Report j3 - ca7zr-
1LQsr
() n,-;
JOHNSON 325 West 13 Avenue
. Eugene,Oregon,97401
BE B R O D E R I C K 541-338-9488(office)
541-338-9483(fax)
ENGINEERING www.Johnson8
KDC Architects
APR 1 1 2013
Attention: Sean Lusby
6975 SW Sandburg, Suite 100 CITYOFTIGARD
Portland, Oregon, 97223 BUILDING DIVISION
Re: Structural Analysis for Rooftop Antenna Swapout and Cabinet Installation
16580 SW 85th Street,Tigard,Oregon, 97224(POR Tiger HS)
Sean,
Per your request,Johnson Broderick Engineering has reviewed the proposed panel swapout
and cabinet installation you have designed to be installed on the roof at the chemical
processing building located at 16580 SW 85th Street in Tigard, Oregon—POR Tiger HS. Our
review is based on drawings you forwarded to our office, dated September 12, 2012, and
documents forwarded by your office to us via email.
We understand that there are three existing sectors of(4)Verizon Wireless panel antennas, and
that you intend to replace (2)of these panels at each array with (2) new panel antennas. You
also intend to install a new wireless radio cabinet adjacent to existing cabinets.
We analyzed critical elements utilizing the provisions set forth in the current building code, the
2010 OSSC(the 2009 International Building Code as amended by the State of Oregon). We
determined the wind load on the panel antennas using a basic wind speed of 95 mph at
exposure C. The results of our analysis indicate that the cantilevered pipe mounts have
adequate capacity to support the largest panel antenna;therefore all panel antennas are
capable of being supported by the mounts. Additionally,the existing steel beams supporting
the radio cabinets have enough capacity to support the installation of a new cabinet. Please
note that we assumed a weight of 1000 pounds for the cabinets as documentation on their
specifications was not provided. Our analysis of the pipe mounts is based on the detail included
in the calculation packet,which is attached.
We appreciate the opportunity to be of service, please call our office if you have any questions
orcooD "Opt. 3-4, 0- (S
n
Pr - •�. r ;
•Alt opr:* . -sneering,LLC
MjCHAEL 10 a
3 E87£:S: L
Revision 0 March 10, 2013
JBE project No. 13034.01
Page I1
[
. •
•
. .
REV i DATE i DESCRIPTION I BY
o I Ir.OVO.i CotiVir,X7X4 MOM D.::
/
1 '
M I 1
7 -.1
11 lr ;-.1 il i
4
1
i
...„ _
'ANi:1 ANTP4NA 6,TH 4- ,,
( i
- i1(3' AB,2 VE PARA i''ET . i
VAX i 1
r ''' 1 - 3 .;...,,..- ;Fr.: 1,1Pr ,,,t itil:N^ii, V k:•.:'
I 1 '
'
1
.-- '41.- \--<----
iferIZEkriwireless
L
5410"IE.t 2206 AlrflPIE
,..,,t.t: PORTLAND,OREGON f?..7230
1 •' , ,,,2) 1/2- >„ 4' 1:-..,P At, ;!OP:,-. .- , ,
503.17134W
, ...
nId .
POR
TIGERS
.. .......,::
1.___,,,.......,, • TIGERS HS
,
,
4 A. 1`-C' 't.% -
TIGARD
i .
! ...... , . OREGON •
i 1 L I 4 X i X I.;4 X '''-':-,' Will'i
O1 1 IC?ir (2) !/"..'" ,': 1" 1...'(.1-' .4.1,/41:i,,;,,., .....,,,..,..
