WE = —378 lb WF:= WSAILzoneF.PF WF = —516 lb WG := WSAILzon.G. WG = —2138 lb W11 := V./SAIL/Am:if-Pit W11 = —3172 lb Uplift":= WE + W11 + (WE + WG) + RDL-FWSAILA,neE+ WSAILzonefi + (WSA1LzoneE+ WSA11.7„,01:,.6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. • •1•40•1,• Designer: AMC Date: June 2010 Pg.# Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Arca= 838 ft2 RDL-Roof Area RFwr= 12566.1b Floor Weight Floor_Area2nd = 605 ft2 AWL4,3;704A:= FDL Floor Area2nd FLRw-r2nd = 7865-lb Floor_Area3rd = 600 ft2 ,2:&44 ?= FDL-Floor_Area3rd FLRWT3rd= 7800.1b Wall Weight EX Wall Area:= (2203)•ft2 INT Wall Area= 906 ft2 EX_Wallwt-EX Wall Area + INT_Wallwt•INT_WallArea WALLw' = 35496•1b WTTOTAI,= 63727 lb Equivalent Lateral Force Procedure(i 2.8,ASCE 7-05) hn=32 Mean Height Of Roof = 1 Component Importance Factor (11.5, ASCE 7-05) 6.5 Responce Modification Factor (Table 12.2-I,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2, ASCE 7-05) x=0.75 Building Period Coefficient (Fable 12.8-2, ASCE 7-05) Period Cr(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 = 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7-05)...or S, =0.942 Max EQ, 5%damped,spectral responce acceleration at short period From Figures 1613.5 (l)&(2) Fa = 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1, ASCE 7-05) 1,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT B ftP 11' Houf Peterson ctient: Puke Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# Fa.S, SMs = 1.058 (EQU 11.4-1, ASCE 7-05) 2.Sms Af.k.s•.:- 3 Sds -= 0.705 (EQU 11.4-3,ASCE 7-05) := Fv•Si SM! =0.584 (EQU 11.4-2,ASCE 7-05) 2.Smi 111;- Sdi =0.389 (EQU 11.4-4,ASCE 7-05) 3 Sds• Aga:- Cst = 0.108 (EQU 12.8-2, ASCE 7-05) R ...need not exceed... Sdi Csmax = 0.223 (EQU 12.8-3.ASCE 7-05) , •- Ta.R ...and shall not be less then... £ := if(0.044.Sds.I, <0.01,0.01,0.044 SE! .le) ( 0.5.St•C (EQU 12.8-5&6,ASCE 7-05) Acd,A:= if S1 <0.6,0.01, R j if(Ci > C2,C1,C2) Cs„„ =0,031 Aga,. := if(Cst <Csm„,Cs,„,if(Cst < Csmax,Cst,Csda„)) Cs = 0.108 Cs*WTTOTAL V = 6914 lb (EQU 12.8-1,ASCE 7-05) &:= V-0.7 E=4840 lb (Allowable Stress) Lrs)i • Harper Project: Summer Creek Townhomes UNIT B tiouf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# :•C 'Tr% JRV Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:H = 1.0 Importance Factor (Table 6-1,ASCE 7-05) h,= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller of... Ak= 2-1.16-ft Zone A&B Horizontal Length 3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2= or .4.1in.2.ft a2=25.6ft but not less than... 3-2.ft a2„r„,= 6 ft Wind Pressure (Figure 6-2, ASCE 7-05) Horizontal Pnet/o„A 19.9.psf PnetzoneB =3.2.Psf Pnetzmec = 14.4.psf Pnet„mD=3.3-psf Vertical PnetzmeE——8.8-psf PnelzoneF=—12'Psf PnetzoncG=—6.4-psf Pnet,mei =—9.7.psf Basic Wind Force PnetzoneA-Iwx PA = 19.9.psf Wall HWC Pnet„„e3-I„-X PB=, 3.2-psf Roof HWC 4134.c,,A:= Pnetm=c-1„.X Pc= 14.4.psf Wall Typical PnetzoneD'IwX PD = 3.3.psf Roof Typical PnetE.1„.X PE = —8,8-psf /4v:= Pnetz„d7- X P = —12-psf Pnet„,=G- X PG = —6.4.psf ApjjA:= Pnet,„„H•lw.X P11 = —9.7-psf Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. rN,,str •• Designer: AMC Date: June 2010 Pg.# Determine Wind Sail In Longitudinal Direction (58 + 59 + 21)•ft2 aawILzw :=- (0 + 0 + 51)•ft2 ,) ç := + 99 + 34)•ft2 a§az,m44:= (0 + 0 + 114)412 ,W = WSAILZoncA'PA WA= 2746 lb WSAlLio„B•PB WB = 163 lb W SAI Lzonec•Pc Wc= 33261b aw:= WSAIL•zo„D-PD WD=376 lb AyVind WA + WB Wc + WD AWWW „Wind Force , , := 10•psf-(WSAILzor,,A + WSAILz„,B + WSAILzo„,c + WSA11,7,011,D) Wind Force= 6612 lb Wind_Force„,,„ = 5340 lb SS,A,L1,49,144Fm:= 151.112 NA,A,,LSAlcizom„v„:= 138.ft2 SAW- := 242412 „WAS,L4,444:= 216•ft2 WSAILz(meE-PE =-1329 lb WSAILLmer 131. WF =-1656 lb Ay4v:= WS AlLzmeG PG WG = -1549 lb aw.= WS AlLzonew W11 = -2095 lb WF + w11 + (WE + WG) f RDL•-WSAII.zoneF + WSAILzoneH + (WSAlLzoneF + WSAILzoneG) -.6-1.12 Upliftnet = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION LCA Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(•sf) Pressure(lbs) � z�^�i�iirri�rr�n,�✓.�ra�irz,� ,i,�«.�ri .v �✓r,�:..�'a �,r�rr:�,�✓.r.�i�ou�zivrzr.:, ir,�iz���r .���y Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8,8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force=I 19123 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E_I 1313 Lbs,,,No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor, 59 0 355 0 Main Floor Diaphragm.Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width ft (lbs) Width ft (lbs) Width ft (lbs) A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E=7 50.75 7291 41 6286 42.67 5546 Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SMl= 0.58 Equ. 11.4-2,ASCE 7-05 Sas= 0.71 Equ. 11.4-3,ASCE 7-05 S01= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalis Req'd? Vfloor2(Ib)= 711 100.0% Yes Vfloor3(Ib)= 1595 85.3% Yes Vroaf(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear*= 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure(psf) ( ) Pressure(lbs) m om ,. / Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E= -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force=I 6612 lbs I Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs _i 3531 Lbs,.,No Net U lift I Wind Distribution Tributary to Diaphragms - Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width ft (lbs} Width ft (lbs} Width ft (lbs) �� �wr.,., i,�/ r�rri�� ate. �, va .. ,�r✓ f 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 T-= 16 2565 16 2600 16 1447 Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SMI 0.58 Equ. 11.4-2,ASCE 7-05 SD3= 0.71 Equ. 11.4-3,ASCE 7-05 Sol= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(lb)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(lb)= 21998 Trib.Roof Diaphragm Wt(lb)= 19665 Vertical Dist of Seismic Forces Cumulative%total of base shear Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vn8 2(ib)= 711 100.0% Yes Vnao.3(lb)= 1595 85.3% Yes Vied(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 _ 711 1595 2534 Total Base Shear*= I 4840 LB I *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear II I. Wall 11/L Line Load Line Load Line load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Hr. From 3rd Hr. From Roof Load Sides Factor Type 'l' (ft) (II) (10 ht k ht k ht k (Id) (p11) (fl-k) (11-k) (k) 101 8 5 _.25 5.25 1.52 OK 8.00 2.2% 18.00 3.14 27.00 2,77 1560 Double L40 VIII 102 8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 723 , Single 1.40 IV 103 8 4.58 8.58 1.75 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 OK 8,00 2.22 8.00 3.14 8,00 2.77 947 Double 1.40 VI - . 107 8 4.58 13.08 1.75 OK 8.00 2.28 18.00 3.14 27.00. 2.77 626 Single 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 _._ III 109 8 3.88 3.88 2.06 OK 8.00 2.80723 Single 1.40 IV . , . . 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.0(1 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00. 2.77 1807 . Double 1.40 NG 112 8 1.25 4.50 6,40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79 1.33 OK 9.00 - 3.14 18.00 2,77 604 Single 1.40 III • , -• 202 9 3.00 9.79 3.00 ox 9.00 3.14 18.00 2 77 604 Single 1.40 III , 203 9 _ 5.00 5.00 1.80 ox 9.00 _ 3.14 18.00 2.77 1183 Double 1.40 VII 204 Not Used 205 Not Used 206 _ Not Used 301 8 6.88 10.08 1.16 OK , . 2 77 . 275 Single 1.40 I , 302 8 3.21 10.08 2.49 OK 8.00 2.77 275 Single 1.40 1 . 303 8 . 5.00 10.00 1.60 OK 8.00 2.77 277 Sin le 1.40 I 304 8 2.50 10.00 3.20 OK 8.00 , 2.77 277 Single 1.40 1 305 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions& Formulas L -Shear Panel Length H-Shear Panel Height Wall Length-Sum of Shear Panels lengths in Shear Line H/L Ratio-Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total I. Shear Factor=Adjustment For IUL>2:1 Mo(Overturning Moment)-Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T-(Mo-Mr)/(I,-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 frnnsvere Sbearwalh Line Load Controlled By: Seismic Shear If L Wall 1ll7. Line Load Line Load Line Load Dead V Rho•V %Story p Panel Shear Panel M,, Mx Uplift Panel Lgth. From 2nd Fir. From 3rd Flr, From Roof Load Strength Bays Sides Factor Type 'I (ft) (Il) (ft) ht k ht k ht k (kit) (p11) (pIt) (Il-k) (ft-k) (k) 101 1 8 5.25 5.25 1,52 OK 8.00 0.15 18.00 0.80 27.00 1.26 419 545 0.30 1.31 . Single 1.00 IV 102 8 3.88 3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 III 0.22 0.97 Single 0.97 1 1.. 103 8 4.58 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 II 104 8 4.00 8.58 2.00 UK 8.00 0.23 8.00 0.80 8.0(1 1.28 269 350 0.23 1.00 Single 1.00 II 107 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 0.26 1,15 Single 1,013 I 108 8 8.50 13.08 0.94 oK 8.00 0.15 18.00 1180 27.00 1.26 168 219 NA 2.13 Single 1.00 1 109 8 3.88 3.88 2.06 OK 8.00 0.33 0.00 85 III ., 0.22 0,97 Single 0.97 1 1.10 8 1.25 _ 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG 111 8 2.00 4.50 4.00 8.00 0.23 8,00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NC 112 8 1.25 4.50 6.40 8.00 0.23 8.00 0,80 8.00 1.28 513 667 0,07 0.31 Double 0.31 NC; 201 9 6.79 9.79 1.33 on 9.00 0,28 18.00 1.26 157 205 0,46 1,51 Single 1.00 1 202 9 3,00 9,79 3.011 oK 9.00 0.28 18.00 1.26 157 205 0.20 0.67 Single 0.67 11 203 9 5.00 5.00 1.80 ox 9.00 0.55 18.00 1.28 366 476 0.34 1.11 Single 1.00 IV 204 Not Used 205 Not Used 206 Not tired l 301 8 6.88 10.08 1.16 UK 8,00 1.26 125 162 11.34 1.72 Single 1.00 I 302 8 3.21 10.08 2.49 OK 8.00 1.26 125 162 0.16 0.80 Single 0.80 1 303 8 5,00 10.00 1.60 OK 8.00 1,2% 128 166 0.25 , 1.25 Single 1.00 1 304 8 2.50 10.00 3,20 UK 8.00 1.28 128 166 0.12 0.63 Single 0.63 Il 305 8 2.50 10.00 3.20 cite 8,00 1,28 128 166 _ 0.12 0.63 Single 0.63 II Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shcarwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shcarwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 17,71 "Total 8 1st Floor Bays- +.ta Are 2 hays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Rall Length- tin Total Il 2nd Floor Bays- 3 Arc 2 bays minimum present along each wall line? No 2nd Floor Rho= 1,3 Total 3rd Floor Wall Length-- 20 0/1 I Total if 3rd Floor Bays- s l Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho to Spreadsheet Column Definitions&Formulas L-Shear Panel Length H=-Shear Panel height Wall Length=Sum of Shear Panels Lengths in Shear Line 11/L Ratio- Hight to Width Ratio Check V (Panel Shear)_-Sum of Line Load•Rho/Total L %Story Strength=1./Total Story I. (Required for walls with WL>1.0,for use in Rho check) 11 Bays=2'1./11 Shear Factor=Adjustment Fortin,>2:I Mo(Overturning Moment) Wall Shear*Shear Application ht Mr(Resisting Moment) Dead load*L2•0.5*(.6 wind.or.9 seismic) Uplift'I'_(Mo-Mr)/(I.-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall 1 PI_ Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Fir. From Roof Load Sides Factor Type (f)) OD (ft) ht k ht k ht k (MO (plf) (fl-k) (fl-k) (k) 105 8 12.75 12,75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1,40 I 55.75 92.01 0.04 106 8 12.75 12,75 0.63 OK 10.00 1.28 18.00 130 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 207 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 208 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1,40 I 24.71 49.73 -0.47 306 8 - 10.00 10.00 0,80 ox 8,00 0,72 0.29 72 Single 1.40 I 5.78 14.40 -0,30 307 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 1 . 5.78 14.40 -0.30 Spreadsheet Column Definitions& Formulas L- Shear Panel Length H=Shear Panel Height Wall Length Sum of Shear Panels Lengths in Shear Line II/L Ratio-Hight to Width Ratio Check V (Panel Shear)-Sum of Line Load I Total L Shear Factor--Adjustment For HIL>2:I Mu(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)-Dead Load*L2 0.5*(.6 wind or.9 seismic) Uplift T -(Mo-Mr)/(L-6 in) t Lk*\e) Harper Houf Peterson Righellis pg Shearwall Analysis Based on the ASCE 7-05 ..anglindinsil Shearwalls Line Load Controlled By: Seismic Shear If I. Wall 11/1, Line Load Line Load Linc Load Dead V Rho*‘"A Story 9 Panel Shear Panel Mo MR Uplift Panel Lgth, From 2nd FR. From 3rd FR, From Roof Load Strength Bays Sides Factor Type (ft) (11) (R) hi k ht k ht k (1(11) (plc) (p11) (ft-k) (fl-k) (k) 105 II 12.75 12.75 0.63 ate 10.00 0.32 18.00, 0.72 27,00 1.22 1.19 177 177 „ NA 3,19 Single 1.00 I 49.09 96.89 -(1.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 111.00 0.88 27.00 1.32 1.19_ 202 202 _ NA 3.19 - Single - 1.00 I 55.17 96.89 -0.24 207 9 )1.50 11.50 0.78 OK 9.00 I 0.72 18,00 1.22 0.81 169 169 NA 2.56 Single 1,00 1 28.421 53.69 -0.34 208 9 11.50 11.50 0,78 OK 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 _ Single 1.00 1 , 3l.56J 53.69 -0.06 306 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 1 9.76 1 17,40 -0.07 307 8 10.00 10.00 0.80 A OK 8.00 1.22 0,35 122 122 N _ 2.50 Single 1.00 1 9.76 I 17.40 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Dues the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 131 Floor Wall Length- tans Total 9 1st Floor Bays- 6.3t1 Are 2 hays minimum present along each wall line? Yes 1st Floor Rho- 1.0 Total 2nd Floor Wall Length- tate Total 11 2nd Floor Bays- Are 2 hays minimum present along each wall tine? Yes 2nd Floor Rho- LO Total 3rd Flour Wall Length- MOO Total e 3rd Floor Bays Are 2 hays minimum present along each wall line? Yes 3rd Floor Rhu- Spreadsheet Column Definitions&Formulas I.-Shear Panel Length 11-Shear Panel Height Wall Length Sum of Shear Panels Lengths in Shear Line H/L Ratio -Flight to Width Ratio Check V (Panel Shear) Sure of Linc Load•Rho I total I. 'A Story Strength=I/Total Story I. (Required for walls with 14/L,>1,0,for usc in Rho cheek) Bays,s-2*1.1.1 Shear Factor--Adjustment For >2:1 Mu(Overturning Moment)-Wall Shear•Shear Application ht Mr(Resisting Moment)-'Dead Load•L'*0,5 (.6 wind or.9 seismic) Uplift -(Mo-Mr)/(L 6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V(P (PM Jf�".,s �,�`,�`�/%�/Fi��'%//,�Ji��-�'%%!