Loading...
Specifications Coge 1 px; S� RECENEp STRUCTURAL DESIGN CALCULAB t 12015 � For BUILDING 8 Seismic Shelving Analysis N Build a Bear Portland, OR BY AMBROSE ENGINEERING INCORPORATED W66 N215 COMMERCE CT., CEDARBURG,WI 53012 PH. [262] 377-7602, FAX [262] 377-4868 ambeng@ambeng.com Job # 015-217 0..0 Mote 1NEL, SVS�wt�o4 June 8, 2015 WAP N.,I M �Oe'�v e zoo G�4r . • M. SSE EXPIRES (o/l Calculations prepared for MEG ,**,7"r°--,4 Merchandising Equipment Group,LLC 502 South Green Street Cambridge City,IN 47327-0240 (765)478.3141 www.megfixtures.com 2. , : Reference Data These calculations review the design and installation of storage racks for structural adequacy. The sealing of these drawings is for the structural review of the storage racks only. Other information is not reviewed or approved. Building Code • 2014 OSSC • ASCE 7-10 • Rack Manufacturers Institute-Industrial Steel Storage Racks Manual(RMI) Loads Vertical(dead plus live) Mobile Shelving by Merchandising Equipment Group,LLC(MEG) Maximum permissible load per shelf <75 lbs Maximum permissible load per unit <375 lbs Component Design Procedure • Structural Analysis based on analytical model of one shelving unit only. • Posts/Spreaders designed for double loading to account for back to back or end to end shelf orientations. • Anchors/Tracks designed for double loading to account for back to back or end to end shelf orientations. • X-Brace(s)designed for(4)times the loading to account for(1)set of x-braces per(4)units,typical. 618/2015• Design Maps SummaryReport 3 • USGS Design Maps Summary Report User-Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) ~ Site Coordinates 45.44958°N, 122.78326°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III I ~- :. fni 1 - !it V +' t C�urr+7Ln tI .-.'",.t 4' ' "k: i. '':.::::.•3:;.'./3 i�V.erton i -- _ } 210 .i i . .ii Kar nrncjiprr # . f r #i = MilYlrauirte i - ; i ...-1. .4,'''... ..4.7',N NORTH '�&- ' # AMERICA Lir �Scholls ' ' i fis (King city 0 ham', „�4� j� ::1 mil U� 'I ,. � , c P ....1 s 02015 MapQyofti. r;r r O15'Op 6 MapQuest USGS-Provided Output SS = 0.977 g SMS = 1.084 g Sys = 0.722 g S1 = 0.425 g SM1 = 0.669 g S01 = 0.446 g For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. MCER Response Spectrum Design Response Spectrum 0.98 1.10 0.80 0.99 0.72 0.89 0.64 0.77 0.56 S 0.66 s 0.49 to 0.55 a 0.40 f 0.44 0.32 0.33 0.24 0.22 0.16 _ 0.11 0.09 0.00 0.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.90 2.00 0.00 0.20 0.40 0.60 0.90 1.00 1.20 1.40 1.60 1.90 2.00 Period, T(sec) Period.T(sec) Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge. Li, . AMBROSE ENGINEERING INC. Job: Build a Bear-Portland,OR Page: W66 N216 COMMERCE CT. Job 1: 015-217. . By: JLM CEDARBURG,WI 53012 Date: 6/8/2015 Checked: RMS Shelf Information Shelf Profile Seismic design procedures follow IBC 2012 Length; 5 ti AMBROSE ENGINEERING INC. Job: Build a Bear-Portland,OR Page: 2,7 W66 N216 COMMERCE CT. job#: 015.