Loading...
Report (47) ESCHIligiER SCHNEIDERAVY STRUCTURAL ENGINEERS FS2V20°1675x1001_7SOFG9x3 Design calculations FS2V x 7 edge zone for mounting of photo voltaic modules in freeland facilities project: Cleanwater Rabbit Material OR-97224 Durham customer: Schletter Inc. 3761 E Farnum Place Tucson,AZ 85706 owner: Solar City design: Schneider Structural Engineers,Ron Schneider 1700 E Ft. Lowell Road,Suite 109 Tucson,AZ 85719 structural design: Schneider Structural Engineers, Ron Schneider 1700 E Ft. Lowell Road,Suite 109 Tucson,AZ 85719 the design calculation contains following pages calculation: Pages 1-12 annex: drawn up: 10/31/2012 10/31/2012 1 CHLETTER SCHNEIDER®V® STRUCTURAL ENGINEERS 1. Introduction 1.1 Project description The following sections contain the determination of the forces and the structural design calculations of the ground mounted photovoltaic system. The location is: OR-97224 Durham 45.408703(degree of lattitude) 1.2 construction The solar panels are fixed to the inclined support structure using clamp fasteners.The purlins are clamped to the girders,which are spaced using equal spans. The modules have the following dimensions: h= 65.9 in b= 39 in d= 1.22 in support frame work modules per row x= 7 number of rows y= 2 8.0 maximum power a 255 Wp 7.0 total dimensions of a solar mounting unit L= 23.44 ft support frame length 6.0 B= 10.34 ft projection of the PV body 5.0 H= 11.01 ft total panel height h= 6.77 ft total body height N.0 module type SolarWorld 255 3.0 size of facility 0.01 MWp number of support frames 3 2.0 1.0 number of support sections 3 x(ft] number of fields 2 0.0 girder span a= 8.5 ft -10.0 -5.0 0.0 5.0 purlin cantilever Icant= 3.23 ft on both sides tilt of modules with horizontal plain R= 20 minimum height above ground level hmin= 36 in 1.3 Technical codes • ASCE7-05 Chapter 6:wind loads • ASCE7-05 Chapter 7:snow loads • ASCE7-05 Chapter 2: combinations of Load • International Building Code, IBC,2009 • Aluminum Design Manual, Eighth Edition,2005 • Wind Design based on Ruscheweyh Consult Wind Tunnel Test Report#RC 1127/0510-e 10/31/2012 2 • TSHLTR SCHNEIDER ®y." STRUCTURAL ENGINEERS 2 Load actions s with: g 13 ° inclination I 7.- g [psf] based on International Building Code, IBC,2009 according to manufacturers certificate w [psf] ASCE7-05 Chapter 6:wind loads =- - s [psf] ASCE7-05 Chapter 7:snow loads W [psf]] ASCE7-05 Chapter 6:wind loads nh 1V Y w. W b=h-cos 2.1 permanent loads g= 2.59 psf selfweight of solar modules according to manufacturers specifications. 2.2 snow loads zone of snow loads 25 lb/sq ft (Based on 45.5 psf ground snow load) (ASCE7-05 Eq.7-1, 7-2) ss= 25.0 psf Is= 0.8 Ce= 0.9 Ct= 1.2 Cs= 0.91 (ASCE7-05,Ch.7) 2.3 wind loads: wind zone: 95 mph terrain category C Iw= 0.87 (ASCE7-05,Table 6-1) height above ground z< 6.8 ft vref= 94.5 mph gref= 23 psf q(z)= 12.1 psf (peak velocity pressure) (RC 1127/0510-e) wind forces: force coefficient: CN(+)= 1.05 [-] (RC 1127/0510-e) CN(.)= -1.38 [-] pressure coefficient: top Cp,net= 1.65 [-] loading Cp,net= -2.40 [-] uplifting central Cp,net= 1.65 [-] loading (RC 1127/0510-e) Cp,net= -2.40 [-] uplifting bottom Cp,net= 1.65 [-] loading Cp,net= -2.40 [-] uplifting (pressure= 1.00 on a length N10 peak load in sidewise edge zones Lam= 1.00 on a length N10 fpressure= 1.00 on a length h/10 peak load in top/bottom edges fsuction= 1.00 on a length h/10 ti 10/31/2012 3 ESEHLITTsEIR SCHNEIDER A®� STRUCTURAL ENGINEERS 2.4 load combinations Load and resistance factors: y9= 1.20 y9= 0.9 where acting favorable yq= 1.60 Combination Factors: Wow= 0.50 Wo,s= 0.31 The following load combinations are considered at ultimate limit states design: LK 1: yy•g+yq S+Wo,w•yq•w (Eq 16-3, IBC,2009) LK 2: yg•g+Wo,s'Yq•s+Yq•w (Eq 16-4, IBC,2009) LK 3: 0.9•g+yq•w for lifting wind actions (Eq 16-6, IBC,2009) 3 Design calculations 3.1 purlins Aluminum purlins are used to transfer loads