/1�r%/b/%J!//�.:���.��'��%�'�l�s%tz'�f%Ffpis✓f�!/,ti,%��'///.,",off%!%i%/,%'�fJ,°�!"�//�i�Sf,!/!/r!'/�/il.�"/fi� E i`P!e/i.�"��,�/��!,%r61�,iff.G!f%�f/!//�.9lf�iO i�,'r;,.�':�rrlf/T,,.� 101 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 102 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 103 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails a 4/12 990 107 626 1/2"APA Rated Plyw'd wt 8d Nails @ 3/12 638 108 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails ct,3/12 638 202 604 a1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 112"APA Rated Plyw'd w/8d Nails @ 3/12 1276 2Q4 Not Used 205 Not Used 206 Not Used 301 275 1/2" APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 , 303 277 1/2"APA Rated Plyw'd w/8d Nails(a),6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good FOr uplift , Simpson,Holdown Good For fNrryir ti r f� � fir e ( If) (11) ..> b)., 105 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails®6/12 339 44 Simpson None 0 207 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 '` ,, Simpson None 0 208 191 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 : +. � ���_•..� Simpson None 0 306 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 'f Simpson None 0 307 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 4,,Pflti Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. Flr. Roof Shear including Load Load Momen 'ii)Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House (c:1,)Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5,25 2,28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14,54 14.93 . „ 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10,13 0.69 4.83 6.50 4.83 6.50 , 103 8 1.1667 4.58 8.58 2.22 3,14 2.77 8.13 948 0.1 0.078 0,078 38,40 1.41 1.41 9.20 9,20 203 R -12 12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8,13 948 0.234 0.117 1.632 33.54 2,34 8.40 9,18 8.14 9,18 8.14 107 8 1.1667 4,58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0,078 25.36 1.93 1,41 5,93 6.01 201L 201R 6.71 6.71 12.65 12.72 108 8 1,1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47,06 4.28 6,88 5,56 5.37 202L . 202R 6,77 7,24 12.33 12.60 110 8 1,1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 23.30 111 8 1,1667 2 4.5 2.22 3.14 2,77 8.13 1807 0.1 0,078 0,208 28.91 0,36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112 8 1.1667 1.25 4.5 2.22 3.14 2,77 8.13 1807 0,1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 21.99 201 9 1.1667 6.79 9.79 3,14 2.77 5.91 604 0.172 0.848 0.156 39.13 9.72 5.02 4.90 5.32 3011. 301 R 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0,156 17.29 3.32 1,24 5.10 5.51 3021 302r 1.67 1.72 6.77 7.24 203 9 1.1667 5 5 3,14 2.77 5.91 1182 0.172 0,848 0.385 56.42 6.39 4,08 10,52 10.80 303L 303R 1.61 1.32 12.13 12.12 301 8' 6,88. 10,09 2.77 2.77 275 0.252 0.384 0.468 15.11 8,61 9,18 1.45 1,40 1.45 1.40 302 8 3.21 10.09 2.77 277 275 0.252 0,468 0.384 7,05 2,80 2.53 1,67 1.72 1.67 1,72 303 8 5 10 2,77 2,77 277, 0,252 0,384 0,858 11,08, 5.07 7.44 1.61 1.32 , , 1.61 1.32 304 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 083 0.35 2.02 2.13 2.02 2.13 305 8 2,5 10 2.77 2.77 277 0.112 0,384 5.54 0.35 1.31 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions&Formulas C) L=Shear Panel Length H=Shear Panel Height ,...-) Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)((L-6 in) Transverse Seismic Uplift Design Unit B Shear H - Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth, From 2nd From 3rd From Wall Load(not Point Point fling Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left rie,Right Left Right Left Side of @ Right Wall Wall @ Left g floors Ce,Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k . , 101. 8 1.1667 5.25 5,25 0.148 0,795 1.257 2,2 419 0.1 0,8. 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0,331 0„331. 85 0.092 2.432 0 2.65 10,13 0.69 -1.91 0.60 -1,91 0.60 103 8 1,1667 4.58 8.58 0.231 0,8 1.277. 2.308 269 0.1 0.078 0.078 11.15 1,41 1.41 2.42 , 2.42 203 R . -2.99 -0.56 2.42 104 8 1,1667 4,00 8.58 0.231 0.8 1.277 2.308 269. 0.234 0.117 1.632 9.74 2.34 8,40. 2.18 0.62 , 2.18 0,62 , . . 107 8, 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00. 1.93 1.41 1.29 1,41 201L 201 (part) 1.17 0,34 2.46 1.75 108 S 1.1667 8,50 13.08 0,148, 0.795 1.257 2.2 168 0.1 0.078 0.384 12,99 4,28. 6.88 1.14 . 0.85 202L 202R 0.33 1.35 1.47, 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0,56 0.18 6.88 7.32 203L 3.00. 9.87 7.32 111 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078. 0.208 9,28 0.36 0.62 5.89 5.74 203R,304L -2.99 2.91 5.74 112 8 1.1667 1.25 4,50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5,80 0.34 1.86 7 13 5.36 7.13 5,36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0,172 0.848 0.156 13,83 9.72 5.02 0.75 1.37 3011 301R -0.13 -0.20 0.62. 1.17 202 9 1.1667 3.00, 9.79 0,795 1.257 2.052 210 0.172- 0.848 0.156 6.11 3.32 1.24 1,04 1.66 3021 302r 0.11 -0.32 1.15. 1.35 _ , . 203 9 1,1667 5.00 5.00 0,8 1.277 2 077 415 0.172 0.848 0.385 20.18 6.39' 4,08. 2.89 3,30 303L 303R 0.11 -0.32 3.00 2.99 301 8 6.88. 10,09. 1.257 1,257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.20 . , 302 8 , 3.21 10.09 1,257 1.257 125 0 252 0,468 0.384 3,20 2.80 2.53 0.21 0.29 . 0.21 0.29 303 8 5.00 10,00 . 1.277, 1.277 128 0.252 0,384 0.858 5.11 5.07 7,44 0 11 -0.32 0,11 -0.32 304 8 2.50 10.001 1.277 1.277 128 0112 0,192 0 2.55 0.83 0.35 0.72 0,90 0.72 0.90 , , 305 8 2.50 10.00 1,277 1,277 128 0,112 0 0.384 2,55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet ----- e- Column Definitions&Formulas p' k....) L=Shear Panel Length ...----" H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)--Dead Load*L2*0,5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right . , k Simpson k k Simpson k . . 101 Wind 14.54 Holdown HD12 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83Holdown HDQ8 w 31-1F 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 !ADO w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HOU]4 14.93 Wind 12,60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18,76 None 0.00 112 Wind 23.17 Holdown None 0.00, Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 • 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 _ 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1,67 Strap MST48 2.88 Wind 172 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind . 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 2.88 (..-‘ (-6 ---) 7 \, 1 cg Vee G'5'en S 40'12.1_ \ -"463-;. 4*50 S- 61 -S Q, -17c-z'o AA 0-6 `m t A -1 _1p 01%1 \45) .5J4S 4).1),(4 -/°°-tiS r'n011:Y) Worn -k_)( rnSS F CD cD . - a 0%4-S, -) A:t1-r5 4 I \I CD 4t- > 1 Li Q 0 .....f.0-4‘.A5 •-k -V-1\ r\h -4 • 4i-MAA V•:7' c-9,1 ej. r C1C41 Sk cnSc., Ttl •Irri 41 PO -it 11(30 ii-C) t1Z.crs tl cgl 44(301 ,_S _Scc 09QV Jc_x_S\NASS 0\k -t-J 90 foA -avko-nn\iv ti t-1°0 = c.:9(„(:)1kCY0 K7-114 r,1 o)cs-c- ,,)4 7)(7/,,C:ro,g4:2)4 (j-lo,)‘,...,5,109)(,,,,c*A31"), : 111 \\bn 0 S \0401 —11 S h h•Q -":- clkoh0'0)Lizi,•) Sd c;ci e ( zk,x_57.,0,0K:s•b1) 4 (..S0)c --0' XIS'bl) SciN 1E t c2)(\-z(-1)( 10'0)L710`) 4 (7q-z:KOVOU21)-i, .1) XsuyaXt le) + r41,13LS\0'0)(V bl) -4 L.,5'0X:/_1010) .- .1,) vi Is-...0)(s_s-lc-Yo) 5'61) 0 fl Z n 1‘ '-‘1+J(-4\ r 0 S4 ti CIE 10401 hcr_• \ c-wx.c_szo'0)(S'b 1))-t c(_s-41.0)(s' 1)L 4*(.7t‘0.07)4 cSkG'0"K5' 1))(571) 011 "11 sciN\ ; • vo‘lxv --: 0 c>c3 c;g.e'ca 110 Q 1,0 Cla,..) ON l',01" c's1 0\0-e ill'IQ \ci 0 .kj)1 g.0‘ -4C,„$.0‘ 0 to 0 o \02. Lohi -3-44) - iSCKc\A k\-10t - _ pr / 4 (2 q tj. 1 '* -----‘4, / - /r- - Ci ) ,401 aos /‘1,06 t 1.... II- i),-) - a.,40r1,.....). 'PL4e)(1" < jLAN° 301 ,„„ .• • 1 43 , k•A') ,•4111, • I TSI • ;- , \v" , Li (i4 2 cti LL •+C) c-r) "-4 • ' , • ,.*** (1) , 1.,,,,-) ••••• Li 4,,o1 ,, ,,, = . - " ' ' r -- '' ' 3 3"1^c-'i• (-1C 1 3 "3,, I I 1-,9 ;,, . ".".„,' 1 c'")'0: -2'''''."-.0 :: , ,,,, .‘. ,,..„.„ , -,7-t, :-, ,-- ,,,„, 14411 4VZ(2) — 4 1,,,k b 1 ir ititt;;;T:fttl - t lt,====t7t 0----1:1-0 - = -==-,- 0 m „t• - — '''''t viti, ,t=t'ttiv7=1,,S t tt-ttl; 1 1 = 5 =.t------ ----' ----; t1 't t.+„ \ tr,, X V) = 2. 0 M 0.0=0 1 0 ill t't t t . Ot tOlt.,0 VI tt. 17.-14 4 V), — '.0 1--- 1, 1 N., 0 1. 0 K C , C't it-‘. tjc „ - -,„ 1, , . , „. ....„, „ „J n 0, ,,c ., _ 2 ,-,,,,,, tp-- - ”?Yrbs'S)ja C.(,,,'Ir-fl, fre-Ac „.-.Dci = m z 0 c x 7,-.//////r41430-)/ki'ic ///iM I 1( .- 'cijrt,ri:::r:= 'Cf::) \:','z'/'''rb::r:::----'lle)'' : '..1'-i-). 0‘ C 1 l' I (9:C:rril: ,S 0,q0, .,..g....1,06.°6 602, .411111166. -4;- t- t'Llt " 171* 0/Pt*"t tilitall, r-4 0 R.in IAA Z rei j,,,, g 21 mierw,oce m 0 - = ttt r ://r), r r 41-t.9--fte c:,0-6 •„16-gread ........ n 1 f_„, . V. W---- rki a ) (----) ._ --LA _ i 'ON 00O N.,,,,,,, ei ilt BY jA,Ilki L 0 s,P"' 0 O'''' ' - -,.. PROJECT RE ''''Irs,4-, • - fi-i --, •---, bj. 0 12,,,,A) -).. , ,-.. bcok,our\ 0 d v. Lo.1.., ( (.7, 4-1-:e „....,.. ...D 7- lz,.. H Ili 0 7 IN..,,,, 1 0 0 ir :,i' u i '4,4a, t,..) .) ,, •,. .t,'IQ, ,t 0 Li o IL I C zZ, C\ )),) • :11 7,f e,--„, , Je c - - , 0,0e.:20. x • , • t it-c/./../ ri, r/c-, -f.:;), ?. \ t-- ' )r. , o 1 1.- z I IN 0 I () <-'• 1 93 ..: 4 cr4.4, 4 - t4,4 I z z -1- , , I * +.1 k FL. 1 V _Lc. , e . — 1,- , ;,) e e. ..,,.-)0, •e+ '.,1,i '' 1 1 "1- 1,09.,;) IT z" "04; J ...12„: A )' r-# 00 V) = • 7$ 0 •*4 - — -,, 3 4 !...-(.,= ,-,-'er t 4- ,' ". ( .0... .., 1- (7, ,,,t,-4'-- •.4-, c 1. f .4 9, t. ., P;;,, 4 i.-- • t-,:a t tti.,P":„4 a .1, ) , -.'" ,,,. - -, ,.7.y , ,,-;,,,, i., .:.) 5 ,-..., ) 4 ,,,,, 0 , „,4 -4 „,4 4, d. <11:› \*Ze/ 1 . , ) 1..... + Lt. t 7f;,... 1 / ' 'P ''.. 11.1 --v r C f- c. 0-Cs C C i — 4 .4,_„4 _ 4-1, . ' 0 - r. -I.4)1 1., L .-'I ,,, , n--- s '' ''')' '''''' , „.., -- ,,,,, , , r-. 1 ...-- ."- ...0' 0 ) 1,0t0- t I,o 'J.,0 1z-) ; ',Co .1(. . -,,,)11 0 irk c- :,)-:).". ..1 i , ki r:i)( 0 ---., -,.•-i, 4, 1....'".. ,. ''ftc, ' ae ti H I 9H, 00 01(-- 1 r? 9 1 [ _ ____ _ Woodworks® Sizer _ SOFTWARE FOR WOOD DESIGN ___ i Unit B-Front Load ,m_ W WoodWorks®Sizer 7.1 Dec.15,201011:27:17 ri2'ti9iY 1 tirhr).?F.O ._......__ _ _,w ...,.. ..,..... _...,,._....__....._...._. ,.-- 1 JIi:: y GROUPNt 7005 3t7GGEBTED S CTTONS by GROUP for 04004 4 a 020 M.t -ma ,so,a a Not d t!ed by ; _ ,<-. d8.,w.,i, =,max st .2! 12.x4 i r_z r ,may 0.7 ,X 2.9 Py th cs Ont. dedighxd by thquegf ,. 12) t1 , , it y F N 2 4.6 Lumber a.-p t Ft rt No,2 2 2x5 2.6 tembtt r- .y dum-iihr No.4 3- 4.0 (2) 2x4 tomber a.-fly beta Flo No,2 2- 2x4 ;3j 2.4 Lumber r dem-Fir No-2 .r-4 Typ w011 Lumber Stud dem Fix Stud 2.6 ...6.f, ,.,rp 19 !1 2.4 6t et tRd gum-Eit nnl.,,,d 2.4 016.0 „aggo SUGGESTED 02.77LONS by 0.10)24 fc. 46VEL FLOOR ,...,e t. m.a. ..r. ..Not '�I td a y F. $worn«...g„e. .«x-.aro m:x Mnf Binding thmberosoft D Fik ., i,,2 2.6 3;.3.0 4.6 Lumber-soft ',27 2.9 1Rmder:r-ply D,Ext-° No-2 - 20 n14 Y,.:L. 1,31, t700011 1,75.16 3,other, not danigned hy est, By OL r' 2 Not dekigned by iggoaat ,n 2.10 .b t [ } E I 7 10 (2) x n-ply bu _ 4,..L 2 4.6 {3 2.6 -k y Ham-Fit No-2 3 2:;t r: (2) 2.4 LU.o ;; p_y Neu,FiR 740.2 1 2.4 FO 2x9 - ",ply IVa", Fit 0x.2 3- 2.4 I.M1,QI Stud Gtod 2.6 R16.0 Typ Null 2.1 !Timber Xbuti Hem:dir Stoti 2x4 0)6,0 FittOBEFTEF BEGTIONX 'y CROUP for Lk;501, 2 - FLOOR atuaR.m Wawa. z. aaxn .max,NuNaatga a S Toohoo5 Not db.(qued by requBat daok io)st. tonabto butt No.2 2.8 E16,0 9f Tot Not db.i.bood ny __` 4xb HI, _.: so-, Nal_FIR No.2 4xii 0,1524,214 140, unf, I.55E 232541i 3,5404 4.6 0Br27(tt-auff No-2 4xii 16 ?3L rn--k ,cc7 :�. ,, r,. J;:'-V7 UE _ t,F?, 123.)1;213 f No.2 2 2.40 4.12 s No62 4.12 13:11 3-7.14 (2)Y z1) , I {'ca=r 7ut2 3 2.6 62) 7;c£, Lumbel a ply de No-2 6 UFO ,.. de No,2 66x6 12; 2..4 ,".t.ply Fit., far No.2 2.4 {3) lx JN x.2 i 2.4 z pyvxLumber Stud Hbui Fig Utod 2.6 alf.Q .vise ..rexav�nm Gmancumvm xavz nwx mnv..xvrsa..ttna,wwrnawce7arvro 60. Not desabood by ragnoal CRITICAL MEMB4422l DESION Cdtb2RIA boao,ax• aka2a m..m ..n..00..,a ,.xBaRaowNwamrana }tohRuhx'uaotiaRbv. deck txtoto j92 a,;x3 .,ac dot dosigood by reguent la:ging x41. dohding y c ne;, 3 By BthconYrr'.'dostuneg by requant 4.6 b25 Ei,ndl,',3 0.57 141 2,0 h7 Bending 1.46.:4 Ott t 61.4 t.ng 0.4U 4.45 HF b21 bonding0.66 2.I2S014 )455 XXI Shoal 0.4( x73 b2n headlu By 04Vaio by Otbezt Not xc< y' toqvant 9y 5throo 2 By Otber. Not d.Rigood by }.last 0, 00 Bonding -21 5.125.10.5 46�2)0. -r 2.'.0 ht`; banding 0.91 71 :x22 Sheat 0.46 1.225.14)I h47, bafivotioo -tq s Not daoitihad by tagboot 14) 1246 64 Axial Exti .36 A.ci.ni .17 l.j 2 ,:25 k.i.(.,S. 02.4)) 2r4 o41 Axial D,41 Typ Wall , D.28 tbd .,1I 2v.t i4<i �P kx al 0.:3j ORIO nu.6 y..sa mw ur x'xm,r�s .. rity tiktf. tho iv:tau:it) 4 x:.r..,,ton timit. .est ut:rout:221e foreagout appitTo:5on. 2. 61435GN FROUR OGOURS 0N MU TPLE LEVELS: t3 .. POOR , ,2 124S: tteutect To a ono. 1,46 with gottespooding durtiXon 7 - d auto.) vioaditi x ahbuai depth. ct NDS TU6,, 1.7,X. 7 gaga .. bending mambera xhall be .(btatally 5appotted_xaRoo..-try to t NOS 1. 2. BUILT BP Iii.St , i, _ that eabilply .,...,_s„ anoh pay .It :np-loadvd. Y Bob7.i 1. ,ay, ,. , F3E.,.... BIttvcox)41 TouTuvoi,I b r): the attacked 3 UL ._a.. ty ausign only. Fot rifff fr,rbfr ri _ ........ __ ...._._ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 Dec.15,2010 11:28:06 Conrept Mode : Beam View Floor 2 : 8 ' LO' 54'--6" a a 44 vfy,, 4f44- ff.;- fo44i7.4 "n • bl . oo-p 4,e-0 fff f. fl.i-43 41/ f„4-4:f f 441;4:•J 0 „.4.4'0 Aff ;4 .4 .eff4)-0 4fffrt ff) a zaa-o 1,2 i' ',' , , , 1,0 0 71-0: %'1 ., i, fi-0 b21 o o b26, 4-0 b20 b22--1323 g i I 0' 2' 4' 6' 8' 10'12'1 4'16'1;3'20'27 24'26'28'30'32'34'36':0'4 0'42'44'48'4 8'500'2'54'56'58'60'62464'61-i`58 70'72'7476' 01 2'7:0`5'678 -1 0 I 11.1.10 1,1 02 2:222'022,2'3,3 3,3:3,3:M1301 44,44 4'4'4;4'05 5.5.55:565.5B5 6 6i6.6056B717 77.7-7'T7B-6' 62., II Wood Works® Sizer SOFTWARE FOR WOOD DESIGN li Unit B-Front Load WoodWorks®Sizer 7.1 Dec.15,2010 11:17:31 Cor60ep t Mc69.e: Ccc591Inn View Floor 2 : 3 ' ...r- 0 0 LIko.goNyv LO Nip, , 1 r,1,.50 )055 5, c57 ci c2 c46 c584 44 44444 1 90 , 0 444 . i 44 , .,,, '11 64 if:0:68 2.,..,) , 44, 4A8 c55 ,:,:',,,5 1- - ,. ,-„, • 1 i c73 ' +..,I--- , Li 4 c49 ... „.