Loading...
Specifications (13) e4610/4-l-ICU,/Crr *`5s-0 iw " ECEIVEL • NOV 1 7 2014 MILLER CITY OF TIGARD CONSULTING BUILDING DIVISION ENGINEERS STRUCTURAL CALCULATIONS Monroe Apartments Tree Damage Repairs 11950 SW Lincoln Avenue, Unit 10, Tigard, Oregon Rental Housing and Maintenance November 11, 2014 Project No. 140985 17 pages Principal Checked: R4 � FzUCTU1 oED PROpS. co � GINF�� /0 16572 /19 /C.C : • „fl/ r 9G` \ 23, R A lS*7 EXPIRES: 12 -31 -2015 *** LIMITATIONS *** Miller Consulting Engineers, Inc. was retained in a limited capacity for this project. This design is based upon information provided by the client, who • is solely responsible for accuracy of same. No responsibility and or liability is assumed by or is to be assigned to the engineer for items beyond that shown on these sheets. Engineering Practical,Diverse Structural Solutions Since 1978 9570 S W Barbur Blvd.,Suite 100, Portland,Oregon 97219-5412 Phone:(503)246-1250 Fax:(503)246-1395 www.miller-se.com Building Code: 2014 Oregon Structural Specialty Code Soils Report: No Soils Report by: N/A Dated: N/A Soil Bearing: N/A PSF Retaining Walls: No Equivalent Fluid Pressure(active): N/A PCF Passive bearing: N/A PCF Friction: N/A Structural System: Building Structure Vertical System: Wood Trusses Lateral Sys: Wood Trusses Element Roof Load Type Dead Basic Design Value(PSF) 15 Loads: Load Type Snow Value(PSF) 25 Deflection Criteria L/240 Lateral Design Parameters: Wind Design: ASCE 7-10 Wind Speed(3 sec Gust): 120 MPH Exposure B Importance Factors Iw= 1.00 IE= 1.00 Is= 1.00 I;= 1.00 Risk Cat: II (ice w/wind) (seismic) (snow) (ice) Seismic Design Latitude: 45.433258 Seismic design parameters are based on published Longitude: -122.770041 values from the USGS web site. 2%PE in 50 years,0.2 sec SA=Ss 2%PE in 50 years,1.0 sec SA=51 S,= 0.974 g S,= 0.423 g (Site class B parameters are indicated on this page,for actual site class Su,= 1.081 g used in design,refer to seismic design summary) S,= 0.667g S.= 0.721 g So,= 0.4458 Design Summary: The following calculations are for the design of repairs to existing trusses that were damaged by a fallen tree.The existing trusses are a manufactured item.The building was constructed under a prior permit. 9570 SW Barbur Blvd. Project Name: Monroe Apartments Tree Damage Repairs Project#: 140985 Suite One Hundred Portland,OR97219 Location: 11950 SW Lincoln Avenue,Unit 10,Tigard,Oregon MILLER (503)246-1250 Client: Rental Housing and Maintenance CONSULTING FAX:246-1395 �n ENGINEERS BY: ALB Ck'd:7 Date: 11/11/14 Page 1 of • ( )T12Ins5 (<oop PL= L Psf (ZxN FRA-n,zoa.) t 2. PSr ( rt.Yuooc ) • LoAOS: Toe cHon-b - SG= C2o erp (2' o ' = CO e'er 1- 3 elf- (s/ )ct E..() DL=(-► Psr-) (z' o,C.> = H PLF � r'SF E3or cHorLo - ht = ( 8 rff) (z' o.c.) = I6 etr- GEZI��NG nt<= z r'iF (zx`( Ft2A,�zNG i- 3 esr (GyPsww,) SEEf uv wows A Fo 7KUs frry� SSS 7Y` io r+G P G E1 rt C1r) t 3 OF ( Los1..LArzor-,) t PSF TRttsS (: EPAXR5 (,Arr.). UPt_'LF7 = 27.