to the support structure. These are designed as continuous beams with cantilevers. While producing and assembling these can be considered as beams with internal hinges and be jointed with splices in the specified positions. material EN AW-6105 T5 fn= 35.0 ksi 4= 0.85 4f0= 29.8 ksi profile SO A= 1.07 in 2 Sy= 0.86 in 3 S1= 0.47 in 3 ly= 1.10 in4 I,= 0.77 in4 g= 1.26 lb/ft total length !tot= 23.44 ft R= 20 ° a= 8.49 ft sin p= 0.342 !cant= 3.23 ft CAS p= 0.94 The load effects resulting from wind and snow have to be positioned unfavorable for determination of the forces.The calculation assumes a continuous beam with equal spans. M1,total M1,partial M2,total M2,partial MB,total MB,partlal 0.070 0.096 0.000 0.000 -0.125 -0.1251 bending moment factors Atotal Apartial Btotal Bpartial Qtotal Qpartial 0.375 0.438 1.250 1.250 0.625 0.625 force coefficients permanent loads gs,,= 7.86 psf gs,y= 2.86 psf incl. Profil snow loads ss,Z= 60.70 psf ss,y= 22.09 psf wind load(pressure) Ws,+Z= 139.4 psf ws,+y= 54.68 psf wind load(drag) Ws,_Z= -183.2 psf ws,_y= -79.54 psf 10/31/2012 4 • ESEHLETTER SCHNEIDER e.: STRUCTURAL ENGINEERS inner purlin Mx6, M1 MB A A TB LK 1 MI,y= 1.023 kft MI,Z= 0.262 kft LK 2 M1,y= 0.864 kft M1,Z= 0.094 kft LK 3 M1,y= -0.846 kft MI,Z= 0.013 kft LK 1 MAY= 0.783 kft MA,Z= 0.202 kft LK 2 MAY= 0.663 kft MA,Z= 0.075 kft LK 3 MA,y= -0.626 kft MA,Z= 0.013 kft LK 1 MB,y= -1.355 kft MB,Z= -0.350 kft LK2 MB,y= -1.148 kft MB,Z= -0.131 kft LK 3 MB,y= 1.084 kft MB,Z= -0.023 kft LK 1 A= 1.039 kip Ah= 0.457 kip LK 2 A= 0.879 kip Ah= 0.117 kip LK 3 A= -0.839 kip Ah= 0.009 kip LK 1 B= 1.596 kip Bh= 0.412 kip LK 2 B= 1.351 kip Bh= 0.154 kip LK 3 B= -1.276 kip Bh= 0.027 kip stress evaluation of purlins max My ax max MZ ax Eax rl[%J LK 1 1.36 18.90 0.35 8.86 27.76 ksi 93.3 design equation LK2 1.15 16.01 0.13 3.31 19.31 ksi 64.9 MMZ f LK 3 1.08 15.11 0.02 0.59 15.70 ksi 52.8 Sy S= purlin sections !_ r! ari IV inner purlin partition of purlins 7195 mm 10/31/2012 5 • (Esc...ETTER SCHNEIDER AV� STRUCTURAL ENGINEERS 3.2 Design of girders The load from the purlins is transferred to the rammed post using an inclined girder,which is connected to steel post. The loads on the girder result from the support reaction of the purlins. For the determination of forces unfavorable load positions have to be used. girder section extruded section Typ 4 material EN AW-6105 T5 f„= 35 ksi (I)f„= 29.8 ksi A= 1.69 in 2 Sy= 1.43 in 3 SZ= 1.04 in 3 ly= 2.85 in 4 IZ= 1.43 in 4 g= 2.00 lb/ft Shapes of initial force variables with uniform concentrated load F="1"at purlin connections bending moments(uniform load) spear forces uniform load) -2.50 -2.00 1.0 - c 1.50 0.5 E w 0.0 l3 �r .c c-0.50 - w -0.5 • CD 0.00 -1.0 .0 0.50 X[ft] -1.5 x[ft] 0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0 total girder length IR= 9.1 ft factor for moment in span fF= 0.01 factor for moment at support fs= -1.8 (left) fs= -2.09 (right) factor for shear forces fv= 2.11 joint eccentricity of girder eZ= 0.79 in For determination of the forces of the substructure,the wind forces have to be assumed to act in the quarter points of the module surface. Hence,there are two load postions of wind forces for each load combination.Subsequently,6 load combinations have to be evaluated for determination of the governing loading. 10/31/2012 6 ESCHLETTER SCHNEIDER e®C STRUCTURAL ENGINEERS internal forces at the support construction load combination 1 load combination 2 load combination 3 wind A wind B wind A wind B wind A wind B minimum of axial force -0.38 -0.38 -0.14 -0.14 -1.30 -0.64 kip maximum of axial force 3.61 3.69 2.03 2.20 0.06 0.06 kip eccentricity moment Mhz 0.24 0.24 0.13 0.14 0.00 0.00 kft max mid-span bending moment 0.25 0.26 0.15 0.16 -0.01 -0.01 kft max. moment at support left -3.15 -3.16 -2.34 -2.33 1.54 1.54 kft max. moment at support right -3.10 -3.10 -2.69 -2.68 2.67 2.67 kft vertical reaction