„.., 1 wu ...; , . ' C53 ',1 r 5 • , 1/ , c52 c51 • 4 1-. ' c56. , • r?) , 4 ''• ,,, c40 re4 4 ! c,39 Ri''.;'i 2' i 4'1 '1'182 22;42E'26 3C :1,2'34 26:38 40' 4,8,52'52;21,656,81656866,6c166,82`661.64„6c(66:61-,*<:,7,,,7113 7„6,e, li.,476,,,i,;6, C 1'2:v4',5 6 Tri 111 f 1 1:11,1.;1/I 1111212 222 2212 21213Ci,13,11.-,1'..,8,61,4(4 4 A4,4 414 44 5(3 ,• .i, :-) , ., ., 9 Woodworks® Sizer SOFTWARE FOR WOOD DESIGN I Unit B-Rear Load WoodWorks®Sizer 7.1 Dec.15,2010 11:19:45 Concept Mode: Beam View Floor 2 : 8 ' kr.:Nct. LV �"✓ ,,,,,,... ,,,,,,„ li 40-0 44-0 s { 40 EV0)::', b25 40;00 -00 st 4Z-0 3/4;4 :sz >0 s 001 00 55 50 L;3-53 5,5 53 52 00 01. r;, Z` 0 i,z- 0 V b2131 53 0.0 o b6 b26 935 b2 " 2 2 x, C f 3 #f 10 111311131311111:11 tj 03 £ cc 313 0 11 EL 111111105 a#f 1,1E13 1 f d 12'14' £ ` 1 21124 26'28' 0 fs 363 38`4110 ?44'46'48'5 5 6 t 2'154'6635a r 72'74' a s 213 451337'3'f,-11., 3 113153212L2232`2t'':.',t2-33i33.3'3,33433351,145S.r' 431..e14. :111155:5 5,5515 53053336:536511616135517 7t 5/157735- EVA 7? 5-EA _...... _ _ II Wood Works® Sizer SOFTWARE FOR WOOD DESIGN 68 ,Sizer 7.1 , 7 7 2D:egc.15,210(2_10 11:19:48E Column View Floor i °°d2W:rk 8 'UnitCo:Bc3",eR:latr„ 1:0M:odd: :,,,,,, Mi 1c55 48 I C49 r52 cM c7 1c56 ; 0405 cr37 c62 c.611c.36 c34' 9-1 '4,..1 ...', , ',, : 44'4.4 4r-4850'52 54 56 0 2' 4.' 0, 8' C',7 14 '2".• 1.,.32C,2. 22,l'' < , 22 ,,,,c 2,5,•„,,2.2 2205,22235,4-,/,(2 4,..f44;r4F...,- ( , , , etc LiWoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 Dec.15,2010 11:15:58 Concept Mode: Beam View Floor 3 : 1 7 ' 1054, 4986' b7 :)f b12 b30 zi 0,0 - n - b8 /0-o ..,....‘, n t t:•., ; ,,,s-t) Pu-0 i J . b13 I b11 16-6 ... 14-0 0,-5 0 1 ; 0-0 0,0 i o-0 000 000 l'• 0-0- 0 0.3 0 Q b10 b9 0 0 BEEBE BCCC C C CC 6 1650.0 CC CE.0 0 C(8 C 016:5;10 C i';`,/0 ODD D co DLODD CD MOD 6)D DD BUDD DEE E E E EEEIE EE116E1EEEEEFFEEIEHE Z 0'1 26118463'67'8'941. .'1 1;1'..El 610 1 51 822 22'2,22(2'20313 113:343835703.55441 4:484,4t4(414485E3 5;5165558:156;886 1-515845168115 55e7,,77'5400765T8-8- 6.1(01. _ 1 [ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 Dec.15,2010 11:16:00 Concept Mode: Column View Floor 3 : 17 ' ,tibb,:, 41 !Si OA): 014. c15 is.Zb-t, !..;.n. ,, •W b.b. c38 025 , tz ••: zu-t 072 1 iC04•173 t..: •0 zt It ;,.•,, ';‘i •r, , -f,i;',-,c67 A /u ;t ti c24 a6 , ,41 . 1 I-b i tS-b c45 1c44 /-0 43 0 u u c21 c2019 c18 ( 4' Jt urU„,00,72- u-4) ...„ 0 023537 0 5 555(3:202(35 077:73(3032277332251307777 7 031,2100733277012 3110'37102173i0P13072715747[0077 0',,,:r f i,02200,072530 m2E9:5F25z 44'46'48'50'57'54'56'58'60'62'024'66'68 75 72'74'36' 0'1'2'3 4'5'6'7'8 210 717111111 1?12212 2:2'2,71712'2121312 3,313(31313'3(321714 A1224.0147'4141515 51515(525(6'6/5276 65716(6'616'6153717 71715727(77' 6' L 1 _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Woodworks®Sizer 7.1 Dec.15,2010 11:15:37 Concept Mode : Beam View Roof: 25 ' tea.'`t 6,6'-ft 13;223 44-0 r `' b15 6,.. 66 ss,ssss !Is lin AU 3 AA 00 AA 30 A3 .t'4-#;L.. 442 544 J b16 .66 y.,i , sssdl -tD e b , 1`x'3^4' 0 b27 Dolt 666 `sl t IA 14 03 333 4,5_r3 i ti -t` 0 b18o° sts 0111F411 60 6121201614(XXX;CC 0166421010106104410121116 .,1'',1 14'..:i::;..:)11,:r.:1)I,"D 542 :!ilf6D0 61261,605 E 5064 6 6111E11110 6,11611:04111F14414 0' r {'i` 8 ,0'12 , ,4'16' ,8'20'2724'25425 ,+d �< ,43111 _'40'firr- 46 '4? so' 8 4 561uc 617065 66'68'r72', 70 7 0`028f >51, 8..1116141611'10 212 2.2 2,2 �"�1. s' ? �.c �., ��1 ��e 46;., 3 5611414£;,5;,5°fx:f .�� <cf. �6 x,�,�f" 7. f,2s'a5' WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorksie Suer 7.1 Dec.15,2010 11:15:40 Concept Mode: Column View Roof: 5' 4"°' 49..-(5: (40 340 tyt3)�" c27 c28 44- -::00 ,„ 4Z:a }Fjt 1-0 :fid 00_0 MIiicc c29 ez-0 00 amu-0 yah c70 id--b tat c30 et ➢1 c71 20-' ex r 24 ed P el 04-r 065 00,.•.1! 0040 tAl ,e ++ �� wry 0 ,2 c3'T c35 ry t;.J, v ,... ,i: CC`..,E_a ','.,t, .'�.�:£P` � ... ' ...u.;€ k.#, „ .� . ...,����€�.t._._=,xEi,. � ft �t_�.z �.€.t0 F.�_ a�.. ,� ;cr,��s`��1,C� 0' 2° 4' 6' 8 10 2 14 16'18 2 '2 24 26'i. ,1r' 8 6'38 40'42'44'46'4A'50'52'54'56' , 60 62'6 4'66 " `7{'?2`74'-76' 0'1' `3'4'5' 7 Sit: 1:1.1 Nt1'".I (22:2 2,20203,2'333,3t3(3'32$4 C 4;4.A.,4!AM £ 5:6: ,53.5# 5i5':i?5 i? N R3gCl7,7:7;7iPE77°- COMPANY PROJECT 1 WoodWorks� SOFIW*R(For WOOD DESIGN June 28,2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,Psf,or pIf) : Load Tyre Dist ::ration Magnittide as t:io [ft' x,11.1#:s > Start lid tart. End i. w2i Dead Partial UP 9.0 X30."7 , 0,00 2.50 p16 2 '27 4 .i,ive Partial. PD 49:3,7 403,7 0,00 2.50 pit 3c.14 Dead Point 1074 2.50 lbs 4_.014 Rf,Live Point ".60'. 2.50 lbs Lj 43 Dead NU, UDL, 4'1.7 pit 6 343 Lite sail 1/Db 16'0.0 _ p1f' MAXIMUM R t 3 '" r x e' fr sk ,� c. r 'y w.,�,.y� 3117 /� ff� '9D fif y�.` �",f ,'��' s ,a$ 1 x��<J`f�'"v'+yf,��.G�" %,.' �,�ar' 1111 Fsr 1111 y i. ;0; xrg e r ,x*t...,z. /-?,`n ,#,, me34- r;� r a'' ,� f r r.s✓!.tri,'Hgo1.i,,1-;'4,#r.,,; ,,'t.,y...�, %; 'te.'' ` /I, ✓ D 212, > y x 2,43 r ,, , N ipir 9 f y " ;b ',r-,4:„,,,,,,,0.„..,,,,,;.,...,,,.....47„,,,,,,„....e.......,,,,,,-� od.4 ' f £ 1, 9:1, ge, !/,'3w :r/0-?. fi ''p,,,,;.'51:1 1>f )z al 99:823 7 ri`rrr�p errs 9/21,132D.29.9492/22222299, 3 %4 a , er f fr, ' , , :A ,.e,r „7117 4:' r„ ryr� t . i s O5 Uf ',Y".,+', iTn 111°: adt- ,l a5?r fl6sfif ! 6 t $' r r J< rrh s"� ,.�,x� °'^x x , � ;war, rf :„„:1-.;,,,,,,--14,,, „ 'r” P!e A 3F 1, a MAIMS S r f y 3irildenn. I, wrr ,;r r a !�sr' x D r 1f 1 T w r a 12 fv,r rf > ,:g v / ,Ye✓ ! � xre,'r,� r �,fet ` Y` .���d. .. , +sfi� � ' s,�y,�' �' " ,`fie �'.�,�44444 � �' '� ��r., 111 At t k $ 4 07:777-774774.7.4>474777;74,777 477 ft 7' „*11 �rf,,,� r 0 � ' ', f/ �r r ; fi' vet .4'fffi 477 ;7 d r� 7 11 r r;, H ` ,777 r� f rya0';:117 .777,7773,777777771774'Xr ,„„„ •,'4 r am 7, .: 7,7,7477777e70,77-73,77 f a777777..,7i 7 777 .2� �due80".a `,2 . �x/` 2,9 s'�'r�` r vst r 'x f i ;;eir”' •� s:9v 1'11 ,yrs r , ,�, y".elite) �` a% y r1��r, r�`£,e,.:'f,dAa ,bbr�yfr�'G ,�a G s; £,• lrjr 9 J �it ,r^�i 4 3 ?' r2"'22.2.1014.4.2‘22.24,2,20,0121.04200.42,4� �awi,�/y� "�Y"�'x,'N*,.' '�,�✓rr-,• �; %f� ' f >t ryir�'' ,r ti, r � , %�,'' "`' d r �l^tr d� �'„ `%�,'#,"Y%` ,�" f � /11110 i` R' s i t r r%�,.,L+r.+' r t r t`" ''r r v%' ,y st r z 2 t' mr � sir a ' �"Y���r"� � �' ,� �r i�eF���� '�"r`",aa;fr�'r�r� si,�"''" �ay�▪; ,r�r� ;�f ;�J,�lr ��, ' &=ua �` a.✓ �d'. f�f d i t eat 9111 4 `�yap... y ; ,✓ r y f r r % l r ` '▪rfa'r°"x3 r 3� x 1 m .. ..r..,"a., x., .am'�rx � � `Y ;11,11. ..� ., ,, ,�+ / r d 1111 r"• /rrf?w,y" �.. "II Imo,:. ...�_.,._v ... ._._ ....,...._:,.w;sr._ . ,�...�.:�,, ,o� ✓ sa �ti? k;Fx I 0 31 De 41.0 1049 15"39 Total 227", 2089 3627 Load Comb ff2 Length 1.21 ii2 1.93 Lumber n-ply,D.Fir-L, No.2,2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: rit:orlon Analysis Value Design Value Analysis/Design r: Shear Lv* 122 Esn - 2:7 Iv'*/}`v° _= 0,62 Bending(*) '6 = 5`(;;1 26 - 1138 :b/'b` _ 51 Live 3e�F1.'n. 0,01 <L/9i9'9 ,.l.0 L/360 (1.06 Total Defl'r. 0,01 -- <L/999 ., - 6/240 0.09 *2t effect of point loads within a distance tf of the support hist; been included ,as per NDS 3,4.3,1 ADDITIONAL DATA: 'i'ti(` r)RS• (•.�- C.7 ::M . Cf. C(" E ita E;fir. '1i. �<#{ v' 190 .0,, ..00 - .GC 1.00 1.00 2 ts'-i 940 �S 00 .00 1,000 ',0 .0') 1.00 00 1.00 - 2 Pop' 625 - ,a.00 .00 .. - - 1,00 1.00 .;,, 1,6 in'1Iion 1.03 7.00 1=00 1,00 - 2 t�;nu_r,' 0.58 mil icn .00 �.CC aO 1.44 2 f i1?iCtsr. . L{': t/ - Ft.,, V :_: ?&211', V des'..711.* 6 €[:; , t.er. ng(<- .i LC al ._ ;c1„ ) 2073 '.. ;_f..t. 2s: 7ocl i.or LC ?k2 )+i. Al= 159006 te' in,/Uly Tri(al De i tier Ion - 1„50 f..Dead. "triad Deflect_..on) + 1,i.vs. Load De 1 Iest..i.on. D dead 1. I i tai %r 5 111(13Ttfcons t7.s 1o,a CLari corns.kit rated) (Al. LA's :are 1 M3 rid in the Anslysis outset) i,ciaa ^,mb .e::,: Tee 13C” DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 619 COMPANY PROJECT llIli g 1 i WoodWorks® SOFIWARt FOX WOOD DESIGN June 28,2010 10:45 b7 DesignCheckCalculation Sheet Sizer71 LOADS (lbs,psf,or off) Load Type Distribution Location [ft] Units Start End Start End Full UDL Loadl Dead13.0 plf Load2 Live Full 001, 40.0 plf MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in): 1 !j.z,w;,40t4Tk'm749P,W60X5greEWWWiaPgV4AO4 ,;',,Z4:.4, XTi'fti',' ;10104141,'" 4.0.;,:.:',0'‘W,,'ft,':,,4,.<:,V4t,":4;;,;, 0140',410,64W-,4 "44g,:,;.; ,-4';‘;$ V',,,"% 4.-Y, OW:..7:T4.;„ :04-14,30,*-`,,fii ,eyet :i. ;:e.NIt'..,4g'.6z*VifiirgItiVit---4Y'''''.'211,P,2fet,V40;:e.if;t:::„.., 10' 64 Dead 5454 Live 120 120 Total 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear far = 10 Ey = 180 fv/Fv( = 0.05 Bending(a) fb = 120 Fb' - 1080 fb/lb' = 0.11 Live Defl'n 0.01 ' <0/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 - L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM CL CL CF Cfu Cr Cfrt Ci Co DC# Enr( 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Ebtf 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1,00 - - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 - 2 Emit 0.58 million 1.00 1,00 - - - 1.00 1.00 - 2 Shear : LC #2 - D+1. V - 174, V design = 139 lbs Bending(f) : LC #2 = D+L, F - 262 lbs-ft Deflection: LC #2 = 0+5 DR= 76e06 ih-in2iply Total Deflection = 1.50(Dead Load Deflection) ± Live Load Deflection. (0=dead 5=live Smsnow Wcwind I-impact C-coostroction CLd=concentrated) (All LC's are listed in the Analysis output) Load. combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 6110 COMPANY PROJECT ill . 00 - or- s® SOP IWAftt FOR IVOMI MSIGAi June 28,2010 10:33 be Design Check Calculation Sheet Sizer 7,1 LOADS (Iss,psf,or Of) : Load Type Distribution Magnitude Location Ift1 Units Start End Start End 1_030 Dead Point 59 3.50 lbs 2c30 Snow Point 75 3.50 lbs _ 3 w47 Dead Partial PD 96.0 96.0 0.00 3.50 plf 41413 Dead Partial UP 78.0 78.0 0,00 5,50 plf 5_813 Live Partial PD 240.0 240.0 0.00 5,50 plf 6_114 Dead Partial 00 104.0 104.0 5,50 6.00 plf 7_114 Live Partial 00 320.0 320.0 5.50 6.00 plf e 1312 Dead Point 171 5.50 lbs 9-b12 Live Point 469 5.50 lbe MAXIMUM REACTIONS fibs)and BEARING LENGTHS tin). .4x4.64t;145P14:gEtthiOnaP-W,1-1 ":44:01WirVii4OWAIA :M-7,4 ,401A741gt4Sg, ,,,,,,-,4:-7:<.,,,,,,-",,41.r.„4,,:-,404,,;;AA-c,,,4.-;1,4444,,frz),:t!ee.:(44*--1#,4%,*•40e:4'USITTPIITU* ,,,,4'e'' tri,:i7L,,e4;e/,',:4 ;, 'm4,55,e" , ,' ‘,47..v '''. 4te64.iltetiV44,,ttlent4, 4,1,7:5; 4,04hes,:0,4cor4-;:4:g4ver%,, ,%•0.94..74,0 iee,i,-'TOOK:,r*,,;4,4,-4 e,Xrei;: ''S,,,,,,:,-17::-44, -;;;:e•xef*tz,e,44,00 ,9",, 0,-.*Ato.dierf';4,;44,221f*W*Pr-,--4,46 ,4 ,:4.4,;-.14,40.61.,,,,:VelWOris70,V11. 4.00.14 .0410,4V-K4 ver'e e'44'5e';'1e1;r4P411*/14/e.-exp%•;t4 7vvY,i;:teYtSifee.WOPqote,,,e,4;i,4 ,fep;tii.T.,:- ,. .. ;,,,e-0,10$g;).9.,,,,,, I1 :4,,,;*24,„, i,45.2 .4„t.'!,, ,:z:.-:„:,,-. ,,?...,;.':-.t.;:.7,7,,z,:.;.‘„.,:,1,..AK;, ,,,,,c,:a:,,, ,,..4 .;,i k:4:44*-4444,--z,,,,,,,,,,,,/,,,, .„,1,,,-,,n4A .,,:,:: ::Jlin77mtvInTv.c4:7 , , , I7,,77717AF7A*,74i.,A4,, ,,,,#.;4 1 ry 61 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb 42 42 Length 0,69 0,93 Lumber n-ply, D.Fir-L,No.2,2x10",2-Plys Self-weight of 6.59 plf included In loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 200$: Criterion Anal sis Value Desi rt Value Anal,sis/Desifn Shear fa' - 67 Fa' - 180 fvf/Fv' 8 0.37 Sending(f) lb - 556 1713' - 990 id/lb' - 0.56 Live Dell'n 0.03 " <1/999 0.20 - L/360 0,13 Total De/1'n 0.05 - C5/999 0,30 - 5/240 0.16 *The effect of point loads within a distance d of the support has been included as per NUS 3.4.3,1 ADDITIONAL DATA: FACTORS: F/E CD CM St CL CF Sb Cr Cfrt Ci Cn LC4 Fa' 180 1.00 1.00 1,00 - _ _ - 1.00 1.00 1.00 2 913', 900 1.00 1.00 1.00 1,000 1.100 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - Et 1.6 million 1.00 1,00 - - - 1,00 1,00 - 2 Loin' 0.59 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LS 42 - D,L, V - 1744, V design* - 1232 lbs Bending(*); LC 42 - Dila M e 1984 114s-ft Deflection: LC 42 - 0,1. Et- 158e06 lb-in2/ply Total Deflection - 1.501Deag toad Deflection) t Live Load Deflection, (D-dead 1.-live .5-snow 41-wind 1'-impact ft-construction CLdwconcentrated) (All DC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply Is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. (11U COMPANY PROJECT 1 Wood Works® SOFPWAR*rOR WOOD DESIGN June 28,2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pit) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w51 Dead partial PD 96.0 96.0 2.00 3.00 p11 2mc32 Dead Point 59 2.00 lbs 3_032 Rf.Live Point 75 2.00 lbs Load4 Dead Full BDL 13.0 plf Loads Live Full UDL 40.0 pit MAXIMUM REAr.vartioco. tr'...1.....1 car-Aesrs,"I cau•-ruc t;•.1 . .,iw . ' � r A. a' ' s✓iira :e /� ih 5 F! � & ;,- 'w�d € Z,';''' • .I-fi ? ar%17 ap , /''','';'''':'"'4<'''t'• " `,, - r4 p ' g' ' 7, ,,, t,E„ %, z,1,,, 3t> ,U %"r e �� ^ f r vi/V,V. . rik' , i4 x b,3w f s ; l'-/-V:41,-'1,:•-4,i l '4 `v� y .� r r �'` u "Fx1''' / 7<*';° r « s t � ,�et40 * , r .0 . hills .� ,4m»'r s' 5 y!,,.,5 P # r �N4 Vin..; '' : r,x 4i air's ' 7y,,,,,, g;�{ •,, fq ,r,, ' aK it y,000 6 a �1 r s : q, ,, : a r,T k ,m ,,'.T,,' 1;' ,a .74' d" ,,,,l,„,,,,-,..; m; d:a ,, ,4 xl fif' zx I 0, 34 Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear iv = 12 Fv' s- 207 fv/Fv' = 0.06 Bending(±) fb 82 Fb' = 1242 fb/Fb' 0.07 Live Defl'n 0.00 = <L/999 0.10 z. L/36; 0.01 Total Defl'n 0,00 = <L/999 0.15 = L/240 0,01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CU CF Cfu Cr Cf.rt Cl Cn LC# Fv' 180 1.15 1,00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1,200 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 42 - D+L, V = 2466, V design = 169 the sending(S) : LC #2 -- SAL, M -_- 179 its-ft: Deflection: LC #2 Deli 51== 76e06 lh-in2/ply Total Deflection =_= 1.50(Dead Load Deflection) +- Live Load Deflection. (0-dead L-live S-=snow w==wind -impact C= const ict:Lon C.Ld=concent.rated) (All LU's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT fl t WoodWorks SOt(WARt(OX W000 0t8W,S June 28,2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start: End Start End 1 c33 Dead Point 59 1.00 iUs 2_6233 Snow Point 75 1.00 lbs 3W52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDT: 13.0 „?f Load% Live Full UDL 40.0 piif MAXIMUM CM A ettPart cmr+-rue i ! te p, f 65 : g .2.555 r! 54 " ,50 r /59 4535307:535.46.5,,447663.,35- 35 . ' 'r � jfe5 ',4y5y .5.5 ;. i✓62555 %J5P6wP55355,55,6"5:5 f .r 15,414 `!J" .r/,te3.A r✓r�/�`�� yerr.ur t'!, %/ffi/ r c^ ;"°]5.]5°53.52.2P54.551.4553," / 7�t5i �95)4 P' 5455 i/ g ot ' 7,1,4 y eq5' 4/ omi.88,4 , 'c F'itl � � ef,a/ yrt *Y*: ' ,,2/Pr* l ' ! A I p, 34 Dead 146 63 live 32 64 Total 229 127 Bearing; Load Comb #3 #3 Length 0.50* 0.5.03 `Mirt bearing length for beams is 1!2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear. fv = 10 Fir" = 207 fv/Fv' _= 0.05 Bending;+) fb = 72 Fb' 1242 fb/Fb' 0.06 Live Defl'n 0,00 = 5,0/999 0.10 8 L/360 0.01 Total DefI n 0.00 6/999 0 .15 = L/240 0.01_ ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCii Fv' 180 1.15 1.00 1.00 - - - 1,00 1,00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 F'op' 625 - 1.00 1.00 - - - 1.00 1.00 - r' 1.6 million 1.00 1,00 - - -- 1.00 1.00 - 3 Emin' 0.58 million 1.00 LOU - - - 7..00 1.00 - 3 Shear : LC 53 - D+.75(L+S), V = 229, V design = 148 lbs Bending(t) : LC #3 - ;?t .75.I+3), M == 157 Lbstit ("lection: LC #3 = r,+.7(0+5) E1-= 766:06 lh-in2/ply Total Deflection I.80(Dead Load De` .ection) + Live Lead Deflection, t`%=dead. 0=live S=snow ni=wiad 1-..impact C=constvucticn CLd-=concent ateci) {Al. . DC's are listed in. the Analysis outpot) Load _,onthinations : IC,C IOC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. Cl COMPANYPROJECT fit woodw,,,,,,4 'R1 I-0321400D OV 0E,J orks8 , J7ulne28,2010 10:36 b14 ' Design Check Calculation Sheet f,or plf) , ,,--- 1 LOADS (lbs'Ps ;t1Seizer Type Load - 0 Distribution Start -7,1_,,,,t, T,:,;(( a.0.:a.0:ion),,,,'11:3Liitoi Units,,,l Dead '):?aarf-tVe031:13:1: ''.11.12);5, 22i,000 2:'11,1 ::,0 033.:00(() 1-38,.. ())00 l'i:,1:5, 1_33 Live , ) 1,61 SD r 2 )J33 Dead 3 )13 Live Partial SD 78.0 78.0 31).:r0 11:(())(0..) .14"Eti i . Part3v3 - 240.0 240.0 5.00 8.50 pit 4-113 Dead 51j34 Live Partial OD 28.9 28.9 5.00 8.50 11,9 -,,, ,,,,,) OD n 80.0 6 J34 5.00 lbs 7 )46 5.03 8-J46 e - r 9 b20 1:111.'aid 'Id '-')5171'7::(,)-lltdl j''') :?(.1',i'')(3) Live 10 1325 MAXIMUM REACTIONS(lbs) a,..n...,..d..,,B.--EARING LENGTHS..f (In) : .l. :7,-0--„-,.. ..,- -•.-.:'--''-..°.,,.-,-,,'`''.':.,4' -,E,,.:',.i-.n.-,--„r-:.„-7"....,.,,,,-'."-,,,,:,.---,,..,,;.:--7- '., *r.f•-,-.-," 0-.1.,- --...e ----7::::-.777.6 . 704 .-4'-:.--- "*."7„ii;-••-•----4.- 4/4 - '-"..-0"*"'" ...,-'-. • ''' -.4-.. -----` 8".-6 , .68s 1873 A 2563 i a )1,2 ee0 8,50 e :52") L.ve 2076 TO7,1,_ 6enrina: load Vern, i.:28 Lendte lf-wi-ei support:lgh"5t o5ftEo7p,„?..263p21 f5i full,bottom dmle:d3aint4isupports;xoald4s vs.Allowable Analysis , ,v,,.-1 up DE-r,_ r ,,,,,, 1310 Stress (psi)and, jesDri-r,eaeSi_flevc,tii7cn (inAT),,,fu\,isiii,n5Fgvi::,,N/DDSe s2 0:0:10:545 Li: fb/T110' = ( v , Ltr,tereen fv. t.) 1/6 FS' - L/3609' 280„0) Shear 0.32 Ber.)11'12:0;'-) 't 0:1t3 : :::2/695').3,, (')0: ,,) : t:/ 0 Live, 4' 2 0,14 71 Dotal Det1V. CL CV ( fp C. (1.):,(] (i)0 LOG .,;),, t 0 - ADDITIONAL. DATA: nm tc, ,0 _ , 1_00 : 1 .,00 1:((,,i‘b ,).__ LC#2 FACTORS- i .n0 i 1.00 1.000 . _ _ 310 - 1 ,00 - 2 3 Fv' 2325 1.00 - 1 .00 - _ 3 - _ 1.00 '- '.,b'l- 800 - - 1.00 - 3 .3 - -cp' 1.6 million - )1,00, _ )),E2 ',be = 26 ' =nn "Lin' Cub) million - V = 26611. V dent., d) r' ' 6364 tes-t' , , Bending : --.):=.1 4,21 : ,66,.,.. tni €:.,),)06; enri -' '1' Live ) 8Ld=co= ::e:lrectInn: LLft:' :- -1- ::(1,1)11 L°„:1.1 'ri:28 :1('-'nnancrin7e-tonsteltcddd Deflection.nenrttetee) Total -,,IleC',-C.'1 __,r,,,,,, w w,,, _ _s output)-, L6l 'lead -e 11)ta4 in t:he , ))611 0514 41: Loan cembleetle16v: 10)--1)8C) DESIGN NOTES: 1.Please verify that t ):the be changed in the database editor. (Structural0 the defaultcmdeflectionlimitsare aapttparcohperidatsecfoLrsyeo. They can 2.SCL-BEAMSdesign only.For final member design contact your local SCL manufacturer. naleuiscrt.aijnpliiscafotironlaieliminary 3.Size factors vary from one manufacturer to another for SCL materials. COMPANY PROJECT /ill WoodWorks SfW4rE vwoon 5ka June 28,2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j5 Dead Full UDL 335.7 plf 2 j5 Rf.Livey Full DCL 493.7 plf MAXIMUM REACTIONS(Ids)and BEARING LENGTHS(in) 44/44,r/�r� ✓ sv/'r Jtir d .f'4 ✓!x l rv? �+rYY.r-., alfi,rrl "444,4,14 -714.44444"4-44;> r • r4b ' J i' )ag's r �4 ✓t' �+r7. jfi a.y z44,44 rg0r f :Y ✓yvx r154>v § .. i;;;;*;44,0"4 /4.1144,4 / 44 1. .yr�` 1 >14•440 .rs .&k44'44444 ' %'t # f'" ! u444'44-"44444444,440,4444404 -"44 r>4,'0 8X 3 , 41,4444,4r;44 4' 0aiy' 7; r87r88 gr"828 78r87 yr VCll9trqt, :L xb ?# /9+ YL^ r �`%5% �` r r er w kr�/.77.7 /i /r f , rr :7Yr •4%�747r..777 G di 44 rr ' vtti ✓ / .Jr e .s5Ky�, � • y0i 6 Dead 1022 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 1..34 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-flys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2006: Criterion Analysis Value Design Value Analysis/Design Shear fit - 101 Fv' - 207 fir/Tv' :w 0.45 Bending(+) fb = 1055 Fb' = 1138 fb/Fla' = 0.93 Live Defl'n 0.05 9 <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 - L/240 0,.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC Fv' 180 1.15 1.00 1.00 _ _ _ 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1,00 1.000 1.100 1.00 1.00 1..00 1.00 - 2 Fop' 625 - 1,00 1.00 _ _ _ 1.00 1.00 ' - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - 1.00 1.00 2 Shear : LC #2 Dft, V = 2508, V design - 1864 lbs Bending(#) : LC #2 D+L, 14 3762 lbs-ft Deflection: LC #2 - D+L El- 158e06 1.b-in2/ply Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind. I,:impact:, C- construction CL(3:,:concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-TBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT (II WOO Works® SOFTWARE FON WOOD DESIGN June 28,2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS fibs,psf,or plf) : Load Type Distribution Magnitude Location Eft] finite St42ar.t5. 4E21.1d5 Stgagrtg Encs pit 1 j 4 7 Dead Parte al 0) 2 -147 Lime Par dal UD 62,5 62.5 0.00 2.50 pi f (M:816-46121A4WWWWWWWWWAIS MAXIMUM REt 4"."..""°. /1-1 6,.%.....1 Ociketime,1 citar,T1,10. 11,,,,i , v,„,' '' , ",-'-, ,,,,,fiwA,,4,,,,,,A ,T7,-`,'0.,"(m • '1'',"Y7 L..',.,,,,,,,;.4';',4;•;.:•••• -,...*1-m4",-,4','"•;Azi,-;,>.4,,,KV,.•'i.,Irn ;',,,44',••‘, 11:-'''P'75,;`4.:•• -1,' i,4?9,4,..'1,,,,•V."4'''')' C.,, ,',b'*';'Pfrr''''r';"reeft''','?,z,,,i,..ki,,,,,,k.i4,4 i;,;',.,"4'V'e„,.., f..:,,,%',7,0 'f.,;.;,-;,,i1A;:..,,%.,",r,ir f;:le .1.44,..e....4W,4,14",,e,',, ,,,„.", fr,;.,' /-%.,.7';`,:> : 1:•;,. ,Yi.;;,S 44*/,(64eigalg JetilIZILIn anywrAital J wiTTI464 a,:141.(11.610A1Wasminewanyiniamiamma a -6.ode(lamina:,8,,,,,,waiyan iegitil. )82'48078(41(till4ate8iffniai6f7Aa;glf„.]ini Lws., groasemigEtAagal8244Listae48,0ve„;,J9A?8:46181pEinciggcn zsiiiiignya],,<,688,,,),,r6L;dIvie,TAftwitwagg„)31,4v8ct, , '2 v 42DLIT4W49V6266:21,2enad4/64a in De ed,JASSIntaiglignealAgglealM461)1111.164(1,J:((Weds(161:I:(616/12 Easha.a Lamas 6-6's „r0v*te7tfAX'4:41:14-A,T,V,-"4,'1f.:-,-;1 ::-44,4;-'0',4, WaegstelledlJAWMA.1616a322116.26-aalnalall.(l I a Isanaameen]121 1 I 8 ilmighomajeasen, hyma.,,,dadeelan:Ai agnas.ohia(a (a A,,,,,,','..''''f',7.'' ,.:,..'c,,,,,,,,,,,,,,,,-,,,•.,* ,,,, ,•-•, ,•• ,L,„,_ /' „,,,,,,,mfr,,,,,,t, ••'-'7 ''4,,`,..,;,'...%,..,Nom 44!,,'::t'''',.:-,L'''_- .-...^,...:_-' - - W 34 4 a 53 65 Dead 111 118 I i ve 91 otal. 162 42 Bearing: Load Comb 42 0.50 , Length n e--fl93,- 'Win.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, toads;4x8" Self-weight of 6.03 plf included in Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Analysis/Design lysis Value Design Value Criterion fir/Fm' = 0.03 fv - 6 Ed/' :e Shear 180 Id' ---- 1170 lb 'b - 0.04 lb - 46 0.01 BendIng(e) 0.10 - L/360 Live Defl'h 0,00 - <T/999 Total Defl'n 0.00 e <I/999 0.:5 = L/240 0.01 ADDITIONAL DATA: FACTORS: FilS CD CM Ct (I SI1 Cfu Cr Staitg Eig 180 1.00 1.00 1.00 - ). - - 1 00 1 00 1.00 1. 1.00 1.00 CrL(22184 Oh + 900 1 .00 1.00 1.00 1.000 a,300 .c . - 1.00 1.00 - - 2 top' 625 - 1.00 1.00 : : c 2 E' 1.6 million 1.00 i.00 c c c 6 ' , 0 58 million 1.00 1.30 ...atil fl . , : 1.00 1 .30 1.00 1,00 Shear : LC 11-2. = DI-L, V - 162( V des99 lbs = Bending(f) : LC 42 - DTA, M m 118 lbsaft, Deflection: LC 52 - DLL EX= 178e06 lb-Ina , Total Deflection - 1.50(Dead Load Defiecticnige(1)8i7t 'L-(dc'In?olge ECIPAcgiti InInOent r a t ed) )aci canons rh ad ii6 (Dadead L-Jive Sesnow W=wind 1-1 All II 's are listed in the Analysis output) bead combinations: 10 35 DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1., 611 CI COMPANY PROJECT Ilik 11 I WO 0d, Workso SOI'MINI t.014 WM)I)OE,-re:N June 28,2010 10.34 b21 Design Check Calculation Sheet iZer 7 I LOADS (lbs,psf,or plf) •1 •,a., Tip, 1,,..,i,:.,,F,..1-1,01 ..t.laq2Y, ''.tIci.-,, ,Lyc,,,.,t1. r,,r1,,:,..„1,11,,i r„,,,,,..,1,,, .-,..-,...t, ,,,...2 "... , 2 , 213 (5 6.00 N. "z0.0 f.,»00 10,00 No 13:062 -0 30;.1.0 LL.0 .0 El ,,.. ,,V-:„.....',',.:::: ,.:,, 320.0 320,0 2,00 6..00 No ' L'O 5F 9 0 369.0 0.00 2,00 No '. 2 0..; , ,...50 t ).00 o 1' N . 50 10.0C t.4.. ! , f. r i', . , 21) J 9-1.2,73 OO6 0.00 No . , ,,,,, 0,00 No . 20 O33 i MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(n) . , -.....w.swi. , .----"'"0-nor- 117., - ,...,' ..", ,,,,i-,,,,,,e,,,„..-,,.,,,,,,,,,......-„, . ,,,,,,,,,,=,..7.-- ......74,........,„ :"."4.--..,,........4f02.-„,44-----.4,4,.„.4014..,_• • ',:-.1.7-, ., ',. ,„,,,,Vr"•.7. :',4,4 TAW d'ii...74s,ficti-A,„-taitiffii4.4,......„„,,t,„„Aiiiitura,.. ... " siiii t 7 isfooto,„raitair„Asi»--wait'ii. inictassicis.:,, ,,,te'r,"*."7"-fictftisif.a7 i„,..„,„„„,„Aviv,- '49e.''4*..14"Y"'-**.'""°'":.'f;"57"''''....;Tl'!';'-''.7''''''''jj;';':':''7':', : 441e.'•','..,2r "...AP. •"i - ,'744771.7„f77 • 7 " 7,f 4.7 i , .„,,,,..ii,,,,,..„iti,"ff i,„i,,ii„fis ` stAtA. ...*-"°‘:.•••*/' n'"*CtuAr....- ..T i •i ii*Tiisiar.„' 7 i-ti- "74fitf,X iii;Ai...77,447..777 '77C.," "i'T: ",47%ti -,,,.. a___.- "-' 44`tft**i 7.7-ii'i.'7444C7.iti 7 f."'"*„..i;c&H,„;iggiA4AiritAti f..77; 4',4121,4„-tiit."":, 47 c i ii'''ii 7 - i'i.i."7,'-*i'ii.iiiii*4.47',7;47..r.fitir•—7iiiii -i--"*"i'7-"i""i'ii"''' .7:.4;7"i„A....-c.cd''7,. ..77...:,,,.74....9c77.747 ..:, i. t 7 „' *Al. 41, 101 0* 2 13 1 Doad 2i.to .,-. 2.'306 .., . T . iOoo 1264; 32 g3 L,26 1.00 . „ 0,00 .... LSL,1.55E,2325Fb,3-112x14" S elf-weight of1s,31 pit included m loads; Lateral support-tope full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005, Cr der,ion it adis Value De.7..iir V,OtOritlit, ArTo;Oii,o=„1,33./Otisot!ti,9 ,-, , . , .., 0.23 oi' 6,33 0 ; 2.L5 .Tfie iatfo:A'O po3Oili toads within a distance d of the ,,pport ADD L ITIONA DATA: ,... , 2; r.; - 100 1.2(OL 2. ,_ I ' I 0 - — 0, (, . ,.... ,. DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2 SCL--BEANIS(SlruCtUral Composae Lumber),the attached SCL selection is for preliminary design only For final member design contact your local SCL manufadurer. 3,Size factors vary from one manufacturer to another for SCL materials,They can be changed in the database editor. 4 The critical deflection value has been delermiried using maximum backispan deflection Cantilever deflections do not govern design I COMPANYPROJECT k foil woodw . s SOFTWARE fOR WrOD saFsicP4 June 20s101h0e:3e5t sizeb22 Design Checkr7l Calculationne28, ')0(,),)e,1 al„ „_ LOADS (tbs,psf,or ph ) 03 in 41'72.3;14 1 t'I'd'3°11; '''A.,,a.(7)1.444 1;110:10 ';P'1. Ibao Pa eLla 1 AD Type C istlribu 1',on ,. 'Aced 1 .1469 • 00 2„AO P;:1 it.Paal 118 38y/•1,2 3:8;11'„ 1.90 25•808 8pli 60 Snow 261w6 9 Dada 369.0 3 e . 125a0b0,1.:,:11 .12J11:4, 221(0;;;.-J) 220 0 i„CO 3.. p„0 1 f) 3-j 4 8 Live 00 ,r 4 2.5 P3 414 8 DDa d Fu 1 I WA, 62.5 1.00 I be .0_5141 Li 00, 700 1.00 Iie 647 Dead 190 7 23 1.;noe Ti;..,0;vi it;I:0:,:,11 1)i 8°023 , .. ,,,,a6,00,0004,11040..41486.H e, e AFT 1,433811,„0,310 , ,,011-,..00y,,,:yeelefelaTer ,,0-3100.-.1:1:b0..40010.131-3116,14 TAT:31111i4,60.0„31,4,, . ;A031., --6-100/033V01A.-011L11111516Ta..1....31,1,4,,,,,,,;„,„,v.,,,,,-, -,---;;-„,,..,„..„,..0-7,,, MAXIMUM RE ..,. ,,, ,,,,,,,,. ,,..;..:.* - :-...4,6:,,,,t,:,, ,,,,,.,, „, ,,2 ,,. -111,110.3 3- le 0 Trevilelleey 6.4038,,,0131 01106311068 0 110,0 0.05,1e44444/iD;4„,D/D/4.1y114,4"1-4"D"'ir1,,e4:,,ee,„eerV.fDDD40 141114f 41'4114 110114:4:4:4444:-., 444,4-,411:141/11D1,4:14.4e4D4111,0101.00444,440114,1144401-4141D'42:4414,' 44 4144.4,44.4e4e,11.419,' ,' 4; '4,0444.114.1111eDDD 1;144', ,;;r.',,,,,,,,,,-.4",',"'"?'"17,W, '.1.': „' ' ,:.--';',,,;,',4,-;;;Ir:,:l'iL, '':', .., ...,..:_,V,::- t!ti/iA 4,,?.,'''!•"Yrf;',..,,,,, ,7:-.;),,i',,,r,-7,„-.;”c:- ,' ",::,-, .-74.e". ,7;',"A,,,836.1680/TA 11:LeabbblVlb,00111,111116,04p(6114010,11.0363506610,40,04,-,..6 3,400;;;04:04,Tavolty0,00,A01 T-1T 1,eee To..1 1.111.3113.3 10,4*0„,,1.11e0 ,06-030.0 b,, .00:0-.01,5030410.5e0.66,11);.;. ;, 01;4,:-.57r:::_;,:.,-;:t..,q,- ...:„,,,,•,?,; d„,,,,,.a,..A44•1i77 * v;te` '',;..k'it -'-t,,f-4Z14 7T-,`tr-,,.'Wlf:AY'D44DD4140,414,'M'r4,,.4°1111.1 ','14,41,041/00"e,"4.14:4,f1°11/, D.".41oD1D1D°"DD 4,De;'.44444".0" / 9 /t9 4...444eD01,1,14±147Dy.41411110111Dre 4'e 2..044 .,-5' ,e"`,. j,,,t,„4-4140,2?,,,"0,1- zzb.);,-,*;:1 /04V-Pi''' ,--A.,„...,...- ';'...:e,*ff'110013:10111-116118116318611.061.6.4:: .06/41.1410;„,,z60;:b1b6.3.31; e;;:,4,8,e,b,4„..05:TrozA,021„4. ,,,,04/0.00,03,3:01040,,,,,,, 4 /,'fe 1 44,,t4,44414e/41D01,t441o,4;;,4;., 4tii);:1„4C;.41''4:144:74i;144o1r.)`).:4A., Itt -,Z"-sf,' * ?r,4''ifV ;,'4t ; 7lI_,,TV,4_.„:,,‘„'— j1r)4' 't7:-/1,,l4 :1V6:3•:',::,,„7,d,r444 4014494es+ e : % ' . 494 :54o"-„ , ) , 4 /,294 1 "4 4 . : tr7tA4, 44440,, ,, nLA ., ,'.. 2661 :0; 0 I 37 13 0 ell ooad 34 Lave 124 Total Bearg in : 5 Load Comb L 0,5 ..$, 1,1(005t Mm n.bearing length for beams is112'for exterior SupportS Lateral support:top=full, L usme l f-bweeri g-hstoo 79,.3D5. pFiti r-L,included t tl uodmNe=d0 acnt2sioua4pdxpos1;supports; value Analy , _ 10 ' . Design , fivilTv - 04.1 'lysia Vale, It' . 297 Analysis vs.Allowable Stress(psi)and Deflection(in)usingsist r7:71 2:nos: cr,..tr„.rion An at 3, , 30 E,,,,,q , p1:3 3 Shea r 10 - I” 8 i',/3 60 Breve i na(4) ,13 - p/23, fb/FW - C.()0,„,..13(,432 Total OpiPL 13i" Itet '11 '1.1):00g <1;;Li://18j89 09 8°;° ;''' r /1 Cif Cj Cii A ., 0) 4 Oe DDIT1ONAL DA:TDA: cm ctf c 1, .4,0 1.00 4.1 of m 1 ... . FACTORS: FF F ,1 i 5 „I.c:‘,0 1:,00 , _ 3 86:,10 (.110f-6-1,1 Cr 3,::t 0'(.1)00t- ii 0,0,3 b,,30 _ 0 1,00 _ 1.0 ,., '''' 1 °' 11'') 1:i'm 1,90 - v 18° ' ,. 1 00 1.00 ;.000 _ - .00 1-:81 23 Ace' 6- ,,,i , 00 1.09 _ - - - ClI,ii I 0 3, ' 1:6 m111,1; 1:60 1.00 1 24,) T des 300, - Em i,-,' 0...s a m i 1, I.,.';3, v " f ))-I t -C V) c rc)c))')) ,„ 4 . 98 ;ne -o;_ 8010:;10;11;00.t..; 1:103 8,11., 2- 131: 8;:55 fl TT::0T;; 10 ,,,,;,f:iery,ibl:;.44',:di 6+I'ID.-i,:j..:)r;C r.0.!!)41,0.44 4,4,1 rated) flefleolO 610 11air,- 16 , Te.;;;; o; ,odd , t pee.I 11' ''' 444-44 1 Deflect , tvD, SeBn" ,,, ,ees OD'ID' ' '*' -(4/I1lij ;1,,;i(f'4'Di njicri('''44',,s1:1;5'.iC'Ci-I'l;11,C11;11 ' - DESIGN NOTES: supported according II be laterally 1. d. members shall n ing Please verify that the default deflection limits are appropriate for your application.tothe [2.Sawn lumber beprovisions of NDS Clause 4.4.1_ 6A,, <e9 COMPANY PROJECT 1111 0 di WoodWorks VOPIWAR!trOk WOOD Of June 28,2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) LoadT"e- 9,9tributmon Magnitude Location [IL) Volts - Stame the Start End 1_w.33 Dead Partial UD 204.0 204,0 0.00 1.50 calf 2_018 Dead Point, 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5c19 Rt.Live Point 85 4,50 les 6 034 Dead Partial UD 108.0 108.0 4.50 6.50 plE 22 7 c20 Dead Point 59 6.50 lbs 82c20 Rf.Live PoinL 85 6.50 les 9c21 Dead Polon 143 9.50 lbs 1.0c21 Rf.Live PontW110 9.50 Ins 11 265 Dead Partial CD 204.0 204.0 9.50 11.00 pLf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : . _ ,,,,.,, 7,4; *- i... ;4-- . ..c; -, ,-, ------- .- ,,,,,,, ,;_.':..7,---7".' 7:142:11'111"1- 1--4,......•-...;, -."?7, . 77:1-,. ..7104,7 ----T....7 , -2'217-• - - e- 1'...:•#.21-17;#;4- --.. 7:1.2xt...t....;- rz --Art. p.-- -...'"' - - -----;* • -.........-- tf-4-'s--- -.1.,1,.. .v.7,7:7:::-.- -z.;,;„- t75"4,- r4,,,,,s,, ,,,,,,. ...4.21„,,,,,,.4 ,:., ,-,47t*il . 7;477 . A 10, 11 Dead. 700 200 Mfect. 195 195 Total 895 695 Peering: # Load Comb #2 #2 Length 0.50* "Min,bearing length for beams is 1/2"for exterior supports LSL, 1.55E, 2325Fb, 3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; , Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005; Criterion Analysis Value Design Willie Analysif ,Desrg Shear iv - 20 Fv' 29 256 Te/Tv = v.ol. w Bending(+) #0 = 212 tb 2671 fbblg.)1 = 0.08 Live Defi'n 0.01 - e0/999 0.37 , L4T 0.03 Total Defi 'n 0 ,14.. .95 = /999 0.55 ----- L/2 . 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM CL CL. CV Cfu Crf_ #1.1.. r.ff, ,a. ILC:(,,0 LF2,4 Fv1 310 1.15 - 1-00 7 , -, , 0, 1.00 _ FOP+ 2325 1.15 - 1.00 1.000 1,b0 - 2i - 1 .00 _ - 2 Fop' 800 - - 1.00 - - - - - E 1.5 million - 1.00 - - - - 1.00 - - 2 torn' 0.80 million - 1 .00 - - - - 1.00 - - 2 Shear : •LC 412 = nil , V = 895 V design 629 lbs Rending.M-1 : LC #2 - EML, M - 2028 lbs-ft Deflection: L2 #2 - 0#0 51= 1241e06 lon ,2e, , 2, , Lead Deflect.ion.Tote.).. nefim' tou - 1 .50(Pead Load Deflection, ,9,,,n-, ,,20, c,,,,,fl_conc:ontratIod) (Ddead L-Uve S snow W winffm 1-1opect :2f-eons 122#. - (All LC's are 1sted in the Afte2ys12 ouLpuuf Load coo TOC-TBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT .00.44 I I 1 WoodWorks® son WARE F 0 R WO OD OFSU;ni June 28,2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs. psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_542 Dead Partial UP 47.7 47.7 0.00 4.50 pit 2 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 31)43 Dead Partial UD 47.7 47,7 4.50 7.50 plf 1j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 pit- 6_j441 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial PD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD 160.0 160.0 13.00 16.00 .. pit MAXIMUM REACTIONS(lbs) and BEARING LENGTHS (in) : •-,17,,,,, = A' 161' ] Dead 442 442 Live 1280 1.280 Total 1722 1722 Bearing: Load Comb 42 #2 Length 0.85 , 0.85 Glulam-Unbal.,West Species, 24F-V4 DF,3-1113x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb - 1410 Fh' = 2400 fb/Fh' - 0.60 Live Defi'n 0.13 - I/441 0.53 = L/360 0.82 Total Defi'n 0.66 = L/290 0.80 - L/240 0.53 ADDITIONAL DATA: FACTORS: F/E CD CM Ce CL CV Din Cr Cfrt Notes Cu LC4 iv265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'i- 2400 1,00 1.00 1.00 1.000 1.000 1.00 1.00 1,00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - F,' 1.0 million 1.00 1.00 - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1,00 - - 2 Shear : LC 12 - D4L, V - 1722, V design - 1534 lbs Bending(+) : LC 42 = 11±L, M = 6890 lbs-ft. Deflection: LC 82 D+1. EI- 543e06 lb-in? Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (0-dead 11=1-ive S,,F,HOW W=wind 1-impact C-constrection CLa-conoentrated) (All LC's are listed in the Analysis outputs) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). . ear° COMPANY PROJECT 0000 g I 1 Wood Works" sortwAsamo woo°OtSIGN Dec.15,2010 11:28 b24 (F.R.0 t,3 T LoA.b) Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location MI Units •Start End Start End 1_442 Dead Partial 110 47,7 41.7 0.00 4.50 plf 2_442 Live Partial 00 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4443 Live Partial 00 160.0 160.0 4.50 7.50 plf 5j44 Dead Partial UD 47.7 47.7 7.50 0.00 plf _ 6 444 Live Partial 00 , 160,0 160.0 7.50 8.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ' - ,4, ,,,,,- ,,,,-w,,,,,,,. • „„,,-.1„,,,,,, ,,0,,,,,,, re, , ,•.. „,,,,, „,„,,,,,,; ,',,,,,,,y. , ,• , " •,•.,. -,„,Z., r,,..,:;.,,,, zt •..,,,r, ,'1 e.•. ,1,?- ;., .;•r W111,;• ,••,,,,, ..,i :;.••,'r;44., ,',.4.,••%,,K., A:7 ,,,.„,7,7„777„y,r7',tPri,, ,,„7 .„ . ,.., ..n . i,,,,,,„,.4,, ,4„ io,.,1445-„, , -, -,- ,, „„,, ,„.„,;, ,,,-- , .' ' ,,,,,,, ; ,, , ,,,, ,...*; .-.7. 4',•,, to, 84 _______..............,.........._....., Dead 212 212 Live 640 640 Total 852 852 Bearing: Load Comb 42 42 Length 0,75 0.75 Lumber-soft,Hem-Fir,No.2,4x8" Self-weight of 5.24 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in)using NDS 2005: Criterion Anal sis Value. Desisn Value Analsis/Desi. n Shear iv - 43 Fa' 4) 120 fv/Fv' - 0.36 B ending(m) Sb 44 667 Ph' - 884 fli/F6' m 0,75 Live Defl'n 0,11 - 5/893 0.27 --). L/360 0.40 Total Defl'n 0.16 - L/597 0.40 - 5/240 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Co LC4 Fit/ 150 1.00 1.00 1.00 - - - - 1.00 0.80 1:00 2 Fb'+ 850 1,00 1.00 1.00 1.000 1,300 1.00 1.00 1.00 0.80 - 2 Fcp405 - 1.00 1.00 - - - - 1.00 1.00 F' 1.3 million 1.00 1.00. - - - - 1.00 0,95 - 2 Endn' 0.47 million 1.00 1.00 - - - 1.00 0.95 - 2 Shear : LC 42 = DiL, V - 852, V design = 723 lbs Bending(e) : LC 42 - 0+0, B - 1704 lbs-ft Deflection: LC 42 - Dit, El- 144e06 lb-1n2 Total Deflection " l..50( cad Load Deflection) + Live Load Deflection. (1)-dead L-live Smsnow W-wind• I-impact C-construction CLd-mooncentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-113C DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (017 n i COMPANY PROJECT ill Wo 0 Wor s SOFTWARE FOR WOOD OtSiGN June 28,2010 10:33 b25 Design Check Calculation Sheet Sizer LOADS (lbs,psf,or pif) Magnitude Load Type Distribution Location [Et] Units Start End Start End Loadl Dead Full UDL ' 200.0 pit Load2 Live Full ODL 540.0 pit MAXIMUM RE. 111 1, •• . 14 : :1 ;1: 4 4 Si .4 ' "r'r, '''''''',74“*"40,7'Ll4$41,‘,. r 4 -77.2 'r'r';44,,'''.4r/rjrffr;;*•r"r'10.f4";414A:1'141rt;:;'4'V,444- 4-",/".""44."0*4‘0 ",,'? ;',/,;044J 44'A%''VA oArtre?**4-Kr ,,,/.%-..,?r,',",/,,'' ":4; V %'°,4.4.2,..8,4488,0 f.,;ore.--,-,_*4,444.vp,_..,„1"A„.,.,,, ,,,,,..:4;w4.4..t4.40,,A,,,,,,opie,..' f•..i,,,,,.:.e ,. - ."i,..--;/.4".:,.. 9:1sy,',404,-V-v*,"":".•::, :,..-0#0*-11,0,4?•'.4...;'';P'1:450.14toli.??,,,A;', ---"."'t- '7,..."0.4,04,-.0i.."..--,-*-2.!" ,-..,-• , „.„......4,;,','",A10-..,40m.,wm.1.:4,---,-,-,- ,...-, ,-44 -L-4;c.,,...;.1 , 4,,,,A4,,,-.=:,•,, ,v,-,w,..1% 74.4.7- -iqf4efri*/.A1-r.,t -;-,,,I .,..1;.:.-=:-,:tl4,14041- 1.S . wi :tAlt A 10' 4 1 Dead 409 409 Live 1080 080 Total 1489 1489 e7.1 Bearing: Load Comb 4242 Length 0.88 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Anal sis Value Desi . Value Anal sis/Desi.n Shear tv - 89 Ev' - 180 fv/Fv = 0.50 Bending(-4) fb -- 1013 EU' = 1170 fb/Eb' = 0,87 Live Defl'n 0.04 - Al/999 0.13 = L/360 0.30 Total Defi'n 0.06 = L/764 0.20 = L/240 0,31 ADDITIONAL DATA: FACTORS: F/F CD CM Ci CL CF Ctu Cr Cfrt Ci Co LC# Ev' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fbc4 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1,00 1.00 - 2 Ecp' 625 - 1.00 1,00 - - - - 1.00 1.00 - E' 1.6 million 1.00 1.00 - - - - 1,00 1.00 - 2 Emin' 0.00 million 1.00 1,00 - - - - 1.00 1.00 - 2 Shear : LC #2 - 'ALL, V = 1489, V design - 1.148 lbs Bending(.) : fC, 42 ) D+L, M = 1489 lbs-ft Deflection: LC 42 - D+L FM= 78e06 lb-in2 Total. Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead fAllve S-snow Wewind I-impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) toad combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ..a\ COMPANY PROJECT I I WoodWorks® SOP' I.OR WOOD Di VICN June 28,2010 1o:57 b25 Design Check Calculation Sheet Sizer 7,1 LOADS (lbs,psf,or pit) LOad Typk, 441644aDa4100 Magnilude Louatiun (11,1 Un,S6 St4464. Pasd Slact, Etat! l_aD6 nead Parti ) un 539,7 '39.1 3.00 14.1,0 pia RP Dta vp Par t itta 193.7 493,7 13,00 t 4,SO Of Partlai OD 53a a SDPDS 0.30 4.50 pit Rt,Dive aartia1 LID 487,5 191.5 0.00 4.50 pl7 c.4 14a0d T'OHL 1.074 1,00 1 nu Rt,Live Point 1b01 11.64 Daaa 1074 13.00 Das clb RE.Diva PstaD 1001 13.00 lbs Dead 9arLiat 94) 5139.7 517,7 4/Data' 16.00 plat RI.Dlve Patvial UD 493.7 493,1 11.50 1P.00 plf Uead Par4tal U0 141.7 443.7 5.50 1.00 pit "D2 RD,Liva Part-Dal UD 493,7 103,7 5,60 4.00 'i-411 Ueavi Partaal UD 1St.9,7 a16047 4.50 P.50 p1f 1177 4.a0 6,50 pif 1, 6 144 Dpad Parttal 16D 47.7 47,7 0.00 4.50 p14 a6-942 Lave Paataal DUD 160.0 460.0 0,06 4.50 pia ()cad Uartia1 DD 47,7 47.7 400 S.90 pif Diva Partial 014 1P9.0 1440.0 1.50 6.50 ttlf Dead ParlJai Itta 47.4 41.1 1.50 43.00 plf 20114 Diva Parlial t44. 460.0 n.,n.r) 7.50 1.3.00 pla Duad Partial DD 47.7 4t,1 S.50 7.50 -pita 7,j15 Las, Partiat UP 160.44 460,0 D.50 7,50 plc' 93 446 Dead Partial all. 47,4 47.9 ta.00 6a,,30 ,dt 916146 'Hap ParHal UP 160.0 160.0 i3.1n T4 SO 'pi{ ueed Pat-1164 Up 14.7 It , 11.50 16.00 talf 26 -10 0020101 106 400.9 1150.0 11,b0 a6.de MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) - - I tr Dead 432a 1191 1.44.6 424a VD Tula! 9621 9477 Bearina; Poad Coa,P, 62 2..09 2,a1 GIulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17 7 plf included in loads; Lateral support:top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: 1rrterkon imolyais 1/4!,111e Demiclo Value Analyrtiatiataligrt faspar _ VOS iv/Tv, ..112 B,411.41g1t) fb 2301 14141 th/14b1 0„hr ry, I 1r. 0.60 11.7519 1,6360 1.4.6 Tatai p0:114.1 0.77 a 1,44619 PAO - 14/240 14.96 ADDITIONAL A. nv urn Cr Citt Nolua C6 Cv1 214 :bib, 100 _00 - 1,00 1,00 2 r-b1 2400 1.15 1.110 .,0b 1.000 1,000 1,,40 1.00 1.00 icp 640 E' 6 mil1;on 1,00 4.00 - - 1,00 - Er' r 0.06 1661) 1,00 ,6 a4 6 " ar aa1Dp - 8061 1ha DS va ,4 ' DLL, 14 Vat 51 J62 20:lect,On! 112 1026'066d 062 020216 li600 Laad Uatapatia ,taal eeflcc t, 1b-de44,4L-1--- cor,t44400L art Cia4 apta-autt t ad) taat tal's a 'attat 6 t4a, aaatvia ta,a,a.t Laval Dona,:pall, ktaa-11.114 DESIGN NOTES: 1 Please verify that the default deJlection limits are app ognate for yet Ar application, 2 Glulam design values Sre for mat let conforming to ATC 117-2001 and manufactured in accordance with ANSI/AITC A190 1-1992 3.GLULAM:bxd actual breadth x actual depth, 4 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 333 5.GLULAM-beanng length based on smaller of Fcp(tension),Fcp(comp'n) COMPANY PROJECT 44 111 WoodWorks® SOFTWARE EOS WOOD DE555 June 28,2010 10:36 b26 Design Check Calculation Sheet Sizer 7,1 LOADS (lbs, psf,or pif) Load Type Distribution Magnitude. Location lit] Units Start End Start End 1 w37 Dead partial UD 535.5 535.5 10.50 11.00 pli 21w37 Snow Partial UD 487.5 487.5 10.50 11 .00 plf 3538 Dead Partial UD 535.5 535.5 11.00 14.00 pif 47w38 Snow Partial UD 487.5 487.5 11.00 14.00 pL 5w39 Dead Partial ILD 535.5 535.5 14.00 15.50 pli w39 Snow Partial 00 487i5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : 7-7"Z`L.;.":".L.;=-4-2: "="-,;,:' ""-1.1., , =tr 112"If ;-71:27"7771-77- -757c7=7,77 "7-7. 777 77: 777777-77' '177 • 7'; , . . i„ - 10' 1 5*-81 Dead 583 2391 Live 393 2044 Total 976 4441 Bearing: Load Comb 4 42 Length 0.50* 1,93 *Min,bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species,20E-V7 DF, 5-118x16-1/2" Self-weight of 19,47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 Crit eri on Anal' as Value Desinn Value i se/Des n Shear iv - 54 Yv' - 305 fv/Fv' - 0.18 Bending(±1 fh = 488 Fbi = 2297 fb/Fb = 0.21 five Deflin 0.05 = <U/999 0.52 = L/360 0.09 Total Defl'n 0.14 <12/999 0.77 L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CO CM Ct CL CV Cfu Cr Dirt Notes On L04 Fv' 265 1 ,15 1 .00 1.00 - - - 1.00 1,00 •1.00 2 Ftai+ 2000 1.15 1.00 1.00 1.000 0.999 1 .00 1.00 1.00 1.00 - 2 Fop' 650 - 1.00 1.00 - - - 1 .00 - Pi' 1u6 million 1.00 1.00 - - - 1.00 Erni ' 0.85 million 1.00 1.00 - 1,00 - 2 Shear : LC 02 - D+S, V , 4441, V design = 3070 lbs Bending(4) . LC 42 - 003, M = 9454 lbs-11 Deflection: LC 42 - D9S CI- 3070e06 1b-in2 Total Deflection 1.50(Doad Load Deflection) + Live Load Deflection. 6D-dead S-snow 1,4-wind 7-impact 0-55nstruction CLa-concentrated) (All L. are listed 110 the Analysis output) Toad combinations: TCC-113C DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT fit WoodWorks WITWANt I5 WOOS O(Stti June 28,2010 10,50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 bl Dead Axial 1539 (Eccentricity - 0.06 in) 2-b1 lif.Live Axial 2089 (Eccentricity 0.00 in) MAXIMUM REACTIONS(lbs): yiefwz: r?-11Wt:::°1W12'* i0; 4*'*it'Veq;r4PPYI:WIt *A.01P:44: 44t:- /- -1--‘1W4f#24441,3:f4 Cr 8' Lumber n-ply, Hem-Fir,No.2,2x6",2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener nails;Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld; 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial to - 221 Fc' = 980 tc/Fc. 0.23 Axial Bearing to - 221 Fc* - 1644 fc/Fc* 0.13 ADDITIONAL DATA: FACTORS: F/E, CD CM Ct CL/CF CF Ctu Cr Cfrt Ci LC# Fe1300 1.15 1.00 1.00 0.596 1.100 - -. 1.00 1.00 2 Fr:* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 - D+L, P [[ 3655 lbs Ki 1..00 (0)dead L-lire S-snow 1#-wind I-impact C4--construction CLthconcentrated) (All LC"s are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT I I I W oo War s. sonwA.,,o.WOOD firtitiN June 28,2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1b12 Dead Axial 514 (Eccentricity = 0.06 in) 2-b12 Live •Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): pr.,44,„yzir ,;,-/ilrim..#'4,4e7wAr-i -4-74,74.#.4rAT44-4z,),-:=1,-,-;.4 .,7,z :•et--poPc.-n'-'.'"- flsftt,,,,yfS.g 0 9' Lumber n-ply, Hem-Fir, No.2,2x4",2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 Fe' - 380 fc/Fc' = •0.49 Axial Bearing fc - 185 Pc* - 1495 fc/Fc* - 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC4 Fe' 1300 1,00 1,00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC 42 = DiL, P = 1942 lbs Ft - 1,00 (D=dead L=live S=snow W=wind lwimpact C-construction CLd-concentrated) (All LC's are listed in the Analysis output) Load c4(*inations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT ill. 00 or s° SOFTWARE TOR WOOD DEnsx June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 11)21 Dead Axial 5634 (Eccentricity = 0.0.Q in) 2 b21 Rf,Live Axial 7021 (Eoce9tricity = 0.0Q in) MAXIMUM REACTIONS (lbs): 0' 8' Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld:1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc - 420 Fc = 548 fc/Fe = 0.77 Axial Bearing fc - 420 _ Fc* = 661 fc/Fc* - 0,64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC4 Fc' 575 1.15 1.00 1.00 0.829 1,000 - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC 42 = DLL, P = 12705 lbs (D-dead L=live S=snow W=wind i=impaot C=construction CLd=concentiateri) (All PC's are listed in the Analysis output) •Load combinations: ICC=IEC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT W ill 00w or s0 SVO/Witilfrk WOOD Dt814,# June 28,2010 10:52 044 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs.psf,or plf) Load Type Distribution Magni tilde Location MI Units Start End Start End 1 c35 Dead Axial 1940 (Ecceetricity = 0.00 in) 2-e35 Rf.Live Axial 2853 (Ecce;tricity c 0.00 in) MAXIMUM REACTIONS(lbs): , "'%,-..0/%0,'•%'IV. --,,OA 74.-;-;•,,,,,,'(j.-'4,•,-,;,-,,T,-,,x„7w e,-4,1-L.--,,, „--,,,,---- -;--4,,,e,,e,;.;?,,,,,-;;;;,*,4'"%% ,— %,",,'", cf%""4..%%,%d%.4•A''4'0.1 tit=c": "4*4,4" :414412 "'‘I': 4-44444 / A4A4 ';'% —;!,5 % 9 0' 9' Lumber n-ply, Hem-Fir, No.2,2x4",3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb:1.00 x 9.00=9.00[ft];Ke x Ld:1.00 x 0.00=9.00[ft];Repetitive factor; applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial to - 306 Fc' •= 363 fc/Fc. = 0.84 Axia/clisaring fc - 306 Fe* - 1719 tc/Fcr - 0.18 ADDITIONAL DATA: FACTORS: F/F. CD CM Ct CL/CP CF Cfu Cr Cf rt Cl LC8 Fe' 1300 1.15 1,00 1.00 0.211 1.150 - - 1.00 1.00 2 •Fe* 1300 1,15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC ii2 m Dili, P m 4823 lbs Kf - 0.60 (Dedead leilive Sesnow W-wind Irimpact Ceconstruction CLdhconcentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1141 WoodWorks® fortWA41 FOR WOOD raoGm June 28,2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS lbs,psf,or plf) Load Type Distribution Magnitude Location ift) Units Start End Start End 1045 Dead Axial 1940 (Eccentricity m 0,00 in) 2 c45 Pf.Live Axial 2853 (Eccentricity - 0.00 in) 31)22 Dead Axial 807 (Eccentricity - 0.00 in) 4 b22 Rf,Live Axial 763 (Eccegtricity - (1.00 in) MAXIMUM REACTIONS(lbs): VI$.4 ,":7+:040,,Ve,fete c POT'f3rC47141 ; 0;1 " 0' 8' Lumber n-ply, Hem-Fir, No.2,2x6",3-Plys Self-weight of 5.11 pff included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[11];Ke x Ld: 1.00 x 8.00=8.00[ft Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc - 259 Sc' - 439 fc/Fc' 0.59 Axial Bearing fc - 259 Fc* = 1644 fc/Fc* - 0.16 ADDITIONAL DATA: FACTORS: FiR CD CM Ct CL/CP CF Cfu Cr Cfrt Ci EC4 Sc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC 42 = D+L, P - 6404 lbs Kf - 0.60 (3=dead L-live S=snow W=wind I=impact C-construction Chthconcentrated) (All LC's ate listed in the Analysis output) Load combinations: ICC-IRC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. ... ,,,.,4, HarperotfP ,._ ,, Heterson COMMUNICATION RECORD Righellis Inc. Th.,,_ "'WV _j MEMO To FILE PHONE NO PHONE CA,L MEETING 1 -'-' -0 :21 e o4 7:7 ........ n (--1 (7- c 6, ..._ . , ......— w 2) ,..._ (:)--- 9— ; 1 Ls-. r S ,..r..,, ,..., p...) (il 0 (_„.....r1 ,.... ,, L< .(-- (77: ...) z 6 ,c) CJ ? COMPANY PROJECT 1% 1 Woodli1A/_: orks® SOH WA Itt PM?1V000 Ilt.,IGN June 28,2010 1019 b25 LC1 Design Check Calculation Sheet Bizet'7,1 LOADS (lbs psi,or pit)pe: Load TyDietrihbflon Magnitude 'lunation 127L Unita - wn ft2 2,552 bed 4 4P- i 9272 Dead Partial 1M 11343 610 On .7 13.90 14,60 pjr 244-) 3T. 12,,4!611 493.4 493.7 43,00 44,50 pit ! 1 - 544 ' 935 ' 0.62 4.5,n pit-Z'24 Snow Partial DD 447.5 467.5 0.00 4.50 pit 9.72c14 Dead feint 1071 7,00 !he 6_4414 dnow Pnint 1001 7.011 ',be 11_c15 Dend Point ittx4 93,00 lhe Snow Peint 1 Mfl 43,00 !ha Deed Paiti41 VD 539.7 479.7 14.50 16.40 p11 147_2;73 Snow Partial UD 34,1,7 492.4 14,90 16.910 bit 1, 401 Dead Pntfidi CD 443„7 442,4 5..50 7.ee pit 129_5414 Snow Partial Di. 493.7 493.7 5,ott 7.00 pit 1 1.1_w75 Dead 4,5i-tip! 1114 9.79 7 579.7 4,'9!1 5.5e pi r Snow Paitini 0D 993.7 493,7 4,TH 4.40 pit Q Dnad Pilr, I UD 4/.7 11.1 0.114 4.59 pit 16_342 Live Partin! 00 1 Lie.d 1E0,0 0,3u I.„1133 pf. , - Deed Partial 1.10 43.7 47.7 4,50 5,50 pit I 311'11 I 3 !eve Partial CU 160.0 L60.0 4.53 5,50 plf 19 1,14 ecad Partial nb 17,4 47,7 7.50 13.00 pit 20-141 L.Ve. Partial UP lOo.0 to0,0 7,50 13,nu pif 21271144 Dond Wartiel UD 47.7 33.7 5,3n 7,60 pft 22:2145 Live ear1,41 UL! 160.0 160.0 5,9n 7.40 pit 23 944 Dead Piati6i UD 47.7 43,1 93,00 14.5o Of 21-1,46 4,290 Pantlai 41D 160.0 1660 23.36 14,40 pif 25-747 4,1bod Pio-21a', UD 17.7 3.7.7 14,50 16.00 p'!f 26-444 Live Daitiai UD L69.0 160.0 /4,50 96,34 plf 20A WIDd !Wain!, -49b0 0.00 ibe 203A.1 W!nd Point -7960 7.09 ibv 20313,1 Wind Point 1940 1X,on ion 20313.2 Wind PpLut -7960 44,,Cv 3 . MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) k..A I Ot tgl ntad 4323 Live 71..2 Up1,44 =, 24511 'iota, 12531 nonniba, . 3197 Load Cebu ! 41 46 Length 3.41 2,46 Giulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight.of 17 7 pif included Iti loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005*: CiiiteliDe Apfilyibbv 7eine Deaign Value Atublefit/504940 Shear ! fv . In6 ry, = 394 ' 142744' - 0.15 Bandtbd'.i1 Ch - 1906 Lid 2760 I'Ditt!' 0.72 132e 1.21fi'n 0.3i . L/739 0.62 = 2/744 4.6! ,t-,; :3,„ - 9 6q 9 •,,I7I:i 0.If1 1,0240 0,85 -, 0 ., f - --- ADDITIONAL DATA: 246011. P1340 C13 tt CL CV Cfn Ur Cfrf, Note-, Cr! 14114 Fv! 265 1.15 1,00 7.04 - 1.0n 1.00 9.00 4 1.11,,, 3:3 .06 3)=L;, 3 3344, V 1333Lg3 I333 1,, De.lin,Lite, LC 22 !-- in„12,!Lien F f 233,33,. b.,n3 fief:0 I: .:f 0 ff f f000ff ff fi,,,:i 1 ,33,3,3:: 113nonw,rent:on f:Lff f 00 f0.0:0 I 0,00fn Lund cont3ruLltnid 112,9. 1114, DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application 2,Giulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSUAITC A190 1-1992 3.GLULANti bxd s actual breadth x actual depth 4 Glularn Beams shall be laterally supported according to the provisions of NDS Clause 5,GLULAM:bearing length based on smaller of Fcp(tension),Fcp(compX), (//1?:0 COMPANY PROJECT seit WoodWorks® co rtw4Af FOC WO©D D£SWN June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Typg %r:;#ivy ti lion Magnitude twoution .rt Unils Siarb End Star4 End W79 ._.u�'. ?-7r`._ il) 539. 532.V `'.5.00 44.59 f A 4-u26 Dead Partial 00 535.5 535.5 0.00 4.470 plf .i-^: DeaM Paint_ 1074 7.00 scs 5 Dead Point 074 13.00 lbs w Dead PaiiMibi. DB 535.7 539.7 14.50 16.00 cif 074 Dead Partgal UP 445.7 4 3._ 5.60 7.00 pi 75 Dead Partial U0 539.7 539.7 4.50 5.50 Galt 05_8742 Dead Parbial UD 47,7 47 0.00 4.50 plit 7 48 r f afi Pariidi 8D 47 4-50 5.50 plf 19 j44 Dead ilar4ial ,tDr 47 47.7 .50 12,00 F 5, 2? 1 d } ri i .(,J 47 47.7 5.50 7.50 pli 2? 16 Dgad Parilal aD 17.7 47.7 3.O 14.50 pif 25-047 d rt 1 U; 7.7 7.7 14.50 16 z ill 208A Wind Poin7 7960 0.00 lbg 20471.1 Wind Polni_ 1960 7.00 ,n Point 7250 13.00 ibs 2032,2 Wind 80Ant -7960 1.5.00 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) ,„L„„<„„„ ,- . 1111- � tea.-.,,. ., �..,?` n.� .S�N,. r ...� G ; 10' 161 boad 43213 1101 ilme 330n Uplift 8458 ef7 4101 Beartna: Dostii Cobb 48 4 0. 31 zg dig 2,27 1.23 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress(psi)and Deflection(in)using NDS 2005 Criterion Analysis Value Desi n Value Anal sisinssiin L.ve Defiln -9.30 -_ Shoup flu 90 A30 289 fAlltV' 0.29 2 0.5 ; 0,57 isi n u 909 0.00 , 30 1210 ..04 ADDITIONAL DATA. Fv` E7 0,90 1.00 1,00 -- _. - 1,00 1,00 1,00 7b'** 21.0 0.30 1.00 ,00 -1.000 1.000 1,00 1.00 1.00 100 - millionta:p. 650 .00 1.00 - _ 1.00 - - 2 r 17,87 LA D only. V 1222. V design - 7b77 Uounigfili): IC 41 D only, a 15967 lbs-77 r , ,on . d , .< ., iar )'-, ,v load .. .._ s, - .; .. v t-. ',a ,p ono, io f. c no ..3. :x. . ..1111+ � � . . -impact: .. ioad fichhinuiip-h: M28, IOC � t ........ 1111_.. DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2..Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3,3." 5,GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp`n),. (112)' COMPANY PROJECT 0.111.111 OD I I11Wood Wo r ks SOFIWANC 1-0k WOOD fiEsiGN June 28,2010 1020 b25 LC2 Design Check Calculation Sheet Sizer 7,1 LOADS (lbs,psf,or Of) Load Type eIntrIintIon Magnitude tatatinn Iftj Uftita ' Start End IItefd tsd 1 w72 Dead Satti41 un ,3.71D.7 s39..7 43,0g 14,53 plc 2-w-0 Snow SiipLidi UP 493.1 493,/ i3.03 14.50 pit 3-4,28 Deed earfisi US S35.5 Si15.5 0,00 4.S0 pli, 4 a24 Snow Partial UP 437.5 427,5 P.00 4,50 plf 5pcI4 Peed en:01. 1014 6 ,:,,,i .7irICA4 Point 1601 1.09 Ite Dead Sain1 1014 14.00 Its Snow Paint 1P01 13.00 Pie 9 w73 Peed nart1a1 CD 539.7 S39,7 14.50 16,00 I4 1-0 wi,:i Srii,4 Pa.C-L,]. UP 493.3 1e3.7 14.50 16,a0 nit 11,w31 Dead Pari,a1 SD 143,1 443.7 a,n0 7.00 pIf I 9 sw74 Snow Pattipf IJD 493.7 493.7 4750 7.00 nli 13_,435 5ndd Pe,d:al id4 539,7 539,S 4,a0 5.50 plt 14 pia Snow Palfigi UP 154.7 193,7 1.50 5,40 suf la-142 Pried Partial PP 47.7 4'2,7 0.00 1,50 pif 16312 Live Pettie, UL, 160,0 60.0 0.00 4,,in pi 19i, ,1,1 L,,,,,,i Pattaidi 110 47.3 47„, 7,50 13,011 p11 20pj44 17 vs PatUndl Pe 160.0 160i0 7.1,0 I3PPI elf 21, 141, Dead PastiP1 ae 11.7 43.9 5.50 i.50 Epi Lii.,.., Partial PI; 165.0 160..0 a 1,0 7.50 tif 23 443 iie6d Partlai UP 47.1 L7t7 13.00 14.30 pi4 24-1,4e Lisa Pailaial UP I60.n 133,0 13.00 14.S0 e1i 23 147 Desd neart,eI up 47.7 4-7,7 14,30 16.00 pif 361147 Live Pettddi VD 160.0 160,0 11.55 it.04 '511 2n4,4 7tne goad 7960 0.0i, iln, ' 2031,1 Wind P,Dint. 1960 7,00 lbs :'0"iii,: Wirdi Po 01 -39e0 13.00 Pup 20,113,2 Wind POLIO. „, 19(,0 16_00 i his MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): .. . it4 Flit A A i Cr 161 Peed 1326 ,..ilii Us:111 2321 Tufal 9314 11364 giparang lined Pomb S6 _ Lanipib 9,53 Glulam-Bal.,West Species,24F-V8 OF,5-1/8x15" Self-weight M 17,7 Of included in loads; Lateral support:top= o11,bottom--at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criffrifin Anstyniu Value aetIgn Suite ,Analvt,enDasign .. Shear iv 114 Tv, - 30t C4731vi s 0,45 Bandlng(i fb e 9949 Et' . 3544, fb417721 0,37 tive 5g5IIn 0,42 f/454 0.33 . L/360 0,79 Total Lieil'r: 0,69 - 1127i 0.40 4 LitS10 0,91 ADDITIONAL DATA: FAC4771111, dif id) P14 ti Ci C,„? C:f,, ,-,, C.1,",,,t Notes C, 1,Ci-i Ey' 26t 1,15 1,55 1,04 - - - 1.00 4,00 _00 4 51,:al di100 I.na 1.0a 1 OP 1.300 1,043n I,nn 1.0C I.00 Fein' 0.1,IS pillicn 1.00 1,50 - - - 1,90 - il Stip, , tiii de DiS, V 8344, 7 dan]en 4 f443 115d Pandingi•i, L7 S4 = IfInfaiiitind), s 44223 15,41s, PefIcai,an, 7P SI Ps.35,13174,WI ni ' 2534,05 tb is2 754,1 Datiect5en 0 1,041iSead tnsu notfactinn; , tide dead faftnition. (1, dead t I.Pe n 6,,,,, ',4 iana , 'spies n 55,u-3,p:tits Sid concanIiptad) (1: Lc:,, a r,. 1..,t.,ii toed suningfianit Iiiit-IRC DESIGN NOTES: 1 Please verify that the default deflection limits am appropriate for your application 2.allure design values are for ma rat conforming to AITC 117-2001 and manufactured in accordance with ANSUAITC A190 1-1992 3,GLULAM:bad----actual breadth x actual depth, 4,Glutam Beams shall be laterally supported according to the provisions of NDS Clause 33.3 5,GLULAM:bearing length based on smaller of FcMtensien),FcMcomp'n), COMPANY PROJECT di WoodWorks® SOFTIVISItt f On WOOD Ai VICN June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Mintriburion Magnitude Locution Jai linias Sausa End stafF End 1_3172 Dead Dattial. "JE 539.3 S3M '3.00 li.5O p16 3 w28 Dead P3adial OD 535,5 535,5 0,00 4,50 mil m 5c514 Dead Point 1074 3,00 iii3 7 015 Dead Point 1074 13,00 Mis 137iD73 goad Dart1a] UP 529.7 539.7 14.50 16.00 pit 11 w74 Dead Partaat UM 443.7 443,7 5.50 7.00 pit 13-6/35 Dcad ParMaal DE 539.7 539,7 4.50 5-50 pla m 15 142 Mood Partial 0D 17.7 47.1 0.00 4.50 pit 17:113 Dead Partis3 00 47.7 47,7 4,50 5.50 pit 19 144 Egad Partial 1.11 47.7 4131 3.50 13.00 pit 51145 Dead Partial UM 47.7 47,7 5.50 7.50 pit 23-j115 Osid ParMiP1 05 47.7 47.7 13.00 14.50 pit 25 147 Dead orrial UD 47.7 47.7 14.50 16.00 pH- 2053A Wiad Point -7960 0,00 Ens . 203A,1 Dine Poist. 1960 7.00 ins 2038.1 Wing Poin1 -7960 13.00 ibu 2038.2 Wind Poird 1960 16.00 'Ds MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : A ICY 164 , - • Dead 4328 1101 tive 3891 0piift. 2321 • Total. 1322 7135 Pa/axing: . Load Comb #4 42 Length 1-30 2.23 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Critmaimn ADalmitis Vaium 'Manion Value Analinin/Deaion Sheol Fv1 - 266 to/Ev1 u 0.20 Dending1:1 fb - 190i Pkii v. 3840 thlait' w 0,50 iiive Deal 's, 0.10 - <M/999 0.53 L/250 0,IU Tata] Perlin 0.37 L/5213 0.80 . 3/240 0.46 ADDITIONAL DATA: VACTORS. EWE CD CM Ct 133 CV Cau Cr Cfrt Notes Cn LCii Tm' 265 0.90 1.00 1,00 - - - - 1.00 1.00 1 .00 1 Eby: 2400 1.60 1.00 1.00 1,000 1.000 1,00 1,00 1.00 1.00 - 2 Pmin' 0.85 million 1,00 1,00 - - - - 1.00 - - Shear : LC iii D Only, V - 4728, V design 3573 ihn iien31sg(ii : LM 42 - .140iW, M = 30517 ibs IL nealection: LC 42 - .60M1 El= 2591o06 '6 in2 Usta: Detiamtima 1.00(Dhad !mad Opt:cation) : Live Lead Defamstien, 10-dead f, Mgr:. S MlOw W wind isisiiidsi, CD sowiiiLsisiiisn Cfsd iswwwwitLatiedi (Ail LCis sisi iistisd in tilw Andiysis l,VX:pUt) Lood combinationu: TCC MaC DESIGN NOTES: 1,Please verify that the default deflection limits are appropriate for your application, 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth, 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3, 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 001101% I I I WO od Wo r ks0 SOPIWARt•OJ t W00.11 Of St{,tv June 28,2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7,1 LOADS (lbs,psf,or pit) Toad Type Distribution Magnitude Location [ft) Units Start End Start End 1w37 Dead Partici 0D 535.5 535.5 10,50 11 .00 pit 2w3/ Snow Partial UD 487,5 487.5 10.50 11.00 plf 3-0#38 Dead Partial UP 535.5 535.5 11.00 14.00 olf , 41n038 Snow Partial UP' 487.5 487.5 11 .00 14.00 plf 5039 Dead Partial UD 535,5 535,5 11.00 15.50 plf 6 w39 Snow ParLiaL UD 487.5 487.5 14.00 15.50 plf Wl.1 Wind Point 13500 10.50 lbs 141.2 Wind Point _-13499 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : i IV 16-81 Dead 593 2391 Live 1182 Total 4704 8392 10780 Bearing: I Load Comb #4 #3 1en9th 1.41 3.24 Glulam-Bal.,West Species,20E-V7 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Cdsidn Value Analysis/Design Shear 2 fii = 181 iv' = 424 fv/#01) Bending(s) ft = 2526 Fb' fb/FW - 0.79 Live Defi'n 0.47 - L/395 0.52 #, 1",/360 0.91 -6 , - 7a1 ,,,,,,,,,1, n 0.56 = L/331 0,77 = L/240 0.72 ADDITIONAL DATA: FACTORS: 8/F: CD CM Ct CL CV Cfu Cr Ctri. Notes Cn LC# En' 265 1.60 1.00 1.00 - - - - 1.00 1,00 1.00 4 10e' l 2000 1 .60 1.00 1,00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fop' 650 - 1.00 1 ,00 - - - - 1 .00 - - - F' 1,6 millien 1.00 1.00 - - '- 1.00 - - 4 Emin' 0.85 million 1.00 1 ,00 - - - 1 .00 - - 4 Shear- : CC #4 - .601W, V - 10643, V design = 10194 lbs Bending(s) : LC #4 = .6D5W, M 18956 lbs-ft Deflection: CC #4 = .60FW 105= ,. 30/0006 lb-in2 Total Deflection - 1.50(Dead Lead Deflection) i 121.ve Load Deflection. (D dead I, live S snow W=wind I=impact C-construction Clld=cencenLrated) (Al.). SC's aro listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190,1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n), 4..- 2 Li COMPANY PROJECT 00" I o r s® SOF MARI HD?WOOD 0f.S4ON June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft1 Units Start trio Start End 1 w37 Dead Partial go 535.5 535.5 10.50 11,00 pit 3w38 Dead Partial OD 535.5 535.5 11.00 14.00 plf 5039 Dead Partial OD 535.5 835.5 14.00 15.50 pit W1.1 Wind Point 13500 10.50 lbs Wind Point -13199 15.50 Los MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : .. CTCL1LLTCC1L ;7- 10 150e Dead 563 2397 Live 41828247 Total 4704 105E3 Bearing: Load Comb #2 it 2 Length 1.41. 3.18 Glulam-Bal.,West Species, 20E-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion. Analysis Value Design Value Analysis/Design Shear iv = 181 FEP v 424 fv/Fv' - 0.43 Bendrng(1) th 2526 Fri1 = 3195 = 0.79 Live Oefl'h 0.47 - 1/395 0.52 - 11/360 0.91 Total lacti 'n 0.56 1/331 0.77 - L/240 0.72 ADDITIONAL DATA: FACTORS: F/F CD CM Ct CL CV Cfu Cr Cf rt. Notes On T011 Fv265 1.60 1.00 2 .00 1.00 1.00 1 .00 2 E5' 1 2000 1.60 1.00 1.00 1.000 0.999 1,00 1.00 1.00 1.00 2 Fcp' 650 1.00 1.00 1 .00 E' 1.6 million 1.00 1 .00 1.00 2 FmLn' 0.85 million 1.00 1.00 1.00 2 Shear : 11.: #2 .6D434, V = 10643, V design = 10194 Its Bending(*) : DC 42 = .604W, M = 48956 ititleitt2on: LC •42 .6132-W FT= 3070006 lb-1n2 Total DAffection 1.50(Dead Load Deflection) Live Load DefiecLion. (D-dc:,d L-live S snow W-wLnd T=Impact C-construction Old. concentrated) (All LCs are 11s1ed in the Analysis output) Load ceratdruations: ICC-IPC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190,1-1992 3.GLULAM:bxd=actual breadth x actual depth, 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3.3. 5.GLULAM: bearing length based on smaller of Fcp(tension),Fcp(comp'n). (efi COMPANY PROJECT fit WoodWorks® SOF7VAR(IWWW001)DMW June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude 10cafton !ft] Dnitu Start End Sfaft End 1„„01291 'Dead Partial UD 535.5 6313.5 10.50 11.00 DIE .0w37 Snow Fartiai ED 187,5 487„U 10.50 11,00 plf TI El Dead Dantia 00 535,5 515,5 11.00 14.00 pli 4 w38 Snow Parftal 00 4E0.5 197.5 11,00 114.00 pif 59i29 Dead Partial U0 535.5 535.5 11.00 19,50 plf 6 w39 Snow Pa,wiiwl Up 48195 4E37.5 14.00 15.50 :tilt WT.I Wind Point -13490 10,50 IUD W1.2 Wind Poinf .„ 13500 _ 15,50 _ lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in): ;:e",_;:;; ;;; :,e'":„-,:;,:;;;;;Le;je:-.:1"..-;e:Zeli'Ate-;eZZ-----!:,-,,--,:i.-:- -",:::- e',e,---t-,'-f- •,' :- :---":::::::-e:e-- ----,: e-- -Te: -::,-::-",,,e-e-:;e;:e7::::::;-:;re: A / ICY 15'40 Dead 593 71391 Live 393 2044 001111t. 3945 T647 ToLat 976 1447 Bearing: , Load Comb 92 42 Length 1.33 Minbearing iength for beams is VT for exterior supports Glulam-Bal.,West Species, 20E-W DF,5-1113x16-1/2" Self-weight of 19A7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criferiou Anaiysto Vaine Deniqo Value Anatvnia/FooTno FOnar fv - 136 Dv' = 424 fv/196' A 0.32 DendingAil tn - 486 Et' - 2292 fia/flt* - 0,21 flbriding(-} fb - 0:93 Fit' t 2940 flE/Eb. A 0.75 Tian Ditil10 0,51 - 1/362 0.52 - 1/360 0,92 Total Defl'n „ 0.42 L/411 0,TT = L/249 5.54 , ADDITIONAL DATA: FACTORS: F/E CD CM 6: CT. CV Cf:: Cr Cfit Notes Cn :"".4 265 1.60 1.00 1,00 _ - 1,00 1.00 1.00 4 Fb1i 2000 1 .35 1.00 1.00 1.000 0.999 l.00 1,00 1.00 1.00 - 2 Fb1- 2000 1.60 1.00 1.00 0.919 1.000 1,00 1.00 1.00 1,00 - '1 E1 1 ,6 mil1ion 1.00 1.00 _ - - 4 Flin1 O.RO militoo 1.00 1,00 - _ - : Ao _ 1 Ellani: : LC E 4 .6111W, 9 7 6 4 7, V cbiwwi b,rE - !b i 1 i b s f90631132('): LC 03 LAS. M 9151 lbs-ID fiendIogi ii LC E4 ,F,D,W. 13 42196 ins-fa Foil/n:1_10n, LC ii4 .61lAW ET 9070e06 Ibtio2 fola1 Le110:31 19n 1.50(Dead Load Deflection) i 1.1vc Load Deflection. in dnad f Jive S Snow W wind 1 imnarl r constE,93 Lon CIA coocentiatnd) (1E11 TC19 a:A liatitd in tbe Aoalysic output) Load aomninaf:nnsi ICC IBC DESIGN NOTES: 1,Please verify that the default deflection limits are appropriate for your application, 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth, 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3 3.3„ 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(compin). COMPANY PROJECT YR WoodWorks® 501-/WAR/Mir WOOD t7Y516N June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 v3 7Dead Partial `3D 535.5 535.5 10.50 11.00 plf 3...w38 Dead Partial IID 535.5 535.5 11.00 14.00 plf 51w39 Dead Partial US 535.5 535,5 14.00 15.50 plf W1.1 Wind Point -33499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : r'... .. g .. ..1 . .. 9. -5,x=1" ''. s17. r.k. . :; ... .L:£ ,.:.:L.c:.a.,w�Y,,a"'; ..�.p-ovr4.,, ..p'w' -'. 9r. cy 154 2397 Dead 583 Liver47 Uplift. 3945 764 Total 563 7 Load Comb 41. lifinoTh 0.50* 0.72 *Min. bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 Criterion it erion Lna_y .s Value Design Value Analysis/Design Shear iv _ 136 Fe" f 424 fv/tv' = 0,32 Bendingf9) tis -- 267 Ft' 1797 lb/tb' -- 0.15 Bending( .) fb 2193 tn' 2940 fb/Fb' = 0,15 Live De.`i'n --0.51 1/362 0.52 1/360 0.99 Total DE-'fl'S7 --33,41 = L/441 0.77 - 3.,7213 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM '.:'. C., CV Cfu Cr Cf rt. Notes Co Dli Fe' 265 1.60 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'± 2000 0,90 1.00 1.00 1,000 0.999 1.00 1 ,00 1.00 1.00 1 FL'- 2000 1,60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1..00 - 2 Fop' 650 - 1.00 1.00 - - - 1.00 1.6 million 1.00 1.00 - _ - 1 .00 - - 2 Emin' 0.85 mdllion 1.00 1.00 - _ _ _ 1.00 - - 2 Shea. : LS {t2 .0+W, V =- 7647. V design -- 7647 lbs only, N = 5167 lbs--it SE �1 cStf1 LC #%1 �' F ndini( , : LC 42 _ 67AiW, M - 42496 lbs-ft Deflection: LC f2 - 6 . +14 101= 3070e06 lb-,in2 Total Deflection = 1 50(Deed Load efi ion) Live Lead D :t ection. VD-dead Uelive S snow 3D'wind I -i_mpact. (1-construction CLct .,.ic er C aced ) (All L7 are listed in the Anal7si..s c . _pu't) . TCC-IBC SCC-_5... DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2,Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3,GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3,3. 5.GLULAM: bearing length based on smaller of Fcp(tension),Fcp(comp'n). y Harper Project: Houf Peterson Client: Job Righellis Inc. W'114,17.�4�,r 1 Designer: Date: Pg.i I Wdl 10 lb 8 ft 20•ft Wdl = 1600•lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl ip:= 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 .= 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Smi := FVS1 2-Sms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1,ASCE 7-05) Aap•Sds' z Fp;= R 1+ 2h WP EQU. 13.3-1 P FPmax:= l.6-Sds•Ip.Wp EQU. 13.3-2 F.min •3.Sds•Ip•WP EQU. 13.3-3 Fes:= if(Fp > Fpmax,FPmax,if(Fp <FpmimFpmin,Fp)) Fp =338.5171-lb Miniumum Vertical Force 0.2•Sds•Wdl=225.6781•lb r„,-1-2 9 44 Harper Project: Houf Peterson Client: Job# Righeilis Inc E 4G111,-"CRS ,1AN1,114 Designer: Date: Pg.# A11[1,,APE. 11,-Lr'1,,5111,(11Y`li Wdl:= 10.—•8•ft•20.ft Wdl= 1600-lb 112 Seismic Forces Site Class=D Design Category=D Wp:= Wdi 1p:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 •.= 0,339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h 32 Mean Height Of Roof Fa:= L123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) F.s/:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms•.= FSs Smi := Fv•Si 2-Sins S • Max EQ, 5%damped, spectral responce acceleration at short period dS 3 Exterior Elements &Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1,ASCE 7-05) .4an•Sds•In ( FP r• 1 + 2•—}W Rp h P EQU 13.3-1 Fpmax:= 1.6.Sds•Ip•Wp EQU, 113-2 Fpmin:= .3.Sds•Ip•Wp EQU, 13.3-3 if(Fp>Fpmax,Fpmax,if(Fp<Fpmin,FPrnin,Fp)) F =338.5171111 Miniumum Vertical Force 0.2.Sds-Wdl=225.6781-lb rr.;)219 zy AI k k DAT ET 753(Li 30io Ti0E3 NO cgm..„.09 0 L„ * _ PR0505- RE, L9 z CD (-)J a ki r or; PU1 6.0 5 = 3t # --- IL As r--‘77- , Zoa Li f--- LO O 7 '..- 7 (,(659 5- it-511‹ • tt 0 ,..1 • < 0 O tii C= -1- =... Ggssict ..„,,. 3c14# ,...) z UJ 0 I 0 0 --TRQT17. Z 6 16-7- ,0 use_ 5trr-tp 0 - cc, t .,.... fr 2 4,, , ,..., O Ettit : --A— C r . tE Rit65.6 tt 0 ' lif 7 t6 ' 0 ) 0 R Ot I O 6,5 0..) ,• -.--4 IH4,-.., u E-0, —...= c,:i o .,0-1) .: Z Z /1.\\ -: \\tz,› Gi I-4 n A0 p: 4 0-hh ' 'Yo -314t. 1,2,t ::: c\n‘174 # iooq - .,.:,;. . -'1. •.1 ' x., :: (I: =In : 1 arr.." {.,,,i g,,,,,,> , ''''l 0 Z :2 )(.4 7 -'" 7 I ) = ;), '3' '4 ,:-,-,,„(,,,T„-> <7. ...---; ( - - '''' „.. _ ik, .. ,17 ,',,'•:„ (,R,.. g,4 I --) ,,, *d ,.,., le 1 I i. z. i .) , cis .,. i - cr, ".' 0 ti3 t ! t 1 . , .....u.„ . 0 0 .t.....—.... i I 14: 1,,)*11 ='' . ,_i• I- m 1c1 1 c") 473- CI*i:t Or3 TO „Ft F '--1 \ ON,1 .k...) (ttlt?c'trtk a0,,, 6)1X.k..,,c i t n Ar,-- K ,i. Id It tt = c: V cdS10S1--\\ z fi• l'.(.1 (II . 0 ,,1 ,t L 4_ccsfn)-5-47) * 7--64---k ,-9Nrf\ killodtd - 4 - V C4j1 4t.A.1 1 "e:7 1 ir * 3 ____ , .. . .... V ,_ . T. ... x O• m ,, e e g 2 1 = n › x Palm kl`rtc'd ''-` (.1 ocky4tel)cq. 0.6.1) , . 0 17 1 L m K K 0 c\k-A.U1,1,1\-;73 ?`11) A.-1.1 ") ,;:iid 0 -11%.ziN 1 m --1 m 0 z F 1-31,41-oad P m 1 Z ,„„ __ :Ina rcmi d inigl‘MtV . . 0 b()",El a) t,oN eat- :As 0 1 at ' BY" Niiivit- NV'S\ DAT )t,1.41 NI 0 .Jos NO. 6- tiJ -ow 1 . PROJECT: REl "De L PQT. (,Or'i 1''''N "1' 1 El LI ...1 0 . LI Z r- LCD(?0,71 C.Pt — 1_ 4 0 I- W 0 .2 z i 4_ 200.0 ill N , 0 ce 6 o oz -z----- w i x 4. 0 I- 0 --z uce... 51ri\ e-ocr\ I-ViDu 4 I I To ‘res ,,, tf,'Y- or‘ . .> r- U 0 CLZ-S" , ) f9 c El 2 X 6 LI. z w 0 6 0 . Lc 11) Cr F_ 0. M., aoo4 (40‘‘ ) -zoo 44- , . * Bow 4tiKi . T-7.- Cboo itiNi ; p ..34. „ ; i i aa514, 4„. 400 ; RD04 0 d ; R(' niC„ ---,L,L -----> . I. Harper 511 P t• Houf Peterson COMMUNICATION RECORD Righellis Inc. To L. FROM ri MEMO TO FILE El PHONE No. PHONE CALL:0 MEETING:El M 13 40 PI 11 :4 2 P1 71 0 I: ii 0 al I‘ 37 9-3 d 0 cr, too 5 ....._100 0 „---\ .P. v4 41 0) d . (.1 1, 6 EC r---N, ....) eo.....— c..5. -c--- r) -i 0 -6-- 1 =I , 0 m 1 i 1 z. C 1 Cc”) _ C .....0 ------ .. . NilllMMMMMIMMMIIIMIIMIMIMIIMIMII.MIIMIIMIMMIMIIMIMMIIII.IIIIIIMIII narper ". * 14 Houf Peterson COMMUNICATION RECORD Righellis Inc. To El Friom L.] MEMO TO FILE E PHONE NO.: PHONE CALL:il MEETING:El X '13 7: f7 A7 0. c... tli O 7t g.) _11 C...1 -"V ....., N. 44 CA ."1 \ 'N. r 0 .--f tio .its... 1 's. f-4 o itt C o C.....C. -Cs Ss' rN 1— > I vi ?.., -q-- 7 10, ,...„,-,4 L.; I C., ..f. CI 1 r , 5.$1 s- w -u z 0 0 ("61 ro Z4 I 0 04%) '0 ".....-^ M'' ( COMPANY PROJECT ffl Wo1 � SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location Eft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : to' Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *ta m .bearing length for ms is 1/2"for exterior supports Lumber-soft,Hem-Fir,No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fir = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0,17 = L/360 0.20 TotalDefl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1,00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1,00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1I WoodWorks® sot»r4REFoxwooa oumm June 8,2009 16:27 Hand Rai12 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location (ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 p1f MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 51 Dead Live 125 Total 129 125 Bearing: 129 Load Comb #2 Length 0.50* #2 Cb 1.00 0.50* *Min.bearing ltaigth for beams is 1/2"for exterior supports 1.00 Lumber-soft;Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Valuel sis/Desi gn Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n _ 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - 1„00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - 1.00 1.00 - E' 1.3 million 1.00 1,00 1,00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 _ 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All Le's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. [ 1 r WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 22,2010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 251 a Ill 1280 L 1280 L 4965" 6376 442 0 442D 5445; 445-0. t 5 I:, 445 41: 400 4445 4,-0 12272089 L 1601 L 41 n 10481539 D 1074 0 455.5 0 550 0:5 4:0 44 50 55040, :0, 5.545 4,5 5550 : - 50 0 445 : 5 Of :1 0 75 L. .- 0 00 59 D 00 0 SS S 0SS 0 00 or /AS-0 0! 1408L 1232 L 514 0 556 D -.:- « 1080 L 640 LI ,t) 409D /44) 6 AM$ 99 DD ` 5 1522 L if-v) 99 D• ..:, . ,0 0 f 1 553 D 4440 c 98 D vl L 40 44 ,, 73 2192 L 04 1311 0 04 — 20 L i 'v)• L 55L 5 45 109 580 \'-- 021 L Ly —- 0450 2 1 D 5581 0 i-14013 5 145;13.6 63 .66,53 ir'C C,:;Ci".„,.:•C,c 5 cc 7604434(3167D;-;3-;::;;Dff r;,;',3 1'811141 6.711)1736)DDCDIDDDE EEEE-EE EEEEE EEL'6282ERIFEEEZ i 0'12' 44.'10'18'20'22'24'25'23'36 32 34'36 38 40 42 44'46'48'50'52'54 55'58'5.22 132 54 66'.58 752 72'.741 76 171 ,. 1 33 6 771 ' 1 1.1'0152 115212 2272,22126121315'3.3653463'11531414 4:/,:4,4 ti4i4'444 615 5615654515 1545615 62362666 54167f 7 717 57567 I'6 3(3.1 to L 7.).131 D FOCDT \NI CI\ L N*1 007 -V tomc t„.o ' ' \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 Concept Mode: React ioris at Base of Structure View Floor 3 : i7 ' 14 ; 1280 L 1280 L49"-G" 442D 442D 443 .0 f 5296 L 376 L 4/' 432813 4101 D a -t3 ;ri t,= Ji 0u 75 L 33 . , 59 0 U 34765 1036 L 40 44; 277 D 483 D 9D 6401. /4 _0 208 X774 L `, t, rr, gran 1 9903 1020 L ;�;..:, 368D 99D 043 98 D 10 o 2.2575 L , 2186L £ 3 1298 D ;`0YF '444 14,V 0,0 > ,r/ s £� •4 084 L 4. 94 LK f 306 Dia 4 I - 062 L J.;= 73 D 7K22,515 155 D 5647 D f 4> 5B45;t. 130750474004.20C/C664 (ECCI C £ £ CE §r £. D 1 ` s 1£. � kik 3 d 9z. §6 .7j R fE r o»6 4 f4 1 l E d.. 4 5 10 4 6 r' DO 22 fi 0 25736'1,2 c£ 06 37 740 "+4 fly 46'.€8 5 52 4 J 55 5IY 32 04 56 DE 72 0'2'3'4'5 ED 6051 1 12 1 EDD`222.2;22202-262544 6,2242,5227524(4.,24(4 45254744 f.,',,6!!'3 5., v 615'6I56555,6:6165565451617(7467:7,7552726— V ,.°.€ ,6K,, ;7„ .1 f5527.6— k '1isv NYOUT Plain Concrete Isolated Square Footing Design: Fl fc:= 2500-psi Concrete strength fy:= 60000•psi Reinforcing steel strength Es:= 29 5:— Steel modulus of elasticity Yconc 150•pef Concrete density 'Ys oil 100-pc fSoil density gall:= 1500 psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5647•lb Pdl:_ 'lotaldl Totahl:= 7062- b Pll:= Totalll Ptl` Pd1+P11 Pd= 12709•lb Footing Dimensions to:= 12-intFooting hickness Width:= 42•in Footing width A:= W idth2 Footing Area qua gall —tf'lcoac gnet= 1350 psf Pt1 Areqd Arcgd=9.414•ft2 < A= 12.25•ft2 GOOD gnet WidthCegd:= JAregd Widthregd =3.0'741 < Width = 3.50 ft GOOD Ultimate Loads �P¢k:= Pdl+ tf•A'"Yconc Pu:= 1.4•Pd1+ 1.7•P11 Pu= 22.48-kips Pu gu — qu= 1.84•ksf A R. Beam Shear bcoi 5.5.in (4x4 post) d := tf—2-in (1) := 0.85 b := Width b = 42-in V,:= 4)--4-NNTsi-b-cl V„= 23.8-kips 3 - b V, 2 (N.( bc41-b V,=9.77-kips < V,=23.8-kips GOOD Two-Way Shear bs Short side column width bj,:-= 5.5-in Long side column width b,:= 2-(b3 + d) + 2-(1)L+ d) b, 62.in 1-3,:= 1.0 + 8 -K3.b-d V,= 71.4-kips meAn° V,„„„:= (1)- b d V =47.48-kips 2 / \ Ny04:= qu-_b —0)„1 + d) V,= 19.42-kips < V =47.48-kips GOOD Flexure b — b,01 2 )21(2_2).b Mu M,= 7.43-ft-kips ta,:-= 0.65 b.d2 :— S =0.405-ft3 5-(1). ftriTsi Ft= 162.5-psi Mu fiS ft= 127.36-psi< Ft= 162.5-psi GOOD Use a 3'-6"x 31-6"x 12"plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500•psi Concrete strength fy:= 60000•psi Reinforcing steel strength ES:= 29000•ksi Steel modulus of elasticity 'icon 150•pcf Concrete density Ysoil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 4101•lb Pd1:= Totaldi Totalll:= 5376.1b P11:= Totalll Pt1:= Pdl+ Pll Pt!=9477.1b Footing Dimensions tf:= 10•in Footing thickness Width:= 36•in Footing width A:= Width2 Footing Area gnet gall — tf'yconc net= 1375•psf Ptl Aregd qnct Arco= 6.892•ft2 < A= 9•ft2 GOOD Widthregd:= JArcgd Widthregd =2.63•ft < Width = 3.00 ft GOOD Ultimate Loads U:= Pdl+ tf.A.-yconc P,:= 1.4•Pd1+ 1.7•Pll Pu= 16.46-kips Pu qu:= A ql,= 1.83•ksf Beam Shear 5.5.in (4x4 post) d ti• -2•in (1) := 0.85 b := Width b = 36.in V,:= (1).-4• fFFsi•b•d V„ = 16.32.kips 3 b bc0i) V,:- q, -1)2 V,= 6.97•kips < V, = 16.32,kips GOOD Two-Way Shear bs:= 5.5•in Short side column width bL:= 5.5•in Long side column width b,:, 2.(bs + d) + 2.(1)1,+ d) b0=r 54 in := 1.0 4 8 + —)• 14-- )si•b•d V, = 48.96.kips 3 3•ric := (b-2.66•Fc•-pi.b•d Va„ = 32.56-kips 2 / Ny444:= (N. b -kbc01+ d)2 V, = 14.14•kips < V,,„ = 32.56•kips GOOD Flexure -bcoi2] M = gut b 2 j .G}b mu=4.43.ft•kips At:= 0.65 c 1)-(12 :- S= 0.222 ft Ft:= 5.4).Vfc•psi F1= 162.5.psi M, — tj = I38.42-psi< Ft = 162.5•psi GOOD Use a 3'-0”x 31-0"x 10" plain concrete footing •V (re Plain Concrete Isolated Square Footing Design: F2 fc 2500.psi Concrete strength fy:= 60000 psi Reinforcing steel strength Es:= 29000.ksi Steel modulus of elasticity lconc:= 150'Pcf Concrete density tsoil:= 100.pcf Soil density gall:= 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totalll:= 2515.1b Pdi Totalcll Totalll:= 3606.1b Pll Totalll Pt1:=Pd1+ P11 Pti=6 1 2 1•lb Footing Dimensions tf 10 in Footing thickness Width:= 30.in Footing width A:= Width2 Footing Area gnu gall trlconc. (Ina= 1375.psf Pu Arco:= — %let Amqd=4.452412 < A= 6.25 ft2 GOOD Widthreo:= Width„qd=2.11.ft < Width =2,50 ft GOOD Ultimate Loads Pdl tr A' cunc Pu 1.4.Pdi+ 1.7.PH Pu = 10.74.kips Pu q := —A (4, = 1.72 ksf c2— Beam Shear b,01:= 5.5.in (4x4 post) d := tr—2•in (1) := 0.85 b := Width b = 30•in V := t:1).-4-gT-i-b•d V, = 13.6•kips 3 ib —buti V,:= q11 •b V,=4.39-lcips < V„= 13.64(ips GOOD 2 Two-Way Shear bs 5.5-in Short side column width bL:= 5.5.in Long side column width b,:= 2.(bs + cl) + 2.(b1 + d) b,= 54-in fl,:= 1.0 4 8 + Tsi•b•d V, = 40.8-kips 3 3.0, Vnmax := (1)•2.66.K•Tsi•b•d Vnm,, 27.11 kips 2 AyAw,:= qu-[b — (b,01+ c1)2] V, = 8.57•kips < V =27.134cips GOOD Flexure 2] 1, Mu:— clu' (b —2bcol) M,= 2.24.ft•kips 0.65 b.d2 = s = 0.185-113 F := 5•4:b- frcTsi Ft I62.5.psi Mu ft:= ft=83.98.psi < Ft= 162.5-psi GOOD Use a 2'-6"x 2.-6"x 10" plain concrete footing ----0(1/4..1 aOO J.o.,:c -...„.„ k),0c(0 or 41.30S y- 4-aosv_ PROJECT: I I RE' (2)CO- Z - foiq, Loath Q,t1SY, *6'fi Y--- 55t1y_ \oorilvti. 31PVitii 1(4.9 I 7 (tv 1N4 15($5!--1" )( Ns" if. 0 . ,...,,, , . . . .1_ li, , 0 2 1 ›: lil, Li —11 0 725+-4 1S1 (1.7t 0 ii 0 a O w u z w 9. Cieveaz Ovef vi-e‘i(9 w , di rws Cic.) - R_ - Mk: 1611,5 0 z , \ 2 PA(kw = (CL 1S0)(35)Cit 1 ,g9 ) 2 o 0ve-- ;z1 , r6c1:2 d z - xx ;xi ag45 - ncial . 47 — - — er 4.414tb e=,-- '1/4Lits- 6 R1-1- , . cA 71:-% 4O 4(a,q cvn---) • L I 4s vzsv xIS----0 z '34_05 2c.) 3 (ctsi) ..„. z , .. 4) . ..., .t.ii ..",...! OBenttey.Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:48 AM Units system:English File name:OAHHPR Projects\CEN-Centex Homes_3(3__9)CEN Plans\CEN-090 Summer Creek Townhomes\calcslUnit BIFDN\Front Load etzt _ i I M33=81.13(Kirnj M33=-23.24(Kip't1( Y h 1 k.C) Be nt(e jj` i"� Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10A9 AM Units system:English File name:©:1HHPR Projects\CEN-Centex Homes(309)10EN-Plans\CEN-090 Summer Creek Townhomeslcalcs\Unit B1F©N1FrontLoad 2 etzl M33=48.59(Kip'ft] II M33=-54.65Kip 'R� A s � 7...:;\.,... .' i)cii/„. .... .....` i . = .))))11)9 )))).).-7) („..72,6 f ./-1.7.,E)<2,0/ ( vr.'cf:///SW Q ) - . • "...kJ 1 ,/,......c,,,t,.../*(:. —7/.// ', 71 0 ,-Z., CD - cp -/iy-a....../0// -a!, r7 0..'i1.-N < "k-i-A sqt h g -z*-' ( zi, 94 ,0 - , . 0 (NJ A(20)420 -.-7, ):0L-t )A))..-x))04-Ai.i,q44)/0,000i 0)))y)))„„,\c.;z: ....?„, M1 0 -AO ' ' 'SS < +.„,'11 b (7-I-Z tt")'0 -51)( .ob.- )QQ-tr.)*,11. ).:DV,'('D LTE...47-k- , i9,(-9/ </cro'oi/1,,,/,%.k...ci\\) --:\o 1 -C----0.j . 1 -041 c?..k_Oi\ =cv I ''..5A e ( 71€qv 1 - S XY...../cer/ece71%.'TO?0100 '' 'JAN 0 • c-,-,) . i\l\tC2)t1 tO,( )(... X" 7 ((PD 0V)\47)'0) :::— X? ..,. ifT1 if)'11.4/14 Th '2„,.g. -1,r41 c)11'0 =54 *-n-.) in D SZ- ( .\) -n. LZ 1"` 0 (Dt :3..5.;CC2:0 1 Vlrg V l'Ir 0 0 Z 0 c--.1't)EC)- 0T2- ci id ..)-‘).)() = 13 x 10 rn m 0 cl it"-- g.' mi"' IP c-A.'127 C" INIC). › x r CI ,-- iv.....1_ -71. g24 m 0 Z -n Z ,.. ti.qic, Y'1 x . , El El ;0"E•ki:(14- V 001 1D3 road (3 V)'4f C\rap ora aor BY DATZ, JOG NO , • P ROJ Ec-r. ,. R E U M IT V3 -% C -Rea( Load J 54,5VA Li O -. 7-,,, tThi 1 2,730 , O 2 '14 LI if -I 0 X < 0 O td o Z - ill t 1 g LI'''''.1 T. ir a_ z o M or --H. d U M9,- DLC ) f a (4,3,-4) f (1.L.:&-.6) 7.- (IS 34 f Ci DL, _ Z 0 O 1 S(S1/44 S6 <44 AL (...L t 01 DL tAm _----- (.. , \V. wc 2 5 0 x,------., 2 ft 0 IL. Z M I Li C :94 4-A(6 A.T) — 9.-sit e . 0,,---n pt x (..62_, 1 0.0'i- ) + 00. '4''' 0• 1 , 1.4\ 1-: , C, (I-2,laa),--ia ) ts --- ,74,,,,,,,,, wia c (AaN) 2( ti,--)0 = : a 6 , ,L, ).....4 0 •,-. ,- cl 0 1 ... = • c‘./2") ridw Bentte . i 1- w Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system:English File name:0:\HHPR ProjectsICEN-Centex Homes(306DCEN-PlansICEN-090 Summer Creek Townhomes1calcs\Unit C\FDN\Rear Load 2.etz\ 1 i 1 1 1 , I tI . ! 1 1 i 1 M33=36.82[Kip'ft] 1 1 1 i II 1 i I I I M33=-5022[Kip•ft] 1 I I 1 .„, I i I _.,X I I ! 1 1 1 . i ! 1 ! 1 i ! I 1 I 1 i 1 i 1 1 I ‘ F i H , I 1 i , _ ACI 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi hie= 17.00 inches het= 12.00 inches (into the Foundation) Stem= 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin= 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations ANc= 408 in` AN= 1296 in` AN()= 2601 in` AN()= 1296 in` Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Wed,N= 1.00 Ncb= 10,500 pounds Nth= 55,121 pounds 4Ncb= 7,875 pounds (PNcb= 41,341 pounds Combined Capacity of Stem Wall and Foundation ocb= 49,216 0.754Ncb= 36,912 Out Concrete Side Face Blow Givens Ab rg = 2.75 in` ft= 3000s P i Cm = 1800 . inches eP = 0.75 strength reduction factor Calculations Nsb= 261,589 pounds olsb= 196,192 pounds Concrete Pullout Strength Givens Abrg= 2,75 fc= 3000 psi 4)= 0,75 strength reduction factor Calculations N = 66,000 pounds P 4)N = 49,500 pounds P Steel Yield Strength Givens ft= 58,000 psi A= 0.763 int 4)= 0.80 strength reduction factor Calculations IN15= 44,254 pounds 4)M11,= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks \(.° 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation CaACIpacity 98 Givens Givens fc= 3000 psi fc= 30003p-si05 Appendix D h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cm„= 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches Cmin = 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor •= 0.75 strength reduction fact( Calculations Calculations ANc= 68 in` AN= 1296 in` ANO= 110.25 in` ANO= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N= 1.00 Nth= 4,399 pounds Nth= 55,121 pounds (I)Ncb= 3,299 pounds +NOb= 41,341 pounds Combined Capacity of Stem Wall and Foundation +kb= 44,640 0.754NOb= 33,480 Concrete Side Face Blow Out Givens Ab rp= 2.15 ifl fc= 3000 psi cmir, = 18.00 inches = 0.75 strength reduction factor Calculations Nsp= 231,191 pounds 4)Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds = 38,664 pounds Steel Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds 4)N, = 28,118 pounds 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23,888 28,118 Holdown Checks DARE PROJFCT RF ..\--e..Tipt, ci./1 ''''': cookif*D3 L.... c3.) .` Bui icily-i6s 3 0 ,3 z 0 b.L. f: as D t Co...cis(' D: aGo ppr u.001 0 , .> b ct,(2.ktitveL0(D2D9$c) 7-- To pl„...c 3 bop' 0 , tion,,(tsopcCrit737y,esii2),33.7 3 .-6 cc 51-en T < 0 ,,1 (8117—Y 1,50 VCC)(kck) ) —TIC i(X)tatJ Puc 0 7 Ir Cr cy LI,. 1-5 c C2 13333:)(34 0 \-3$-cc): (23-10 pc.c. 211 r .... 1O1(o3 i3OL012 7-2 i-i?) ( iii tIDOtiii titDiit D 7 r\CNY, G33.32 1,so() v22,2 , =- isapc„5-3. 3..) 7 0 c-T0O- 1 4- 1 - 4 4s) 5_0 \scow 44,4,4 474 4 00 ca, css -4,44. is" L 8 0 Ic Z r 1 :7)'' e 14444,0 44- -4-, c 4 sick („J t,„40 1 kditrttiLit I 0 T - LB DL: (DI:.teyeDDW i?)L->cf ‘2s) c a2,4, ict.F ID Vxx--- ,IoDD(150 pc D Y hi, )( hz ) = 68-y 11 FsF ) 7- '130 to i>t, C oy)I LL: (3120143.3) o d I- 00 A-) 24,3 3r-,iI 0c33.2 33 130013„) e uro \-- C4.4 = = Sa333„ .0„.L h c333,32 23 INA- I Lef,s Tice 339,2c4, c t303,4,3 2 Cu 3:22 1,00 , 323€ e ?0,( kt,„.), wow t 1 ti, : . ..sclz)e2.7).z- (Qcy,3 pLF 3 IOC r--- 4(3)Laizzov.i) 2 ,C ei 1133)= 333p t c 5t,cycl f: 112CIII 333 (3)‘)c2' )00 LL : (6'1iit 46)C22) i7it is T L : ;A6aci i- la)tAi L.1) = 1,33i3.- 3, 20-2,125 - , 3 ye 2Q31- 11\J I S.- V131.