Loading...
Report Dan Nelson From: Brian Ferrick <BFerrick@eppape.com> Sent: Thursday, February 11, 2016 11:29 AM To: Dan Nelson Subject: RE: Precision packaging Attachments: Storage Group A plastics.pdf Dan Attached is the code about if them being able to store their foam under 5' high Brian Ferrick ENGINEERED PRODUCTS,a Pape Company Cell 503-550-5557 The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential andlor privileged material.Any review,retransmission,dissemination or other use of,or taking of any action in reliance upon,this information by persons or entities other than the intended recipient is prohibited.If you received this in error,please contact the sender and delete the material from any computer. From: Brian Ferrick Sent:Tuesday, February 09, 2016 8:03 AM To: 'dann@tigard-or.gov'<dann(a tigard-or.gov> Subject: Precision packaging Dan Regarding Precision packaging the new they are moving to will be smaller so they are going to store less material.They have agreed that all the foam will be stored on the floor under 5' high so the sprinkler system should be fine I attached a review. Thanks Brian Ferrick ENGINEERED PRODUCTS,a Pape Company Territory Manager 7000 Sandburg St Tigard, Or 97223 Cell 503-550-5557 Desk 503-350-3222 (direct) bferrick@eppape.com Take a Virtual Tour or visit our website at www.eppape.com The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.Any review,retransmission,dissemination or other use of,or taking of any action in reliance upon,this information by persons or entities other than the intended recipient is prohibited.If you received this in error,please contact the sender and delete the material from any computer. 1 E NGINEERED P RODUCTS Tuesday,February 09, 2016 A PAPE COMPANY Page 1 of l E NGINEERED P RODUCTS A PAPE COMPANY Regarding Precision Packaging located at 16200 SW 72 Tigard OR They will be storing corrugated cardboard mostly unassembled class III — IV products Any foam will be kept on the floor below 5' high. Fire extinguishers will be installed every 75' of travel Egress doors are provided every 100 lineal feet on any exterior walls The aisles will be 8' or greater All the racks will have open wire decking and no solid racking The product will not be encapsulated The product/ piles are stable The materials will be stored to 20' high top of product. There is approximately 5' or greater between the top of product and the sprinkler system There are single and double row racks with no multiple rows of racks Transverse flue spaces will be provided at the racking uprights and between the pallet loads The heads are at 286 degrees Per NFPA 16.2.1.3.2 (D ) Class IV not encapsulated curve E requires .495 GPM / 2000 SQFT at 20' high storage The existing sprinkler system is .495GPM /2000 SQFT and should meet NFPA requirements. Thank You Brian Ferrick 503-550-5557 Storage and Material Handling Specialists Proposal#DIS0505 1 5BF Dan Nelson From: Brian Ferrick <BFerrick@eppape.com> Sent: Tuesday, February 09, 2016 8:03 AM To: Dan Nelson Subject: Precision packaging Attachments: Fire codes (2).doc; Scan0247.pdf Dan Regarding Precision packaging the new they are moving to will be smaller so they are going to store less material.They have agreed that all the foam will be stored on the floor under 5' high so the sprinkler system should be fine I attached a review. Thanks Brian Ferrick