Specifications Coge
1 px; S�
RECENEp
STRUCTURAL DESIGN CALCULAB t 12015
�
For BUILDING 8
Seismic Shelving Analysis N
Build a Bear
Portland, OR
BY
AMBROSE
ENGINEERING
INCORPORATED
W66 N215 COMMERCE CT., CEDARBURG,WI 53012
PH. [262] 377-7602, FAX [262] 377-4868
ambeng@ambeng.com
Job # 015-217 0..0 Mote
1NEL,
SVS�wt�o4
June 8, 2015
WAP N.,I M
�Oe'�v e zoo G�4r
.
•
M. SSE
EXPIRES (o/l
Calculations prepared for
MEG ,**,7"r°--,4
Merchandising Equipment Group,LLC 502 South Green Street Cambridge City,IN 47327-0240 (765)478.3141 www.megfixtures.com
2.
, :
Reference Data
These calculations review the design and installation of storage racks for structural adequacy. The sealing of these drawings
is for the structural review of the storage racks only. Other information is not reviewed or approved.
Building Code
• 2014 OSSC
• ASCE 7-10
• Rack Manufacturers Institute-Industrial Steel Storage Racks Manual(RMI)
Loads
Vertical(dead plus live)
Mobile Shelving by Merchandising Equipment Group,LLC(MEG)
Maximum permissible load per shelf <75 lbs
Maximum permissible load per unit <375 lbs
Component Design Procedure
• Structural Analysis based on analytical model of one shelving unit only.
• Posts/Spreaders designed for double loading to account for back to back or end to end shelf orientations.
• Anchors/Tracks designed for double loading to account for back to back or end to end shelf orientations.
• X-Brace(s)designed for(4)times the loading to account for(1)set of x-braces per(4)units,typical.
618/2015• Design Maps SummaryReport 3
• USGS Design Maps Summary Report
User-Specified Input
Building Code Reference Document 2012 International Building Code
(which utilizes USGS hazard data available in 2008)
~ Site Coordinates 45.44958°N, 122.78326°W
Site Soil Classification Site Class D - "Stiff Soil"
Risk Category I/II/III
I
~- :. fni 1 -
!it V +' t C�urr+7Ln tI
.-.'",.t 4' ' "k:
i. '':.::::.•3:;.'./3 i�V.erton i -- _
} 210 .i i .
.ii
Kar nrncjiprr # . f r #i = MilYlrauirte i
- ; i ...-1. .4,'''... ..4.7',N NORTH '�&-
' # AMERICA Lir
�Scholls ' ' i fis
(King city 0 ham', „�4�
j�
::1 mil U� 'I ,. � , c
P ....1 s 02015 MapQyofti. r;r r O15'Op 6 MapQuest
USGS-Provided Output
SS = 0.977 g SMS = 1.084 g Sys = 0.722 g
S1 = 0.425 g SM1 = 0.669 g S01 = 0.446 g
For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application
and select the "2009 NEHRP" building code reference document.
MCER Response Spectrum Design Response Spectrum
0.98
1.10 0.80
0.99 0.72
0.89 0.64
0.77 0.56
S 0.66 s 0.49
to 0.55 a 0.40 f
0.44 0.32
0.33 0.24
0.22 0.16
_ 0.11 0.09
0.00 0.00
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.90 2.00 0.00 0.20 0.40 0.60 0.90 1.00 1.20 1.40 1.60 1.90 2.00
Period, T(sec) Period.T(sec)
Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied,
as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter
knowledge.
Li, .
AMBROSE ENGINEERING INC. Job: Build a Bear-Portland,OR Page:
W66 N216 COMMERCE CT. Job 1: 015-217. . By: JLM
CEDARBURG,WI 53012 Date: 6/8/2015 Checked: RMS
Shelf Information Shelf Profile
Seismic design procedures follow IBC 2012
Length;
5
ti AMBROSE ENGINEERING INC. Job: Build a Bear-Portland,OR Page:
2,7 W66 N216 COMMERCE CT. job#: 015.-217 . By: JLM
CEDARBURG,WI 53012 Date: 6/8/2015 Checked: RMS
Vertical Distribution of Forces
uWxhxx From RMI MH16.1 Fx a=
For all levels k s' ='
�wihi h/d 4.00
bi
All shelves loaded to 67%capacity: Posts double loaded to account for side to side orientation
Shelf Load per Shelf Height Post Load
[lbs) [int Modified for#of Racks ,
1 50 3 25.1
_ _2 50 27 25.1
____ 3 50 51 25.1
_ 4 50 75 25.1
5 50 96 25.1_
Braced Direction(Longitudinal,X)R=4
Load Case 1:All shelves loaded at 67%
w"hk Lateral Load at Shelf Each Node NA
Shelf A "
�.i
[lb-in] Level Elba] Elba] .