-217 . By: JLM CEDARBURG,WI 53012 Date: 6/8/2015 Checked: RMS Vertical Distribution of Forces uWxhxx From RMI MH16.1 Fx a= For all levels k s' =' �wihi h/d 4.00 bi All shelves loaded to 67%capacity: Posts double loaded to account for side to side orientation Shelf Load per Shelf Height Post Load [lbs) [int Modified for#of Racks , 1 50 3 25.1 _ _2 50 27 25.1 ____ 3 50 51 25.1 _ 4 50 75 25.1 5 50 96 25.1_ Braced Direction(Longitudinal,X)R=4 Load Case 1:All shelves loaded at 67% w"hk Lateral Load at Shelf Each Node NA Shelf A " �.i [lb-in] Level Elba] Elba] . 1 151 0.7 0.33 2 1357 6.0 3.01 /11 3 _ 2563 11.4 5.68 _— _ 4 3769 16.7 8.36 mri- —— 5 4824 21.4 10.70 J ILYA — rie Load Case 1 Total 12663 lb-in imink- Load Case 2:Top shelf 100%loaded W,,mp 113 lbs Vmp li Pmp 20 lbs Lateral load at top shelf Load Case 2 {2 , AMBROSE ENGINEERING INC. Job: Build a Bear-Portland,OR Page: r .t."•—.7 W66 N216 COMMERCE CT. Job#: 015-217 By: JLM CEDARBURG,WI 53012 Date: 6/8/2015 Checked: RMS Unbraced Direction(Transverse,Z)R=6 - Load Case 1:All shelves loaded at 67% I Shelf# w h ' Lateral Load at Shelf Each Node [lb-in] Level[Ibs] fibs] 1 151 0.4 0.22 2 1357 4.0 2.01 3 2563 — 7.6 3.79 I 4 3769 11.1 5.57 j 5 4824 _.___ 14.3 — 7.13 II J J. Load Case 1 Total 12663 lb-in IMMIMIMIlkmpr Load Case 2:Top shelf 100%loaded W.,:op 113 lbs V„p.Ft,p 14 lbs Lateral load at top shelf Specific Load Combinations(per RMI MH26.1§2.1) Load Factors DL LL(PL) EQ = Combination#1 1.00 - - Combination#2 1.00 1.00 - Combination#3 0.75 0.75 -0.50 — Combination#4 0.75 0.75 0.50 Combination#5 1.00 0.88 - Load Case 2 . .. . .. . . . . ... Member Design Spreader Beam Section Properties M.a. -r�4 _ .. ,.=c= in-lb (from RAM) Sx 0.12643 in fb X 1107 psi F1 '....3610_ _--,;1 psi Fb 21600 • i fb/Fb 0.051 OK V 70 Ibs Spreader Beam Connection X-Brace-Shelf supports 4 units Rivet Spacing Yr AFrIllalin Axial Force 5: 3: 'lbs Rivet Diameter I -in (for one shelf,spreadsheet multiplies by 4) Shear Capacity of Rivet Ft 14400 psi Val ,IM,s,Rfi lbs Area L;•±4:024,-''..`,:l in2 Vniptied 70 lbs ft 6324 psi _ RIVET OK I BRACE OK I g.r—"'7.1.71'4 1; f X-Brace Connection to Upright #10 Screw,18 GA Upright -- , Va 422 lbs Applied Force 332 lbs k; Vu 591 lbs ' SCREW OK I . ' 7 „� AMBROSE ENGINEERING INC. Job: Build a Bear-Portland,OR Page: rlir W66 N216 COMMERCE CT. Job#: 015-217 By: ..JLM CEDARBURG,WI 53012 Date: 6/8/2015 Checked: RMS Anchor Design ICC-ES gxpansion Anchor Diameter ,!,� ,N- in Expansion Anchor ' kowers Wedge Bolt* ESR-2526 lifter '` Up ';:: 4E lbs f >; ;:,. si . -. , .n I' Vmax n v `'4.lbs h 4 _ in Tin. 1030 lbs .% Interaction 0.0098 V,po,,, 1030 lbs ANCHORS OK Anti-Tip Track Check Track Properties Anchor Spacing iiglp3 in Ix ;v= in Uplift 35 lbs Sx t�_ I '1 m R ' Maw 105 in-lb Fy ...5., ..,..210005,--4-_, ,� =rv_AB Maw Ste„r,ed 0.0083 in3 Rivet Strength TRACK OK Tension s`M j�. ;'4 , 'lbs Shear - �:: `I«..