Report Dan Nelson
From: Brian Ferrick <BFerrick@eppape.com>
Sent: Thursday, February 11, 2016 11:29 AM
To: Dan Nelson
Subject: RE: Precision packaging
Attachments: Storage Group A plastics.pdf
Dan
Attached is the code about if them being able to store their foam under 5' high
Brian Ferrick
ENGINEERED PRODUCTS,a Pape Company
Cell 503-550-5557
The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential andlor privileged material.Any
review,retransmission,dissemination or other use of,or taking of any action in reliance upon,this information by persons or entities other than the
intended recipient is prohibited.If you received this in error,please contact the sender and delete the material from any computer.
From: Brian Ferrick
Sent:Tuesday, February 09, 2016 8:03 AM
To: 'dann@tigard-or.gov'<dann(a tigard-or.gov>
Subject: Precision packaging
Dan
Regarding Precision packaging the new they are moving to will be smaller so they are going to store less material.They
have agreed that all the foam will be stored on the floor under 5' high so the sprinkler system should be fine I attached a
review.
Thanks
Brian Ferrick
ENGINEERED PRODUCTS,a Pape Company
Territory Manager
7000 Sandburg St
Tigard, Or 97223
Cell 503-550-5557
Desk 503-350-3222 (direct)
bferrick@eppape.com
Take a Virtual Tour or visit our website at www.eppape.com
The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.Any
review,retransmission,dissemination or other use of,or taking of any action in reliance upon,this information by persons or entities other than the
intended recipient is prohibited.If you received this in error,please contact the sender and delete the material from any computer.
1
E NGINEERED
P RODUCTS Tuesday,February 09, 2016
A PAPE COMPANY Page 1 of l
E NGINEERED
P RODUCTS
A PAPE COMPANY
Regarding Precision Packaging located at 16200 SW 72 Tigard OR
They will be storing corrugated cardboard mostly unassembled class III — IV products
Any foam will be kept on the floor below 5' high.
Fire extinguishers will be installed every 75' of travel
Egress doors are provided every 100 lineal feet on any exterior walls
The aisles will be 8' or greater
All the racks will have open wire decking and no solid racking
The product will not be encapsulated
The product/ piles are stable
The materials will be stored to 20' high top of product. There is approximately 5' or greater
between the top of product and the sprinkler system
There are single and double row racks with no multiple rows of racks
Transverse flue spaces will be provided at the racking uprights and between the pallet
loads
The heads are at 286 degrees
Per NFPA 16.2.1.3.2 (D )
Class IV not encapsulated curve E requires .495 GPM / 2000 SQFT at 20' high storage
The existing sprinkler system is .495GPM /2000 SQFT and should meet NFPA
requirements.
Thank You
Brian Ferrick
503-550-5557
Storage and Material Handling Specialists
Proposal#DIS0505 1 5BF
Dan Nelson
From: Brian Ferrick <BFerrick@eppape.com>
Sent: Tuesday, February 09, 2016 8:03 AM
To: Dan Nelson
Subject: Precision packaging
Attachments: Fire codes (2).doc; Scan0247.pdf
Dan
Regarding Precision packaging the new they are moving to will be smaller so they are going to store less material.They
have agreed that all the foam will be stored on the floor under 5' high so the sprinkler system should be fine I attached a
review.
Thanks
Brian Ferrick
ENGINEERED PRODUCTS,a Pape Company
Territory Manager
7000 Sandburg St
Tigard, Or 97223
Cell 503-550-5557
Desk 503-350-3222 (direct)
bferrick@eppape.com
Take a Virtual Tour or visit our website at www.eppape.com
The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.Any
review,retransmission,dissemination or other use of,or taking of any action in reliance upon,this information by persons or entities other than the
intended recipient is prohibited.If you received this in error,please contact the sender and delete the material from any computer.
1
- Dan Nelson
From: Darby, Ty M. <Ty.Darby@tvfr.com>
Sent: Tuesday, February 02, 2016 3:35 PM
To: Brian Ferrick
Cc: Dan Nelson; Elena.rivera@precisionpkg.us;John Wolff(TVFR)
Subject: RE: Precision Packaging
Attachments: 7380 SW Kable Lane.doc
Hi Brian,
Per our conversation, if your customer is moving to a different structure,the existing High Piled Storage evaluation done
by M & M Protection Consultants for 7380 SW Kable Lane would be null and void. The new structure and it's fire
protection features would need to be evaluated to verify that the proposed commodities and storage arrangements are
acceptable. I would suggest that the customer work with the City of Tigard on this. I would assume the City may need a
third party review of the fire sprinkler system, rack heights, detection systems,smoke/heat vents,fire access doors,
ceiling heights,types of sprinklers, commodity classifications, etc. Again, I would confirm with the City to be sure.
I hope this helps. Let me know if you have any questions.
Thank you
Ty Darby I Deputy Fire Marshal
Tualatin Valley Fire & Rescue
Direct: 503-259-1409
www.tvfr.com
From: Brian Ferrick [mailto:BFerrick@eDDape.com]
Sent: Tuesday, February 02, 2016 8:30 AM
To: Darby, Ty M.