`(y PIF Typ-rcA'L_ 7oP c-rto(LD 14Re-AK SPL-z7 Toe cNO(-c) VMt x =(21Z- t KS)/(t-) = I O( t.(35 WL Bei" 4- FT- 6r)/('L) FzoiM Tfave,y ("JAVA1 CMrk)e - (2.2-3(o J S)/(2) ///0, ural ( ,c r y ts) -TRY ) /y xS "L Svc IEE, PC 17 Fat OESX.G w USE 3/H X S '/Z. LVL oN gric-N S%-Dg of QeotLFN CHv(zo CoN0Ec-1Zoi ()EszGto R•-oNG W=C(20 PSF Si_) {- (-7 PSF Dc)) ( 2' 0.0= S`( PLF VAU-ow= (,If cr3r/Jcgeu)(c,=1,(s)_ (3c X35/sL,-•- SPe1czN4 = ( 13S cigJ/s‘tzE-,,)/ es-q PcF) = 2,S r /rcaE14 SE tItox3" Joao 5C-a-JJ P,7 g " .c ►47 6Noc VMf _ !tt$ t41 SC-tan— REaura.EO = (// L.as)/(3c(o LO(/SCRet,4 C .1S).. 2.4 SLac'f USO- (3) kf"k y'/L -CDS SLREwf ,r ENPS of GVt< zN7o (6) ix ( roe crKb(tp Pr PEAK (SETwEEN 70e cH-o(c-i�c: (each side of truss) T= (2ct5 (A',S)/(z-) l 4t L(3J . • $CREW KcQvvz(ZE1 =Ocf$ cSS)/(3'io Lr3S)/(co=1.Ic) = 0, `( SCK£wf V— (` ? LM) /(z.) = Z7 05 ltS‘ 3/4/. P`11/w000 Guss6r Pt -r£ w/ (3) `/y x Y %L'" 5Ds screrwf 9570 Sd,Barbur Blvd Monroe Apartments Tree Damage Repairs 140985 S Suite One Hundred Project Name P 9 P Project# _ Portland,OR 97219 Location 11950 SW Lincoln Avenue, Unit 10, Tigard, Oregon MILLER Client Rental Housing and Maintenance Phone 503.246.1250 � 2 of 17 CONSULTING Fax 503.246.1395 By Al R Ck'd Date 11/11/2014 Page ENGINEERS www.miller-se.com 13R14cE tf 1 (Mx,no&7t I L /4) / (loads from truss analysis pages 10-11) � e%epa TON FORCE C=(S-2.3 LOS)/(s)=76'( Lai T�NSZ'oi-N cog-LE : -T=(L3f (.ar'/(7) = //s LBF Arr4-cN 13A4 x s- LVL EA Sxn5 of (E) ga pcE To PRo✓-DE t.oan TRf+-N.Wrtz. CrsNtJ EcTTpN ( 144-1 cgs , ScaE�l rzEQtgx12.ci 0.69 t-C;S')/(3Yo LlS/Sc,cCw)/(Cp=►,rc) 0,67 ScLEo-'I (L) Yv" k 'f V2..1S ,s Scacu( To -rr Lvt. To ) erer:+c& fs rt- C 7= ( 6• t,(5 scaE��s Rcatixr2.En =(116 Las)/(lo, Of/AlitEt,.,)/(coY1.Ir) =o.q ;cRrwl (alternate use 1/4 dia Simpson SDS screws) t,t,E 3//" r�VtwodO 6tAs'E7• PLATE- (..-)/ (3) to k3" wt.,Jo Q2Prcx I'RA4CE t±- (pq 4•446v-4 4/,' (loads from truss analysis pages 11) Corn eg cssz or.) fort.Lc C = LS'? teS)/(L) _ LO! TTNrzo,,r ,-o(2cr t T-(5-00-6S)/Ca)- zfD 48S Ar-T, -I-! 1 3/Y k S"%s l Vl. F#4 sr-n0 DF` (F) Q2Ac.,E Tp eaosivor. Lo'f T zA141 Elt (.O0J£c7�a�3 c - 2.S,S Lar ScR.E.rr R£4uzatib = (w.s Lal)/(.Ho writ/rcrerrta)/(co.t.rr) =. o,► rcaeLac USE (3) y1"•1/4 SDS • Ctiectr-+f To AT7-4cr4 LVA_ ro (F) (S/zACE, T 2SU (..(3f SL2C-4/ 7 COtAx(t () 7 (ZSv Lill)/ (3Na 05/1SCR-L3)/(Co=1.r.T)= 0.6 JzRf�! IMC 3/y t' A(.YLHXDO Gks'Er PtArT w/ (3) %y"x w'/z" /Of Sc2Fu1 rA,7o C.riC Bra,gcE 4RpcE fkL (IH" Lot...“. �. (3RPrt4 4 t (1%"L000 Check Plywood Gusset: (3/4"Thick Plywood) Tmax =250 lbs/side<Tallow= (2.08 sq in/ft)(750 psi)(6/12) = 780 lbs 9570 SW Barbur Blvd Monroe Apartments Tree Damage Repairs 140985 S Suite One Hundred Project Name Project# 11111 Location OR 97219 Location 11950 SW Lincoln Avenue, Unit 10, Tigard, Oregon MILLER Client Rental Housing and Maintenance Phone 503.246.1250 3 of 17 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 11/11/2014 Page ENGINEERS www.miller-se.com It IS rV, 16 14 10 j2 at IttE 1 0*4P4 2 QRS 3 Figure 1: Nodes and Members oF'�svt sasNd°4a�a 'V O� ap,.