<-'++lbs - RIVET OK 1 .« . ATIKN1Mp1(i/RT0 4„3,_:,-,----; 0 ;wno.xn�c 30 O _ o ® ,~ �"n`,, 1::VI &ES "I"C FS �O aM+ow Slab Check Slab Information Base Plate Dimensions p ' 1bs b 'in Iloa2.0for fc 3000 -psi w2.25 sin anchorage bo 34 in Fv 29796 lbs - A 0.712 ft2 R Soil Pressure Under Slab 284 psf <1000 psf-OK FOR COLUMN ANALYSIS,SEE ATTACHED RAM ELEMENTS ANALYSIS COLUMNS ANALYZED IN BOTH DIRECTIONS ... ,_.-..y Ambrose Engineering Inc. . b urrent Date:6/8/2015 2:37 PM Structural Engineer:Ambrose Engineerir nits system:English le name:SA201 1015-217 MEG-St_ _ ;1s(sho Portland,OR1Calcs1RAM1015-217 Build a Bear-Portland,OR.etz1 • 11-572i G s 81.51C 5 Ot 1IA57Z6 sheif solw IQ.4.5/21IGf, Gr 0 Lt,iv r50 aisi C S% s PPort I —11_16)068 I 012 Gr0 " 1 _ I _ g at5lcs'4'ts°99°ItsisIASshei81;:411190dG Ct...1 n' C4 O.. r 4 , ft 0 "Islas S g i d•a' c she0 st0136° 068 1 b ASiz.r...,0 " aisi .1, 8x.°68-I • I pa.441,?i,o, (.4*d.• •,-4, 1 voct 3:2011134#19VPgrt .ks:ill axsic sv`ti sut' I 1 y IA si tso X 4Z. $,,4:32:1 suppolls,p,cs,11,126,16::::::....17at2czoi.,50068 1 r 'Ambrose Engineering Inc. Current Date:6/8/2015 2:35 PM Structural Engineer:Ambrose Engineering Units system:English File name:S:\2015dwg\015-217 MEG-Build a Bear Workshop,Portland,ORICalcs\RAM1015-217 Build a Bear-Portland,OR.etz1 Steel Code Check Report: Summary-Group by member Load conditions to be Included In design: c01=DL c14 0.75DL+0.75LLT+0.5EXPT c27=0.75DL+0.75LLA+0.5EZNT c02=DL+LLA c15=0.75DL+0.75L1T+0.5EXNT c28=0.75DL+0.75LLT+0.5EXPA c03=DL+LLT c16=0.75DL+0.75LLT+0.5EZPA c29=0.75DL+0.75LLT+0.5EXNA c04=0.75DL+0.75LLA+0.5EXPA c17=0.75DL+0.75LLT+0.5EZNA c30=0.75DL+0.75LLT+0.5EXPT c05=0.75DL+0.75L1A+0.5EXNA c18=0.75DL+0.75LLT+0.5EZPT c31 0.75DL+0.75LLT+0.5EXNT c06=0.75DL+0.75LLA+0.5EXPT c19=0.75DL+0.75LLT+0.5EZNT c32=0.75DL+0.75LLT+0.5EZPA c07=0.75DL+0.75LLA+0.5EXNT c20=0.75DL+0.75LLA+0,5EXPA c33=0.75DL+0.75LLT+0.5EZNA c08=0.75DL+0.75LLA+0.5EZPA c21=0.750L+0.75LLA+0.5EXNA c34=0.75DL+0.75LLT+0.5EZPT c09=0.75DL+0.75LLA+0.5EZNA c22=0.75DL+0.75LLA+0.5EXPT c35=0.75DL+0,75LLT+0.5EZNT c10=0.75DL+0.75LLA+0.5EZPT c23=0.75DL+0.75LLA+0.5EXNT c36=DL+0.8BLLA c11=0.75DL+0.75LLA+0.5EZNT c24=0.75DL+0.75LLA+0.5EZPA c37=DL+0.B8LLT c12=0.75DL+0.75LLT+0.5EXPA c25=0.75DL+0.75LLA+0.5EZNA c13=0.75DL+0.75LLT+0.5EXNA c26=0.75D1+0.75LLA+0.5EZPT Description Section Member Ctrl Eq. Ratio Status Reference alslC 0.75x1.5x0.0.043 1 c13 at 50.00% 0,87 OK C5.2.1-3 . 