ENGINEERED PRODUCTS,a Pape Company Territory Manager 7000 Sandburg St Tigard, Or 97223 Cell 503-550-5557 Desk 503-350-3222 (direct) bferrick@eppape.com Take a Virtual Tour or visit our website at www.eppape.com The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.Any review,retransmission,dissemination or other use of,or taking of any action in reliance upon,this information by persons or entities other than the intended recipient is prohibited.If you received this in error,please contact the sender and delete the material from any computer. 1 - Dan Nelson From: Darby, Ty M. <Ty.Darby@tvfr.com> Sent: Tuesday, February 02, 2016 3:35 PM To: Brian Ferrick Cc: Dan Nelson; Elena.rivera@precisionpkg.us;John Wolff(TVFR) Subject: RE: Precision Packaging Attachments: 7380 SW Kable Lane.doc Hi Brian, Per our conversation, if your customer is moving to a different structure,the existing High Piled Storage evaluation done by M & M Protection Consultants for 7380 SW Kable Lane would be null and void. The new structure and it's fire protection features would need to be evaluated to verify that the proposed commodities and storage arrangements are acceptable. I would suggest that the customer work with the City of Tigard on this. I would assume the City may need a third party review of the fire sprinkler system, rack heights, detection systems,smoke/heat vents,fire access doors, ceiling heights,types of sprinklers, commodity classifications, etc. Again, I would confirm with the City to be sure. I hope this helps. Let me know if you have any questions. Thank you Ty Darby I Deputy Fire Marshal Tualatin Valley Fire & Rescue Direct: 503-259-1409 www.tvfr.com From: Brian Ferrick [mailto:BFerrick@eDDape.com] Sent: Tuesday, February 02, 2016 8:30 AM To: Darby, Ty M. Cc: dann@tigard-or.gov; Elena.rivera@precisionpkg.us Subject: Precision Packaging In regards to Precession packaging currently located at 7380 Kable lane moving to 16240 SW 72 Tigard OR Based on the review provided by Tualatin valley fire and rescue and M and M Protection on December 10 2008. They would like to move the same racking system from one location to another and store the same product in the same configuration.At the their current location the sprinkler system is acceptable at .475/2000 SQFT The new space is at .495/2000 SQFT and should be acceptable based on the same storage criteria Thank You Brian Ferrick 503-550-5557 Brian Ferrick ENGINEERED PRODUCTS,a Pape Company Territory Manager 7000 Sandburg St 1 Dan Nelson From: Brian Ferrick <BFerrick@eppape.com> - Sent: Tuesday, February 02, 2016 8:30 AM To: ty.darby@tvfr.com Cr Dan Nelson; Elena.rivera@precisionpkg.us Subject: Precision Packaging In regards to Precession packaging currently located at 7380 Kable lane moving to 16240 SW 72 Tigard OR Based on the review provided by Tualatin valley fire and rescue and M and M Protection on December 10 2008. They would like to move the same racking system from one location to another and store the same product in the same configuration.At the their current location the sprinkler system is acceptable at .475/2000 SQFT The new space is at .495/2000 SQFT and should be acceptable based on the same storage criteria Thank You Brian Ferrick 503-550-5557 Brian Ferrick ENGINEERED PRODUCTS,a Pape Company Territory Manager 7000 Sandburg St Tigard, Or 97223 Cell 503-550-5557 Desk 503-350-3222 (direct) - bferrick@eppape.com Take a Virtual Tour or visit our website at www.eppape.com The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.Any review,retransmission,dissemination or other use of,or taking of any action in reliance upon,this information by persons or entities other than the intended recipient is prohibited. If you received this in error,please contact the sender and delete the material from any computer. 