97224
,-,... .,.. -.4.;-._,4 4z—
.]_.........„.. 1
-:•...) ,.,-;:- ....., :." BOLA'', 1,;) L ; " 1 'i • 1: Artisan
I :,, (r:. Engineering
1 !, .,.... L-..,,:-•'1,-4'„, L1'.5M if(Afji 1`:,., , )I Stng7tural end CiVii Engmlears
2' CI R ktilN
,',::.!-:iL.ili..:,‘,•)
EI„Evikri!,r,i '.;i_C:I!Ot4
1.'N
AN TENN A NA 1),il'i T
Si-
•-........c
' e--
%...ek
325 West 13th Avenue
JOHNSON Eugene,Oregon 97401
J JOHNSBRODEON
541-338-9488 Oregon
o (office)
541-338-9483(fax)
ENGINEERING www.JohnsonBroderickEngineering.com
CAAt CAL o v101441 At( vena G,cc1 t '(
' '1 e 442
e = 4.c ec.( fiet ' CS QC. )( ct 02-) = ctoS i
1405 t6
vvING
a
ct ci Vet
3tL"'"� � 3
35 psi (44c)
5 fvw . `/i\ 5-1k Ott 2- 2 361 j
Project: ?o 4 (-T ,go
tis
Project#: 1 (.j,6 ( By: MIB Date:3,-1/6 (3 Page: 2 of: t
325 West 13th Avenue
B E JOHNSON Eugene,Oregon 97401
J BRODERICK 541-3389488(office)
541-338-9483(fax)
ENGINEERING www.lohnsonBroderickEngineering.com
ACOS (64) k` T C c oot tG
t.S k-F
a\ 16- x (et xp4/1nKc- 12) 14s
—> k 4 tc+ palm.e I 61 ( I poiNR Is o
C,{nt c 4fiic e l b -k &A/ ' ( vaAt
455,011e 411 ct,'botcuv-66\ ttob Lb
P
L
5 •
0.50
: t 6l-
lot( ; 6.514'
W itY1S
Project: Poi2 ( ) 1(4. H5
Project#: (r 3(i- 6 ( By: Ae 'vj Date: 3—(6— (3 Page: 3 of: Cr—
1
1 .
. c--(( c----
t )
MECAWind Version 2 . 0 .2 . 8 per ASCE 7-05
Developed by MECA Enterprises, Inc. Copyright 2013 - ,me,-:ae; -e_pr es.:"'G^;
Date : 3/10/2013 Project No. .
Company Name : Designed By .
Address Description .
City Customer Name :
State Proj Location :
File Location: C:\Program Files (x86)\MECAWind\Default.wnd
Detailed Wind Load Design(Method 2) per ASCE 7-05
Basic Wind Speed(V) = 95.00 mph Structure Type = Other
Structural Category = II Exposure Category = C
Natural Frequency = N/A Flexible Structure = No
Importance Factor = 1.00 Kd Directional Factor = 0.85
Alpha = 9.50 Zg = 900.00 ft
At = 0.11 Bt = 1.00
Am = 0.15 Bm = 0.65
Cc = 0.20 1 = 500.00 ft
Epsilon = 0.20 Zmin = 15.00 ft
B - Horizontal Dim. = 4.50 ft Ht- Grade to Top of Sign= 60.00 ft
W - Sign Depth = 0.50 ft S - Vertical Sign Dim. = 2.00 ft
Bs- Ratio of B / S = 2.25 Sh- Ratio of S / Ht = 0. 03
E - Solidity Ratio = 100.00 %
Gust Factor Category I Rigid Structures - Simplified Method
Gustl: For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 = 0.85
Gust Factor Category II Rigid Structures - Complete Analysis 1
Zm: 0.6*Ht = 36.00 ft
lzm: Cc* (33/Zm)"0.167 = 0.20
Lzm: 1* (Zm/33)"Epsilon = 508.78 ft
Q: (1/(1+0.63* ( (B+Ht)/Lzm)"0.63) ) "0.5 = 0.92
Gust2: 0.925* ( (1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm) ) = 0.89
Gust Factor Summary