2 c04 at 50,00% 0.57 OK - 3 c12 at 50.00% 0.87 OK C5.2.1-3 4 c05 at 71,88% 0.57 OK - alslC shelf support 5 c05 at 0.00% 0.01 OK C5.2.1-3 8 c12 at 0.00% 0.01 OK C5.2.1-3 7 c13at0.00% 0.01 OK C5.2.1-3 8 c12 at 0.00% 0.01 OK C5.2.1-3 9 c12 at 0.00% 0.13 OK C5.2.1.3 10 013 at 0.00% 0.01 OK C5.2.1-3 11 c12 at 54.17% 0.18 OK C5.2.1-3 12 c13at0.00% 0.00 OK C5.2.1-3 13 c12 at 0;00% 0.18 OK C5.2.1-1 14 c13 at 0.00% 0.00 OK C5.2.1-3 CU 1x2 11_16x.088 15 c12 at 0.00% 0.79 OK Eq.H3-8 16 c12 at 0.00% 0.79 OK Eq.H3-8 17 c12 at 0.00% 0.84 OK Eq.H3-8 18 c12 at 0.00% 0.83 OK Eq.H3-8 19 c05 at 0.00% 0.84 OK Eq.H3-8 20 c04 at 0.00% 0.83 OK Eq.H3-8 Rect8ar 070x.75 21 c04 at 47.92% 0.92 OK Eq.H3-6 22 c05 at 47.92% 0.92 OK Eq.H3-6 ' /0 if*Ambrose Engineering Inc. Current Date:6/8/2015 2.36 PM Structural Engineer:Ambrose Engineering Units system:English File name:S:12015dwg1015-217 MEG-Build a Bear Workshop,Portland,OR\Caics1RAMi015-217 Build a Bear-Portland,OR.etz1 Steel Code Check - Report: Concise Members: Hot-rolled Design code: AISC 360-2010 ASD Member : 22 Design status .• OK DESIGN WARNINGS -The slenderness ratio Ur of the member in tension should not exceed 300 Section information Section name: RectBar 070x.75 (US) Dimensions - =r Y F V ➢ Y _:.,;._.-a _._, 0.750 [In] Height b = 0.070 [in] Width Properties _. Section properties ._.... Unit Major axis Minor axis Gross area of the section. (Ag) [ln2] 0.053 Moment of inertia(local axes) (I) (In4] 0.002 2.14E-05 Moment of Inertia(principal axes) (I') (in4) 0.002 2.14E-05 Bending constant for moments(principal axis) (J') [In] 0.000 0.000 Radius of gyration(local axes) (r) [in] 0.217 0.020 Radius of gyration(principal axes) (r') [in] 0.217 0.020 Saint-Venant torsion constant. (J) [in4] 8.07E-05 Section warping constant. (Cw) [Intl] 0.000 Distance from centroid to shear center(principal axis) (xo,yo) pn] 0.000 0.000 Top elastic section modulus of the section(local axis) (Ssup) [in3] 0.007 6.12E-04 Bottom elastic section modulus of the section(local axis) (Sint) (In3] 0.007 6.12E-04 Top elastic section modulus of the section(principal axis) (S'sup) [In3] 0.007 6.12E-04 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 0.007 6.12E-04 Plastic section modulus(local axis) (Z) [in3] 0.010 9.19E-04 Plastic section modulus(principal axis) (Z') [in3] 0.010 9.19E-04 Polar radius of gyration. (ro) [in} 0.217 Area for shear (Aw) [in2] 0.053 0.053 Torsional constant. (C) [in3] 0.011 Material:A572 Gr50 • Properties Unit Value Yield stress(Fy): [Kip/in2] 50.00 Tensile strength(Fu): [Kip/in2] 65.00 Elasticity Modulus(E): [Kip/in2] 29000.00 Shear modulus for steel(G): [Kip/in2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(1) [ft] 5.48 Distance between member lateral bracing points Length(Lb)[ft] Top Bottom 5.48 5.48 Laterally unbraced length Length[ft] Effective length factor Major axis(L33) Minor axls(L22) Torsional axis(Lt) Major axls(K33) Minor axis(K22) Torsional axis(Kt) 5.48 5.48 5.48 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio 0.05 Capacity 1.57[Kip] Reference : Eq.Sec.D2 Demand 0.08[Kip] Ctrl Eq. : c04 at 0.00% Intermediate results Unit Value Reference factored axial tension canacitv(Pn/Q) [KipJ 1.57 Eq.Sec.02 AXIAL COMPRESSION DESIGN Compression In the mater axis 33 Ratio 0.00 Capacity 0.09[Kip] Reference : Sec.El Demand 0.00[Kip] Ctrl