force(post) 3.36 3.36 2.84 2.84 -1.77 -1.77 kip horizontal reaction force(post) 0.21 0.21 0.32 0.32 0.06 0.06 kip mid-span stresses 4.25 4.34 2.42 2.62 -0.84 -0.45 ksi stress moment at support left -28.53 -28.63 -20.76 -20.77 13.63 13.25 ksi stress moment at support right -28.11 -28.11 -23.76 -23.76 22.35 22.35 ksi max mid-span bending moment MF= max(A;B)•fF+Mez=0.01 • 1.60 + 0.24 = 0.26 kft max. moment at support left Ms= max(A;B)•fs-MeZ= -1.8 • 1.6 - 0.00 = -2.92 kft max. moment at support right Ms= max(A;B)•fs-MeZ= -2.1 • 1.6 - 0.00 = -3.34 kft verification N+ 3 __ f„ Sy maximum stresses max C5= 28.63 ksi utilization ratio 96 % support system post is connected at 77 %of planned girder length strut is connected at 20 %of planned girder length 3.3 strut FS-System EN AW-6105 T5 Is= 63.2 in A= 1.03 int f„= 35.0 ksi t= 0.16 in I= 0.672 in 4 ry= 0.81 in 4fn= 29.8 ksi max N= 1.7 kip X= 78.2 6= 1.69 utilization ratio min N= -3.2 kip w= 2.70 CTX= 8.51 = 29 % The crossbar is connected to the ram post profile at 21.7 in above ground level. 55.013, 11S . I N/ I o I � NJ I OOO IH__ HH'O „ '` Reel 10/31/2012 7 • FSCHI:ET7" SCHNEIDER AV Av STRUCTURAL ENGINEERS 4 design of ram driven posts The post is designed using a roll formed steel section,which is ram driven into the ground to a defined depth.This item affords soil examinations and eventually loading tests to evaluate the transferable forces. section properties foundation bf= 5.55 in Nr 8 h= 6.26 in t= 0.16 in t=4mm A= 2.72 in 2 Sy= 4.22 in 3 t=4mm ly= 13.34 in 4 60 g= 9.25 lb/ft t material properties S380 fy,s= 55.11 ksi 4= 0.9 N t=4mm fy,n= 50.00 ksi ax= 36.94 ksi utilization ratio rl= 74 % 1:b1 non bearing soil layer t= 0 in estimated anchoring depth ts011= 96 in initial forces at bottom fixed support load combination 1 load combination 2 load combination 3 wind A wind B wind A wind B wind A wind B axial force at fixed support -5.75 -5.94 -3.65 -4.03 2.57 2.60 kip shear force at fixed support 0.34 0.41 0.67 0.81 -1.05 -1.06 kip end-restraint moment 12.23 12.23 7.12 6.27 -4.53 4.65 kft stress analysis 36.85 36.94 21.57 19.29 13.81 14.18 ksi max.tensile loads on support Nmax= 2.60 kip (1.47) belonging to V= 1.06 kip (0.66) max. compression force at post Nm;n= -5.9 kip (-3.8) belonging to V= 0.81 kip (0.42) max. bending moment at post Me= 12.2 kft (10.9) (Values in parenthesis are service loads) The restraint post support in the ground features a plastic reserve of 27 % Me= 22 kft 10/31/2012 8 • FSCHLETTER SCHNEIDER Aviv STRUCTURAL ENGINEERS 5 Design of joints and connections 5.1 anchorage of modules on the purlins and connection of the purlins to the girder • The connection of the purlins to the girder features clamps. Due to limited standards for reliable calculations, the strength of the clamp fasteners has been evaluated by tests. fastening of modules to purlins max FZ= 0.39 kip <Pbrg= 8.093 kip clamping of purlins to girders max FZ= 1.28 kip <Pbrg= 34.17 kip (strength of connections according to spec sheets from Schletter-Solarmontage GmbH) 5.2 connection between girder and post head The most important feature of the construction is the design of the connection between the inclined girders and the head piece of the ram driven posts.The following technical requirements have to be considered: • transmission of forces in most unfavorable location Az=±1.6 in • compensation of tolerances caused by ramming of the posts: A8=±2° • tolerances in longitudinal and lateral direction Ax=±0.6 in • rotation capacity of connection Acp=±15° The load from the girder is transferred into the ram driven support by aluminum angles with slotted holes, which allow for height adjustments.These are connected to flanges of the ram driven post using bolts,which are subjected to shear and hole bearingforces. J The following internal forces have to be transmitted max M= 1.11 kft x= 2.36 in max V= 2.61 kip max N= 4.74 kip NF= -Nmin/4+Md/4= 2.60 kip connection of frame section to the foundation pair of bolts bolts M10 A2-70 f / Vb°it= 6.74 kip 11= 39 % bearing resistance steel { j Vbrg= 9.32 kip r1= 28 % bearing resistance aluminum Vbrg= 5.40 kip 11= 48.2 % connection girder bolts M12 A2-70 max V= 0.25•(max V2+max N2)°5= 1.353 kip Itt* reap.