Not a Flexible Structure use the Lessor of Gustl or Gust2 = 0.85
Design Wind Pressure - Other Structures
Elev Kz Kzt qz W_Pres_Cf( 1.81)
ft psf psf
60.00 1.14 1.00 22.321 34.34
60.00 1.14 1.00 22.321 34.34
50.00 1.09 1.00 21.480 33.05
40.00 1.04 1.00 20.494 31.53
30.00 0.98 1.00 19.290 29.68
20.00 0.90 1.00 17.712 27.25
10.00 0.85 1.00 16.671 25.65
Note: W Pres Cf is Wind Pressure based on Cf(Force Coefficient)
Figure 6-20 : Wind Loads for Solid Signs & Freestanding Walls
51 �;
Case A Case
• f
F4/ F
� 4 g
# G
.2 w1
nd
Wind
Range
Wins .fit
Cf - Force Coefficient = 1.81
Rd - Reduction Factor (1- (1-E)"1.5) = 1.00
Kz = 1.14
Kzt = 1.00
Qz = 22.321 psf
Wind Pressure at Elevation 60 ft = 34.340 psf
Notes: 1) Signs with openings comprising < 30% of gross area are considered solid
signs
2) Force Coefficients for solid signs with openings shall be multiplied by Rd
3) Case C only applies when Bs >= 2
Case C
S S S Balance Balance S S S
4-44-4
/ I11I! '
11 '"`FF FF
I tt end
Distance from Cf Kz Kzt Qh Wind Pressure @ Distance
leading edge ft Force Coeff. psf psf
From 0 to 2.0 2.34 1.14 1.00 22.32 ,4.40 CAVVIVi
From 2.0 to 4.0 1.55 1.14 1.00 22.32 29. , 1
From 4.0 to 4.5 1.15 1.14 1.00 22.32 21.82
RdC - Reduction Factor for Case C (1.8 - S / Ht) = 1.00
Note: When S / Ht > 0.6 then Cf lust be multiplied by RdC.
Ce(t5
Anchor Calculations
• Anchor Selector (Version 4.11.0.0)
Job Name : Date/Time : 3/10/2013 12:48:26 PM
1) Input
Calculation Method : ACI 318 Appendix D For Cracked Concrete
Code : ACI 318-08
Calculation Type : Analysis
Code Report : ICC-ES ESR-3037
a) Layout
Anchor : 1/2" Strong-Bolt 2 Number of Anchors : 2
Steel Grade: Carbon Steel Embedment Depth : 3.875 in
Built-up Grout Pads : No
oxi sxi Gx2
vuay
uy
NuaMux b
•
II I-
2 ANCHORS
7t Nt5Z,U AND 14E:,'",A I ve r-:Ftr?.
Cr": PRF SS4ON
'cDI :rT CENTER OF TV,'0 At w-4:IVa
Anchor Layout Dimensions :
cx1 : 6 in
cx2 : 6in
cy : 12 in
cy2 : 12 in
bx1 : 1.5 in
bx2 : 1.5in
by1 : 1.5 in
bye : 1.5 in
bout:blank
a 3/10/2013
1 kc
sx1 : 18in
b) Base Material
Concrete : Normal weight f : 2500.0 psi
Cracked Concrete : Yes PCV : 1.00
Condition : B tension and shear 4F : 1381.3 psi
Thickness, ha : 6 in
Supplementary edge reinforcement : No
c) Factored Loads
Load factor source : ACI 318 Section 9.2
Nua : 2160 lb Vuax : 0 lb
Vua : 0lb M : 0 lb*ft
Y • ux
Muy : 0 Ib*ft
ex :• 0 in
ey : 0 in
Moderate/high seismic risk or intermediate/high design category : No
Apply entire shear load at front row for breakout : No
d) Anchor Parameters
• From ICC-ES ESR-3037 :
Anchor Model = STB2-50CS da = 0.5 in