Cc: dann@tigard-or.gov; Elena.rivera@precisionpkg.us
Subject: Precision Packaging
In regards to Precession packaging currently located at 7380 Kable lane moving to 16240 SW 72 Tigard OR
Based on the review provided by Tualatin valley fire and rescue and M and M Protection on December 10 2008. They
would like to move the same racking system from one location to another and store the same product in the same
configuration.At the their current location the sprinkler system is acceptable at .475/2000 SQFT The new space is at
.495/2000 SQFT and should be acceptable based on the same storage criteria
Thank You
Brian Ferrick
503-550-5557
Brian Ferrick
ENGINEERED PRODUCTS,a Pape Company
Territory Manager
7000 Sandburg St
1
Dan Nelson
From: Brian Ferrick <BFerrick@eppape.com>
- Sent: Tuesday, February 02, 2016 8:30 AM
To: ty.darby@tvfr.com
Cr Dan Nelson; Elena.rivera@precisionpkg.us
Subject: Precision Packaging
In regards to Precession packaging currently located at 7380 Kable lane moving to 16240 SW 72 Tigard OR
Based on the review provided by Tualatin valley fire and rescue and M and M Protection on December 10 2008. They
would like to move the same racking system from one location to another and store the same product in the same
configuration.At the their current location the sprinkler system is acceptable at .475/2000 SQFT The new space is at
.495/2000 SQFT and should be acceptable based on the same storage criteria
Thank You
Brian Ferrick
503-550-5557
Brian Ferrick
ENGINEERED PRODUCTS,a Pape Company
Territory Manager
7000 Sandburg St
Tigard, Or 97223
Cell 503-550-5557
Desk 503-350-3222 (direct)
- bferrick@eppape.com
Take a Virtual Tour or visit our website at www.eppape.com
The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.Any
review,retransmission,dissemination or other use of,or taking of any action in reliance upon,this information by persons or entities other than the
intended recipient is prohibited. If you received this in error,please contact the sender and delete the material from any computer.
1
v N
Calculations for :
PRECISION PACKAGING
TIGARD , OR
01/12/2016
Loading: 1350 # load levels
3 pallet levels @ 56, 112, 168
Seismic per IBC 2012 100% Utilization
Sds = 0 . 720 Sdl = 0 .440
I = 1. 00
144 " Load Beams
Uprights : 44 " wide
C 3 . 000x 1 . 625x 0 . 075 Columns
C 1 . 500x 1 .250x 0 . 075 Braces
3 . 00x 4 . 00x 0 . 130 Base Plates
with 1- 0 . 500in x 3 .25in Embed Anchor/Column
4 . 63x 2 . 750x 0 . 075 Load beams w/ 3-Pin Connector
by : Ben Riehl
Registered Engineer OR# 11949
•
PROf44. EJ�
`c 11949 r.
I EXP. DATE: 12/j 6 1
Q7,277.)6
1/12/2016 Design Maps Summary Report
E[ Design Maps Summary Report r "
User-Specified Input
Building Code Reference Document 2012 International Building Code
(which utilizes USGS hazard data available in 2008)
Site Coordinates 45.4033°N, 122.7476°W
Site Soil Classification Site Class D - "Stiff Soil"
Risk Category I/II/III
err•♦r Mr.eww+
2 9 4
:. � �� .��" , fit �#j ,.:2":,::::'?:;.k � ,� ., k
or t at` way .4fillr "
0.,
F - mom',
,, 1, "**,%i,,-:-°'4 i 44.- ^,', .,,*,' . '''''''," r,
c
or.einjrAt ,,,,...e..c.,..- ,pi.,,,,,,, ... ,,
s
i�
,'` ' '�. z °� a , ., -,� � `per,
s� , r ,'r a ,'YI,,., '.
USGS-Provided Output
SS = 0.965g SMS = 1.075g SDS = 0.717g
Si = 0.419 g SMI = 0.662 g SD1 = 0.442 g
For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application and
select the"2009 NEHRP" building code reference document.
MCER Response Spectrum Design Response Spectrum
1.10 I 0.72
0.99 0.64
0
0.56
.99
0
0.48
.77
WI 0.66 Ti
fn 0.55 1 - N 0.40 '
0.44 0.32
0.33 0.24
0.22 0.16
0.11 0.08
0.00 0.00
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.90 2.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.50 1.80 2.00
Period, T(sec) Period, T(sec)
Although this information is a product of the U.S. Geological Survey,we provide no warranty, expressed or implied,as to the
accuracy of the data contained therein.This tool is not a substitute for technical subject matter knowledge.