1 151 0.7 0.33
2 1357 6.0 3.01 /11
3 _ 2563 11.4 5.68 _—
_
4 3769 16.7 8.36 mri- ——
5 4824 21.4 10.70 J
ILYA
— rie
Load Case 1
Total 12663 lb-in
imink-
Load Case 2:Top shelf 100%loaded
W,,mp 113 lbs
Vmp li Pmp 20 lbs Lateral load at top shelf
Load Case 2
{2 ,
AMBROSE ENGINEERING INC. Job: Build a Bear-Portland,OR Page:
r .t."•—.7 W66 N216 COMMERCE CT. Job#: 015-217 By: JLM
CEDARBURG,WI 53012 Date: 6/8/2015 Checked: RMS
Unbraced Direction(Transverse,Z)R=6 -
Load Case 1:All shelves loaded at 67%
I
Shelf# w h ' Lateral Load at Shelf Each Node
[lb-in] Level[Ibs] fibs]
1 151 0.4 0.22
2 1357 4.0 2.01
3 2563 — 7.6 3.79
I
4 3769 11.1 5.57 j
5 4824 _.___ 14.3 — 7.13
II
J
J.
Load Case 1
Total 12663 lb-in IMMIMIMIlkmpr
Load Case 2:Top shelf 100%loaded
W.,:op 113 lbs
V„p.Ft,p 14 lbs Lateral load at top shelf
Specific Load Combinations(per RMI MH26.1§2.1)
Load Factors DL LL(PL) EQ =
Combination#1 1.00 - -
Combination#2 1.00 1.00 -
Combination#3 0.75 0.75 -0.50
—
Combination#4 0.75 0.75 0.50
Combination#5 1.00 0.88 - Load Case 2
. .. . .. . . . . ...
Member Design
Spreader Beam Section Properties
M.a. -r�4 _ .. ,.=c= in-lb (from RAM) Sx 0.12643 in
fb X 1107 psi F1 '....3610_ _--,;1 psi
Fb 21600 • i
fb/Fb 0.051 OK V 70 Ibs
Spreader Beam Connection X-Brace-Shelf supports 4 units
Rivet Spacing Yr AFrIllalin Axial Force 5: 3: 'lbs
Rivet Diameter I -in (for one shelf,spreadsheet multiplies by 4)
Shear Capacity of Rivet Ft 14400 psi
Val ,IM,s,Rfi lbs Area L;•±4:024,-''..`,:l in2
Vniptied 70 lbs ft 6324 psi
_
RIVET OK I BRACE OK I
g.r—"'7.1.71'4 1; f
X-Brace Connection to Upright #10 Screw,18 GA Upright
-- , Va 422 lbs Applied Force 332 lbs
k; Vu 591 lbs ' SCREW OK I
. ' 7
„� AMBROSE ENGINEERING INC. Job: Build a Bear-Portland,OR Page:
rlir W66 N216 COMMERCE CT. Job#: 015-217 By: ..JLM
CEDARBURG,WI 53012 Date: 6/8/2015 Checked: RMS
Anchor Design
ICC-ES
gxpansion Anchor Diameter ,!,� ,N- in Expansion Anchor ' kowers Wedge Bolt* ESR-2526
lifter '`
Up ';:: 4E lbs f >; ;:,. si
. -. , .n I'
Vmax n v `'4.lbs h 4 _ in
Tin. 1030 lbs .%
Interaction 0.0098 V,po,,, 1030 lbs
ANCHORS OK
Anti-Tip Track Check
Track Properties
Anchor Spacing iiglp3 in Ix ;v= in
Uplift 35 lbs Sx t�_ I '1 m
R '
Maw 105 in-lb Fy ...5., ..,..210005,--4-_, ,� =rv_AB
Maw
Ste„r,ed 0.0083 in3
Rivet Strength
TRACK OK Tension s`M j�. ;'4 , 'lbs
Shear - �:: `I«..<-'++lbs
- RIVET OK
1
.« .
