Loading...
Report • 7Sczo Gt/ee S 4 Job No. 15-1007 Sheet No. Cover By ACK Date 9/2015 RECEIVED SEP 2 9 2015 ci"', 50 PRop CITY OFTIGARD �� Gtr '4 441 BUILDING DIVISION ` ' ,s.,zs• ' CARUSO CLIENT: q/ fI5 Sargenti Architects 4.• +; TURLEY , SCOTT 461 From Road, Second Floor ► �„ Paramus, NJ 07652 leo„`;+_,�'�� structural EXPIRES: •.30.2016 engineers PROJECT: See's Candies Tenant Improvement(New RTU) 9585 SW Washington Square Portland, OR 97223 Space#H-15 STRUCTURAL ENGIN R G • • EXCELLENCE PARTNERS GENERAL INFORMATION: • Richard Turley,PE BUILDING CODE: 2014 OREGON STRUCTURAL SPECIALTY CODE • Paul ScottPE,SE BASED ON 2012 INTERNATIONAL BUILDING CODE Sandra Herd,PE,SE,LEED AP Chris Atkinson,PE,SE.LEED AP Thomas Maris,PE,LEED AP Richard Dahlmann,PE • CALCULATION INDEX SHEET# DESCRIPTION 1.1-1.5 Design Loads 2.1-2.7 Mechanical Unit Support Design 1215 W.Rio Salado Pkwy, Suite 200 Tempe,AZ 85281 T:(480)774-1700 F:(480)774-1701 i. www,CTSAZ.Com Ale:Calc Cover 11.dot\MAL • YOUR STRUCTURAL ENGINEERING EXPERTS Job Name See's Candie RTU 41111i CARUSO Job No. 15-1007 Sheet No. 1.1 TURLEY 1215 W.Rio Salado Pkwy. SCOTT Tune 200 By ACK Date 9/25/2015 wasnhiog Tempe,AZ 85281 atruaora! T:(480)774-1700 • eegireeis F:{480}7741701 DESIGN LOADS ROOF DEAD LOAD: Built Up Roofing 4.0 psf Steel Roof Deck 2.0 Steel Joists 2.0 Sprinklers 2.0 MP&E 4.0 Misc. 3.0 TOTAL 201 ROOF LIVE LOAD: 20 PSF(REDUCIBLE) ROOF SNOW LOAD: 20 PSF(SEE SHEETS 1.2-1.3) • SERO-Oregon Snow Loading http://snowload.seao.org/lookup.html • Oregon Snow Loading f, 2,, The design ground snow of any location in the state of Oregon may be determined by entering the latitude and longitude of your Into the boxes below.The tool provides the design ground snow load (pg in ASCE7*)for your site. The design ground snow load ues can also be viewed on the online map. Users are strongly recommended to review the Map Usage Notes. Ground snow loads are very sensitive to geographic location, and particularly sensitive to elevation. It is recommended that the I tude and longitude values be entered with a precision of 0.001 (about 105 yards). *ASCE Standard(ASCE/SEI 7-10)Minimum Design Loads for Buildings and Other Structures published by the American Sodety of Civil Engineers. Latitude - Longitude Lookup Results Latitude: 45.5167 Longitude: -122.4833 Snow Load: 10.0 psF``, If'riG r"bn, 4�1'^ i;'/�^' J •Js . Modeled Elevation: 360 ft Site Elevation versus Modeled Grid Elevation Site elevation refers to the elevation (above sea level, in feet) of the location for which the snow load is required. The model grid elevation is the average elevation of the 4 km (about 2-1/2 miles) grid cell that was used in the snow load modeling. In re tively flat terrain, the two elevations will likely be the same or very similar. In sloped or mountainous terrain, the two elevatio may be quite different. The design ground snow load may be underreported for some locations where the site elevation is higher than