— ultimate shear force Vboit= 9.70 kip 11= 13.9 % " - € V y 10/31/2012 9 • ESSafror Mourtop Stearns V' CHI.ETTER SCHNEIDER ..: STRUCTURAL ENGINEERS connection components for main beams 3 scaled load cases are analysed: Load 1:Vertical compression (2.2481 kip) Load 2: Horizontal forces (2.2481 kip) ' Load 3:Vertical tensile forces (2.2481 kip) . t Olt._ t LF 2 -11,,,- ,.,_ ,.---,: LF 3 irft.,4 Statical system with scaled load cases Ill V'nYlr-.%-w..n, (Meth r li+ resultant stress load 1 '}1F IT -,i.,i`1 i•' T.vr.rt,:?c.rva trix.VI. 4'01 tf) .t. il :307n1c,ti,a? 20, 11+�4`t1�t,� P��lI, e� • > .. 200 .1\ i ' ,,. ty i {iAriltA .i, �- /� i I ra! tir • t, <; ' EPI QM Nin. resultant stress load 2 resultant stress load 3 load combination 1 load combination 2 load combination 3 wind A wind B wind A wind B wind A wind B longitudinal forces(vertical) -5.19 -23.78 -13.95 -15.30 8.92 9.15 f„= 35.0 ksi shear forces(horizontal) 3.76 3.69 0.89 0.76 0.60 4.60 V,= 29.8 ksi resultant stresses ksi 5.46 16.98 9.20 9.97 10.55 10.82 rl= 57 % (utilization ratio) calculation of the shear wedge max 6„= 12.61 ksi Ti= 42 % (utilization ratio) resultant stresses in the shear wedge All requiremnents are met due to utilization rates of all components smaller than 100% 10/31/2012 10 [ Ss• LETTER SCHNEIDER®.: STRUCTURAL ENGINEERS . 5.3 top element post head verification of bolt resistance head plate bolts M10 A2-70 Nallow= 6.56 kip lever arm of load transmission 2.36 in Vallow= 4.98 kip max M= 1.11 kft Nactual= 5.20 kip Nact.+ Vacs _ 0.644 max V= 2.61 kip Vactual= 0.65 kip Nall. Vall max N= 4.74 kip isometrical view head component 6r,..r.„ ,c.T 1.,f`.1.- 1.124 kip Tr+V:.,r.Y:.-EPTR.,] 1.124 kip t.,,r.9. .124 kip :943a10,102.511 1.124 kip _ fro E n' G, 60,01 _ OM Mn scaled load 2.25 kip vertical scaled load 2.25 kip horizontal load combination 1 load combination 2 load combination 3 wind A wind B wind A wind B wind A wind B longitudinal forces(vertical) -4.59 -4.74 -2.88 -3.17 1.93 2.29 fn= 35.0 ksi shear forces(horizontal) -2.57 -2.61 -1.26 -1.34 0.56 -0.27 (l)fn= 29.8 ksi resultant stresses ksi 1.12 0.92 -1.12 -1.52 8.05 7.49 h= 27 % (utilization ratio) 5.4 bottom element post head l '' 1}Fl *11 oatM,u resultant stresses ksi I 16.21 16.71 I 9.97 10.97 6.53 I 7.52 ri= 56 % (utilization ratio) 10/31/2012 11 (—SpHLE7TERSCHNEIDER..e STRUCTURAL ENGINEERS 5.6 Shape component post connection For the connection of the strut to the post an extruded profile will be used,which is jointed with the webs of the roll formed steel post by bolts. The force flows through the neutral axis of the extruded part. Due to the adjustability eccentricities have to be considered. The inclined struts yields the following bolt forces: max Z= 1.7 kip utilization ratio 30 peak borehole 2 bolts M 10 A2-70 min Z= -3.2 kip utilization ratio 11 shear failure 2 bolt M 10 A2-70 double shear plane The analysis of the part is performed using principal stresses shown subsequently max v„< 29.8 ksi upper truss connection under uniform loads(.225 kip) utilization ratio 24 % X0 m�. o1.m 2010,0335 43 Tnoh Von Mees-Spa Tarp D' s 02 10 0Pa . .101O,0050:53 5 9N1 vL 3,00: �. a �3, "•, ''�' k 1 ��".��.� ��KOM,� Y rx� I r.!►�.r v2 .y I + ►.rib 3,0184, 2,004 1.905 Z 2,023 1.1 000611n. rA, 3 1.031 4 1 1 \ 11.11 0,039139. 0.112 kip 0.112 kip 3.112 kip vertical(y-direction) horizontal(z-direction) 0.112 kip lower truss connection under uniform loads(.225 kip) utilization ratio 23.1 % .,:Von„o, angle limitation 10.0 ° EnheiL 13.30 3010,10:29:32 Mon 1pn.y Ern.M4 0110 ZOO,233504 3 2,409 O.SkN _ 2,403 0.5 kN 1,818 " , �' 1,002 _3 1,300 li,•j: 1.21 F..