Eq. : c01 at 54.17% Intermediate results Unit Value Reference /Z . Section classification Factored flexural bucktina strenath(Pn331R) [KIp] 0.09 Sec.El Compression in the minor axle 22 Ratio 0.00 Capacity 0.00[tip) Reference : Sec.El Demand 0.00[Kip] Ctrl Eq. : c01 at 54.17% Intermediate results Unit Value Reference Section classiflc ation Factored flexural buckiincr strenoth(Pn221t2) (Kip] 0.00 Sec.El FLEXURAL DESIGN Sandia°about motor axis.M33 Ratio 0.12 Capacity 0.00[Kip*ft] Reference : Sec.Fl Demand 0.00[Kip*ft] CM Eq. : c05 at 47.92% Intermediate results Unit Value Reference Section classification Factored lateral-torsional buckiina strenath(Mn/Sl) [Kip*ft] 0.00 Sec.Fl Dendina about minor axis.Mfl Ratio 0.48 Capacity 0.00[Kip*ft] Reference : Sec.Fl Demand 0.00[Kip*ft] Ctrl Eq. : c04 at 50.00% intermediate results Unit Value Reference Section classification Factored vieldina strenattt(Mn/f) Kieft] 0.00 Sec.Fl DESIGN FOR SHEAR Shear In mafor axis 33 Ratio 0.01 Capacity 0.94[Kip] Demand -0.01[Kip] CM Eq. : c04 at 50.00% intermediate results Unit Value Reference Factored shear capacltyNn/f) [Kip] 0.94 Shear in minor_exis 22 Ratio 0.01 Capacity 0.94[Kip] Demand 0.01[Kip] Ctrl Eq. : c05 at 50.00% t3 Intermediate results Unit Value Reference Factored shear caoacitv(VnJ ) [Kip] 0.94 TORSION DESIGN ief Torsion Ratio 0.88 Capacity 0.00[Kip*f] Demand 0.00[Kip`ft] CM Eq. : c04 at 0.00% Intermediate results Unit Value Reference Factored torsion caoac y(Tn/f) [Kip*ft] 0.00 COMBINED ACTIONS DESIGN 441 Combined flexure and axial compression Ratio 0.58 CM Eq. c13 at 50.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.58 Eq.H1-lb Combined flexure and axial tension Ratio 0.59 CM Eq. c13 at 50.00% Reference : Eq.Ht-lb Intermediate results Unit Value Reference Combined flexure and axial compression about local axis Ratio : N/A Ctrl Eq. — Reference • Combined flexure and axial tension about local axis Ratio : N/A Ctrl Eq. — Reference • Combined torsion,flexure,shear and axial compression Ratio 0 92 Ctrl Eq. c05 at 47.92% Reference : Eq.H3.6 Intermediate results Unit Value Reference lit . Combined torsion,flexure,shear and axial tension Ratio 0.92 - Cbi Eq. c05 at 47.92% Reference : Eq.H3-6 Intermediate results Unit Value Reference Member : 19 Design status : OK Section infoimadon Section name: LU 1x2_11_I6x.068 (US) Dimensions Y F ^_ tacl Y rY 5(C s.:::. ..:,3-.- -,.:.--46:,3L--,-- _-',.. 1.000 (in] Height b = 2.690 [in] Width k = 0.200 [in] Distance k t = 0.068 (in] Thickness Properties Sectionproperties _�_-..._......