\5-4,7/..4 "°'� f7,"4,46,, oH`,.‘0' s4s�ae>� dv, DFr{_No2 DFr{Not DFr{Not !J 545 2x4 545 1(4 545 2x4 Figure 2: Member Section, Material, and Hinges 14[lb/R] !- 14[Lb/R] µ r -16[Lb/R] -16(a/ft] Figure 3: Dead Load 01 40[Lb/R] V 4�[Lb/R] zz .,..,„„.„,..... Figure 4: Snow Load 4 of 17 NNNNN 55[ ] 55"Ift] \\\ `,, 55[Lb/ftl 55[Lb/tt] Figure 5:Wind Uplift 242 -p Ratio at°-0.1� �tiq� deo '018Qp� o o 3 0 214931 41% o °o cgs, c' p0�$ ----------7-ratio do Ratio OSs 6' ,i9 1:-• Q 21 sg,72 a Ratio=0.616493 `� Ratio=0.465857 Ratio=0.616535 Figure 6:Stress Ratio (Dead Load) 0°-0118469 oh^cam, te. R'1(7°'0 12 41 0S o �� o• o a 8°'05 g14446 Ratio`020 .4)1/ o4:s, /_-pc) Ratio'0 822 Ra 88 aiNo' 206 Ratio=0.73454 Ratio=0.471755 Ratio=0.734794 Figure 7:Stress Ratio (Dead Load+Snow Load) I \ 01yg3� °-0.. Rab°- cz, o • 69168ph o• o RO /,j •ova $96 ��°'0183158 0'o031 q,4o • o��o o/oo3Z Rdtio,p 183$3\ ate` Ratio=0.232975 Ratio=0.135946 Ratio=0.232935 Figure 8:Stress Ratio (0.6 Dead+0.6 Wind) Geometry data GLOSSARY Cb22,Cb33 : Moment gradient coefficients 5 of 17 Cm22,Cm33 :Coefficients applied to bending term in interaction formula d0 :Tapered member section depth at J end of member DJX : Rigid end offset distance measured from J node in axis X DJY :Rigid end offset distance measured from J node in axis Y DJZ :Rigid end offset distance measured from J node in axis Z DKX :Rigid end offset distance measured from K node in axis X DKY :Rigid end offset distance measured from K node in axis Y DKZ :Rigid end offset distance measured from K node in axis Z dL :Tapered member section depth at K end of member Ig factor : Inertia reduction factor(Effective Inertia/Gross Inertia)for reinforced concrete members K22 :Effective length factor about axis 2 K33 : Effective length factor about axis 3 L22 : Member length for calculation of axial capacity L33 : Member length for calculation of axial capacity LB pos :Lateral unbraced length of the compression flange in the positive side of local axis 2 LB neg :Lateral unbraced length of the compression flange in the negative side of local axis 2 RX : Rotation about X RY : Rotation about Y RZ : Rotation about Z TO : 1 =Tension only member 0=Normal member TX :Translation in X TY :Translation in Y TZ :Translation in Z Nodes Node X Y Z Rigid Floor [in] [in] [in] 1 0.00 0.00 0.00 0 -2 305.50 0.00 0.00 0 3 152.75 50.75 0.00 0 4 119.25 0.00 0.00 0 5 186.25 0.00 0.00 0 8 78.75 26.125 0.00 0 9 226.75 26.125 0.00 0 Restraints Node TX TY TZ RX RY RZ 1 1 1 1 0 0 0 2 0 1 1 0 0 0 3 0 0 1 0 0 0 4 0 0 1 0 0 0 5 0 0 1 0 0 0 . 