Li
httpfiehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?tem plate=mi nima18Jabtude=45.40338Jongitude=-122.747686iteclass=3&riskcategory=0&edi... 1/1
•
IBC 2012 LOADING
SEISMIC: Ss= 96.5 %g
S1= 41.9 % g
Soil Class D
Modified Design spectral response parameters
Sms= 107.5 %g Sds= 71.7 %g
Sm1= 66.2 % g Sd1= 44.1 % g
Seismic Use 2
Seismic Design Category D
or D
le= 1
R = 4 R = 6
Cs = 0.1792 W Cs= 0.1194 W
Using Working Stress Design
V= Cs*W/1.4
V= 0.1280 W V= 0.0853 W
5
Cold Formed Channel
Depth 3.000 in Fy = 50 ksi
Flange 1.625 in
Lip 0.750 in
Thickness 0.0750 in COLUMN SECTION
R 0.1000 in
Blank = 7.21 in wt = 1.8 plf
A = 0.541 in2
Ix = 0.750 in4 Sx = 0.500 in3 Rx = 1.177 in
iy = 0.217 in4 Sy = 0.223 in3 Ry = 0.633 in
a 2.6500 Web w/t 35.3333
a bar 2.9250 Flg w/t 17.0000
b 1.2750 x bar 0.6139
b bar 1.5500 m 0.9488
c 0.5750 x0 -1.5627
c bar 0.7125 J 0.0010
u 0.2160 x web 0.6514
gamma 1.0000 x lip 0.9736
R' 0.1375 h/t 38.0000
Section Removing:
0.640 inch slot 0.75 inches each side of center on web
0.375 inch hole 0.87 inches from web in each flange
A- = 0.152 in2 A' = 0.389 in2
x bar = 0.728 in
I'x = 0.573 in4 S'x= 0.382 in3 R'x= 1.213 in
I'y = 0.172 in4 S'y= 0.184 in3 R'y= 0.665 in
Cold Formed Channel
Depth 1.500 in Fy = 50 ksi
Flange 1.250 in
Lip 0.000 in
Thickness 0.0750 in BRACE SECTION
R 0.1000 in
Blank = 3.73 in wt = 1.0 plf
A = 0.280 in2
Ix = 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in
Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in
a 1.1500 Web w/t 15.3333
a bar 1.4250 Flg w/t 14.3333
b 1.0750 x bar 0.3946
b bar 1.2125 m 0.5298
c 0.0000 x0 -0.9244
c bar 0.0000 J 0.0005
u 0.2160 x web 0.4321
gamma 0.0000 x lip 0.8179
R' 0.1375 h/t 18.0000
1!/
Cold Formed Section
HEIGHT OF BEAM 4.630 INCHES
MAT'L THICKNESS 0.075 INCHES
INSIDE RADIUS 0.100 INCHES LOAD BEAM
WIDTH 2.750 INCHES
STEEL YIELD 50.0 KSI
STEP 1.625 INCHES HIGH 1.000 INCHES WIDE
ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC
L Y LY LY2 Ii X LX
LONG SIDE 4.2800 2.3150 9.9082 22.9375 6.5336 0.0375 0.1605
TOP 1.4000 4.5925 6.4295 29.5275 0.0000 0.8750 1.2250
STEP SIDE 1.3500 3.7800 5.1030 19.2893 0.2050 1.7125 2.3119
STEP BOTT 0.7250 2.9675 2.1514 6.3844 0.0000 2.2125 1.6041
SHORT SID 2.6550 1.5025 3.9891 5.9937 1.5596 2.7125 7.2017
BOTTOM 2 .4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000
CORNERS 0.2160 4.5425 0.9811 4.4568 0.0004 0.0875 0.0189
2 0.2160 4.5425 0.9811 4.4568 0.0004 1.6625 0.3591
3 0.2160 3.0175 0.6517 1.9666 0.0004 1.8000 0.3888
4 0.2160 2.9175 0.6301 1.8385 0.0004 2.6625 0.5751
5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751
6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189
TOTALS 14.1059 30.3900 30.9532 96.8576 8.3005 17.8875 17.7389
AREA = 1.058 IN2
CENTER GRAVITY = 2.194 INCHES TO BASE 1.258 INCHES TO LONG SIDE
Ix = 2.793 IN4 Iy = 1.210 IN4
Sx = 1.147 IN3 Sy = 0.810 IN3
Rx = 1.625 IN Ry = 1.069 IN
1
BEAM END CONNECTOR •
COLUMN MATERIAL THICKNESS = 0.075 IN