Category = 1 hef= 3.375 in
hmin = 6 in cagy = 7.5 in
cmin = 4 in smin = 4 in
Ductile = Yes
2) Tension Force on Each Individual Anchor
Anchor#1 N ual = 1080.00 lb
Anchor#2 N ua2 = 1080.00 lb
Sum of Anchor Tension ENua = 2160.00 lb
ax = 0.00 in
a = 0.00 in
e'Nx = 0.00 in
e'Ny = 0.00 in
3) Shear Force on Each Individual Anchor
about:blank 3/10/2013
Resultant shear forces in each anchor:
Anchor#1 V ua1 = 0.00 lb (V uaix= 0.00 lb , V ualy = 0.00 Ib )
Anchor#2 V ua2 = 0.00 lb (V ua2x= 0.00 lb , V ua2y = 0.00 lb )
Sum of Anchor Shear EVuax = 0.00 Ib, EVuay = 0.00 lb
e'Vx = 0.00 in
e'vy = 0.00 in
4) Steel Strength of Anchor in Tension [Sec. D.5.1]
Nsa = nA se futa [Eq. D-3]
Number of anchors acting in tension, n = 2
Nsa = 12100 lb (for each individual anchor) [ ICC-ES ESR-3037 ]
= 0.75 [D.4.4]
4Nsa = 9075.00 lb (for each individual anchor)
5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2]
Ncbg = ANc/ANco`1'ec,N'ed,Ngic,Ngicp,NNb [Eq. D-5]
Number of influencing edges = 0
hef= 3.375 in
• ANco = 102.52 in2 [Eq. D-6]
ANc = 205.03 in2
`Yec,Nx = 1.0000 [Eq. D-9]
Tec,Ny = 1.0000 [Eq. D-9]
`1`ec,N = 1.0000 (Combination of x-axis &y-axis eccentricity factors.)
Smallest edge distance, ca,min = 6.00 in
ed,N = 1.0000 [Eq. D-10 or D-11]
Note: Cracking shall be controlled per D.5.2.6
= 1.0000 [Sec. D.5.2.6]
= 1.0000 [Eq. D-12 or D-13]
Nb = kcX ' f' c hef1.5 = 5270.23 lb [Eq. D-7]
kc = 17 [Sec. D.5.2.6]
Ncbg = 10540.46 lb [Eq. D-5]
= 0.65 [D.4.4]
ONcbg = 6851.30 lb (for the anchor group)
. 6) Pullout Strength of Anchor in Tension [Sec. D.5.3]
about:blank 3/10/2013
Npn = Tc,PNP
•
Npn = 37351b (fc/2,500 psi)(35 = 3735.00 lb
= 0.65
• (1)Npn = 2427.75 lb
7) Side Face Blowout of Anchor in Tension [Sec. D.5.4]
Concrete side face blowout strength is only calculated for headed anchors in tension close to
an edge, Cal < 0.4hef. Not applicable in this case.
8) Steel Strength of Anchor in Shear[Sec D.6.1]
Vsa = 7235.00 lb (for each individual anchor) [ ICC-ES ESR-3037 ]
= 0.65 [D.4.4]
( Vsa = 4702.75 lb (for each individual anchor)
9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2]
Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge
In x-direction...
Vcbx = Avcx/Avcox`1'ed,V`t'c,V`I`h,V Vbx [Eq. D-21]
cal = 6.00 in
Avcx = 108.00 in2
Avcox = 162.00 in2 [Eq. D-23]
't'ed,V = 1:0000 [Eq. D-27 or D-28]
`1'c,V = 1.0000 [Sec. D.6.2.71
g'n V = ti (1.5cal / ha) = 1.2247 [Sec. D.6.2.8]
Vbx = 7(le/da )0.2 .J dad ti{ fc(ca1)1.5 [Eq. D-24]
le = 3.38 in
Vbx = 5328.94 lb
Vcbx = 4351.06 lb [Eq. D-22] •
4) = 0.70
Vcbx = 3045.74 lb (for a single anchor)
In y-direction...