- �1.7 4836 , 0.5 kN a51a 0.5 kN 0,095 0,017 ren. principal stresses concernig centrical load transmission principal stresses(eccentrical load transmission)10° bolt V110 A2-7( Vbo,t= 22.1 kip Vbrg= 19.2 kip utilization ratio 8 % 10/31/2012 12 • EINSCHL TER SCHNEIDER ®�� STRUCTURAL ENGINEERS FS2V20°1675x 1001_I 4S OF G 9x6 Design calculations FS2V x 14 edge zone for mounting of photo voltaic modules in freeland facilities project: Cleanwater Rabbit Material OR-97224 Durham customer: Schletter Inc. 3761 E Farnum Place Tucson,AZ 85706 owner: Solar City design: Schneider Structural Engineers, Ron Schneider 1700 E Ft. Lowell Road,Suite 109 Tucson,AZ 85719 structural design: Schneider Structural Engineers, Ron Schneider 1700 E Ft. Lowell Road, Suite 109 Tucson,AZ 85719 the design calculation contains following pages calculation: Pages 1-12 annex: drawn up: 10/31/2012 10/31/2012 1 ESCHLET7" R SCHNEIDER ,�®� STRUCTURAL ENGINEERS 1. Introduction 1.1 Project description The following sections contain the determination of the forces and the structural design calculations of the ground mounted photovoltaic system. The location is: OR-97224 Durham 45.408703(degree of!attitude) 1.2 construction The solar panels are fixed to the inclined support structure using clamp fasteners. The purlins are clamped to the girders,which are spaced using equal spans. The modules have the following dimensions: h= 65.9 in b= 39 in d= 1.22 in support frame work modules per row x= 14 number of rows y= 2 8'0 maximum power a 255 Wp 7.0 total dimensions of a solar mounting unit L= 46.96 ft support frame length 6.0 B= 10.34 ft projection of the PV body 5.0 H= 11.01 ft total panel height h= 6.77 ft total body height N° module type SolarWorld 255 3.0 size of facility 0.01 MWp number of support frames 2 2.0 1.0 number of support sections 6 x[ft] number of fields 5 0.0 girder span a= 8.2 ft -10.0 -5.0 0.0 5.0 purlin cantilever !cant= 3.10 ft on both sides tilt of modules with horizontal plain R= 20 ° minimum height above ground level hmin= 36 in 1.3 Technical codes • ASCE7-05 Chapter 6:wind loads • ASCE7-05 Chapter 7: snow loads • ASCE7-05 Chapter 2: combinations of Load • International Building Code, IBC,2009 • Aluminum Design Manual, Eighth Edition,2005 • Wind Design based on Ruscheweyh Consult Wind Tunnel Test Report#RC 1127/0510-e 10/31/2012 2 I, • CHLETTER SCHNEIDER .®: STRUCTURAL ENGINEERS 2 Load actions . . s with: g R ° inclination g [psf] based on International Building Code, IBC,2009 I according to manufacturers certificate w [psf] ASCE7-05 Chapter 6:wind loads s [psf] ASCE7-05 Chapter 7:snow loads W s ASCE7-05 Chapter 6:wind loads w. r. b=h.cos'- ---------- .! 2.1 permanent loads g= 2.59 psf selfweight of solar modules according to manufacturers specifications. 2.2 snow loads zone of snow loads 25 Iblsq ft (Based on 45.5 psf ground snow load) (ASCE7-05 Eq.7-1, 7-2) ss= 25.0 psf Is= 0.8 Ce= 0.9 Ct= 1.2 Cs= 0.91 (ASCE7-05, Ch.7) 2.3 wind loads: wind zone: 95 mph terrain category C Iw= 0.87 (ASCE7-05,Table 6-1) height above ground z< 6.8 ft vref= 94.5 mph gref= 23 psf q(z)= 12.1 psf (peak velocity pressure) (RC 1127/0510-e) wind forces: force coefficient: CN(+)= 1.05 [-] (RC 1127/0510-e) CNo= -1.38 [-] pressure coefficient: top Cp,net= 1.65 [-] loading Cp,net -2.40 [-] uplifting central Cp,net= 1.65 [-] loading (RC 1127/0510-e) Cp,net= -2.40 [-] uplifting bottom Cp,net= 1.65 [-] loading Cp,net= -2.40 [-] uplifting fpressure= 1.00 on a length A/10 peak load in sidewise edge zones fsuction= 1.00 on a length A/10 fpressure= 1.00 on a length h/10 peak load in top/bottom edges faction= 1.00 on a length h/10 10/31/2012 3 I g • rimSFHLETTER SCHNEIDER AoAv STRUCTURAL ENGINEERS 2.4 load combinations Load and resistance factors: yg= 1.20 yg= 0.9 where acting favorable yq= 1.60 Combination Factors: Wo,w= 0.50 Wo,s= 0.31 The following