ATIKN1Mp1(i/RT0 4„3,_:,-,----;
0
;wno.xn�c
30 O _
o ® ,~
�"n`,,
1::VI &ES "I"C FS
�O
aM+ow
Slab Check
Slab Information Base Plate Dimensions
p ' 1bs b 'in
Iloa2.0for
fc 3000 -psi w2.25 sin
anchorage
bo 34 in
Fv 29796 lbs
- A 0.712 ft2
R
Soil Pressure Under Slab 284 psf <1000 psf-OK
FOR COLUMN ANALYSIS,SEE ATTACHED
RAM ELEMENTS ANALYSIS
COLUMNS ANALYZED IN BOTH
DIRECTIONS
...
,_.-..y Ambrose Engineering Inc. . b
urrent Date:6/8/2015 2:37 PM Structural Engineer:Ambrose Engineerir
nits system:English
le name:SA201 1015-217 MEG-St_ _ ;1s(sho Portland,OR1Calcs1RAM1015-217 Build a Bear-Portland,OR.etz1
•
11-572i G s 81.51C 5 Ot 1IA57Z6
sheif solw IQ.4.5/21IGf,
Gr 0
Lt,iv r50
aisi C S% s PPort
I —11_16)068
I
012 Gr0 " 1 _
I _
g at5lcs'4'ts°99°ItsisIASshei81;:411190dG
Ct...1
n' C4
O..
r 4 , ft 0 "Islas
S g i d•a' c she0 st0136° 068 1
b ASiz.r...,0 " aisi
.1,
8x.°68-I • I
pa.441,?i,o, (.4*d.•
•,-4, 1
voct
3:2011134#19VPgrt .ks:ill
axsic sv`ti sut' I
1
y
IA
si tso X
4Z.
$,,4:32:1 suppolls,p,cs,11,126,16::::::....17at2czoi.,50068 1
r
'Ambrose Engineering Inc.
Current Date:6/8/2015 2:35 PM Structural Engineer:Ambrose Engineering
Units system:English
File name:S:\2015dwg\015-217 MEG-Build a Bear Workshop,Portland,ORICalcs\RAM1015-217 Build a Bear-Portland,OR.etz1
Steel Code Check
Report: Summary-Group by member
Load conditions to be Included In design:
c01=DL c14 0.75DL+0.75LLT+0.5EXPT c27=0.75DL+0.75LLA+0.5EZNT
c02=DL+LLA c15=0.75DL+0.75L1T+0.5EXNT c28=0.75DL+0.75LLT+0.5EXPA
c03=DL+LLT c16=0.75DL+0.75LLT+0.5EZPA c29=0.75DL+0.75LLT+0.5EXNA
c04=0.75DL+0.75LLA+0.5EXPA c17=0.75DL+0.75LLT+0.5EZNA c30=0.75DL+0.75LLT+0.5EXPT
c05=0.75DL+0.75L1A+0.5EXNA c18=0.75DL+0.75LLT+0.5EZPT c31 0.75DL+0.75LLT+0.5EXNT
c06=0.75DL+0.75LLA+0.5EXPT c19=0.75DL+0.75LLT+0.5EZNT c32=0.75DL+0.75LLT+0.5EZPA
c07=0.75DL+0.75LLA+0.5EXNT c20=0.75DL+0.75LLA+0,5EXPA c33=0.75DL+0.75LLT+0.5EZNA
c08=0.75DL+0.75LLA+0.5EZPA c21=0.750L+0.75LLA+0.5EXNA c34=0.75DL+0.75LLT+0.5EZPT
c09=0.75DL+0.75LLA+0.5EZNA c22=0.75DL+0.75LLA+0.5EXPT c35=0.75DL+0,75LLT+0.5EZNT
c10=0.75DL+0.75LLA+0.5EZPT c23=0.75DL+0.75LLA+0.5EXNT c36=DL+0.8BLLA
c11=0.75DL+0.75LLA+0.5EZNT c24=0.75DL+0.75LLA+0.5EZPA c37=DL+0.B8LLT
c12=0.75DL+0.75LLT+0.5EXPA c25=0.75DL+0.75LLA+0.5EZNA
c13=0.75DL+0.75LLT+0.5EXNA c26=0.75D1+0.75LLA+0.5EZPT
Description Section Member Ctrl Eq. Ratio Status Reference
alslC 0.75x1.5x0.0.043 1 c13 at 50.00% 0,87 OK C5.2.1-3
. 2 c04 at 50,00% 0.57 OK -
3 c12 at 50.00% 0.87 OK C5.2.1-3
4 c05 at 71,88% 0.57 OK -
alslC shelf support 5 c05 at 0.00% 0.01 OK C5.2.1-3
8 c12 at 0.00% 0.01 OK C5.2.1-3
7 c13at0.00% 0.01 OK C5.2.1-3
8 c12 at 0.00% 0.01 OK C5.2.1-3
9 c12 at 0.00% 0.13 OK C5.2.1.3
10 013 at 0.00% 0.01 OK C5.2.1-3
11 c12 at 54.17% 0.18 OK C5.2.1-3
12 c13at0.00% 0.00 OK C5.2.1-3
13 c12 at 0;00% 0.18 OK C5.2.1-1
14 c13 at 0.00% 0.00 OK C5.2.1-3
CU 1x2 11_16x.088 15 c12 at 0.00% 0.79 OK Eq.H3-8
16 c12 at 0.00% 0.79 OK Eq.H3-8
17 c12 at 0.00% 0.84 OK Eq.H3-8
18 c12 at 0.00% 0.83 OK Eq.H3-8
19 c05 at 0.00% 0.84 OK Eq.H3-8
20 c04 at 0.00% 0.83 OK Eq.H3-8