LOAD BEAM DEPTH = 4.63 IN
TOP OF BEAM TO TOP OF CONN= 0.000 IN
WELD @ BTM OF BEAM = 0.000 IN
LOAD = 1350 LBS PER PAIR
CONNECTOR VERTICAL LOAD = 337.5 LBS EACH
RIVETS
3 RIVETS @ 2 " oc 0.4375 " DIA A502-2
1st @ 1 "BELOW TOP OF CONNECTOR
AREA = 0.150 IN2 EACH Fv = 22.0 KSI
Vcap = 3.307 KIPS EACH RIVET
BEARING Fb = 65.0 KSI
BRG CAP= 2.133 KIPS EACH RIVET
TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 5t
CONNECTOR
6 " LONG CONNECTOR ANGLE Fy = 50 KSI
1.625 " x 3 " x 0.1875 " THICK
S = 0.131 IN3 Mcap = 3.924 K-IN
3.924 K-IN
RIVET MOMENT RESULTANT @ 0.7 IN FROM BTM OF CONN
M = PL L = 0.67 IN
Pmax = Mcap/L = 5.856 KIPS
RIVET LOAD DIST MOMENT
P1 2.844 4.300 12.228 RIVET OK
P2 1.521 2.300 3.498
P3 0.198 0.300 0.060
P4 0.000 0.000 0.000
TOTAL 4.563 15.786 CONNECTOR OK
WELDS
0.125 " x 4.630 " FILLET WELD UP OUTSIDE
0.125 " x 3.005 " FILLET WELD UP INSIDE
0.125 " x 1.625 " FILLET WELD UP STEP SIDE
0 " x 1.000 " FILLET WELD STEP BOTTOM
0 " x 2.750 " FILLET WELD ACROSS BOTTOM
0 " x 1.750 " FILLET WELD ACROSS TOP
USE EFFECTIVE 0.075 i° THICK WELD
L = 9.26 IN A = 0.695 IN2
S = 0.536 IN3 Fv = 26.0 KSI
Mcap = 13.93 K-IN 13.93 K-IN
• In Upright Plane
Seismic Load Distribution
per 2012 IBC Sds = 0.720
1.00 Allowable Stress Increase
I = 1.00 R = 4.0
V = (Sds/R)*I*Pl* .67
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3.000x 1.625x 0.075
168 1410 237 255 43
112 1410 158 170 19
56 1410 79 85 5 KLx = 95.2 in
O 0 0 0 0 KLy = 49 in
O 0 0 0 0 A = 0.389 in
O 0 0 0 0 Pcap = 7467 lbs
---- ---- ---- ====
4230
---- ---- ----
4230 474 510 67 Column
34% Stress
Max column load = 3630 #
Min column load = -311 # Uplift
Overturning
( .6-.11Sds)DL+(0.6-.14Sds) .75PLapp-1.02EL -990 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 2542 # MAX
REQUIRED HOLD DOWN = -990 #
Anchors: 4
T = 990 #
1 0.5 in dia POWERS STUD+SD2
3.25 inches embed in 3500psi concrete
Tcap = 2025 # 49% Stressed
V = 268 # per leg Vcap = 2155 # = 12% Stressed
COMBINED = 61% Stressed
OK
Braces:
Brace height = 49 "
Brace width = 44 "
Length = 66 "
P = 573 #
Use : C 1.500x 1.250x 0.075
A = 0.280 in
L/r = 163
•
Pcap = 1595 # 36%
In Upright Plane
Seismic Load Distribution TOP LOAD ONLY
per 2012 IBC Sds = 0.720
1.00 Allowable Stress Increase
I = 1.00 R = 4.0
V = (Sds/R) *I*P1
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3.000x 1.625x 0.075
168 1410 237 264 44
112 60 7 7 1
56 60 3 4 0 KLx = 95.2 in
O 0 0 0 0 KLy = 49 in
O 0 0 0 0 A = 0.389 in
O 0 0 0 0 Pcap = 7467 lbs
---- ---- ---- ====
1530
---- ---- ----
1530 247 275 45 Column
24% Stress
Max column load = 1797 #
Min column load = -345 # Uplift
Overturning
( .6- .11Sds)DL+(0.6-.14Sds) .75PLapp-1.02EL -787 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 1805 # MAX
REQUIRED HOLD DOWN = -787 #
Anchors: 4
T = 787 #
1 0.5 in dia POWERS STUD+SD2
3 .25 inches embed in 3500psi concrete
Tcap = 2025 # 39% Stressed
V = 138 # per leg Vcap = 2155 # = 6% Stressed
COMBINED = 45% Stressed
OK
Braces:
Brace height = 49 "