load combinations are considered at ultimate limit states design: LK 1: yg•g+Yq•s+Wo,W•Yq•w (Eq 16-3, IBC,2009) LK 2: yg•g+Wo,s•yq•S+Yq•w (Eq 16-4, IBC,2009) LK 3: 0.9•g+yq•w for lifting wind actions (Eq 16-6, IBC,2009) 3 Design calculations 3.1 purlins Aluminum purlins are used to transfer loads to the support structure. These are designed as continuous beams with cantilevers. While producing and assembling these can be considered as beams with internal hinges and be jointed with splices in the specified positions. material EN AW-6105 T5 f„= 35.0 ksi 4 = 0.85 cl)fn= 29.8 ksi profile SO A= 1.07 in 2 Sy= 0.86 in 3 SZ= 0.47 in 3 ly= 1.10 in4 IZ= 0.77 in 4 g= 1.26 lb/ft total length hot= 46.96 ft R= 20 ° a= 8.15 ft sin g= 0.342 !cant= 3.10 ft cos 13= 0.94 The load effects resulting from wind and snow have to be positioned unfavorable for determination of the forces.The calculation assumes a continuous beam with equal spans. M1,total M1,partial M2,total M2,partial MB,total MB,partial A 0.078 0.100 0.033 0.079 -0.105 -0.120 bending moment factors Atotal Apartial Btotal Bpartial Qtotal Qpartial 0.395 0.447 1.132 1.218 0.605 0.620 force coefficients permanent loads gs,Z= 7.86 psf gs,y= 2.86 psf incl. Profil snow loads ss,Z= 60.70 psf ss,y= 22.09 psf wind load(pressure) Ws,+z= 139.4 psf ws,+y= 54.68 psf wind load(drag) Ws,-z= -183.2 psf ws,_y= -79.54 psf 10/31/2012 4 san.i� sr�e • � CHLETTERSCHNEIDER .v:�` STRUCTURAL ENGINEERS inner purlin Mx4 M1 MB A TB LK 1 M1 = 0.985 kft Mix= 0.253 kft LK 2 M1,y= 0.832 kft 0.091 kft LK3 M1,y= -0.809 kft Mu= 0.013 kft LK 1 MA,y= 0.721 kft MA,Z= 0.186 kft LK 2 MA,y= 0.611 kft MA,Z= 0.069 kft LK 3 WY= -0.577 kft MA,Z= 0.012 kft LK 1 MB,y= -1.189 kft MB,Z= -0.306 kft LK 2 MB,y= -1.006 kft MB,Z= -0.112 kft LK 3 MB,y= 0.966 kft M8,Z= -0.021 kft LK 1 A= 1.009 kip Ah= 0.442 kip LK 2 A= 0.854 kip Ah= 0.113 kip LK 3 A= -0.813 kip Ah= 0.009 kip LK 1 B= 1.486 kip Bh= 0.383 kip LK 2 B= 1.257 kip Bh= 0.141 kip LK 3 B= -1.198 kip Bh= 0.024 kip stress evaluation of purlins max My 6X max MZ 6X EcX TI I%] LK 1 1.19 16.59 0.31 7.75 24.34 ksi 81.8 design equation LK 2 1.01 14.03 0.11 2.84 16.87 ksi 56.7 M�+ MZ < f LK 3 0.97 13.47 0.02 0.52 13.99 ksi 47.0 Sy SZ purlin sections rWEllr r iJIr --_' rs inner purlin 10/31/2012 5 CHL TIER Inc SCHNEIDER ..: STRUCTURAL ENGINEERS 3.2 Design of girders The load from the purlins is transferred to the rammed post using an inclined girder,which is connected to steel post. The loads on the girder result from the support reaction of the purlins.For the determination of forces unfavorable load positions have to be used. girder section extruded section Typ 4 material EN AW-6105 T5 fn= 35 ksi 4f„= 29.8 ksi A= 1.69 int Sy= 1.43 in 3 SZ= 1.04 in 3 ly= 2.85 in 4 IZ= 1.43 in 4 g= 2.00 lb/ft Shapes of initial force variables with uniform concentrated load F=1"at purlin connections bending moments(uniform load) spgar forces uniform load) -2.50 E.-2.00 - 1.0 . c -1.50 ` 0.5 oIE - - 0.0m w -0.5-1.0 s 0.50 x[ft] -1.5 x[ft] 0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0 total girder length IR= 9.1 ft factor for moment in span fF= 0.01 factor for moment at support fs= -1.8 (left) fs= -2.09 (right) factor for shear forces fv= 2.11 joint eccentricity of girder eZ= 0.79 in For determination of the forces of the substructure,the wind forces have to be assumed to act in the quarter points of the module surface. Hence,there are two load postions of wind forces for each load combination.Subsequently,6 load combinations have to be evaluated for determination of the governing loading. 