_..._.._.. Unit Major axis Minor axis Gross area of the section. (Ag) [int] 0.246 Moment of inertia(local axes) (I) pn4] 0.016 0.191 Moment of Inertia(principal axes) (1') [in4] 0.011 0.196 Bending constant for moments(principal axis) (I) (in] 1.254 1.047 Radius of gyration(local axes) (r) pn] 0.258 0.881 Radius of gyration(principal axes) (r') [in] 0.212 0.893 Saint-Venant torsion constant. (J) pn4] 3.80E-04 Section warping constant. (Cw) pn6] 1.72E-04 Distance from centroid to shear center(principal axis) (xo,yo) [in] -0.933 -0.289 Top elastic section modulus of the section(local axis) (Ssup) (in3] 0,020 0.114 Bottom elastic section modulus of the section(local axis) (Sint) pn3] 0.101 0.190 Top elastic section modulus of the section(principal axis) (S'sup) pn3] 0.017 0.117 Bottom elastic section modulus of the section(principal axis) (S'inf) pn3] 0.034 0.173 _ Plastic section modulus(local axis) (Z) pn3] 0.033 0.191 Plastic section modulus(principal axis) (Z) pn3] 0.040 0.194 Polar radius of gyration. (ro) [in] 1.340 _ Area for shear (Aw) pn2] 0,169 0.095 Torsional constant. (C) pn3] 0.006 Material:A572 GrSO Properties Unit Value Yield stress(Fy): . [Kip/in2] 50.00 Tensile strength(Fu): [Kip/In2] 65.00 l5 Elasticity Modulus(E): (Kiplin2] 29000.00 Shear modulus for steel(G): [KipM2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) (It] 2.00 Distance between member lateral bracing points Length(Lb)[ft] Top Bottom 2.00 2.00 Laterally unbraced length Length(ft] Effective length factor Major axls(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 2.00 2.00 2.00 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway Single angle connected through width No Planar element No Consider eccentricity No Sheer load point of application Gravity center DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio 0.00 Capacity 7.37[Kip] Reference : Eq.Sec.D2 Demand 0.00 KIN Ctrl Eq. : c01 at 0.00% Intermediate results Unit Value Reference Factored axial tension caoacity(Pn/S2) (Kip] 7.37 Eq.Sec.02 AXIAL COMPRESSION DESIGN Comorossion In the miler axis 33 Ratio 0.00 Capacity 1.21[Kip] Reference : Sec.El Demand 0.00[Kip] Ctrl Eq. : c01 at 0.00% Intermediate results _ .__ Unit Value Reference Section classification Factored flexural buckling strenath(Pn334a) [Kip] 1.21 Sec.El Comaression In the minor axis 22 Ratio 0.00 Capacity 0.94[KIM Reference : Sec.E4 Demand 0.00[Kip] CM Eq. : c01 at 0.00% Intermediate results Unit Value Reference Section classification Factored flexural buckling strensrtli(Pn22Ka) [Kip] 1.43 Sec.El Factored torsional or flexural-torsional budding strenath(Pnl1/sa) [Kip] 0.94 Sec.E4 FLEXURAL DESIGN Bendino about miller axle.M33 Ratio 0.44 Capacity 0.02[Kip*ft] Reference : Sec.Fl Demand -0.01[Kip"ft] CM Eq. : c0B at 100.00% Intermediate results Unit Value Reference Section classification Factored vleldina atrenath(Mn/Sa) [Kip"ft] 0.06 Sec.Fl Factored lateral-torsional budding strenath(Mn/Sa) [Kipft] 0.06 Sec.Fl Factored compression lianas local buckling strenath(MnI ) [Kip"ft] 0.02 Sec.Fl Bending about minor axis.M2.2 Ratio 0.01 Capacity 0.44(Kip"ft] Reference : Sec.Fl Demand : 0.00[Kip'ft] Ctrl Eq. : c04 at 100.00% Intermediate results Unit Value Reference Section classification Factored