Rect8ar 070x.75 21 c04 at 47.92% 0.92 OK Eq.H3-6
22 c05 at 47.92% 0.92 OK Eq.H3-6
' /0
if*Ambrose Engineering Inc.
Current Date:6/8/2015 2.36 PM Structural Engineer:Ambrose Engineering
Units system:English
File name:S:12015dwg1015-217 MEG-Build a Bear Workshop,Portland,OR\Caics1RAMi015-217 Build a Bear-Portland,OR.etz1
Steel Code Check -
Report: Concise
Members: Hot-rolled
Design code: AISC 360-2010 ASD
Member : 22
Design status .• OK
DESIGN WARNINGS
-The slenderness ratio Ur of the member in tension should not exceed 300
Section information
Section name: RectBar 070x.75 (US)
Dimensions -
=r Y
F
V ➢
Y
_:.,;._.-a _._, 0.750 [In] Height
b = 0.070 [in] Width
Properties
_.
Section properties ._.... Unit Major axis Minor axis
Gross area of the section. (Ag) [ln2] 0.053
Moment of inertia(local axes) (I) (In4] 0.002 2.14E-05
Moment of Inertia(principal axes) (I') (in4) 0.002 2.14E-05
Bending constant for moments(principal axis) (J') [In] 0.000 0.000
Radius of gyration(local axes) (r) [in] 0.217 0.020
Radius of gyration(principal axes) (r') [in] 0.217 0.020
Saint-Venant torsion constant. (J) [in4] 8.07E-05
Section warping constant. (Cw) [Intl] 0.000
Distance from centroid to shear center(principal axis) (xo,yo) pn] 0.000 0.000
Top elastic section modulus of the section(local axis) (Ssup) [in3] 0.007 6.12E-04
Bottom elastic section modulus of the section(local axis) (Sint) (In3] 0.007 6.12E-04
Top elastic section modulus of the section(principal axis) (S'sup) [In3] 0.007 6.12E-04
Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 0.007 6.12E-04
Plastic section modulus(local axis) (Z) [in3] 0.010 9.19E-04
Plastic section modulus(principal axis) (Z') [in3] 0.010 9.19E-04
Polar radius of gyration. (ro) [in} 0.217
Area for shear (Aw) [in2] 0.053 0.053
Torsional constant. (C) [in3] 0.011
Material:A572 Gr50
•
Properties Unit Value
Yield stress(Fy): [Kip/in2] 50.00
Tensile strength(Fu): [Kip/in2] 65.00
Elasticity Modulus(E): [Kip/in2] 29000.00
Shear modulus for steel(G): [Kip/in2] 11507.94
DESIGN CRITERIA
Description Unit Value
Length for tension slenderness ratio(1) [ft] 5.48
Distance between member lateral bracing points
Length(Lb)[ft]
Top Bottom
5.48 5.48
Laterally unbraced length
Length[ft] Effective length factor
Major axis(L33) Minor axls(L22) Torsional axis(Lt) Major axls(K33) Minor axis(K22) Torsional axis(Kt)
5.48 5.48 5.48 1.0 1.0 1.0
Additional assumptions
Continuous lateral torsional restraint No
Tension field action No
Continuous flexural torsional restraint No
Effective length factor value type None
Major axis frame type Sway
Minor axis frame type Sway
DESIGN CHECKS
AXIAL TENSION DESIGN
Axial tension
Ratio 0.05
Capacity 1.57[Kip] Reference : Eq.Sec.D2
Demand 0.08[Kip] Ctrl Eq. : c04 at 0.00%
Intermediate results Unit Value Reference
factored axial tension canacitv(Pn/Q) [KipJ 1.57 Eq.Sec.02
AXIAL COMPRESSION DESIGN
Compression In the mater axis 33
Ratio 0.00
Capacity 0.09[Kip] Reference : Sec.El
Demand 0.00[Kip] Ctrl Eq. : c01 at 54.17%
Intermediate results Unit Value Reference
/Z .