10/31/2012 6 • ESEHCETT-sER SCHNEIDER ®.: STRUCTURAL ENGINEERS internal forces at the support construction load combination 1 load combination 2 load combination 3 wind A wind B wind A wind B wind A wind B minimum of axial force -0.35 -0.35 -0.13 -0.13 -1.22 -0.61 kip maximum of axial force 3.35 3.44 1.88 2.04 0.05 0.05 kip eccentricity moment Mez 0.22 0.23 0.12 0.13 0.00 0.00 kft max mid-span bending moment 0.23 0.24 0.14 0.15 -0.01 -0.01 kft max. moment at support left -2.94 -2.94 -2.17 -2.16 1.49 1.49 kft max. moment at support right -2.89 -2.88 -2.51 -2.50 2.51 2.51 kft vertical reaction force(post) 3.13 3.13 2.65 2.65 -1.71 -1.71 kip horizontal reaction force(post) 0.21 0.21 0.30 0.30 0.05 0.05 kip mid-span stresses 3.95 4.04 2.25 2.43 -0.79 -0.43 ksi stress moment at support left -26.56 -26.65 -19.31 -19.32 13.20 12.83 ksi stress moment at support right -26.17 -26.17 -22.10 -22.11 20.99 20.99 ksi max mid-span bending moment MF= max(A;B)•fF+Mez=0.01 • 1.49 + 0.23 = 0.24 kft max. moment at support left Ms= max(A;B)•fs-Mez= -1.8 • 1.49 - 0.00 = -2.72 kft max. moment at support right Ms= max(A;B)•fs-Mez= -2.1 • 1.49 - 0.00 = -3.11 kft verification N +S _< f„ r maximum stresses max a,= 26.65 ksi utilization ratio 90 % support system post is connected at 77 %of planned girder length strut is connected at 20 %of planned girder length 3.3 strut FS-System EN AW-6105 T5 Is= 63.2 in A= 1.03 in 2 fn= 35.0 ksi t= 0.16 in I= 0.672 in 4 ry= 0.81 in 4f„= 29.8 ksi max N= 1.6 kip R= 78.2 a= 1.59 utilization ratio min N= -3.0 kip (0= 2.70 aX= 7.92 TI= 27 % The crossbar is connected to the ram post profile at 21.7 in above ground level. 55.0'_0 4 I N I o I � w.t I gq o -o � 'P'° Rlo • • 10/31/2012 7 ESSHLETTER SCHNEIDER Ave STRUCTURAL ENGINEERS 4 design of ram driven posts The post is designed using a roll formed steel section,which is ram driven into the ground to a defined depth.This item affords soil examinations and eventually loading tests to evaluate the transferable forces. section properties foundation bf= 5.55 in Nr 8 h= 6.26 in • t= 0.16 in t=4mm A= 2.72 in 2 Sy= 4.22 in 3 t=4mm ly= 13.34 in 4 60 g= 9.25 lb/ft t material properties S380 fy,s= 55.11 ksi • 4= 0.9 N t=4mm fy,n= 50.00 ksi • 6X= 34.35 ksi utilization ratio rl= 69 % 1:bf non bearing soil layer t= 0 in estimated anchoring depth t5011= 96 in initial forces at bottom fixed support load combination 1 load combination 2 load combination 3 wind A wind B wind A wind B wind A wind B axial force at fixed support -5.35 -5.53 -3.38 -3.74 2.43 2.46 kip shear force at fixed support 0.31 0.38 0.63 _ 0.76 -0.99 -1.00 kip end-restraint moment 11.37 _ 11.38 6.59 5.80 -4.28 4.20 kft stress analysis 34.27 34.35 19.98 17.84 13.06 12.85 ksi max.tensile loads on support Nmax= 2.46 kip (1.4) belonging to V= 1.00 kip (0.62) max.compression force at post Nmin= -5.5 kip (-3.53) belonging to V= 0.76 kip (0.39) max. bending moment at post Me= 11.4 kft (10.12) (Values in parenthesis are service loads) The restraint post support in the ground features a plastic reserve of 27 % Mp= 22 kft 10/31/2012 8 zo Saw 1/1.1079 Systams ff SCHLETlER SCHNEIDER ®V� STRUCTURAL ENGINEERS 5 Design of joints and connections 5.1 anchorage of modules on the purlins and connection of the purlins to the girder • The connection of the purlins to the girder features clamps. Due to limited standards for reliable calculations, the strength of the clamp fasteners has been evaluated by tests. fastening of modules to purlins max FZ= 0.39 kip <Pbrg= 8.093 kip clamping of purlins to girders max FZ= 1.20 kip <Pbrg= 34.17 kip (strength of connections according to spec sheets from Schletter-Solarmontage GmbH) 5.2 connection between girder and post head The most important feature of the construction is the design of the connection between the inclined girders and the head piece of the ram driven posts.The following technical requirements have to be considered: • transmission of forces in most unfavorable location Az=±1.6 in • compensation of tolerances caused by ramming of the posts: OR=±2° • tolerances in longitudinal and lateral direction Ax=±0.6 in • rotation capacity of connection pcp=± 15° The load from the girder is transferred into the ram driven support by