1 v N Calculations for : PRECISION PACKAGING TIGARD , OR 01/12/2016 Loading: 1350 # load levels 3 pallet levels @ 56, 112, 168 Seismic per IBC 2012 100% Utilization Sds = 0 . 720 Sdl = 0 .440 I = 1. 00 144 " Load Beams Uprights : 44 " wide C 3 . 000x 1 . 625x 0 . 075 Columns C 1 . 500x 1 .250x 0 . 075 Braces 3 . 00x 4 . 00x 0 . 130 Base Plates with 1- 0 . 500in x 3 .25in Embed Anchor/Column 4 . 63x 2 . 750x 0 . 075 Load beams w/ 3-Pin Connector by : Ben Riehl Registered Engineer OR# 11949 • PROf44. EJ� `c 11949 r. I EXP. DATE: 12/j 6 1 Q7,277.)6 1/12/2016 Design Maps Summary Report E[ Design Maps Summary Report r " User-Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.4033°N, 122.7476°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III err•♦r Mr.eww+ 2 9 4 :. � �� .��" , fit �#j ,.:2":,::::'?:;.k � ,� ., k or t at` way .4fillr " 0., F - mom', ,, 1, "**,%i,,-:-°'4 i 44.- ^,', .,,*,' . '''''''," r, c or.einjrAt ,,,,...e..c.,..- ,pi.,,,,,,, ... ,, s i� ,'` ' '�. z °� a , ., -,� � `per, s� , r ,'r a ,'YI,,., '. USGS-Provided Output SS = 0.965g SMS = 1.075g SDS = 0.717g Si = 0.419 g SMI = 0.662 g SD1 = 0.442 g For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP" building code reference document. MCER Response Spectrum Design Response Spectrum 1.10 I 0.72 0.99 0.64 0 0.56 .99 0 0.48 .77 WI 0.66 Ti fn 0.55 1 - N 0.40 ' 0.44 0.32 0.33 0.24 0.22 0.16 0.11 0.08 0.00 0.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.90 2.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.50 1.80 2.00 Period, T(sec) Period, T(sec) Although this information is a product of the U.S. Geological Survey,we provide no warranty, expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject matter knowledge. Li httpfiehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?tem plate=mi nima18Jabtude=45.40338Jongitude=-122.747686iteclass=3&riskcategory=0&edi... 1/1 • IBC 2012 LOADING SEISMIC: Ss= 96.5 %g S1= 41.9 % g Soil Class D Modified Design spectral response parameters Sms= 107.5 %g Sds= 71.7 %g Sm1= 66.2 % g Sd1= 44.1 % g Seismic Use 2 Seismic Design Category D or D le= 1 R = 4 R = 6 Cs = 0.1792 W Cs= 0.1194 W Using Working Stress Design V= Cs*W/1.4 V= 0.1280 W V= 0.0853 W 5 Cold Formed Channel Depth 3.000 in Fy = 50 ksi Flange 1.625 in Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R 0.1000 in Blank = 7.21 in wt = 1.8 plf A = 0.541 in2 Ix = 0.750 in4 Sx = 0.500 in3 Rx = 1.177 in iy = 0.217 in4 Sy = 0.223 in3 Ry = 0.633 in a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 17.0000 b 1.2750 x bar 0.6139 b bar 1.5500 m 0.9488 c 0.5750 x0 -1.5627 c bar 0.7125 J 0.0010 u 0.2160 x web 0.6514 gamma 1.0000 x lip 0.9736 R' 0.1375 h/t 38.0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0.152 in2 A' = 0.389 in2 x bar = 0.728 in I'x = 0.573 in4 S'x= 0.382 in3 R'x= 1.213 in I'y = 0.172 in4 S'y= 0.184 in3 R'y= 0.665 in Cold Formed Channel Depth 1.500 in Fy = 50 ksi Flange 1.250 in Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 3.73 in wt = 1.0 plf A = 0.280 in2 Ix = 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 14.3333 b 1.0750 x bar 0.3946 b bar 1.2125 m 0.5298 c 0.0000 x0 -0.9244 c bar 0.0000 J 0.0005 u 0.2160 x web 0.4321 gamma 0.0000 x lip 0.8179 R' 0.1375 h/t 18.0000 1!