Section classification
Factored flexural bucktina strenath(Pn331R) [KIp] 0.09 Sec.El
Compression in the minor axle 22
Ratio 0.00
Capacity 0.00[tip) Reference : Sec.El
Demand 0.00[Kip] Ctrl Eq. : c01 at 54.17%
Intermediate results Unit Value Reference
Section classiflc ation
Factored flexural buckiincr strenoth(Pn221t2) (Kip] 0.00 Sec.El
FLEXURAL DESIGN
Sandia°about motor axis.M33
Ratio 0.12
Capacity 0.00[Kip*ft] Reference : Sec.Fl
Demand 0.00[Kip*ft] CM Eq. : c05 at 47.92%
Intermediate results Unit Value Reference
Section classification
Factored lateral-torsional buckiina strenath(Mn/Sl) [Kip*ft] 0.00 Sec.Fl
Dendina about minor axis.Mfl
Ratio 0.48
Capacity 0.00[Kip*ft] Reference : Sec.Fl
Demand 0.00[Kip*ft] Ctrl Eq. : c04 at 50.00%
intermediate results Unit Value Reference
Section classification
Factored vieldina strenattt(Mn/f) Kieft] 0.00 Sec.Fl
DESIGN FOR SHEAR
Shear In mafor axis 33
Ratio 0.01
Capacity 0.94[Kip]
Demand -0.01[Kip] CM Eq. : c04 at 50.00%
intermediate results Unit Value Reference
Factored shear capacltyNn/f) [Kip] 0.94
Shear in minor_exis 22
Ratio 0.01
Capacity 0.94[Kip]
Demand 0.01[Kip] Ctrl Eq. : c05 at 50.00%
t3
Intermediate results Unit Value Reference
Factored shear caoacitv(VnJ ) [Kip] 0.94
TORSION DESIGN ief
Torsion
Ratio 0.88
Capacity 0.00[Kip*f]
Demand 0.00[Kip`ft] CM Eq. : c04 at 0.00%
Intermediate results Unit Value Reference
Factored torsion caoac y(Tn/f) [Kip*ft] 0.00
COMBINED ACTIONS DESIGN 441
Combined flexure and axial compression
Ratio 0.58
CM Eq. c13 at 50.00% Reference : Eq.H1-lb
Intermediate results Unit Value Reference
Interaction of flexure and axial force — 0.58 Eq.H1-lb
Combined flexure and axial tension
Ratio 0.59
CM Eq. c13 at 50.00% Reference : Eq.Ht-lb
Intermediate results Unit Value Reference
Combined flexure and axial compression about local axis
Ratio : N/A
Ctrl Eq. — Reference •
Combined flexure and axial tension about local axis
Ratio : N/A
Ctrl Eq. — Reference •
Combined torsion,flexure,shear and axial compression
Ratio 0 92
Ctrl Eq. c05 at 47.92% Reference : Eq.H3.6
Intermediate results Unit Value Reference
lit .
Combined torsion,flexure,shear and axial tension
Ratio 0.92 -
Cbi Eq. c05 at 47.92% Reference : Eq.H3-6
Intermediate results Unit Value Reference
Member : 19
Design status : OK
Section infoimadon
Section name: LU 1x2_11_I6x.068 (US)
Dimensions
Y F ^_
tacl
Y rY 5(C
s.:::. ..:,3-.- -,.:.--46:,3L--,-- _-',..