aluminum angles with slotted holes, which allow for height adjustments.These are connected to flanges of the ram driven post using bolts,which are subjected to shear and hole bearing forces. The following internal forces have to be transmitted max M= 1.03 kft x= 2.36 in max V= 2.43 kip max N= 4.41 kip NF= -Nmin/4+Md/4= 2.42 kip f' connection of frame section to the foundation pair of bolts bolts M10 A2-70 Vbolt= 6.74 kip 11= 36 % bearing resistance steel Vbrg= 9.32 kip 11= 26 % sir bearing resistance aluminum Vbrg= 5.40 kip 11= 44.8 % ; connection girder bolts M12 A2-70 , .z max V= 0.25•(max V2+max N2)°'5= 1.258 kip `� `k. � . %t ultimate shear force Vbolt= 9.70 kip 11= 13 % Au=; 10/31/2012 9 21 • CHLETI'R SCHNEIDER wm® STRUCTURAL ENGINEERS connection components for main beams 3 scaled load cases are analysed: Load 1:Vertical compression (2.2481 kip) Load 2: Horizontal forces (2.2481 kip) • Load 3:Vertical tensile forces (2.2481 kip) NAt -\a_ z 1:nt \I •• 4::. AltLF 2 110 41,(-t_ ' t,,' LF 3 r1P' ` �� ih Statical system with scaled load cases ni °5 , t [,_t.1., 11V:NI3,W.115i 5, N; War ystam FISSHIL TER SCHNEIDER A.V: STRUCTURAL ENGINEERS 5.3 top element post head verification of bolt resistance head plate bolts M10 A2-70 Naow= 6.56 kip lever arm of load transmission 2.36 in Vauow= 4.98 kip max M= 1.03 kft Nactual= 4.83 kip Nod Vact. = 0.557 max V= 2.43 kip Vactual= 0.61 kip Nall. Van max N= 4.41 kip isometrical view head component [n.r:,T., C..2.I V41 1.124 kip Tw VAT-r..-:prrTry 1.124 kip 1.124 kip y`aro 'r'"" 1.124 kip 60.41 f+1: C:1M1ri Id. ,• 9,V1 MT. scaled load 2.25 kip vertical scaled load 2.25 kip horizontal load combination 1 load combination 2 load combination 3 wind A wind B wind A wind B wind A wind B longitudinal forces(vertical) -4.27 -4.41 -2.67 -2.95 1.82 2.16 f„- 35.0 ksi shear forces(horizontal) -2.39 -2.43 -1.16 -1.24 0.53 -0.24 4f„= 29.8 ksi resultant stresses ksi 1.03 0.85 -1.06 -1.43 7.63 7.00 h= 26 % (utilization ratio) 5.4 bottom element post head IK i sm,. Ty[Y.tFIr,'.u.vy tla 6M.1� nIc :9 e`i b4�.IC 016 ro va •aui • t r0,M LOC Mr resultant stresses ksi 15.08 15.55 9.24 10.18 6.17 7.09 rl= 52 % (utilization ratio) • 10/31/2012 11 2.� • ESeHs'imitiisrli SCHNEIDER®v AM STRUCTURAL ENGINEERS 5.6 Shape component post connection For the connection of the strut to the post an extruded profile will be used,which is jointed with the webs of the roll formed steel post by bolts. The force flows through the neutral axis of the extruded part. Due to the adjustability eccentricities have to be considered. The inclined struts yields the following bolt forces: max Z= 1.6 kip utilization ratio 28 peak borehole 2 bolts M 10 A2-70 min Z= -3.0 kip utilization ratio 11 shear failure 2 bolt M 10 A2-70 double shear plane The analysis of the part is performed using principal stresses shown subsequently max 6„< 29.8 ksi upper truss connection under uniform loads(.225 kip) utilization ratio 23 % T,p YOMNtr-Sprnro :�. 02. lou.Ooae.+s TYp:YOM l'% mo Vises 10 X1010 02 02.10. 10,0050:53 5 4,001 vr. Y , i9 4,0� 1 3,001 *' ; '�, dig �, �1: 1111* 1Q� • `��, 2.004 `u '.i 3,016 ♦t4A P ,. i); % rAF .. � a "5 f I r t44 Y,i, 1.005 t 2,023 4 +I 0,C05 Nn. 1'c,i5, 1,031 sr 1. fii,i�iii1 0,039 Mn. 0.112 kip 0.112 kip 3.112 kip • vertical(y-direction) horizontal(z-direction) 0.112 kip lower truss connection under uniform loads(.225 kip) utilization ratio 21.8 % • T.,"Voe,5Pa,w angle limitation 10.0 ° 33.90.X110,b:29:32 TYG:Van Was kurvp 01 10 2010,DEAa 3 2,409 - _`.t—.-,' 0.5 kN -7,:;7"—'!-- -^ -_ 1.403 0.5 kN 1.119 _ 1,837 0, 1,227 p Yt 11, i.. , 3, ,Hil l -:Y 1.01 :5 Vi' a.efA 1 ;;e. 0,535 _ 'r�p k's- '.NN ocla 0.5kN `1 0.5kN ..4'4. 0,995 IN,. „Lf.- 0,017 Nn principal stresses concernig centrical load transmission principal stresses(eccentrical load transmission)10° bolt V110 A2-7( VboIt= 22.1 kip Vbrs= 19.2 kip utilization ratio 8 % 10/31/2012 12 2,0