8 0 0 1 0 0 0 9 0 0 1 0 0 0 6 of 17 Members Member NJ NK Description Section Material d0 dL Ig factor [in] [in] 1 1 4 Bottom Chord S4S 2x4 DFir-L_No2 0.00 0.00 0.00 2 4 5 Bottom Chord S4S 2x4 DFir-L_No2 0.00 0.00 0.00 3 5 2 Bottom Chord S4S 2x4 DFir-L_No2 0.00 0.00 0.00 8 4 3 Brace S4S 2x4 DFir-L_No2 0.00 0.00 0.00 10 1 8 Top Chord S4S 2x4 DFir-L_No1&Btr 0.00 0.00 0.00 11 8 3 Top Chord S4S 2x4 DFir-L_No1&Btr 0.00 0.00 0.00 12 8 4 Brace S4S 2x4 DFir-L_No2 0.00 0.00 0.00 13 3 5 Brace S4S 2x4 DFir-L_No2 0.00 0.00 0.00 14 9 2 Top Chord S4S 2x4 DFir-L_No1&Btr 0.00 0.00 0.00 15 3 9 Top Chord S4S 2x4 DFir-L_No1&Btr 0.00 0.00 0.00 16 5 9 Brace S4S 2x4 DFir-L_No2 0.00 0.00 0.00 Hinges Node-J Node-K Member M33 M22 V3 V2 M33 M22 V3 V2 TOR AXL Axial rigidity 8 1 0 0 0 1 0 0 0 0 0 Full 10 1 0 0 0 0 0 0 0 0 0 Full 11 0 0 0 0 1 0 0 0 0 0 Full 12 1 0 0 0 1 0 0 0 0 0 Full 13 1 0 0 0 1 0 0 0 0 0 Full '14 0 0 0 0 1 0 0 0 0 0 Full 16 1 0 0 0 1 0 0 0 0 0 Full Load data GLOSSARY Comb :Indicates if load condition is a load combination Load conditions Condition Description Comb. Category DL Dead Load No DL SL Snow Load No SNOW • WL Wind Uplift No WIND 7 of 17 Distributed force on members Y Y1 2 1 d1 d2 Condition Member Dirt Vail Va12 Dist1 % Dist2 % [Lb/ft] [Lb/ft] [in] [in] DL 1 Y -16.00 -16.00 0.00 Yes 100.00 Yes 2 Y -16.00 -16.00 0.00 Yes 100.00 Yes 3 Y -16.00 -16.00 0.00 Yes 100.00 Yes 10 Y -14.00 -14.00 0.00 Yes 100.00 Yes 11 Y -14.00 -14.00 0.00 Yes 100.00 Yes 14 Y -14.00 -14.00 0.00 Yes 100.00 Yes 15 Y -14.00 -14.00 0.00 Yes 100.00 Yes SL 10 Y -40.00 -40.00 0.00 Yes 100.00 Yes 11 Y -40.00 -40.00 0.00 Yes 100.00 Yes 14 Y -40.00 -40.00 0.00 Yes 100.00 Yes 15 Y -40.00 -40.00 0.00 Yes 100.00 Yes WL 10 Y 55.00 55.00 0.00 Yes 100.00 Yes 11 Y 55.00 55.00 0.00 Yes 100.00 Yes 14 Y 55.00 55.00 0.00 Yes 100.00 Yes 15 Y 55.00 55.00 0.00 Yes 100.00 Yes Analysis result `Reactions Forces fLbl Moments fLb*ftl Node FX FY FZ MX MY MZ Condition DL=Dead Load 1 0.00000 391.45337 0.00000 0.00000 0.00000 0.00000 2 0.00000 391.45336 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 782.90673 0.00000 0.00000 0.00000 0.00000 Condition SL=Snow Load 1 0.00000 509.16667 0.00000 0.00000 0.00000 0.00000 2 0.00000 509.16667 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 1018.33330 0.00000 0.00000 0.00000 0.00000 Condition WL=Wind Uplift 1 0.00000 -700.10416 0.00000 0.00000 0.00000 0.00000 2 0.00000 -700.10417 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 -1400.20830 0.00000 0.00000 0.00000 0.00000 8 of 17 Combination Reactions My IY c .:7x FY Mx /z Fx wo Fa/•• k, 1,.4z) Direction of positive forces and moments Forces fLbl Moments fLb*ftl Node FX FY FZ MX MY MZ Condition E1=DL 1 0.00000 391.45337 0.00000 0.00000 0.00000 0.00000 2 0.00000 391.45336 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 782.90673 0.00000 0.00000 0.00000 0.00000 Condition E2=DL+SL 1 0.00000 900.62003 0.00000 0.00000 0.00000 0.00000 2 0.00000 900.62003 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 1801.24010 0.00000 0.00000 0.00000 0.00000 Condition E3=0.6DL+0.6WL 1 0.00000 -185.19048 0.00000 0.00000 0.00000 0.00000 2 0.00000 -185.19048 0.00000 0.00000 0.00000 0.00000 SUM 0.00000 -370.38096 0.00000 0.00000 0.00000 0.00000 Forces envelope Note.