/ Cold Formed Section HEIGHT OF BEAM 4.630 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 50.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 4.2800 2.3150 9.9082 22.9375 6.5336 0.0375 0.1605 TOP 1.4000 4.5925 6.4295 29.5275 0.0000 0.8750 1.2250 STEP SIDE 1.3500 3.7800 5.1030 19.2893 0.2050 1.7125 2.3119 STEP BOTT 0.7250 2.9675 2.1514 6.3844 0.0000 2.2125 1.6041 SHORT SID 2.6550 1.5025 3.9891 5.9937 1.5596 2.7125 7.2017 BOTTOM 2 .4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 4.5425 0.9811 4.4568 0.0004 0.0875 0.0189 2 0.2160 4.5425 0.9811 4.4568 0.0004 1.6625 0.3591 3 0.2160 3.0175 0.6517 1.9666 0.0004 1.8000 0.3888 4 0.2160 2.9175 0.6301 1.8385 0.0004 2.6625 0.5751 5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 14.1059 30.3900 30.9532 96.8576 8.3005 17.8875 17.7389 AREA = 1.058 IN2 CENTER GRAVITY = 2.194 INCHES TO BASE 1.258 INCHES TO LONG SIDE Ix = 2.793 IN4 Iy = 1.210 IN4 Sx = 1.147 IN3 Sy = 0.810 IN3 Rx = 1.625 IN Ry = 1.069 IN 1 BEAM END CONNECTOR • COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 4.63 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD @ BTM OF BEAM = 0.000 IN LOAD = 1350 LBS PER PAIR CONNECTOR VERTICAL LOAD = 337.5 LBS EACH RIVETS 3 RIVETS @ 2 " oc 0.4375 " DIA A502-2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 5t CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K-IN 3.924 K-IN RIVET MOMENT RESULTANT @ 0.7 IN FROM BTM OF CONN M = PL L = 0.67 IN Pmax = Mcap/L = 5.856 KIPS RIVET LOAD DIST MOMENT P1 2.844 4.300 12.228 RIVET OK P2 1.521 2.300 3.498 P3 0.198 0.300 0.060 P4 0.000 0.000 0.000 TOTAL 4.563 15.786 CONNECTOR OK WELDS 0.125 " x 4.630 " FILLET WELD UP OUTSIDE 0.125 " x 3.005 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE 0 " x 1.000 " FILLET WELD STEP BOTTOM 0 " x 2.750 " FILLET WELD ACROSS BOTTOM 0 " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 i° THICK WELD L = 9.26 IN A = 0.695 IN2 S = 0.536 IN3 Fv = 26.0 KSI Mcap = 13.93 K-IN 13.93 K-IN • In Upright Plane Seismic Load Distribution per 2012 IBC Sds = 0.720 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds/R)*I*Pl* .67 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3.000x 1.625x 0.075 168 1410 237 255 43 112 1410 158 170 19 56 1410 79 85 5 KLx = 95.2 in O 0 0 0 0 KLy = 49 in O 0 0 0 0 A = 0.389 in O 0 0 0 0 Pcap = 7467 lbs ---- ---- ---- ==== 4230 ---- ---- ---- 4230 474 510 67 Column 34% Stress Max column load = 3630 # Min column load = -311 # Uplift Overturning ( .6-.11Sds)DL+(0.6-.14Sds) .75PLapp-1.02EL -990 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 2542 # MAX REQUIRED HOLD DOWN = -990 # Anchors: 4 T = 990 # 1 0.5 in dia POWERS STUD+SD2 3.25 inches embed in 3500psi concrete Tcap = 2025 # 49% Stressed V = 268 # per leg Vcap = 2155 # = 12% Stressed COMBINED = 61% Stressed OK Braces: Brace height = 49 " Brace width = 44 " Length = 66 " P = 573 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 163 • Pcap = 1595 # 36% In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2012 IBC Sds = 0.720 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds/R) *I*P1 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3.000x 1.625x 0.075 168 1410 237 264 44 112 60 7 7 1 56 60 3 4 0 KLx = 95.2 in O 0 0 0 0 KLy = 49 in O 0 0 0 0 A = 0.389 in O 0 0 0 0 Pcap = 7467 lbs ---- ---- ---- ==== 1530 ---- ---- ---- 1530 247 275 45 Column 24% Stress Max column load = 1797 # Min column load = -345 # Uplift Overturning ( .6- .11Sds)DL+(0.6-.14Sds) .75PLapp-1.02EL -787 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 1805 # MAX REQUIRED HOLD DOWN = -787 # Anchors: 4 T = 787 # 1 0.5 in dia POWERS STUD+SD2 3 .25 inches embed in 3500psi concrete Tcap = 2025 # 39% Stressed V = 138 # per leg Vcap = 2155 # = 6% Stressed COMBINED = 45% Stressed OK Braces: Brace height = 49 " Brace width = 44 " Length = 66 " P = 309 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 163 Pcap = 1595 # 19% fo PAGE 1 ▪ MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:24:15 • INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 3 Levels Type Plane Frame Number of Joints 14 Number of Supports 8 Number of Members 15 Number of Loadings 1 Joint Coordinates 1 0.0 56.0 S 2 0.0 112.0 S 3 0.0 168.0 S 3 11 14 4 73.5 0.0 S 5 73.5 56.0 6 73.5 112.0 2 6 10 13 7 73.5 168.0 8 220.5 0.0 S 9 220.5 56.0 1 5 9 12 10 220.5 112.0 11 220.5 168.0 4 8 12 294.0 56.0 S 13 294.0 112.0 S 14 294.0 168.0 S Joint Releases 4 Moment Z 8 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 12 Force X Moment Z 13 Force X Moment Z 14 Force X Moment Z Member Incidences 1 1 5 2 2 6 3 3 7 4 4 5 5 5 6 6 6 7 7 8 9 8 9 10 9 10 11 10 5 9 11 9 12 12 6 10 13 10 13 14 7 11 15 11 14 Member Properties 1 Thru 3 Prismatic Ax 1.058 Ay 0.741 Iz 2.793 I t PAGE 2 MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:24:15 4 Thru 9 Prismatic Ax 0.389 Ay 0.194 Iz 0.573 10 Thru 15 Prismatic Ax 1.058 Ay 0.741 Iz 2.793 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 5 Force Y -0.71 6 Force Y -0.71 7 Force Y -0.71 9 Force Y -0.71 10 Force Y -0.71 11 Force Y -0.71 5 Force X 0.012 6 Force X 0.023 7 Force X 0.034 9 Force X 0.012 10 Force X 0.023 11 Force X 0.034 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2012 IBC wi di widi2 fi fidi in 1410 0.2902 119 24 7.0 12 24 1410 0.3755 199 46 17.3 23 46 1410 0.4217 251 68 28.7 34 68 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0 0.0 0 0 4230 568 138 52.9 139 g = 32.2 ft/sec2 T = 1.0475 sec I = 1.00 Cs = 0.0700 or 0.1200 Sdl = 0.440 Cs min = 0.072 R = 6 Cs = 0.0720 V = (Cs*I*.67) *W*.67 V = 0.0482 W*.67 139 # 101t PAGE 3 ' MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:24:15 Structure Storage Rack in Load Beam Plane 3 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.033 0.00 1 5 0.000 0.033 -2.41 2 2 0.000 -0.011 0.00 2 6 0.000 0.011 -0.84 3 3 0.000 -0.001 0.00 3 7 0.000 0.001 -0.10 4 4 2.115 0.068 0.00 4 5 -2.115 -0.068 3.81 5 5 1.408 0.052 1.34 5 6 -1.408 -0.052 1.57 6 6 0.704 0.026 0.68 6 7 -0.704 -0.026 0.78 7 8 2.115 0.070 0.00 7 9 -2 .115 -0.070 3.92 8 9 1.408 0.062 1.60 8 10 -1.408 -0.062 1.87 9 10 0.704 0.042 1.08 9 11 -0.704 -0.042 1.26 10 5 -0.004 -0.036 -2.74 10 9 0.004 0.036 -2.60 11 9 0.000 -0.040 4E1m f . r <^' 11 12 0.000 0.040 4 .00 ,,l , t" 12 6 -0.003 -0.018 -1.41 12 10 0.003 0.018 -1.19 13 10 0.000 -0.024 -1.76 13 13 0.000 0.024 0.00 14 7 0.008 -0.007 -0.69 14 11 -0.008 0.007 -0.34 15 11 0.000 -0.013 -0.93 15 14 0.000 0.013 0.00 APPLIED JOINT LOADS, FREE JOINTS l J PAGE 4 MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:24:15 JOINT FORCE X FORCE Y MOMENT Z 5 0.012 -0.710 0.00 . 