1.000 (in] Height
b = 2.690 [in] Width
k = 0.200 [in] Distance k
t = 0.068 (in] Thickness
Properties
Sectionproperties _�_-..._......_..._.._.. Unit Major axis Minor
axis
Gross area of the section. (Ag) [int] 0.246
Moment of inertia(local axes) (I) pn4] 0.016 0.191
Moment of Inertia(principal axes) (1') [in4] 0.011 0.196
Bending constant for moments(principal axis) (I) (in] 1.254 1.047
Radius of gyration(local axes) (r) pn] 0.258 0.881
Radius of gyration(principal axes) (r') [in] 0.212 0.893
Saint-Venant torsion constant. (J) pn4] 3.80E-04
Section warping constant. (Cw) pn6] 1.72E-04
Distance from centroid to shear center(principal axis) (xo,yo) [in] -0.933 -0.289
Top elastic section modulus of the section(local axis) (Ssup) (in3] 0,020 0.114
Bottom elastic section modulus of the section(local axis) (Sint) pn3] 0.101 0.190
Top elastic section modulus of the section(principal axis) (S'sup) pn3] 0.017 0.117
Bottom elastic section modulus of the section(principal axis) (S'inf) pn3] 0.034 0.173 _
Plastic section modulus(local axis) (Z) pn3] 0.033 0.191
Plastic section modulus(principal axis) (Z) pn3] 0.040 0.194
Polar radius of gyration. (ro) [in] 1.340 _
Area for shear (Aw) pn2] 0,169 0.095
Torsional constant. (C) pn3] 0.006
Material:A572 GrSO
Properties Unit Value
Yield stress(Fy): . [Kip/in2] 50.00
Tensile strength(Fu): [Kip/In2] 65.00
l5
Elasticity Modulus(E): (Kiplin2] 29000.00
Shear modulus for steel(G): [KipM2] 11507.94
DESIGN CRITERIA
Description Unit Value
Length for tension slenderness ratio(L) (It] 2.00
Distance between member lateral bracing points
Length(Lb)[ft]
Top Bottom
2.00 2.00
Laterally unbraced length
Length(ft] Effective length factor
Major axls(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt)
2.00 2.00 2.00 1.0 1.0 1.0
Additional assumptions
Continuous lateral torsional restraint No
Tension field action No
Continuous flexural torsional restraint No
Effective length factor value type None
Major axis frame type Sway
Minor axis frame type Sway
Single angle connected through width No
Planar element No
Consider eccentricity No
Sheer load point of application Gravity center
DESIGN CHECKS
AXIAL TENSION DESIGN
Axial tension
Ratio 0.00
Capacity 7.37[Kip] Reference : Eq.Sec.D2
Demand 0.00 KIN Ctrl Eq. : c01 at 0.00%
Intermediate results Unit Value Reference
Factored axial tension caoacity(Pn/S2) (Kip] 7.37 Eq.Sec.02
AXIAL COMPRESSION DESIGN
Comorossion In the miler axis 33
Ratio 0.00
Capacity 1.21[Kip] Reference : Sec.El
Demand 0.00[Kip] Ctrl Eq. : c01 at 0.00%
Intermediate results _ .__ Unit Value Reference
Section classification
Factored flexural buckling strenath(Pn334a) [Kip] 1.21 Sec.El
Comaression In the minor axis 22
Ratio 0.00
Capacity 0.94[KIM Reference : Sec.E4
Demand 0.00[Kip] CM Eq. : c01 at 0.00%
Intermediate results Unit Value Reference
Section classification
Factored flexural buckling strensrtli(Pn22Ka) [Kip] 1.43 Sec.El
Factored torsional or flexural-torsional budding strenath(Pnl1/sa) [Kip] 0.94 Sec.E4
FLEXURAL DESIGN
Bendino about miller axle.M33
Ratio 0.44
Capacity 0.02[Kip*ft] Reference : Sec.Fl
Demand -0.01[Kip"ft] CM Eq. : c0B at 100.00%