vieldino strenuth(Mn/a) [KIp"ft] 0.44 Sec.Fl DESIGN FOR SHEAR ASf Shear in malor axle 33 Ratio 0,00 Capacity 3.40[Kip] Demand 0.00(Kip) CM Eq. : c04 at 0.00% Intermediate results Unit Value Reference Factored shear canadtv(Vn/Sa) [Kip] 3.40 Shear in minor axis 22 17 Ratio 0.01 Capacity 1.71[Kip] Demand -0.01[Kip] Ctrl Eq. : c08 et 0.00% Intermediate results Unit Value Reference Factored shear capacity(V40) [Kip] 1.71 COMBINED ACTIONS DESIGN Combined flexure and axial compression Ratio 0.22 Ctrl Eq. c08 at 100.00% Reference : Eq.H2-1 Intermediate results Unit Value Reference interaction of flexure and axial force — 0.22 Eq.142-1 Combined flexure and axial tension Ratio 0.22 Ctrl Eq. c08 at 100.00% Reference : Eq.H2-1 Intermediate results Unit Value Reference Combined flexure and axial compression about local axis Ratio N/A Ctrl Eq. -- Reference Combined flexure and axial tension about local axis Ratio : N/A Ctrl Eq. — Reference Combined torsion and shear stresses Ratio 0.84 CM Eq. c05 at 0.00% Reference : Eq.H3-8 Intermediate results Unit Value Reference Available shear stress for shear ylelding(Fnv/CZ) [KIpM2] 17.96 Eq.H3-8 Members: Cold-formed Design code: AISI 2001 Sup.2004 ASD -18 Member : 1 Design status : OK PROPERTIES Section Information Section name: aisiC 0.75x1.5x0.0.043 (US) Dimensions Nvii a =. 1.500 [In] Flange width b M1^ = 0.750 [in) Depth r = 0.050 [In] inside bend radius t = 0.048 [in) Thickness Properties Section properties Unit Major axis Minor axle Gross area of the section. (Ag) 0n2] 0.171 Moment of Inertia(principal axes) (I') [in4] 0.039 0.018 Bending constant for moments(principal axis) (J) [in] -1.389 0.000 Radius of gyration(principal axes) (r) [in] 0.478 0.327 Saint-Venant torsion constant. (J) [in4] 1.33E-04 Section warping constant. (Cw) pn6) 0.004 Distance from centrold to shear center(principal axis) (xo,yo) [in] -0.118 0.000 Top elastic section modulus of the section(principal axis) (S'sup) [In3) 0.062 0.049 Bottom elastic section modulus of the section(principal axis) (S'inf) [In3] 0.045 0.049 Polar radius of gyration. (ro) [in] 1.443 Material:A572 Gr50 Description Unit Value Yield stress(Fy): [KIpin2] 50.00 Tensile strength(Fu): [Klpfn2] 65.00 Elasticity Modulus(E): [Kip/n2] 29000.00 Shear modulus for steel(G): [Kipfn2] 11507.94 DESIGN CRITERIA Description Unit Major axis Minor axle Effective length factor(K) — 1.00 1.00 Effective length factor for torsion — 1.00 linbrac ed compression length(Lx,Ly) [ft] 2.00 2.00 Length for torsion and lateral-torsional buckling [ft] 2.00 Lateral bracing — No No Additional hypotheses Bearing length [in] 0.00 Positive flange fastened No Negative flange fastened No Continuous lateral torsional restraint No ` lq• SERVICE CONDITIONS Verification Unit Value Ctrl EQ Reference Maximum geometric slenderness(Ur) — 73.30 (Corn.C4F) Geometric slenderness(KUr) — 73.30 Deflection In compression and/or