Vcbgy = Avcy/Avcoy`l'ec,V`1'ed,V'c,VPh,V Vby [Eq. D-22]
cal = 6.00 in (adjusted for edges per D.6.2.4)
Avcy = 180.00 in2
about:blank 3/10/2013
L61 lc
Avbby = 162.00 in2 [Eq. D-23]
Tec,V = 1.0000 [Eq. D-26]
`ljed,V = 0.9000 [Eq. D-27 or D-28]
Tc,V= 1.0000 [Sec. D.6.2.7]
Th,v= 'd (1.5cal / ha) = 1.2247 [Sec. D.6.2.8]
Vby = 70e/da )0.2 dad,'` f c(cat)1.5 [Eq. D-24]
1e = 3.38 in
Vby = 5328.94 lb
Vcbgy = 6526.59 lb [Eq. D-22]
= 0.70
Vcbgy = 4568.61 lb (for the anchor group)
(I)Vcby = 2284.31 lb (for a single anchor- divided Vcbgy by 2)
Case 2: Anchor(s) furthest from edge checked against total shear load
In x-direction...
Vcbx = Avcx/Avcox`Ped,V'Pc,V`I'h,V Vbx [Eq. D-21]
cal = 8.00 in (adjusted for edges per D.6.2.4)
Avcx = 144.00 in2
Avcox = 288.00 in2 [Eq. D-23]
`t'ed,V = 1.0000 [Eq. D-27 or D-28]
Tc,V = 1.0000 [Sec. D.6.2.7]
Thy = ti' (1.5ca1 / ha) = 1.4142 [Sec. D.6.2.8]
Vbx = 70e/da )0.2 ,� dad fc(ca1)1.5 [Eq. D-24]
1e = 3.38 in
Vbx = 8204.44 lb
Vcbx = 5801.41 lb [Eq. D-22]
= 0.70
4Vcbx = 4060.99 lb (for a single anchor)
In y-direction...
Vcbgy = Avcy/AvcoytPec,V'ed,VPc,VTh,v Vby [Eq. D-22]
• cal = 6.00 in (adjusted for edges per D.6.2.4)
Avcy = 180.00 in2
Avcoy = 162.00 in2 [Eq. D-23]
about:blank 3/10/2013
1
Ititc
`I'ec,V = 1.0000 [Eq. D-26]
ed,V = 0.9000 [Eq. D-27 or D-28]
•
Tc,V = 1.0000 [Sec. D.6.2.7]
Th,V = J (1.5ca1 /ha) = 1.2247 [Sec. D.6.2.8]
Vby = 7(1e/da )0.2'J dad'\ fc(ca1)1.5 [Eq. D-24]
1e = 3.38 in
Vby = 5328.94 lb
Vcbgy = 6526.59 lb [Eq. D-22]
= 0.70
= 4568.61 lb (for the entire anchor group)
OVcbgy
Case 3: Anchor(s) closest to edge checked for parallel to edge condition
Check anchors at cx1 edge
Vcbx =Avcx/Avcox 'ed,V' c,V' h,V Vbx [Eq. D-21]
cal = 6.00 in
Avcx = 108.00 in2
Avcox = 162.00 in2 [Eq. D-23]
`r'ed,V = 1.0000 [Sec. D.6.2.1(c)]
Tc,V = 1.0000 [Sec. D.6.2.7]
`f'h v = (1.5ca1 /ha) = 1.2247 [Sec. D.6.2.8]
Vbx = 7(le/da )0.2 da?', I fc(ca1)1.5 [Eq. D-24]
1e = 3.38 in
Vbx = 5328.94 lb