Intermediate results Unit Value Reference
Section classification
Factored vleldina atrenath(Mn/Sa) [Kip"ft] 0.06 Sec.Fl
Factored lateral-torsional budding strenath(Mn/Sa) [Kipft] 0.06 Sec.Fl
Factored compression lianas local buckling strenath(MnI ) [Kip"ft] 0.02 Sec.Fl
Bending about minor axis.M2.2
Ratio 0.01
Capacity 0.44(Kip"ft] Reference : Sec.Fl
Demand : 0.00[Kip'ft] Ctrl Eq. : c04 at 100.00%
Intermediate results Unit Value Reference
Section classification
Factored vieldino strenuth(Mn/a) [KIp"ft] 0.44 Sec.Fl
DESIGN FOR SHEAR ASf
Shear in malor axle 33
Ratio 0,00
Capacity 3.40[Kip]
Demand 0.00(Kip) CM Eq. : c04 at 0.00%
Intermediate results Unit Value Reference
Factored shear canadtv(Vn/Sa) [Kip] 3.40
Shear in minor axis 22
17
Ratio 0.01
Capacity 1.71[Kip]
Demand -0.01[Kip] Ctrl Eq. : c08 et 0.00%
Intermediate results Unit Value Reference
Factored shear capacity(V40) [Kip] 1.71
COMBINED ACTIONS DESIGN
Combined flexure and axial compression
Ratio 0.22
Ctrl Eq. c08 at 100.00% Reference : Eq.H2-1
Intermediate results Unit Value Reference
interaction of flexure and axial force — 0.22 Eq.142-1
Combined flexure and axial tension
Ratio 0.22
Ctrl Eq. c08 at 100.00% Reference : Eq.H2-1
Intermediate results Unit Value Reference
Combined flexure and axial compression about local axis
Ratio N/A
Ctrl Eq. -- Reference
Combined flexure and axial tension about local axis
Ratio : N/A
Ctrl Eq. — Reference
Combined torsion and shear stresses
Ratio 0.84
CM Eq. c05 at 0.00% Reference : Eq.H3-8
Intermediate results Unit Value Reference
Available shear stress for shear ylelding(Fnv/CZ) [KIpM2] 17.96 Eq.H3-8
Members: Cold-formed
Design code: AISI 2001 Sup.2004 ASD
-18
Member : 1
Design status : OK
PROPERTIES
Section Information
Section name: aisiC 0.75x1.5x0.0.043 (US)
Dimensions
Nvii
a =. 1.500 [In] Flange width
b M1^ = 0.750 [in) Depth
r = 0.050 [In] inside bend radius
t = 0.048 [in) Thickness
Properties
Section properties Unit Major axis Minor axle
Gross area of the section. (Ag) 0n2] 0.171
Moment of Inertia(principal axes) (I') [in4] 0.039 0.018
Bending constant for moments(principal axis) (J) [in] -1.389 0.000
Radius of gyration(principal axes) (r) [in] 0.478 0.327
Saint-Venant torsion constant. (J) [in4] 1.33E-04
Section warping constant. (Cw) pn6) 0.004
Distance from centrold to shear center(principal axis) (xo,yo) [in] -0.118 0.000
Top elastic section modulus of the section(principal axis) (S'sup) [In3) 0.062 0.049
Bottom elastic section modulus of the section(principal axis) (S'inf) [In3] 0.045 0.049
Polar radius of gyration. (ro) [in] 1.443
Material:A572 Gr50
Description Unit Value
Yield stress(Fy): [KIpin2] 50.00
Tensile strength(Fu): [Klpfn2] 65.00
Elasticity Modulus(E): [Kip/n2] 29000.00
Shear modulus for steel(G): [Kipfn2] 11507.94
DESIGN CRITERIA
Description Unit Major axis Minor axle
Effective length factor(K) — 1.00 1.00
Effective length factor for torsion — 1.00
linbrac ed compression length(Lx,Ly) [ft] 2.00 2.00
Length for torsion and lateral-torsional buckling [ft] 2.00
Lateral bracing — No No
Additional hypotheses
Bearing length [in] 0.00
Positive flange fastened No
Negative flange fastened No