6 0.023 -0.710 0.00 7 0.034 -0.710 0.00 9 0.012 -0.710 0.00 10 0.023 -0.710 0.00 11 0.034 -0.710 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.033 0.00 2 0.000 -0.011 0.00 3 0.000 -0.001 0.00 4 -0.068 2.115 0.00 8 -0.070 2.115 0.00 12 0.000 0.040 0.00 13 0.000 0.024 0.00 14 0.000 0.013 0.00 FREE JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 5 0.2902 -0.0105 -0.0009 6 0.3755 -0.0175 -0.0005 7 0.4217 -0.0210 -0.0003 9 0.2902 -0.0105 -0.0007 10 0.3755 -0.0175 -0.0003 11 0.4217 -0.0210 0.0000 SUPPORT JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 1 0.2902 0.0000 0.0002 2 0.3755 0.0000 -0.0001 3 0.4217 0.0000 -0.0003 4 0.0000 0.0000 -0.0073 8 0.0000 0.0000 -0.0074 12 0.2902 0.0000 0.0006 13 0.3755 0.0000 0.0005 14 0.4217 0.0000 0.0004 Iq Beam-Column Check C 3.000x 1.625x 0.075 Fy = 50 ksi A = 0.389 in2 Sx = 0.382 in3 • Rx = 1.213 in Ry = 0.665 in kx = 1.70 ky = 1.00 Stress Factor 1.000 Point P M Lx Ly Pcap Mcap Ratio 9 2.1 3.9 56.0 49.0 7.47 11.45 62% 10 1.4 1.9 56.0 49.0 7.47 11.45 36% 11 0.8 1.3 56.0 49.0 7.47 11.45 22% 0 0.0 0.0 56.0 49.0 7.47 11.45 0% 0 0.0 0.0 56.0 49.0 7.47 11.45 0% 0 0.0 0.0 56.0 49.0 7.47 11.45 0% Load Beam Check 4.63x 2.750x 0.075 Fy = 50 ksi A = 1.058 in2 E = 29,500 E3 ksi Sx = 1.147 in3 Ix = 2.793 in4 Length = 144 inches Pallet Load 1350 lbs Assume 0.5 pallet load on each beam M = PL/8= 12.15 k-in fb = 10.60 ksi Fb = 30 ksi 35% Mcap = 34.40 k-in 45.86 k-in with 1/3 increase Defl = 0.32 in = L/ 452 w/ 25% added to one pallet load M = .22 PL = 10.69 k-in 31% Base Plate Design Column Load 2.7 kips Allowable Soil 1500 psf basic Assume Footing 16.2 in square on side Soil Pressure 1481 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1A2/3 Use 3 "square footprint w = 10.3 psi 1 = 6.6 in Load factor = 1.67 M = 249 #-in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 60 psi Fb = 5 (phi) (f'cA.5) = 163 psi OK ! ! Shear : Beam fv = 23 psi Fv = 85 psi OK ! ! Punching fv = 21 psi Fv = 170 psi OK ! ! Footprint Bearing Use 0.13 " thick 7.75 inches long under column section 0.335 inches wide 2.59625 in2 Bearing: 1.040 ksi 1.750 ksi Allowable i Calculations for : PRECISION PACKAGING TIGARD , OR 01/12/2016 Loading: 2400 # load levels 3 pallet levels @ 56, 112, 168 Seismic per IBC 2012 1005 Utilization Sds = 0 . 720 Sdl = 0 .440 I = 1 . 00 144 " Load Beams Uprights : 44 " wide C 3 . 000x 3 . 000x 0 . 075 Columns C 1 . 500x 1 . 250x 0 . 075 Braces 4 . 00x 7 . 00x 0 . 375 Base Plates with 2- 0 . 500in x 3 .25in Embed Anchor/Column 4 . 63x 2 . 750x 0 . 075 Load beams w/ 3-Pin Connector by : Ben Riehl Registered Engineer OR# 11949 (7 Cold Formed Channel Depth 3.000 in Fy = 50 ksi • Flange 3.000 in Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R 0.1000 in Blank = 9.96 in wt = 2.5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2.6500 x bar 1.2423 b bar 2.9250 m 1.6690 c 0.5750 x0 -2.9114 c bar 0.7125 J 0.0014 u 0.2160 x web 1.2798 gamma 1.0000 x lip 1.7202 R' 0.1375 h/t 38.0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0.152 in2 A' = 0.595 in2 x bar = 1.478 in I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in Cold Formed Channel Depth 1.500 in Fy = 50 ksi Flange 1.250 in Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 3.73 in wt = 1.0 plf A = 0.280 in2 Ix = 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 14.3333 b 1.0750 x bar 0.3946 b bar 1.2125 m 0.5298 c 0.0000 x0 -0.9244 c bar 0.0000 J 0.0005 u 0.2160 x web 0.4321 gamma 0.0000 x lip 0.8179 R' 0.1375 h/t 18.0000 In Upright Plane Seismic Load Distribution • per 2012 IBC Sds = 0.720 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds/R) *I*P1* .67 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0.075 168 2460 413 445 75 112 2460 276 297 33 56 2460 138 148 8 KLx = 56 in 0 0 0 0 0 KLy = 49 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 14252 lbs ---- ---- ---- ==== 7380 ---- ---- ---- 7380 827 890 116 Column 31% Stress Max column load = 6333 # Min column load = -543 # Uplift Overturning ( .6-.11Sds)DL+(0.6-.14Sds) .75PLapp-1.02EL -1746 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 4417 # MAX REQUIRED HOLD DOWN = -1746 # Anchors: 4 T = 1746 # 2 0.5 in dia POWERS STUD+SD2 3.25 inches embed in 3500psi concrete Tcap = 3104 # 56% Stressed V = 467 # per leg Vcap = 3130 # = 15% Stressed COMBINED = 71% Stressed OK Braces: Brace height = 49 " Brace width = 44 " Length = 66 " P = 999 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 163 Pcap = 1595 # 63% In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2012 IBC Sds = 0.720 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds/R) *I*P1 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0.075 168 2460 413 453 76 112 60 7 7 1 56 60 3 4 0 KLx = 56 in 0 0 0 0 0 KLy = 49 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 14252 lbs 2580 423 464 77 Column 21% Stress Max column load = 3044 # Min column load = -594 # Uplift Overturning ( .6-.11Sds)DL+(0.6- .14Sds) .75PLapp-1.02EL -1338 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 3052 # MAX REQUIRED HOLD DOWN = -1338 # Anchors: 4 T = 1338 # 2 0.5 in dia POWERS STUD+SD2 3.25 inches embed in 3500psi concrete Tcap = 3104 # 43% Stressed V = 232 # per leg Vcap = 3130 # = 7% Stressed COMBINED = 51% Stressed OK Braces: Brace height = 49 " Brace width = 44 " Length = 66 " P = 521 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 163 Pcap = 1595 # 33% 2d PAGE 1 ' MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:35:21 ' INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 3 Levels Type Plane Frame Number of Joints 14 Number of Supports 8 Number of Members 15 Number of Loadings 1 Joint Coordinates 1 0.0 56.0 S 3 7 11 14 2 0.0 112.0 S 3 0.0 168.0 S 4 73.5 0.0 S 2 6 10 13 5 73.5 56.0 6 73 .5 112.0 7 73.5 168.0 1 5 9 12 8 220.5 0.0 S 9 220.5 56.0 10 220.5 112.0 4 8 11 220.5 168.0 12 294.0 56.0 S 13 294.0 112.0 S 14 294.0 168.0 S Joint Releases 4 Moment Z 8 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 12 Force X Moment Z 13 Force X Moment Z 14 Force X Moment Z Member Incidences 1 1 5 2 2 6 3 3 7 4 4 5 5 5 6 6 6 7 7 8 9 8 9 10 9 10 11 10 5 9 11 9 12 12 6 10 13 10 13 14 7 11 15 11 14 Member Properties 1 Thru 3 Prismatic Ax 1.058 Ay 0.741 Iz 2.793 • Z1 PAGE 2 MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:35:21 4 Thru 9 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 10 Thru 15 Prismatic Ax 1.058 Ay 0.741 Iz 2.793 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 5 Force Y -1.23 6 Force Y -1.23 7 Force Y -1.23 9 Force Y -1.23 10 Force Y -1.23 11 Force Y -1.23 5 Force X 0.021 6 Force X 0.041 7 Force X 0.059 9 Force X 0.021 10 Force X 0.041 11 Force X 0.059 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2012 IBC wi di widi2 fi fidi in 2460 0.3211 254 42 13.5 21 42 2460 0.4313 458 82 35.4 41 82 2460 0.4891 588 118 57.7 59 118 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 7380 1300 242 106.6 242 g = 32.2 ft/sec2 T = 1.1163 sec I = 1.00 Cs = 0.0657 or 0.1200 Shc = 0.440 Cs min = v.v72 R = 6 Cs = 0.0720 V = (Cs*I*.67) *W* .67 V = 0.0482 W*.67 = 242 # 100t 22 PAGE 3 • MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:35:21 Structure Storage Rack in Load Beam Plane 3 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.058 0.00 1 5 0.000 0.058 -4.26 2 2 0.000 -0.023 0.00 2 6 0.000 0.023 -1.68 3 3 0.000 -0.005 0.00 3 7 0.000 0.005 -0.37 4 4 3 .669 0.119 0.00 4 5 -3.669 -0.119 6.69 5 5 2.444 0.093 2.24 5 6 -2.444 -0.093 2.95 6 6 1.222 0.046 1.12 6 7 -1.222 -0.046 1.48 7 8 3.669 0.123 0.00 7 9 -3 .669 -0.123 6.86 8 9 2.444 0.107 2.63 8 10 -2.444 -0.107 3.39 9 10 1.222 0.072 1.75 . 9 11 -1.222 -0.072 2.26 10 5 -0.006 -0.063 -4.67 10 9 0.006 0.063 -4.54 11 9 0.000 -0.067 410 fyf440_ 4s, C,0 ./, 11 12 0.000 0.067 1 . 10 ! 0 ` 12 6 -0.005 -0.031 -2 .39 12 10 0.005 0.031 -2.21 13 10 0.000 -0.040 -2.93 13 13 0.000 0.040 0.00 14 7 0.013 -0.013 -1.10 14 11 -0.013 0.013 -0.77 15 11 0.000 -0.020 -1.50 15 14 0.000 0.020 0.00 APPLIED JOINT LOADS, FREE JOINTS 7$ PAGE 4 MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:35:21 ' JOINT FORCE X FORCE Y MOMENT Z 5 0.021 -1.230 0.00 6 0.041 -1.230 0.00 7 0.059 -1.230 0.00 9 0.021 -1.230 0.00 10 0.041 -1.230 0.00 11 0.059 -1.230 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.058 0.00 2 0.000 -0.023 0.00 3 0.000 -0.005 0.00 4 -0.119 3 .669 0.00 8 -0.123 3.669 0.00 12 0.000 0.067 0.00 13 0.000 0.040 0.00 14 0.000 0.020 0.00 FREE JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 5 0.3211 -0.0119 -0.0015 6 0.4313 -0.0198 -0.0008 7 0.4891 -0.0238 -0.0004 9 0.3212 -0.0119 -0.0013 ' 10 0.4313 -0.0198 -0.0006 11 0.4891 -0.0238 -0.0001 SUPPORT JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 1 0.3211 0.0000 0.0005 2 0.4313 0.0000 0.0000 3 0.4891 0.0000 -0.0003 4 0.0000 0.0000 -0.0078 8 0.0000 0.0000 -0.0079 12 0.3212 0.0000 0.0009 13 0.4313 0.0000 0.0007 14 0.4891 0.0000 0.0005 r zc7/ Beam-Column Check • C 3.000x 3 .000x 0.075 Fy = 50 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.000 Point P M Lx Ly Pcap Mcap Ratio 9 3.7 6.9 56.0 49.0 14.25 20.27 60% 10 2.5 3.4 56.0 49.0 14.25 20.27 34%- 11 4%11 1.3 2.3 56.0 49.0 14.25 20.27 20% 0 0.0 0.0 56.0 49.0 14 .25 20.27 0% 0 0.0 0.0 56.0 49.0 14 .25 20.27 0% 0 0.0 0.0 56.0 49.0 14 .25 20.27 0% Load Beam Check 4.63x 2.750x 0.075 Fy = 50 ksi A = 1.058 in2 E = 29,500 E3 ksi Sx = 1.147 in3 Ix = 2 .793 in4 Length = 144 inches Pallet Load 2400 lbs Assume 0.5 pallet load on each beam M = PL/8= 21.60 k-in fb = 18.84 ksi Fb = 30 ksi 63% Mcap = 34.40 k-in 45.86 k-in with 1/3 increase Defl = 0.57 in = L/ 254 w/ 25% added to one pallet load M = .22 PL = 19.01 k-in 55% 2S' Base Plate Design Column Load 4.7 kips Allowable Soil 1500 psf basic Assume Footing 21.4 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1'2/3 Use 4 "square base plate w = 10.4 psi 1 = 5.68 in Load factor = 1.67 M = 187 #-in 6 in thick slab f'c = 3500 psi s = 6.00 in3 fb = 31 psi Fb = 5 (phi) (f'c".5) = 192 psi OK ! ! Shear : Beam fv = 16 psi Fv = 101 psi OK ! ! Punching fv = 26 psi Fv = 201 psi OK ! ! Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 297 psi fb = 14250 psi Fb = 37500 psi OK ! !