- Ic is the controlling load condition Forces envelope for . E1=DL E2=DL+SL E3=0.6DL+0.6WL MEMBER 1 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 2081.17 E2 73.59 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -490.78 E3 39.71 E3 0.00 El 0.00 El 0.00 El 0.00 El 50% Max 2081.17 E2 -5.91 E2 0.00 El 0.00 El 0.00 El 149.70 E2 Min -490.78 E3 -10.77 El 0.00 El 0.00 El 0.00 El 77.85 E3 - 100% Max 2081.17 E2 -55.69 E3 0.00 El 0.00 El 0.00 El -81.31 E3 Min -490.78 E3 -90.27 El 0.00 El 0.00 El 0.00 El -113.51 El MEMBER 2 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 1363.73 E2 44.67 E2 0.00 El 0.00 El 0.00 El -81.31 E3 9 of 17 Min -268.27 E3 26.80 E3 0.00 El 0.00 El 0.00 El -113.51 El 50% Max 1363.73 E2 0.01 E2 0.00 El 0.00 El 0.00 El -33.26 E2 Min -268.27 E3 0.00 E3 0.00 El 0.00 El 0.00 El -51.16 El 100% Max 1363.73 E2 -26.80 E3 0.00 El 0.00 El 0.00 El -81.31 E3 Min -268.27 E3 -44.67 El 0.00 El 0.00 El 0.00 El -113.50 El MEMBER 3 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 2082.35 E2 90.27 El 0.00 El 0.00 El 0.00 El -81.31 E3 Min -490.69 E3 55.69 E3 0.00 El 0.00 El 0.00 El -113.50 El 50% Max 2082.35 E2 10.77 El 0.00 El 0.00 El 0.00 El 149.71 E2 Min -490.69 E3 5.91 E2 0.00 El 0.00 El 0.00 El 77.85 E3 100% Max 2082.35 E2 -39.71 E3 0.00 El 0.00 El 0.00 El 0.00 El Min -490.69 E3 -73.59 E2 0.00 El 0.00 El 0.00 El 0.00 E2 MEMBER 8 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 498.50 E2 0.03 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -51.28 E3 0.00 E3 0.00 El 0.00 El 0.00 El 0.00 El 50% Max 498.50 E2 0.03 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -51.28 E3 0.00 E3 0.00 El 0.00 El 0.00 El 0.00 El 100% Max 498.50 E2 0.03 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -51.28 E3 0.00 E3 0.00 El 0.00 El 0.00 El 0.00 El MEMBER 10 .Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 536.63 E3 129.67 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -2235.72 E2 -58.93 E3 0.00 El 0.00 El 0.00 El 0.00 El 50% Max 511.68 E3 16.28 E3 0.00 El 0.00 El 0.00 El 171.60 E2 Min -2179.15 E2 -40.85 E2 0.00 El 0.00 El 0.00 El -72.75 E3 100% Max 486.73 E3 91.49 E3 0.00 El 0.00 El 0.00 El 114.51 E3 Min -2122.58 E2 -211.36 E2 0.00 El 0.00 El 0.00 El -246.28 E2 MEMBER 11 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 341.88 E3 197.79 E2 0.00 El 0.00 El 0.00 El 114.51 E3 Min -1792.53 E2 -88.27 E3 0.00 El 0.00 El 0.00 El -246.28 E2 50% Max 318.37 E3 37.60 E2 0.00 El 0.00 El 0.00 El 137.14 E2 Min -1739.22 E2 -17.63 E3 0.00 El 0.00 El 0.00 El -57.53 E3 100% Max 294.87 E3 53.02 E3 0.00 El 0.00 El 0.00 El 0.00 El Min -1685.92 E2 -122.59 E2 0.00 El 0.00 El 0.00 El 0.00 El MEMBER 12 . Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 231.15 E3 -0.02 E3 0.00 El 0.00 El 0.00 El 0.00 El Min -527.08 E2 -0.25 E2 0.00 El 0.00 El 0.00 El 0.00 El 50% Max 231.15 E3 -0.02 E3 0.00 El 0.00 El 0.00 El 0.00 El 10 of 17 Min -527.08 E2 -0.25 E2 0.00 El 0.00 El 0.00 El 0.00 El 100% Max 231.15 E3 -0.02 E3 0.00 El 0.00 El 0.00 El 0.00 El Min -527.08 E2 -0.25 E2 0.00 El 0.00 El 0.00 El 0.00 El MEMBER 13 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 499.12 E2 0.00 E3 0.00 El 0.00 El 0.00 El 0.00 El Min -51.23 E3 -0.03 E2 0.00 El 0.00 El 0.00 El 0.00 El 50% Max 499.12 E2 0.00 E3 0.00 El 0.00 El 0.00 El 0.00 El Min -51.23 E3 -0.03 E2 0.00 El 0.00 El 0.00 El 0.00 El 100% Max 499.12 E2 0.00 E3 0.00 El 0.00 El 0.00 El 0.00 El Min -51.23 E3 -0.03 E2 0.00 El 0.00 El 0.00 El 0.00 El MEMBER 14 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 486.65 E3 211.74 E2 0.00 El 0.00 El 0.00 El 114.32 E3 Min -2123.71 E2 -91.47 E3 0.00 El 0.00 El 0.00 El -248.86 E2 50% Max 511.60 E3 41.22 E2 0.00 El 0.00 El 0.00 El 170.31 E2 Min -2180.27 E2 -16.26 E3 0.00 El 0.00 El 0.00 El -72.84 E3 100% Max 536.55 E3 58.96 E3 0.00 El 0.00 El 0.00 El 0.00 El Min -2236.84 E2 -129.29 E2 0.00 El 0.00 El 0.00 El 0.00 El • MEMBER 15 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 294.83 E3 122.19 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -1686.41 E2 -53.05 E3 0.00 El 0.00 El 0.00 El 0.00 El 50% Max 318.34 E3 17.60 E3 0.00 El 0.00 El 0.00 El 135.84 E2 Min -1739.72 E2 -38.00 E2 0.00 El 0.00 El 0.00 El -57.62 E3 100% Max 341.85 E3 88.24 E3 0.00 El 0.00 El 0.00 El 114.32 E3 Min -1793.03 E2 -198.19 E2 0.00 El 0.00 El 0.00 El -248.86 E2 MEMBER 16 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Lb] [Lb] [Lb] [Lb*ft] [Lb*ft] [Lb*ft] 0% Max 231.08 E3 0.25 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -528.08 E2 0.02 E3 0.00 El 0.00 El 0.00 El 0.00 El 50% Max 231.08 E3 0.25 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -528.08 E2 0.02 E3 0.00 El 0.00 El 0.00 El 0.00 El 100% Max 231.08 E3 0.25 E2 0.00 El 0.00 El 0.00 El 0.00 El Min -528.08 E2 0.02 E3 0.00 El 0.00 El 0.00 El 0.00 El Truss Top Chords: Max Bending: 249 lbft(Load Combination E2, member 14 and 15) Max Shear:212 lbs(Load Combination E2, members 10 and 14) Max Compression: 2236 lbs(Load Combination E2 members 10 and 14) Max Tension :536.55 lbs(load combination E3, members 10 and 14) Truss Webs: Max Compression: 528 lbs(Members 16 load combination E2) Max Tension: 499 lbs(Members 13 load combination E3) 11 of 17 • Wood Design Design code: ANSI/AF&PA NDS-2005 ASD Report: Summary-Group by member Load conditions to be included in design: E1=DL E2=DL+SL E3=0.6DL+0.6WL Description Section Member Ctrl Eq. Ratio Status Reference Bottom Chord S4S 2x4 1 E2 at 43.75% 0.73 OK (Eq.3.9-1) 2 E2 at 0.00% 0.47 OK (Eq.3.9-1) 3 E2 at 56.25% 0.73 OK (Eq.3.9-1) Brace 8 E2 at 0.00% 0.10 OK (Sec.3.8) 12 E2 at 0.00% 0.21 OK (Sec.3.6.3) 13 E2 at 0.00% 0.10 OK (Sec.3.8) 16 E2 at 0.00% 0.21 OK (Sec.3.6.3) Top Chord 10 E2 at 100.00% 0.91 OK (Eq.3.9-3) 11 E2 at 0.00% 0.72 OK (Eq.3.9-3) 14 E2 at 