Brace width = 44 "
Length = 66 "
P = 309 #
Use : C 1.500x 1.250x 0.075
A = 0.280 in
L/r = 163
Pcap = 1595 # 19%
fo
PAGE 1
▪ MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:24:15
• INPUT DATA LISTING TO FOLLOW:
Structure Storage Rack in Load Beam Plane 3 Levels
Type Plane Frame
Number of Joints 14
Number of Supports 8
Number of Members 15
Number of Loadings 1
Joint Coordinates
1 0.0 56.0 S
2 0.0 112.0 S
3 0.0 168.0 S 3 11 14
4 73.5 0.0 S
5 73.5 56.0
6 73.5 112.0 2 6 10 13
7 73.5 168.0
8 220.5 0.0 S
9 220.5 56.0 1 5 9 12
10 220.5 112.0
11 220.5 168.0 4 8
12 294.0 56.0 S
13 294.0 112.0 S
14 294.0 168.0 S
Joint Releases
4 Moment Z
8 Moment Z
1 Force X Moment Z
2 Force X Moment Z
3 Force X Moment Z
12 Force X Moment Z
13 Force X Moment Z
14 Force X Moment Z
Member Incidences
1 1 5
2 2 6
3 3 7
4 4 5
5 5 6
6 6 7
7 8 9
8 9 10
9 10 11
10 5 9
11 9 12
12 6 10
13 10 13
14 7 11
15 11 14
Member Properties
1 Thru 3 Prismatic Ax 1.058 Ay 0.741 Iz 2.793
I t
PAGE 2
MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:24:15
4 Thru 9 Prismatic Ax 0.389 Ay 0.194 Iz 0.573
10 Thru 15 Prismatic Ax 1.058 Ay 0.741 Iz 2.793
Constants E 29000. All G 12000. All
Tabulate All
Loading Dead + Live + Seismic
Joint Loads
5 Force Y -0.71
6 Force Y -0.71
7 Force Y -0.71
9 Force Y -0.71
10 Force Y -0.71
11 Force Y -0.71
5 Force X 0.012
6 Force X 0.023
7 Force X 0.034
9 Force X 0.012
10 Force X 0.023
11 Force X 0.034
Solve
PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED
Seismic Analysis per 2012 IBC
wi di widi2 fi fidi
in
1410 0.2902 119 24 7.0 12 24
1410 0.3755 199 46 17.3 23 46
1410 0.4217 251 68 28.7 34 68
O 0.0000 0 0 0.0 0 0
O 0.0000 0 0 0.0 0 0
O 0.0000 0 0 0.0 0 0
4230 568 138 52.9 139
g = 32.2 ft/sec2 T = 1.0475 sec
I = 1.00 Cs = 0.0700 or 0.1200
Sdl = 0.440 Cs min = 0.072
R = 6 Cs = 0.0720
V = (Cs*I*.67) *W*.67
V = 0.0482 W*.67
139 # 101t
PAGE 3
' MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:24:15
Structure Storage Rack in Load Beam Plane 3 Levels
Loading Dead + Live + Seismic
MEMBER FORCES
MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT
1 1 0.000 -0.033 0.00
1 5 0.000 0.033 -2.41
2 2 0.000 -0.011 0.00
2 6 0.000 0.011 -0.84
3 3 0.000 -0.001 0.00
3 7 0.000 0.001 -0.10
4 4 2.115 0.068 0.00
4 5 -2.115 -0.068 3.81
5 5 1.408 0.052 1.34
5 6 -1.408 -0.052 1.57
6 6 0.704 0.026 0.68
6 7 -0.704 -0.026 0.78
7 8 2.115 0.070 0.00
7 9 -2 .115 -0.070 3.92
8 9 1.408 0.062 1.60
8 10 -1.408 -0.062 1.87
9 10 0.704 0.042 1.08
9 11 -0.704 -0.042 1.26
10 5 -0.004 -0.036 -2.74
10 9 0.004 0.036 -2.60
11 9 0.000 -0.040 4E1m f . r <^'
11 12 0.000 0.040 4 .00 ,,l , t"
12 6 -0.003 -0.018 -1.41
12 10 0.003 0.018 -1.19
13 10 0.000 -0.024 -1.76
13 13 0.000 0.024 0.00
14 7 0.008 -0.007 -0.69
14 11 -0.008 0.007 -0.34
15 11 0.000 -0.013 -0.93
15 14 0.000 0.013 0.00
APPLIED JOINT LOADS, FREE JOINTS
l J
PAGE 4
MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:24:15
JOINT FORCE X FORCE Y MOMENT Z
5 0.012 -0.710 0.00 .
6 0.023 -0.710 0.00
7 0.034 -0.710 0.00
9 0.012 -0.710 0.00
10 0.023 -0.710 0.00
11 0.034 -0.710 0.00
REACTIONS,APPLIED LOADS SUPPORT JOINTS
JOINT FORCE X FORCE Y MOMENT Z
1 0.000 -0.033 0.00
2 0.000 -0.011 0.00
3 0.000 -0.001 0.00
4 -0.068 2.115 0.00
8 -0.070 2.115 0.00
12 0.000 0.040 0.00
13 0.000 0.024 0.00
14 0.000 0.013 0.00
FREE JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
5 0.2902 -0.0105 -0.0009
6 0.3755 -0.0175 -0.0005
7 0.4217 -0.0210 -0.0003
9 0.2902 -0.0105 -0.0007
10 0.3755 -0.0175 -0.0003
11 0.4217 -0.0210 0.0000
SUPPORT JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
1 0.2902 0.0000 0.0002
2 0.3755 0.0000 -0.0001
3 0.4217 0.0000 -0.0003
4 0.0000 0.0000 -0.0073
8 0.0000 0.0000 -0.0074
12 0.2902 0.0000 0.0006
13 0.3755 0.0000 0.0005
14 0.4217 0.0000 0.0004
Iq
Beam-Column Check
C 3.000x 1.625x 0.075 Fy = 50 ksi
A = 0.389 in2
Sx = 0.382 in3
• Rx = 1.213 in Ry = 0.665 in
kx = 1.70 ky = 1.00
Stress Factor 1.000
Point P M Lx Ly Pcap Mcap Ratio
9 2.1 3.9 56.0 49.0 7.47 11.45 62%
10 1.4 1.9 56.0 49.0 7.47 11.45 36%
11 0.8 1.3 56.0 49.0 7.47 11.45 22%
0 0.0 0.0 56.0 49.0 7.47 11.45 0%
0 0.0 0.0 56.0 49.0 7.47 11.45 0%
0 0.0 0.0 56.0 49.0 7.47 11.45 0%
Load Beam Check
4.63x 2.750x 0.075 Fy = 50 ksi
A = 1.058 in2 E = 29,500 E3 ksi
Sx = 1.147 in3 Ix = 2.793 in4
Length = 144 inches
Pallet Load 1350 lbs
Assume 0.5 pallet load on each beam
M = PL/8= 12.15 k-in
fb = 10.60 ksi Fb = 30 ksi 35%
Mcap = 34.40 k-in
45.86 k-in with 1/3 increase
Defl = 0.32 in = L/ 452
w/ 25% added to one pallet load
M = .22 PL = 10.69 k-in 31%
Base Plate Design
Column Load 2.7 kips
Allowable Soil 1500 psf basic
Assume Footing 16.2 in square on side
Soil Pressure 1481 psf
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax = w1A2/3
Use 3 "square footprint
w = 10.3 psi 1 = 6.6 in
Load factor = 1.67 M = 249 #-in
5 in thick slab f'c = 2500 psi
s = 4.17 in3 fb = 60 psi
Fb = 5 (phi) (f'cA.5) = 163 psi OK ! !
Shear :
Beam fv = 23 psi Fv = 85 psi OK ! !
Punching fv = 21 psi Fv = 170 psi OK ! !
Footprint Bearing Use 0.13 " thick
7.75 inches long under column section
0.335 inches wide
2.59625 in2
Bearing: 1.040 ksi 1.750 ksi Allowable
i
Calculations for :
PRECISION PACKAGING
TIGARD , OR
01/12/2016
Loading: 2400 # load levels
3 pallet levels @ 56, 112, 168
Seismic per IBC 2012 1005 Utilization
Sds = 0 . 720 Sdl = 0 .440
I = 1 . 00
144 " Load Beams
Uprights : 44 " wide
C 3 . 000x 3 . 000x 0 . 075 Columns
C 1 . 500x 1 . 250x
0 . 075 Braces
4 . 00x 7 . 00x 0 . 375 Base Plates
with 2- 0 . 500in x 3 .25in Embed Anchor/Column
4 . 63x 2 . 750x 0 . 075 Load beams w/ 3-Pin Connector
by : Ben Riehl
Registered Engineer OR# 11949
(7
Cold Formed Channel
Depth 3.000 in Fy = 50 ksi •
Flange 3.000 in
Lip 0.750 in
Thickness 0.0750 in COLUMN SECTION
R 0.1000 in
Blank = 9.96 in wt = 2.5 plf
A = 0.747 in2
Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in
Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in
a 2.6500 Web w/t 35.3333
a bar 2.9250 Flg w/t 35.3333
b 2.6500 x bar 1.2423
b bar 2.9250 m 1.6690
c 0.5750 x0 -2.9114
c bar 0.7125 J 0.0014
u 0.2160 x web 1.2798
gamma 1.0000 x lip 1.7202
R' 0.1375 h/t 38.0000
Section Removing:
0.640 inch slot 0.75 inches each side of center on web
0.375 inch hole 0.87 inches from web in each flange
A- = 0.152 in2 A' = 0.595 in2
x bar = 1.478 in
I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in
I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in
Cold Formed Channel
Depth 1.500 in Fy = 50 ksi
Flange 1.250 in
Lip 0.000 in
Thickness 0.0750 in BRACE SECTION
R 0.1000 in
Blank = 3.73 in wt = 1.0 plf
A = 0.280 in2
Ix = 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in
Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in
a 1.1500 Web w/t 15.3333
a bar 1.4250 Flg w/t 14.3333
b 1.0750 x bar 0.3946
b bar 1.2125 m 0.5298
c 0.0000 x0 -0.9244
c bar 0.0000 J 0.0005
u 0.2160 x web 0.4321
gamma 0.0000 x lip 0.8179
R' 0.1375 h/t 18.0000
In Upright Plane
Seismic Load Distribution
• per 2012 IBC Sds = 0.720
1.00 Allowable Stress Increase
I = 1.00 R = 4.0
V = (Sds/R) *I*P1* .67
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0.075
168 2460 413 445 75
112 2460 276 297 33
56 2460 138 148 8 KLx = 56 in
0 0 0 0 0 KLy = 49 in
0 0 0 0 0 A = 0.595 in
0 0 0 0 0 Pcap = 14252 lbs
---- ---- ---- ====
7380
---- ---- ----
7380 827 890 116 Column
31% Stress
Max column load = 6333 #
Min column load = -543 # Uplift
Overturning
( .6-.11Sds)DL+(0.6-.14Sds) .75PLapp-1.02EL -1746 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 4417 # MAX
REQUIRED HOLD DOWN = -1746 #
Anchors: 4
T = 1746 #
2 0.5 in dia POWERS STUD+SD2
3.25 inches embed in 3500psi concrete
Tcap = 3104 # 56% Stressed
V = 467 # per leg Vcap = 3130 # = 15% Stressed
COMBINED = 71% Stressed
OK
Braces:
Brace height = 49 "
Brace width = 44 "
Length = 66 "
P = 999 #
Use : C 1.500x 1.250x 0.075
A = 0.280 in
L/r = 163
Pcap = 1595 # 63%
In Upright Plane
Seismic Load Distribution TOP LOAD ONLY
per 2012 IBC Sds = 0.720
1.00 Allowable Stress Increase
I = 1.00 R = 4.0
V = (Sds/R) *I*P1
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0.075
168 2460 413 453 76
112 60 7 7 1
56 60 3 4 0 KLx = 56 in
0 0 0 0 0 KLy = 49 in
0 0 0 0 0 A = 0.595 in
0 0 0 0 0 Pcap = 14252 lbs
2580 423 464 77 Column
21% Stress
Max column load = 3044 #
Min column load = -594 # Uplift
Overturning
( .6-.11Sds)DL+(0.6- .14Sds) .75PLapp-1.02EL -1338 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 3052 # MAX
REQUIRED HOLD DOWN = -1338 #
Anchors: 4
T = 1338 #
2 0.5 in dia POWERS STUD+SD2
3.25 inches embed in 3500psi concrete
Tcap = 3104 # 43% Stressed
V = 232 # per leg Vcap = 3130 # = 7% Stressed
COMBINED = 51% Stressed
OK
Braces:
Brace height = 49 "
Brace width = 44 "
Length = 66 "
P = 521 #
Use : C 1.500x 1.250x 0.075
A = 0.280 in
L/r = 163
Pcap = 1595 # 33%
2d
PAGE 1
' MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:35:21
' INPUT DATA LISTING TO FOLLOW:
Structure Storage Rack in Load Beam Plane 3 Levels
Type Plane Frame
Number of Joints 14
Number of Supports 8
Number of Members 15
Number of Loadings 1
Joint Coordinates
1 0.0 56.0 S 3 7 11 14
2 0.0 112.0 S
3 0.0 168.0 S
4 73.5 0.0 S 2 6 10 13
5 73.5 56.0
6 73 .5 112.0
7 73.5 168.0 1 5 9 12
8 220.5 0.0 S
9 220.5 56.0
10 220.5 112.0 4 8
11 220.5 168.0
12 294.0 56.0 S
13 294.0 112.0 S
14 294.0 168.0 S
Joint Releases
4 Moment Z
8 Moment Z
1 Force X Moment Z
2 Force X Moment Z
3 Force X Moment Z
12 Force X Moment Z
13 Force X Moment Z
14 Force X Moment Z
Member Incidences
1 1 5
2 2 6
3 3 7
4 4 5
5 5 6
6 6 7
7 8 9
8 9 10
9 10 11
10 5 9
11 9 12
12 6 10
13 10 13
14 7 11
15 11 14
Member Properties
1 Thru 3 Prismatic Ax 1.058 Ay 0.741 Iz 2.793
•
Z1
PAGE 2
MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:35:21
4 Thru 9 Prismatic Ax 0.595 Ay 0.298 Iz 1.014
10 Thru 15 Prismatic Ax 1.058 Ay 0.741 Iz 2.793
Constants E 29000. All G 12000. All
Tabulate All
Loading Dead + Live + Seismic
Joint Loads
5 Force Y -1.23
6 Force Y -1.23
7 Force Y -1.23
9 Force Y -1.23
10 Force Y -1.23
11 Force Y -1.23
5 Force X 0.021
6 Force X 0.041
7 Force X 0.059
9 Force X 0.021
10 Force X 0.041
11 Force X 0.059
Solve
PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED
Seismic Analysis per 2012 IBC
wi di widi2 fi fidi
in
2460 0.3211 254 42 13.5 21 42
2460 0.4313 458 82 35.4 41 82
2460 0.4891 588 118 57.7 59 118
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
7380 1300 242 106.6 242
g = 32.2 ft/sec2 T = 1.1163 sec
I = 1.00 Cs = 0.0657 or 0.1200
Shc = 0.440 Cs min = v.v72
R = 6 Cs = 0.0720
V = (Cs*I*.67) *W* .67
V = 0.0482 W*.67
= 242 # 100t
22
PAGE 3
• MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:35:21
Structure Storage Rack in Load Beam Plane 3 Levels
Loading Dead + Live + Seismic
MEMBER FORCES
MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT
1 1 0.000 -0.058 0.00
1 5 0.000 0.058 -4.26
2 2 0.000 -0.023 0.00
2 6 0.000 0.023 -1.68
3 3 0.000 -0.005 0.00
3 7 0.000 0.005 -0.37
4 4 3 .669 0.119 0.00
4 5 -3.669 -0.119 6.69
5 5 2.444 0.093 2.24
5 6 -2.444 -0.093 2.95
6 6 1.222 0.046 1.12
6 7 -1.222 -0.046 1.48
7 8 3.669 0.123 0.00
7 9 -3 .669 -0.123 6.86
8 9 2.444 0.107 2.63
8 10 -2.444 -0.107 3.39
9 10 1.222 0.072 1.75
. 9 11 -1.222 -0.072 2.26
10 5 -0.006 -0.063 -4.67
10 9 0.006 0.063 -4.54
11 9 0.000 -0.067 410 fyf440_ 4s, C,0 ./,
11 12 0.000 0.067 1 . 10 ! 0 `
12 6 -0.005 -0.031 -2 .39
12 10 0.005 0.031 -2.21
13 10 0.000 -0.040 -2.93
13 13 0.000 0.040 0.00
14 7 0.013 -0.013 -1.10
14 11 -0.013 0.013 -0.77
15 11 0.000 -0.020 -1.50
15 14 0.000 0.020 0.00
APPLIED JOINT LOADS, FREE JOINTS
7$
PAGE 4
MSU STRESS-11 VERSION 9/89 --- DATE: 01/12/;6 --- TIME OF DAY: 08:35:21 '
JOINT FORCE X FORCE Y MOMENT Z
5 0.021 -1.230 0.00
6 0.041 -1.230 0.00
7 0.059 -1.230 0.00
9 0.021 -1.230 0.00
10 0.041 -1.230 0.00
11 0.059 -1.230 0.00
REACTIONS,APPLIED LOADS SUPPORT JOINTS
JOINT FORCE X FORCE Y MOMENT Z
1 0.000 -0.058 0.00
2 0.000 -0.023 0.00
3 0.000 -0.005 0.00
4 -0.119 3 .669 0.00
8 -0.123 3.669 0.00
12 0.000 0.067 0.00
13 0.000 0.040 0.00
14 0.000 0.020 0.00
FREE JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
5 0.3211 -0.0119 -0.0015
6 0.4313 -0.0198 -0.0008
7 0.4891 -0.0238 -0.0004
9 0.3212 -0.0119 -0.0013 '
10 0.4313 -0.0198 -0.0006
11 0.4891 -0.0238 -0.0001
SUPPORT JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
1 0.3211 0.0000 0.0005
2 0.4313 0.0000 0.0000
3 0.4891 0.0000 -0.0003
4 0.0000 0.0000 -0.0078
8 0.0000 0.0000 -0.0079
12 0.3212 0.0000 0.0009
13 0.4313 0.0000 0.0007
14 0.4891 0.0000 0.0005
r
zc7/
Beam-Column Check
•
C 3.000x 3 .000x 0.075 Fy = 50 ksi
A = 0.595 in2
Sx = 0.676 in3
Rx = 1.305 in Ry = 1.117 in
kx = 1.00 ky = 1.00
Stress Factor 1.000
Point P M Lx Ly Pcap Mcap Ratio
9 3.7 6.9 56.0 49.0 14.25 20.27 60%
10 2.5 3.4 56.0 49.0 14.25 20.27 34%-
11
4%11 1.3 2.3 56.0 49.0 14.25 20.27 20%
0 0.0 0.0 56.0 49.0 14 .25 20.27 0%
0 0.0 0.0 56.0 49.0 14 .25 20.27 0%
0 0.0 0.0 56.0 49.0 14 .25 20.27 0%
Load Beam Check
4.63x 2.750x 0.075 Fy = 50 ksi
A = 1.058 in2 E = 29,500 E3 ksi
Sx = 1.147 in3 Ix = 2 .793 in4
Length = 144 inches
Pallet Load 2400 lbs
Assume 0.5 pallet load on each beam
M = PL/8= 21.60 k-in
fb = 18.84 ksi Fb = 30 ksi 63%
Mcap = 34.40 k-in
45.86 k-in with 1/3 increase
Defl = 0.57 in = L/ 254
w/ 25% added to one pallet load
M = .22 PL = 19.01 k-in 55%
2S'
Base Plate Design
Column Load 4.7 kips
Allowable Soil 1500 psf basic
Assume Footing 21.4 in square on side
Soil Pressure 1500 psf
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax = w1'2/3
Use 4 "square base plate
w = 10.4 psi 1 = 5.68 in
Load factor = 1.67 M = 187 #-in
6 in thick slab f'c = 3500 psi
s = 6.00 in3 fb = 31 psi
Fb = 5 (phi) (f'c".5) = 192 psi OK ! !
Shear :
Beam fv = 16 psi Fv = 101 psi OK ! !
Punching fv = 26 psi Fv = 201 psi OK ! !
Base Plate Bending Use 0.375 " thick
1 = 1.5 in w = 297 psi
fb = 14250 psi Fb = 37500 psi OK ! !