bending [in] 0.77 c04 at 0.00% DESIGN CHECKS DESIGN FOR FLEXURE Bending,about motor axle.M33 Ratio 0.17 Capacity 0.05[Kip*ft) Reference : (Sec.C3) Demand -0.01[Kip*ft] CM Eq. : c08 at 96.43% Intermediate results Unit Value Reference r4ominal flexural strength(Mnx) [Kip*ft] 0.09 (Sec.C3) Bending strength factor Mt) — 1.67 (Sec.C3.1.1) Dendina about minor axle.lily, Ratio 0.72 Capacity 0.04[Kip*ft] Reference : (Sec.C3) Demand 0.03[Kip*ft] Ctrl Eq. : c05 at 50.00% Intermediate results Unit Value Reference Nominal flexural strenath(Mnvl [Kip*ft] 0.07 (Sec.C3) Bendina strength factor(4i 1 — 1.87 (Sec.C3.1.1) DESIGN FOR SHEAR Shear parallel to minor axis.V2 Ratio 0.00 • Capacity 2.51 [Kip] Reference : (Sec.C3.2) Demand -0.01 [KIp] Ctrl Eq. : c16 at 47.32% Intermediate results Unit Value Reference Nominal shear strenath Nn4 [Kip] 4.02 (Sec.C3.2) Shear strenath factor(40/] -- 1.60 (Sec.C3.2.1) Shear parallel to motor axis.V3 Ratio 0.08 Capacity 0.50[KIN Reference : (Sec.C3.2) Demand 0.04[Kip) CM Eq. : c12 at 93.75% Intermediate results Unit Value Reference Nominal shear strenath Nn) [Kip] 0.80 (Sec.C3.2) Shear strength factor( — 1.60 (Sec.C3.2.1) DESIGN FOR TENSION tar Tension Ratio 0.00 Capacity 5.14[Kip) Reference : (Eq.C2-1) Demand 0.00[Kip] Ctrl Eq. : c01 at 0.00% Intermediate results Unit Value Reference Nominal tension strenath(Tn) (KIp] 8.59 (Sec.C2) Tension strepath factor 411 — 1.67 (Sec.C2) • DESIGN FOR COMPRESSION Compression Ratio 0.24 Capacity -0.67[Kip] Reference : (Sec.C4) Demand -0.16[Kip] CM Eq. : c05 at 97.32% Intermediate results Unit Value Reference Nominal compression strenath(Pn) (Kip] -1.21 (Eq.C4.1) Comoression strength factor(4 — 1.80 (Sec.C4-1) DESIGN FOR TORSION Torsion Ratio 0.57 Capacity 0.00[Kip'ft] Reference : (AISC,Sec.H) Demand 0.00(Kip*ft]. Ctrs Eq. : .c04 at 50.00% Intermediate results Unit Value Reference Nominal torsion strength [Kip'ft) 0.01 Torsion strenath factor(41 — 1.67 DESIGN FOR CRIPPLING Web crlppllna strenath Ratio 0:05 Capacity 0.47[Kip] Reference : (Sec.C3.4) Demand 0.02[Kip] CM Eq. : c13 at 100.00% Intermediate results Unit Value Reference Nominal crioolina strenath(Pnl [Kip] 0.87 (Eq.C3.4.1-1) Crioplino strenath factor(k — 1.85 (Tables C3.4.1) Crippling strenath factor(+ma — 1.85 (Tables C3.4.1) 21 INTERACTION Combined bending and web crinoline ratio Ratio 0.11 Ctrl Eq. : c08 at 96.43% Reference : C3.5.1-1 'The equation has been modified for a maximum ratio equal to 1.0 Combined bending and shear ratio fx-x) Ratio 0.17 CM Eq. : c08 at 96.43% Reference : C3.3.1-1 Combined bending and shear ratio fv Irl Ratio 0.72 CM Eq. : c05 at 50.00% Reference : C3.3.1-1 Conthine#flexure and tension ratio Ratio 0.72 CM Eq. : c05 at 50.00% Reference : C5.1.1-2 Combined flexure and comoresslon ratio Ratio 0.87 Cid Eq. : c13 at 50.00% Reference : C5.2.1-3 CRITICAL STRENGTH RATIO Ratio 0.87 CM Eq. c13 at 50.00% Reference : C5.2.1-3