the modeled g elevation. Consult the Map Usage Notes if your site elevation is more than 100 ft. above the modeled grid elevation shown, of your site is at or near the top of a hill. Oregon Design Ground Snow Load Look Up Results It is important that the user of this tool understand the principals and limitations of the modeling used to create it. Ground sni loads can vary dramatically over short distances due to changes in precipitation and elevation. It is critical to use good engines Ing judgment when Interpreting and using the results reported by this tool.The user Is recommended to review the online map, gain a better understanding of the variations and range of magnitudesof the ground snow loads in the vicinity of the site locatio In remote regions at high elevation, reliable snow data was not available during the creation of the map. A site-specific case stu is required to determine the design ground snow load In these areas. The ground snow load values on the map are based on E trapolatlon, and are not recommended for design. See the Map Usage Notes for the regions that require a site-specific case stud It is recommended that the local building official having jurisdiction at the site be consulted for minimum design ground snow roof snow loads. The reported design ground snow loads must be adjusted as required by Chapter 7 of ASCE7* for site exposure, roof slope, rc configuration, etc. Only the properly adjusted loads can be used to design roof structural elements. Oregon requires a minimum roof snow load of 20 psf(pm in ASCE7*) for ail roofs, plus a 5 psf rain-on-snow surcharge for ma roof types, resulting g in a 25 psf minimum roof design load for most roofs. See the Map Usage Notes or Snow Load Analysis• Oregon, Part II for further information. *ASCE Standard(ASCE/SEI 7-10)Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers. ©Copyright 2010-2013 seao.org All rights reserved. 1 of 1 9/23/2015 3:58 PM Code,Standards and Design Criteria I The City of Portland,Oregon https://www.portlandoregon.gov/bds/46829 Development Services - bl}. :irk From Concept to Construction � ,�_ Phone:503-823-7300 Email:bdsoTporUandoregon.gov 1800 SW 4th Ave,Portland,OR 97201 • More Contact Into(http:IM paeandorpon.gowndslarticwe10De4) Code, Standards and Design Criteria Table of Contents (Printable Version) Structural Design Requirements Commercial Permits Residential Permits Miscellaneous Structures Structural Design Requirements The following items address frequently asked questions concerning structural design requirements within the jurisdiction of the City of Portland. • General Design Requirements The following requirements are applicable to both commercial and residential projects located within the jurisdiction of the City of Portland. Soils:Foundation and retaining wall design parameters may be based upon the default soil properties of the building code or as justified by submission of a Geotechnical Report. Default allowable foundation bearing capacity within the City of Portland is 1,500 psf(minimum 12"wide footing). Default lateral soil load for the design of basement and retaining walls supporting level backfill shall be 40 psf/ft for laterally unrestrained retaining walls and 60 psf/ft for laterally restrained retaining walls.Lateral pressures for walls supporting sloping backfill or surcharge loads must be determined by a Geotechnical Report. Design of basement and retaining walls shall include lateral soil loads due to earthquake motions. Soil frost depth is 18-inches. 1). Snow: 6.11'11 12e Jcrl i`k' i CF t^"\.. ; Design Maps Summary Report http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?templa,.. UsGs Design Maps Summary Report ) a User-Specified Input Report Title See's Candie TI Wed September 23,2015 23:26:31 UTC Building Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available 1n 2008) Site Coordinates 45.51667°N, 122.48333°W Site Soil Classification Site Class D-"Stiff Soil" Risk Category I/II/IiI Zoomed View Wide Area Location USGS-Provided Output S = 0.989 g S = 1.093 g SDS = 0.728 g S1 = 0.406 g SM1 = 0.647 g S = 0.432 g 01 For information on how the SS and 51 values above have been calculated from probabilistic(risk-targeted)and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEI-IRP"building code reference document. MCCR Response Spectrum Design Response Spectrum 0.00 1.10 0.90 ' 0,59 0.72 0.00 0.64 • 0.77. 0.59 0.65 r y 0.48 0.55 0,40.f 0.44 0.32 0.33 - 0.24 0.22 0.16 0.11 . 0,00. 0.00 0.00 0.00 0.20 0.40 0.60 0.00 1.00 1.20 1.40 1.60 1.80 2.00 0,00 0,'Q 0.40 0.60 0.50 1.00 1.20 1.40 1.60 1.00 2.00 Period,T(sec) Period,T(sec) For PGAa,T, Com,and CR1 values,please view the detailed report. Although this information is a product of the U.S Geological Survey,we provide no warranty,expressed or Implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject-matter knowledge. • l of 9/23/2015 4:26 PM is • Performance Summary For RTU-1 • Project:Sees Candies-Washington Square 09/16/2015 Prepared By: 04:25PM Part Number:48ES-A300605 ARI SEER. 13.50 Base Unit Dimensions Unit Length:.. .... 48.2 in.......... i J? t '/ Unit Width:. in . .....--------..----.-__.-------•-----------------......... ......... . .. ... -....._...--------- _ -...... ... ...........-----..32.6 in' Unit Height 42 in Total Operating Weight 316 lb )) }} Unit t?341� Unit Voltage-Phase-Hertz- ..........._________-.--- _._208-3-60 Air Discharge' Vertical Fan Drive Type:......................... ........... Direct Actual Airflow 931 CFM Site Altitude:..... ..........________....._..._______ 39 ft Cooling Performance Condenser Entering Air DB: ... . . ........ .... 90.0 F Evaporator Entering Air DB:.__ ..... .... .. .. 76.0 F Evaporator Entering Air WBS................._-...... - -- . ...... .. ...... 54.0 F Entering Air Enthalpy:--------------------------•---- 29.17 BTU/lb Evaporator Leaving Air DB' ....59.1 F Evaporator Leaving Air WB:.... .. .. ..... . ... -....---. - 53.9 F Evaporator Leaving Air Enthalpy:.., - 22.49 BTU/lb Net Cooling Capacity:................_..._________...... .. ..................... . .... ....- --------------- ..._.........................---27.96 MBH Net Sensible Capacity:----........- ... ... ........_............... .. .. . _ 16.97 MBH Total Unit Power Input 2.42 kW Coil Bypass Factor 0.030 Mixed Air Outdoor Air Airflow 0 CFM Outdoor Air DB. 90.0 F Outdoor Air WB• -- ... ..... .................---57.0 F Outdoor Air Htg.Temp.:........ - - --........... ......... 22.0 F Return Air DB .... .---............... .. ... ..... - 76.0 F Return Air WB: ...... .-.... ........ ... - - 64.0 F Return Air Htg.Temp.:_.__ ....... - • 700 F Heating Performance Heating Airflow: 931 CFM Entering Air Temp: ----- . .... --70.0 F Leaving Air Temp:.__.-____..._..... 117.8 F Gas Heating Input Capacity 60.0 MBH Gas Heating Output Capacity__.........------ . _. ... ._ ......................... 48.0 MBH Temperature Rise• 47.8 F Supply Fan External Static Pressure' 0.50 in wg Options/Accessories Static Pressure Wet Coil* 0.05 in wg Total Application Static(ESP+Unit Opts/Acc.):... _.. 0.55 in wg Fan RPM- 1050 Fan Power-. ..._..... . . . ._.... .0.32 BHP FanMotor Size, hp:....._._.............................................. ...... .. . . . ................... ..... 1/2 NOTE. - - - ...__.__...__.. . . ... ...__High Motor Speed,Vert Electrical Data Minimum Voltage* 187 Maximum Voltage- 253 Packaged Rooftop Builder 1.39q Page 1 of 3 t Job.#: 15-100/ 1 •1 I 'KEY PLAN 1 I . ' j� 2.1 f ;Aim a; ' i 1, 40 r ,,,,,. M,W...,.. ..OMBP* .,1:NO . 9.,;,;,,. .. ., i i 1. .94,.,, . ....... . .. .. ._..,.. ...._... , I ,. ..---- - ` ` 'Tenant Space New 316#RTU a,, ' • ; . 1 ' ) . 1 tt. 30P-0". M . 1 :....: : ! ; (:il t i ,,...s. I ' j ; `' 30`-0" 6'rkiil 1 I i 06 . q ' 1. n1,-,...Ha , • r • . ! • ' -..-1. 1 i • t.,kti , . ,_,•4 i efi: . ---I; tt4 . f k 4 .P I _._....N. ` 1 -::.-...1.::. .. I fto j I i EXISTING STEEL JOISTS' I . � I I � 'I l' 1 I ' (-- ice..—.—., E ,...........r,..,.�.. 'l5fl I 1 - , j . i LCI I 2O'-0" • • ) t'l:) 40 0 . I:4 e CARUSO TURLEY SCOTT Job Name '' 'r (LA"),':3ti . (` tet structural engineers 1215 W.Rio Salado Parkway,Suite 200 Tempe,Arizona 85281y� ) T:480 714-1700 • F:480 774-1701 Job No. ) '�t YJ Sheet No. .A. �`1 www.ctsaz.com By 46K fK Date (ILK/J.. )S CSANs' ;54i-;-el ....ki..-4 L::r) E -7f . __________4 51� (2 0 e =f ) t;:\6" 13-:S 3 )f . vv,„)„.,---, I13a , i5y-spTh Y-'/T ;,x- 75o a f . es = ( II 3_,..3 i f - 3y 3 �l ) (30" � - 3, 6-20 16. 45±ed1 .n.s .SNI' ilievi f lee b 'I u()4 L 0 Ei—D,,, i MYf y P4 316 / )(/ ,)1- a/ ( !//) l q-.. 16 ' r` I�� E r�-.1`\,. 1.-m) -)-, , ')) 6e d .o ) 1201-4e czil 3 y 0 �Y� a . .. .. _ . t CARUSO TURLEY SCOTT Job NameC? Ca;'`; l)ir - structural engineers 1215 W.Rio Salado Parkway,Suite 200 ( "- Tempe,Arizona 85281 Job No. 15-10)-7 Sheet No. 2. g T:480 774-1700 • F:480 774-1701 www.ctsaz.com By A tr 91;4519a K Date Vex j t: a01), e)(. Se_ 311 j -43'd c),(,),6 v e oe 4w13 3(414/ c:Gk c( t—N3 CS tom-, A S°10 /o TEry f co i (!‘r") (07-7,1/5 f 1 - Z- sc)iir ) ° 75 0 i7--1 ' - °A). ea'e i\r) V':.`'il.dtqr „Ts, ` L1°,"4. ' „43d� L'iU (_(c . , \QD (3 16 7ut47,)f3117 /i&s /0 J�)cl e.acs)v, 5 c e 3o ^ .5)..s a.) IN -51A-p,cd-1- 4)c 100\ f fop-) -3-be n ,(\e u � Q - . Caruso Turley Scott Project Title: Sees Candies TI 1215 W,Rio Salado Pkwy#200 0Engineer: ACK Protect ID: 151007 ,7au> Tempe,AZ 85301 Protect Des.11111111111 cr, •480-774-1700 rN;,.„ 480-774-1701 www cts comms P+msd 25 SEP 2015,11:04MA C x'Ielrai 61 tcirt, 4aa yS�� 1:7 'L: -.:g)MEa V5101 l*:6 -11PR©aEP-74; c . ....EWEgeALC,1tic;'1883-2015;BUIldx6,15,16,Ver6.1f$...: L(c.44:KW-05000624 Licensee:caruso turley Scott • Description: Existing Joist with new Loads General Beam Properties Elastic Modulus 29,000.0 ksi Span#1 Span Length = 30.0 ft Area= 10.0 inA2 Moment of Inertia = 100.0 in"4 D(0,143) Df0.1.133it1$(0.1333 • i + + + Y Span=30.0 H 'yS L...------- -----___....-- _.... _..----� • Applied Loads Service loads entered.Load Factors will be applied for calculations. Uniform Load: D=0.1133, S=0.1333 klft, Tributary Width=1.0 ft ,!�� Point Load: D=0.1430 k no 2.0 ft tt DESIGN SUMMARY ,° � �J Maximum Bending= 27.886 Of Maximum Shear= .832 k Load Combination Load Combination +D+ rH Location of maximum on span 15.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.844 In 426 Max Upward Transient Deflection 0.000 In 0 Max Downward Total Deflection 1.572 in 229 Max Upward Total Deflection 0.000 in 0 Vertical:Reactions •. Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3.832 3.709 Overall MINimum 1.100 1.025 +D+H 1.833 1.709 1 +D+L+H 1.833 1.709 +O+Lr+H 1.833 1.709 +D+S+H 3.832 3.709 +0+0.750Lr+0.750L+H 1.833 1.709 +040.750L+0.75054H 3.333 3.209 +D+0.60W+P1 1.833 1.709 +D+0.70E+H 1.833 1.709 +10+0.750Lr+0.750L+0.450W41 1.833 1.709 +0+0.750L+0.750S+0.450W41 3.333 3.209 +0+0.750L+0.7505+0.5250E+H 3.333 3.209 +0.601>F0.60W+0.60H • 1.100 1.025 +0.60D+0.70E40.60H 1.100 1.025 o Only 1.833 1.709 Lr Only L Only S Only 2.000 2.000 W Only E Only H Only . . )1 CARUSO TURLEY SCOTT Job Name See � ram; te- " `: - structural engineers r,., 1215 W.Rio Salado Parkway,Suite 200 Tempe,Arizona 85281V lv� T:480 774.1700 • F:480 774-1701 Job No. Sheet No. www.ctsaz.com By A�` . Date (11;51)-015 . ( 4344_ 5 6:a ,tom '4 ! J ' i )e nil- TAn An 63ree) �� r�,. s cx\s '3' (Tknd ? ()= et ("i e.(, , `r i "`q' fit. I i 3]J t �p/��,.f1��� �`}` 'l+- 1/s � �]`�{,�� 7 9-y?3 �.4.3 Z �{, �ll ) .3/� jar �....f' �}.{]c i/�i,.�.,/,^'t V"' - /� f U� 7 L 1 9 rt ��l,t t.Z L 1�`�t 4 F,'y + FF I✓''1,i3. 6 � ^✓Y �}ef !, VN p At-i -0,u( aryl i s'.,.i.F J o'yl) ` t1' 3,f, : ',S4',1 �� � betel r o ,/ i1/1 ,,!Abv 4� ,;_ o_. e f, . r , ��viP vier✓ • • Mechanical Unit Overturning RTU 1 ASCE7-2010 ir 3)6 /654 Su 16" Unit info: Weight= 366 lbs X 1.0= 366 lbs. Length= 48.2 in Width= 32.6 in Height= 42 in Curb height= 12 in Seismic: . Per ASCE 7 Chapter 13 Sds= 0.728 ap= 2.5 ip= 1 Rp= 6 z/h= 1 (conservative) Fp= (.4*ap*Sds*W) *(1+2*z/h) = 0.364 W <--Governs Rp/Ip Fp max= 1.6*Sds*Ip*W= 1.1648 W Fp min= .3*Sds*Ip*W= 0.2184 W Fp= 133 lb @ 33 in Mot(base)= 4396 lbs* .7= 3077.5 "lbs Mot(to curb)x.7= 1958 "lbs Mr=Wtx1.2*width/2= 5965.8 'lbs*.6= 3579 "lbs Tr base= -15 lbs Tr to curb= -50 lbs Sliding: V= 133 lbs Wind: 120 mph 3-sec gust wind speed Risk Category II Exposure C Af= 18 ft"2 Av= 11 ft^2 h/d= 1.12 Af<.1 Bh therefore GCr(h)= 1.9 GCr(v)= 1,5 Kz= 0.98 Kzt= 1.0 Kd= 0.85 qz= .00256 Kz Kzt Kd VA2 = 30.7 psf ASCE-7 eqn. 30.3-1 Fh= qh(GCr)Af X.6= 633 lbs ASCE-7 eqn. 29.5-2 Fv=qv(GCr)Av X.6= 302 lbs ASC&-7 eqn 29.5-3 Mot(base)= 25796 "lbs Mot(to curb)= 18203 "lbs Mr=Wt*width/2= 5965.8 'lbs*.6= 3579 "lbs Tr= 681 lbs Tr to curb= 449 lbs Sliding: V= 633 lbs . . • • Attachment: Screw spacing unit to curb: #12 screw spacing= 8 " N= 20 V all/screw(20 gage material)= 188 lbs Vall= 3760 lbs vs. 633 lbs OK T all/screw(20 gage material)= 95 lbs N= 6 Unity: V + T Tall= 570 lbs Vali+Tall unity seismic= 0.04 unity wind= 0.96 • "Tv-)c) -1-enan -("; 410e (,)t"- 21.he releckl. vle-yr+ v\( t) /1:3 17 011)y A i1 3 4-)--)e .14 --1-0 Pc(iv\54•0. le r P + (9 Co,1)ot-0/Perot • 1 NO $crew=alyd Wield Capacities SSMA t___. .. _;- __-_-. Screw Capacities Table Notes 1. Capacities based on section E4 of the AISI S100. 6. Pull-out capacity is based on the lesser of pull-out capacity in 2. When connecting materials of different steel thicknesses or sheet closest to screw tip or tension strength of screw. tensile strengths,use the lowest values.Tabulated values 7. Pull-over capacity is based on the lesser of pull-over capacity for assume two sheets of equal thickness are connected. sheet closest to screw header,or tension strength of screw. 3. Capacities are based on Allowable Strength Design(ASD)and 8. Values are for pure shear or tension loads.See AISI section E4.5 include safety factor of 3.0. for combined shear and pull-over. 4. Where multiple fasteners are used,screws are assumed to 9. Screw Shear(Pss),tension (Pts),diameter and head diameter are have a center-to-center spacing of at least 3 times the nominal from CFSEI Tech Note(F701-12). diameter(d). 10.Screw shear strength is the average value,and tension strength 5. Screws are assumed to have a center-of-screw to edge-of-steel is the lowest value listed in CFSEI Tech Note(F701-12). dimension of at least 1.5 times the nominal diameter(d)of the 11.Higher values for screw strength(Pss,Pts),maybe obtained screw. g by specifying screws from a specific manufacturer. Allowable Screw Connection Capacity(lbs) g''�ri{L-5 ga 4"5{ ' 'ua rii4.1x 1 k � 4 cr-4 I ua �r � p L f �L'fs t?-Hc �- 'ra+anr"-" W i 4{ful�i w h s L 6 -3 ' o.. b '.cam' c. .'--4r�*ilii '2n a, m vm 1•. n56�w-4 h faimese tiff� ,i.„'.9.4,•::;44,.4.. M=,:.s,+=, , f v$451bs,Pis>i41911btlP4's'27$oi+1.Pis�Fa AAF 1 14ibs, 4stjlss Sit 0kigNAi2slba?-ri lw s=t(tifbf) 'kl �i kla,4T; R ,{ Y.. ' I" 0.138`':die,0.212k'tfead :)114'(a 0.2721Head t dla;,D.34p'F.,faith `:b.2#B"'Hi 13:340"E i 4], ;fL?r0D"tload �L y of�i j F a ; '�„a , ' Shear Puli-Out!Pull♦ Shear Pull-Out]PuM-0ver Shear 1 Put-Out iPull-Over .Shear i Pull-Out PuibOver .Shear Pull-Out Pail-Over 18 0.0188 33 33 44 24 i 84 48 29 ' 84 52 1 33, 105 65 1 38 IIF .105 60 44 127 27 0.0283 33 33 82 37 127 • 89 43 1 ' 127 96 ! 50 159 102 1 57 I 158 110 • • 66 191 0.0312 33 33 95 _ 40 ! 140 103 48 140 111 { 55 175 1175 127 _ 73 _ 211 {33 *41.1 -, 33 45 151 61 j 140 '164: • 72 195 ' '177 '84 265 ` 265 '203 110 • 318 X43" 0.0433 45 214 79 I 140 244 94 195 263 I 109 345 260 124 345 302 144 415 54 0.0566 33 45 214 I100 I 140 344 118 + 195 370 137 386 394 156 433 424 F 160 •'521 68 0.0713 33 45 214 I 125 i 140 426 149 i 195 523 . 173 386 557 196 545 600 l 227 656 97 0.1017 33 45 214 140 140 426 195• .1 195 .548 246 ; 386 777 280 775 1,016 1 324 ' 936 118 0.1242 33 45 214 140 140 426 195 195 548 301 ' 386 777 342 775 1,016 .1 396 1,087 , '54 0.0566 50 65 214 140 140 426 171 195 534 196 386 569 225 I 625 .613 F 261 752 68 0.0713 50 65 214 140 140 426 195 195 548 249 F 386 777 284 1 775 866 I 328 948 '97 0.1017 50 65 214 140 140 426 195 195. 548 356 I 386 777405 I 775 1,016 I 468 1,067 118 0.1242 60 65 214 140 140 426 195 l 195 548 I 386 386 _ 777 I 494 1 775 1,016 ; 572 1,067 Weld Capacities Table Notes 1. Capacities based on section E2.4(for fillet welds)and E2.5(for 6. For flare groove welds,the effective throat of weld is flare groove welds)of the AISI S100 Specification. conservatively assumed to be less than 2t. 2. When connecting materials of different steel thicknesses or 7. For longitudinal fillet welds,a minimum value of EQ E2.4-1, tensile strengths,use the lowest values. E2.4-2 and E2.4-4 was used. 3. Capacities are based on Allowable Strength Design(ASD). 8. For transverse fillet welds,a minimum value of EQ E2.4-3 and 4. Weld capacities are based on E60 electrodes. For material E2.4-4 was used. thinner than 68 mil, 0.030"to 0.035"diameter wire electrodes 9. For longitudinal flare groove welds,a minimum value of may provide best results. EQ E2.5-2 and E2.5-3 was used. 5. Longitudinal capacity is considered to be loading in the direction of the length of the weld. Allowable Weld Capacity(lbs 1 in) kFi:4l{ll,Sti a F . S. 8 e . � r L '9L A8 8 i t1 .T xL "s $Ei3 F:A�ii,,ilr {, 1:41 . , •T ? 3:p1+' ,0iii ai lI 5x'S_ rii.c t � t' �4- 5 g I , AVa ? IR;'1'sLdn.r71a ' , toR"�1 * 2114 1 Ulf? Y- 16111 L1UI.;,,i, tiligili _ _tiEaiNi ',1.41711S J?01gh4i4I . J4.40 : L iiii0hl115Y44:ii 43 0.0451 33 45 499 864 544 663 54 0.0566 33 45 626 1064 682 832 68 0.0713 33 45 789 1365 97 0.1017 33 45 1125 1269859 ; 1046 64 0.0566 50 65 905 1566 985 1 1202 68 0.0713 50 65 1140 1972 97 0.1017 50 66 1269 1269 121 1 1514 "Weld capadty for material thickness greater than 0.10"requires engineenng judgment to determine leg of weld's, IS°and NQ. •