0.00% 0.92 OK (Eq.3.9-3) 15 E2 at 100.00% 0.72 OK (Eq.3.9-3) Comprehensive Wood Design Existing truss top chord -Design code: ANSI/AF&PA NDS-2005 ASD Report: Comprehensive Member 14(Top Chord) Design status OK PROPERTIES Section information Section name: S4S 2x4 (US) Dimensions #NP z ? t Y b = 1.500 [in] Width d = 3.500 [in] Height 12 of 17 Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 5.250 Moment of Inertia(principal axes) (I') [in4] 5.359 0.984 Top elastic section modulus of the section(local axis) (Ssup) [in3] 3.062 1.312 Material: DFir-L_Nol&Btr Properties Value Type: Lumber Species: Douglas Fir-Larch Grade: No.1 &Btr Coefficient of variation: 0.25 DESIGN CRITERIA Description Unit Value Temperature: -- T<=100F Moisture conditions: -- Dry Wood: -- Unincised Repetitive member: -- Yes Type: -- Beam End notches at top: -- Top Notch length: [in] 0.00 Notch depth: [in] 0.00 Description Unit Major axis Minor axis Physical length [in] 82.97 Effective length for bending(Le) [in] 12.36 Unbraced length for bending(Lu) [in] 6.00 Unbraced compression length(Lx,Ly) [in] 82.97 6.00 Effective length factor(K) -- 1.00 1.00 Lateral bracing -- No No Bearing length(Lb) [in] 0.50 Length between inflection points(Li) [in] 82.97 DESIGN CHECKS DESIGN FOR TENSION Ratio 0.05 Capacity : 1920.00[Lb/in2] Reference : (Sec.3.8) Demand 102.20[Lb/in2] Ctrl Eq. : E3 at 100.00% Intermediate results Unit Value Reference - Axial design value for tension(Ft) [Lb/in2] 800.00 Duration factor(CD) -- 1.60 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Size factor(CFt) -- 1.50 (Sec.4.3.6) Incising factor(CiFt) -- 1.00 (Sec.4.3.8) 13 of 17 Tension axial force(P+) [Lb] 536.55 DESIGN FOR COMPRESSION 1 Ratio 0.50 Capacity 855.44[Lb/in2] Reference : (Sec.3.6.3) Demand : -426.06[Lb/in2] Ctrl Eq. : E2 at 100.00% Intermediate results Unit Value Reference Axial design value for compression(Fc) [Lb/in2] 1550.00 Duration factor(CD) -- 1.15 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Size factor(CF) -- 1.15 (Sec.4.3.6) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Column stability factor(CP) -- 0.42 (Eq.3.7-1) Compression axial force(P-) [Lb] -2236.84 Modulus of elasticity for stability(Emin) [Lb/in2] 660000.00 Adjusted modulus of elasticity for stability(Emin') [Lb/in2] 668594.50 Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Buckling stiffness factor(CT) -- 1.01 (Sec.4.4.2) Critical buckling design value(FcE1) [Lb/in2] 977.97 (Sec.3.9.2) Critical buckling design value(FcE2) [Lb/in2] 34349.04 (Sec.3.9.2) DESIGN FOR FLEXURE it Bending about major axis,M33 Ratio 0.41 Capacity : 2380.50[Lb/in2] Reference : (Sec.3.3) Demand : 975.14[Lb/in2] Ctrl Eq. : E2 at 0.00% Intermediate results Unit Value Reference Bending design value(Fb) [Lb/in2] 1200.00 Duration factor(CD) -- 1.15 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Stability Factor(CL) -- 1.00 (Sec.3.3.3) Size factor(CF) -- 1.50 (Sec.4.3.6) Incising