Vcbx = 4351.06 lb [Eq. D-22]
Vcby = 2 *Vcbx [Sec. D.6.2.1(c)]
= 8702.12 lb
Vcby
= 0.70
= 6091.48 lb (for a single anchor)
�Vcby
Check anchors at co edge
= Avcy/AvcoyT'ec,VPed,v'Vc,V�'h,V Vby [Eq. D-22]
Vcbgy
cal = 6.00 in (adjusted for edges per D.6.2.4)
Avcy = 180.00 in2
about:blank 3/10/2013
•
Avery = 162.00 in2 [Eq. D-23]
Tec,V = 1.0000 [Eq. D-26]
`t'ed,V = 1.0000 [Sec. D.6.2.1(c)]
'c,V= 1.0000 [Sec. D.6.2.7]
Th,v= 'J (1.5cal / ha) = 1.2247 [Sec. D.6.2.8]
Vby = 7(Ie/da )0.2 da?,j fc(ca1)1.5 [Eq. D-24]
1e = 3.38 in
Vby = 5328.94 lb
Vcbgy = 7251.77 lb [Eq. D-22]
*Vcbgy [Sec. D.6.2.1(c)]
Vcbgx = 2
14503.53 lb
Vcbgx =
= 0.70
Vcbgx = 10152.47 lb (for the anchor group)
Check anchors at cx2 edge
Vcbx = Avcx/" vcox'Ped,V�cVhV Vbx [Eq. D-21]
Ca1 = 6.00 in
Avcx = 108.00 in2
Avco x = 162.00 in2 [Eq. D-23]
Ted,v = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)]
c,v = 1.0000 [Sec. D.6.2.7]
`jh V = �' (1.5cal / ha) = 1.2247 [Sec. D.6.2.8]
0.2 1.5
Vbx = 70e/da ) ti/ da?,/ f c(ca1) [Eq. D-24]
1e = 3.38 in
Vbx = 5328.94 lb
Vcbx = 4351.06 lb [Eq. D-22]
Vcby = 2 *Vcbx [Sec. D.6.2.1(c)]
Vcby = 8702.12 lb
= 0.70
= 6091.48 lb (for a single anchor)
OVcby
Check anchors at cy2 edge
• Vcbgy = Avcy/Avcoytifec,VTed,VPc,Vgjh,V Vby [Eq. D-22]
about:blank 3/10/2013
i• -
a X7516
cal = 6.00 in (adjusted for edges per D.6.2.4)
Avcy = 180.00 int
Away = 162.00 in2 [Eq. D-23]
`Fec,V = 1.0000 [Eq. D-26]
`Yed,V = 1.0000 [Sec. D.6.2.1(c)]
c,v = 1.0000 [Sec. D.6.2.7]
= (1.5ca1 I ha) = 1.2247 [Sec. D.6.2.8]
Vby = 7(1e
/da
0.2 da A fc Ca1 1.5E . D-24]
Ie = 3.38 in
Vby = 5328.94 lb
Vcbgy = 7251.77 lb [Eq. D-22]
= 2 *Vcbgy[Sec. D.6.2.1(c)]
Vcbgx
= 14503.53 lb
Vcbgx
= 0.70
Vcbgx = 10152.47 lb (for the anchor group)
• 10) Concrete Pryout Strength of Anchor Group in Shear[Sec. D.6.3]
Vcpg = kcpNcbg [Eq. D-30]
kcP = 2 [Sec. D.6.3.1]
e'vx = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.)
e'vy = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.)
tljec,Nx = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity)
`1'ec,Ny = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity)
"Pec,N' = 1.0000 (Combination of x-axis & y-axis eccentricity factors)
Ncbg = (ANca/ANc)(Pec,N'"ec,N)Ncbg
Ncbg = 10540.46 lb (from Section (5) of calculations)
ANc = 205.03 in2 (from Section (5) of calculations)
ANca = 205.03 in2 (considering all anchors)
Tec,N = 1.0000 (from Section(5) of calculations)
Ncbg = 10540.46 lb (considering all anchors)
Vcpg = 21080.92 lb
= 0.70 [D.4.4]
about:blank 3/10/2013
(I)Vcpg = 14756.64 lb (for the anchor group)
11) Check Demand/Capacity Ratios [Sec. D.7]
Tension
- Steel : 0.1190
- Breakout : 0.3153
- Pullout : 0.4449
- Sideface Blowout : N/A
Shear
- Steel : 0.0000
- Breakout (case 1) : 0.0000
- Breakout (case 2) : 0.0000
- Breakout (case 3) : 0.0000
- Pryout : 0.0000
V.Max(0) <= 0.2 and T.Max(0.44) <= 1.0 [Sec D.7.1]
Interaction check: PASS
Use 1/2" diameter Carbon Steel Strong-Bolt 2 anchor(s) with 3.875 in. embedment
•
•
about:blank 3/10/2013
IProject:Steel beam calc page
I • Location:Multi-Loaded Multi-Span Beam 1Aaron Broderick t�
Johnson Broderick Engineering,LLC �
Multi-Loaded Multi-Span Beam 325 West 13th Avenue
[2009 International Building Code(AISC 13th Ed ASD)] Eugene,Oregon 97401-3402
4 A992-50 W8x15 x 23.0 FT
Section Adequate By:4.1% StruCalc Version 8.0.112.0 3/10/2013 1:05:42 PM
Controlling Factor:Deflection
DEFLECTIONS Center LOADING DIAGRAM
. Live Load 1.04 IN U266
Dead Load 0.07 in
Total Load 1.10 IN U250
Live Load Deflection Criteria:U240 Total Load Deflection Criteria:U240
}ACTIONS A ]�
Live Load 1935 lb 2065 lb
Dead Load 173 lb 173 lb 2 3 4
Total Load 2107 lb 2238 lb 1
Bearing Length 0.62 in 0.62 in
BEAM DATA Center
Span Length 23 ft 23R
Unbraced Length-Top 5 ft '
Unbraced Length-Bottom 23 ft
STEEL PROPERTIES UNIFORM LOADS Center
W8x15-A992-50 Uniform Live Load 0 plf
Uniform Dead Load 0 plf
Properties: Beam Self Weight 15 plf
Yield Stress: Fy= 50 ksi Total Uniform Load 15 plf
Modulus of Elasticity: E= 29000 ksi
Depth: d= 8.11 in POINT LOADS-CENTER SPAN
Web Thickness: tw= 0.25 in Load Number One Two Three Four Five
Flange Width: bf= 4.01 in Live Load 500 lb 1000 lb 1000 lb 1000 lb 500 lb
Flange Thickness: tf= 0.32 in Dead Load 0 lb 0 lb 0 lb 0 lb 0 lb
Distance to Web Toe of Fillet: k= 0.62 in Location 5 ft 8 ft 12.5 ft 15 ft 19 ft
Moment of Inertia About X-X Axis: lx= 48 in4
• Section Modulus About X-X Axis: Sx= 11.8 in3
Plastic Section Modulus About X-X Axis: Zx= 13.6 in3
Design Properties per AISC 13th Edition Steel Manual:
Flange Buckling Ratio: FBR= 6.37
Allowable Flange Buckling Ratio: AFBR= 9.15
Web Buckling Ratio: WBR= 28.08
Allowable Web Buckling Ratio: AWBR= 90.55
Controlling Unbraced Length: Lb= 5 ft
Limiting Unbraced Length-
for lateral-torsional buckling: Lp= 3.09 ft
for Eqn. F2-2: Lr= 10.05 ft
Nominal Flexural Strength w/safety factor: Mn= 30283 ft-lb
Controlling Equation: F2-2
Web height to thickness ratio: h/tw= 28.08
Limiting height to thickness ratio for eqn.G2-2:h/tw-limit= 53.95
Cv Factor: Cv= 1
Controlling Equation: G2-2
Nominal Shear Strength w/safety factor: Vn= 39739 lb
Controlling Moment: 16886 ft-lb
12.42 Ft from left support of span 2(Center Span)
Created by combining all dead loads and live loads on span(s)2
Controlling Shear: -2238 lb
At right support of span 2(Center Span)
Created by combining all dead loads and live loads on span(s
Comparisons with required sections: Req'd Provided
Moment of Inertia(deflection): 46.1 in4 48 in4
Moment: 16886 ft-lb 30283 ft-lb
Shear: -2238 lb 39739 lb