Continuous lateral torsional restraint No
` lq•
SERVICE CONDITIONS
Verification Unit Value Ctrl EQ Reference
Maximum geometric slenderness(Ur) — 73.30 (Corn.C4F)
Geometric slenderness(KUr) — 73.30
Deflection In compression and/or bending [in] 0.77 c04 at 0.00%
DESIGN CHECKS
DESIGN FOR FLEXURE
Bending,about motor axle.M33
Ratio 0.17
Capacity 0.05[Kip*ft) Reference : (Sec.C3)
Demand -0.01[Kip*ft] CM Eq. : c08 at 96.43%
Intermediate results Unit Value Reference
r4ominal flexural strength(Mnx) [Kip*ft] 0.09 (Sec.C3)
Bending strength factor Mt) — 1.67 (Sec.C3.1.1)
Dendina about minor axle.lily,
Ratio 0.72
Capacity 0.04[Kip*ft] Reference : (Sec.C3)
Demand 0.03[Kip*ft] Ctrl Eq. : c05 at 50.00%
Intermediate results Unit Value Reference
Nominal flexural strenath(Mnvl [Kip*ft] 0.07 (Sec.C3)
Bendina strength factor(4i 1 — 1.87 (Sec.C3.1.1)
DESIGN FOR SHEAR
Shear parallel to minor axis.V2
Ratio 0.00 •
Capacity 2.51 [Kip] Reference : (Sec.C3.2)
Demand -0.01 [KIp] Ctrl Eq. : c16 at 47.32%
Intermediate results Unit Value Reference
Nominal shear strenath Nn4 [Kip] 4.02 (Sec.C3.2)
Shear strenath factor(40/] -- 1.60 (Sec.C3.2.1)
Shear parallel to motor axis.V3
Ratio 0.08
Capacity 0.50[KIN Reference : (Sec.C3.2)
Demand 0.04[Kip) CM Eq. : c12 at 93.75%
Intermediate results Unit Value Reference
Nominal shear strenath Nn) [Kip] 0.80 (Sec.C3.2)
Shear strength factor( — 1.60 (Sec.C3.2.1)
DESIGN FOR TENSION tar
Tension
Ratio 0.00
Capacity 5.14[Kip) Reference : (Eq.C2-1)
Demand 0.00[Kip] Ctrl Eq. : c01 at 0.00%
Intermediate results Unit Value Reference
Nominal tension strenath(Tn) (KIp] 8.59 (Sec.C2)
Tension strepath factor 411 — 1.67 (Sec.C2)
•
DESIGN FOR COMPRESSION
Compression
Ratio 0.24
Capacity -0.67[Kip] Reference : (Sec.C4)
Demand -0.16[Kip] CM Eq. : c05 at 97.32%
Intermediate results Unit Value Reference
Nominal compression strenath(Pn) (Kip] -1.21 (Eq.C4.1)
Comoression strength factor(4 — 1.80 (Sec.C4-1)
DESIGN FOR TORSION
Torsion
Ratio 0.57
Capacity 0.00[Kip'ft] Reference : (AISC,Sec.H)
Demand 0.00(Kip*ft]. Ctrs Eq. : .c04 at 50.00%
Intermediate results Unit Value Reference
Nominal torsion strength [Kip'ft) 0.01
Torsion strenath factor(41 — 1.67
DESIGN FOR CRIPPLING
Web crlppllna strenath
Ratio 0:05
Capacity 0.47[Kip] Reference : (Sec.C3.4)
Demand 0.02[Kip] CM Eq. : c13 at 100.00%
Intermediate results Unit Value Reference
Nominal crioolina strenath(Pnl [Kip] 0.87 (Eq.C3.4.1-1)
Crioplino strenath factor(k — 1.85 (Tables C3.4.1)
Crippling strenath factor(+ma — 1.85 (Tables C3.4.1)
21
INTERACTION
Combined bending and web crinoline ratio
Ratio 0.11
Ctrl Eq. : c08 at 96.43%
Reference : C3.5.1-1
'The equation has been modified for a maximum ratio equal to 1.0
Combined bending and shear ratio fx-x)
Ratio 0.17
CM Eq. : c08 at 96.43%
Reference : C3.3.1-1
Combined bending and shear ratio fv Irl
Ratio 0.72
CM Eq. : c05 at 50.00%
Reference : C3.3.1-1
Conthine#flexure and tension ratio
Ratio 0.72
CM Eq. : c05 at 50.00%
Reference : C5.1.1-2
Combined flexure and comoresslon ratio
Ratio 0.87
Cid Eq. : c13 at 50.00%
Reference : C5.2.1-3
CRITICAL STRENGTH RATIO
Ratio 0.87
CM Eq. c13 at 50.00% Reference : C5.2.1-3