factor(Ci) -- 1.00 (Table 4.3.8) Repetitive member factor(Cr) -- 1.15 (Sec.4.3.9) Bending moment(Mxx) [Lb*ft] -248.86 Slendemess Ratio(RB) -- 4.38 (Eq.3.3-5) Critical buckling design value(FbE) [Lb/in2] 41729.20 (Sec.3.3.3.8) • Bending about minor axis,M22 Ratio 0.00 Capacity : 2049.30[Lb/in2] Reference : (Sec.3.3) Demand : 0.00[Lb/in2] Ctrl Eq. : El at 0.00% 14 of 17 Intermediate results Unit Value Reference Bending design value(Fbw) [Lb/in2] 1200.00 Duration factor(CD) -- 0.90 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Stability Factor(CL) -- 1.00 (Sec.3.3.3) Size factor(CF) -- 1.50 (Sec.4.3.6) Flat use factor(Cfu) -- 1.10 (Sec.4.3.7) Incising factor(Ci) -- 1.00 (Table 4.3.8) Repetitive member factor(Cr) -- 1.15 (Sec.4.3.9) Bending moment(Mw) [Lb'ft] 0.00 DESIGN FOR SHEAR lie Shear parallel to minor axis.V2 Ratio 0.29 Capacity : 207.00[Lbfin2] Reference : (Sec.3.4) Demand 60.50[Lb/n2] Ctri Eq. : E2 at 0.00% Intermediate results Unit Value Reference Shear design value(Fv) [Lb/in2] 180.00 Duration factor(CD) -- 1.15 (Table 2.3.2) _ Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Table 4.3.8) Shear Force(Vv) [Lb] 211.74 Notch factor(CN) -- 1.00 (Sec.3.4.3) Shear parallel to major axis,V3 Ratio 0.00 Capacity 162.00[Lb/in2] Reference : (Sec.3.4.2) Demand 0.00[Lb/in2] Ctrl Eq. : El at 0.00% Intermediate results Unit Value Reference Shear design value(Fv) [Lb/in2] 180.00 Duration factor(CD) -- 0.90 (Table 2.3.2) Wet service factor(CM) -- 1.00 (Sec.4.3.3/5.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Table 4.3.8) Shear Force(Vv) [Lb] 0.00 DESIGN FOR TORSION • Ratio 0.00 Capacity 108.00[Lbfin2] Reference : (AITC-TCM) Demand 0.00[Lb/in2] Ctrl Eq. : El at 0.00% Intermediate results Unit Value Reference 15 of 17 I Torsion design value(Fvt) [Lb/in2] 120.00 Torsion moment(Mtor) [Lb*ft] 0.00 DESIGN FOR BEARING(informative) Intermediate results Unit Value Reference Maximum reaction(Rmax) [Lb] 1203.19 (Sec.3.10.3) Load angle RI 0.00 Axial design value for compression(Fc*) [Lb/in2] 1604.25 Comp.design value perpendicular to grain(Fcp) [Lb/in2] 625.00 Wet service factor(CM) -- 1.00 (Sec.4.3.3) Temperature factor(Ct) -- 1.00 (Sec.2.3.3) Incising factor(Ci) -- 1.00 (Sec.4.3.8) Bearing area factor(Cb) -- 1.75 (Eq.3.10-2) INTERACTION 1 Combined axial and bending interaction value Ratio 0.92 Ctrl Eq. : E2 at 0.00% Reference : (Eq.3.9-3) CRITICAL STRENGTH RATIO Ratio 0.92 Ctrl Eq. E2 at 0.00% Reference : (Eq.3.9-3) 16 of 17 • 2005 National Design Specification for Wood Construction Reduction Bending Axial,Fc E Emin Fce,= 3573 psi Post Copyright©2008 Miller Consulting Engineers,Inc. CD 1.15 1.15 Fce2= 68878 psi • Mark Flop Chord Repair Material: ENGINEERED COMPOSITE Rb, 4.7 1... ,!...1 Grade: Microlam LVL 1.9E C, 1.00 Rby 3.0 ,� e 1 size= 1.75 x 5.5 C, 1.00 1.00 1.00 1.00 Fbe, 53249 psi , [ e„ , d1 d1= 5.50 in Cr 1.11 1.00 Fbey 134109 psi d2= 1.75 in C,V 1.00 1.00 1.00 1.00 K" 0 ej: