Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report (23)
/4 t,p,),(7/ ("7?? RECEIVED AUG1A CITF I�I�►N Otructural �Y O5�0Utki Concepts U ngineering 1615 Yeager Ave La Verne, CA. 91750 Tel: 909.596.1351 Fax: 909.596.7186 e-mail: mail@sceinc.net P c; Project Name : EARNEST IMAGING / REGON Project Number : O-073014-4LV q�. XPIRES: 12/31/2015 Date : 08/04/14 Street Address : 6777 SW BONITA SUITE 100 AUG 0 6 an City/State : TIGARD OR 97224 • Scope of Work : SELECTIVE RACK Sttural rI oncepts Engineering 1200 N.Jefferson Ste.Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 to Zc1 TYPE 8 SELECT-EARNEST.xIs Page Z of 2- Y 4/10/2014 Str tural • tooncepts Engineering 1200 N.Jefferson Ste.Ste F Anaheim.CA 92507 Tel: 714.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Design Data 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 2013 CBC Section 2209A ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks 2012 RMI Rack Design Manual" ASCE 7-10,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength,Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield,Fy=55 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield, Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 6"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria 'Definition of Components A Column - /— Beam J _1 El r= Horizontal Brace Beam to Column Connector AI Diagonal 31/— Brace Frame Height • Beam ProductSpacing Base Plate and � Anchors }=XJ Panel -41---- Beam --11. Height Length 1.,Frame*1 Depth Front View: Down Aisle Section A: Cross Aisle (Longitudinal) Frame ffransverse) Frame TYPE 5 SELECT-EARNEST.xIs Page 3 of Z `/ 4/10/2014 S • tr tural • tooncepts ,gipr- Engineering 1200 N.Jefferson Ste. Ste F Anaheim CA 92807 Tel: 714.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Configuration&Summary:TYPE B SELECTIVE RACK N - - NN - I **RACK COLUMN REACTIONS ASD LOADS 24" AXIAL DL= 75/b 60" AXIAL LL= 4,000/b ' SEISMIC AXIAL Ps=+/- 1,956/b 120" 120" 42" BASE MOMENT= 8,000 in-lb N 60" 42" 108" - +- 44" --4- Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.972,Fa=1.111 2 44 in 120.0 in 3 108 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=4075 lb,M=15199 in-lb 0.63-OK Column&Backer None None None N/A Beam Fy=55 ksi Intik 485/4.04"deepx2.75"x0.07" Lu=108 in Capacity:4052 lb/pr 0.99-OK ' Beam Connector Fy=55 ksi Lvl 1:2 pin OK Mconn=8471 in-lb Mcap=9726 in-lb 0.87-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.14-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.17-OK - Base Plate Fy=36 ksi 8x5x3/8 Fixity=8000 in-lb 0.71-OK Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=582 lb) 0.308-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.28-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,000 lb 60.0 in 42.0 in 331 lb 271 lb 4,075 lb 15,199 "# 8,471 "# 2 pin OK 2 4,000 lb 60.0 in 42.0 in 661 lb 543 lb 2,038 lb 8,141 "# 3,152 "# 2 pin OK 24.0 in **Load defined as product weight per pair of beams Total: 992 lb 814 lb Notes TYPE B SELECT-EAKNEST.xIs Page y of 2 C/7 4/10/2014 Sttura) rIoncepts ----1----- ,J1 Engineering 1200 N.Jefferson Ste. Ste F Anaheim_CA 92807 Tel:714_632.7330 Fax: 714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Seismic Forces Configuration:TYPE B SELECTIVE RACK Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.972 Transverse(Cross Aisle)Seismic LoadS1= 0.421 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) .= vt Fa= 1.111 Csl= Sds/R Fv= 1.579 = 0.1800 Cs-max*Ip= 0.1800 D� Sds=2/3*Ss*Fa= 0.720 Cs2= 0.044*Sds Vmin= 0.015 % Sd1=2/3*S1*Fv= 0.443 = 0.0317 Eff Base Shear=Cs= 0.1800 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2880 Cs3= 0.5*S1/R Ws= (0.67*PLRF1* PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0526 = 5,510 lb Ip= 1.0 Cs-max= 0.1800 Vtransv=Vt= 0.18* (150 lb+5360 Ib) PRF1= 1.0 Base Shear Coeff=Cs= 0.1800 Etransverse= 992 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi Fi Fi*(hi+hp/2) 1 4,000 lb 2,680 lb 75 lb 60 in 165,300 330.7 lb 27,779-# 2 4,000 lb 2,680 lb 75 lb 120 in 330,600 661.3 lb 95,227-# I sum: P=8000 lb 5,360 lb 150 lb W=5510 lb 495,900 992 lb 1=123,006 Longitudinal (Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67*PLS*P) + DL Pin= 1.0 MO 1,,.-i ,��� son Cs1=Sd1/(T*R)= 0.1477 = 5,510 lb (Longitudinal,Unbraced Dir.)R= 6.0 R Cs2= 0.0317 Cs=Cs-max*Ip= 0.1477 T= 0.50 sec 1.:.':-;s1 r,Itip .r:1 itla Cs3= 0.0351 Vlong= 0.1477* (150 lb+ 5360 Ib) f `"l (::`.`.` h:,:`.`.`.] L'.`.:`:) Cs-max= 0.1477 Elongitudinal= 814 lb Limit States Level Long&seismic shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 4,000 lb 2,680 lb 75 lb 60 in 165,300 271.3 lb 2 4,000 lb 2,680 lb 75 lb 120 in 330,600 542.7 lb sum: 5,360 lb 150 lb W=5510 lb 495,900 814 lb TYPE 5 SELECT-EARNEST.xIs Page iS of .- y 4/1 0/2014 Str tural Loncepts _ Engineering 1200 N.Jefferson Ste.Ste F Anaheim.CA 92807 Tel:714632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Downaisie Seismic Loads Configuration:TYPE B SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical Frame made Vlong= 814 lb Tributary area oftwocolumns Vco1=Vlong/2= 407 lb oCrack Frame F1= 271 lb h L • E3- 11!t:' , Typical Frame made F2= 543 lb 2 -�oFtwo columns F3= 0 lb i 0 0' 0 ' � t Top View I 96` I ' Front View side View Seismic Story Moments Conceptual System COL Mbase-max= 8,000 in-Ib <__=Default capacity hl-eff= hl-beam clip height/2 ball Mbase-v= (Vcol*hleff)/2 = 57 in Vcol I ffi = 11,600 in-lb <__=Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 8,000 in-lb M 1-1= [Vcol*hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] *h2 I ....... = (407 lb*57 in)-8000 in-lb = [407 lb-271.4 Ib]*60 in/2 17 = 15,199 in-lb = 8,141 in-lb h1 - Mseis= (Mupper+Mlower)/2 Beam to Column Mseis(1-1)= (15199 in-lb+8141 in-lb)/2 Mseis 2-2 = (8141 in-lb+ 0 in-lb)/2 Elevation = 11,670 in-lb = 4,070 in-lb rho= 1.0000 1 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 60 in 4,075 lb 15,199 in-lb 11,670 in-lb 432 in-lb 8,471 in-lb 2 pin OK 2 60 in 2,038 lb 8,141 in-lb 4,070 in-lb 432 in-lb 3,152 in-lb 2 pin OK Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(2 Pin)= 9,726 in-lb - **all moments based on limit states level loading TYPE B SELECT-EARNEST.xIs Page 6 of Z y 4/1 0/2014 Str tura) oncepts Engineering 1200 N. Jefferson Ste.Ste F Anaheim. CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Column(Longitudinal Loads) Configuration:TYPE B SELECTIVE RACK Section Properties Section: Hannibal IF3014-3x3x14ga Ib 3.000 in Aeff= 0.643 in^2 Iy= 0.749 in^4 Kx= 1.7 X Ix= 1.130 in^4 Sy= 0.493 in^3 Lx= 58.0 in 17 Sx= 0.753 in^3 ry= 1.080 in Ky= 1.0 i 3.000 in rx= 1.326 in Fy= 55 ksi Ly= 42.0 in y r � ' 10.075 in 4f= 1.67 Cmx= 0.85 Cb= 1.0 _ J E= 29,500 ksi I 14,0.75 in Loads Considers loads at level 1 `I Ihl COLUMN DL= 75 lb Critcal load cases are:RMI Sec 2.1 COLUMN PL= 4,000 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 15,199 in-lb axial load coeff: 0.78791265*P seismic moment coeff: 0.5625*Mcol Sds= 0.7199 Load Case 6::(1+0.104*Sds)D+(0.85+0.145ds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0756 axial load coeff.• 0.66555 seismic moment coeff: 0.7*Mcol 1.4+0.14Sds= 1.5008 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1008 0.85+0.14*Sds= 0.9508 Axial Load=Pax= 1.100786*75 lb+0.950786*0.7*4000 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 2,745 lb = 0.7* 15199 in-lb rho= 1.0000 = 10,639 in-lb Axial Analysis KxLx/rx= 1.7*57.98"/1.326" KyLy/ry= 1*42"/1.08" Fe > Fy/2 = 74.3 = 38.9 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*52.7 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 40.6 ksi = 52.7ksi Pa= Pn/S2c Pn= Aeff*Fn Qc= 1.92 = 26137 lb/1.92 = 26,137 lb = 13,613 lb P/Pa= 0.20 > 0.15 Bending Analysis Check: Pax/Pa +(Cmx*Mx)/(Max*px) <_ 1.0 P/Pao+ Mx/Max<_ 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.643 inA2*55000 psi = 35365lb/1.92 = 0.753 in^3*55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max= My/Qf Pcr= nA2EI/(KL)max^2 = 41415 in-lb/1.67 = nA2*29500 ksi/(1.7*57.98 in)^2 = 24,799 in-lb = 33,865 lb px= {1/[1-(4c*P/Pcr)]}^-1 = {1/[1-(1.92*2745 lb/33865 Ib)]}^-1 = 0.84 Combined Stresses (2745 lb/13613 Ib)+(0.85*10639 in-lb)/(24799 in-Ib*0.84) = 0.63 < 1.0,OK (EQ C5-1) (2745 lb/18419 lb)+(10639 in-lb/24799 in-Ib) = 0.58 < 1.0,OK (EQ C5-2) **For comparison, total column stress computed for load case 5 is: 5Z0% loads 3232.3198125 lb Axial and M= 7979 in-lb TYPE 5 SELECT-EARNEST.xIs Page 7 of 2- V 4/1 0/20 14 • Str tura) kOon is Engineering 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#:0-033114-1 BEAM Configuration:TYPE B SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY 2.75 in • A)Check compression flange for local buckling(B2.1) `1.75 in 4, w= c-2*t-2*r = 1.75 in-2*0.07 in-2*0.07 in ' f f = 1.470 in 1.625 in w/t= 21 1=lambda= [1.052/(k)^0.5] *(w/t)*(Fy/E)^0.5 Eq. B2.1-4 = [1.052/(4)^0.5] * 21 *(55/29500)^0.5 4.040 in ~� = 0.477 < 0.673, Flange is fully effective Eq. B2.1-1 I 0.070 in B)check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 49.39 ksi f2(tension)= Fy*(y1/y2)= 101.16 ksi Y= f2/f1 Eq. B2.3-5 Beam= Intik 485/4.04"deeox2.75"x0.07' = -2.048 Ix= 1.842 in^4 k= 4+2*(1-Y)^3 + 2*(1-Y) Eq. B2.3-4 Sx= 0.857 in^3 = 66.73 Ycg= 2.666 in flat depth=w= yl+y3 t= 0.070 in = 3.760 in w/t= 53.71428571 OK Bend Radius=r= 0.070 in 1=lambda= [1.052/(k)^0.5] *(w/t)*(fl/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(66.73)^0.5]*3.76*(49.39/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.283 < 0.673 E= 29500 ksi be=w= 3.760 in b2= be/2 Eq B2.3-2 top flange=b= 1.750 in hl= be(3-Y) = 1.88 in bottom flange= 2.750 in = 0.745 Web depth= 4.0^Fy. bl+b2= 2.625 in > 1.2336 in,Web is fully effective ft(comp) Determine effect of cold working on steel yield point(Fva)per section A7.2 x Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2)* (r+t/2) 0.165 in C= 2*Lc/(Lf+2*Lc) n Lflange-top=Lf= 1.470 in = 0.183 in y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2- 1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1.2 slog yt and r/t= 1 < 7 OK then Fyc= Bc* Fy/(R/t)^m (EQ A7.2-2) - 1 t2(tension) = 78.485 ksi Thus, Fya-top= 59.31 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 2.526 in = 115.12 ksi (tension stress at bottom) y2= depth-Ycg= 1.374 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.234 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.470 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.118 Fy-bottom=Fyb= Cb*Fyc+ (1-Cb)*Fyf = 57.77 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.76 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 24.23 in-k Strpqurai I.#on ngineering in 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#:0-033114-1 BEAM Configuration:TYPE B SELECTIVE RACK RMI Section 5.2, PT II Section Beam= Intlk 485/4.04"deepx2.75"x0.07" Ix=Ib= 1.842 in^4 2.75 in Sx= 0.857 inA3 "� t= 0.070 in E= 29500 ksi t 1.75 in 4, Fy=Fyv= 55 ksi F= 25.0 _ _ Fu=Fuv= 65 ksi L= 108 in r �� Fya= 59.3 ksi Beam Level= 1 1.625 in P=Product Load= 4,000 lb/pair D=Dead Load= 75 lb/pair-11 4.040 in ~' 1 0.070 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 I W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI2.2,item 8 FOR DL=20/0 of PL, W= 1.599 llllllllllllllllllllllllllllllllllllllllllll1 Rm= 1-[(2*F*L)/(6*E*Ib+3*F*L)] 1-(2*25*108 in)/[(6*29500 ksi*1.842 in^3)+(3*25*108 in)] = 0.984 if F= 0.95 Then F*Mn=F*Fya*Sx= 48.28 in-k Thus,allowable load - per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) beam = 48.28 in-k*8*2/(108in*0.984* 1.599) Length = 4,546 lb/pair allowable load based on bending stress —,• Mend= W*L*(1-Rm)/8 = (4546 lb/2)* 108 in*(1-0.984)/8 = 0,491 in-lb @ 4546 lb max allowable load = 0,432 in-lb @ 4000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1-(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1-(4*25*108 in)/[(5*25*108 in)+(10*29500 ksi*1.842 inA4)] = 0.600 in = 0.981 in Deflection at imposed Load= 0.592 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*1.842 in^4*2/[180*5*(108 in)^2*0.981) = 4,052 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 4,052 lb/pair Imposed Product Load= 4,000 lb/pair I Beam Stress= 0.99 Beam at Level 1 �, L Str tura) -• -.ts ngineering r 1200 N.Jefferson Ste.Ste F Anaheim,CA 92807 Tel: 714.632.7330 Fax:714.632.7763 By: BOB Project:EARNEST IMAGING Project#: 0-033 1 1 4-1 2 Pin Beam to Column Connection TYPE B SELECTIVE RACK I he beam end moments shown herein show the result of the maximum induced fixed end monents torm seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= (Mseismic+Mend-fixity)*0.70*Rho Q P1 \ rho= 1.0000 = 8,471 in-lb Load at level 1 4.. P2 O 2" 12" Connector Type= 2 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2*Pi/4 = 0.1507 in^2 Pshear= 0.4* Fy*Ashear = 0.4* 55000 psi*0.1507in^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbeanng= alpha*Fu*diam*tcol/Omega = 2.22*65000 psi*0.438 in*0.075 in/2.22 = 2,135 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 4.0 in Fy= 55,000 psi C= P1+P2 tclip= 0.18 in Sclip= 0.127 in^3 = P1+P1*(0.5"/4.5") = 1.11*P1 Mcap= Sclip* Fbending C*d= Mcap= 1.11 d= E/2 = 0.127in^3*0.66* Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(1.11 *d) = 4610.1 in-Ib/(1.11*0.5 in) Thus, P1= 2,135 lb = 8,306 lb Mconn-allow= [P1*4.5"+P1*(0.5"/4.5")*0.51 = 2135 LB*[4.5"+(0.5"/4.5")*0.5"] = 9,726 in-lb > Mconn max, OK TYPE 5 SELECT-EARNEST.xIs Page `� of 2 4/10/2014 Str tura) Loncepts Engineering 1200 N.Jefferson Ste.Ste F Anaheim CA 92807 TeL 714.632.7330 Fax: 714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Transverse Brace Configuration:TYPE B SELECTIVE RACK Section Properties Diagonal Member= Hannibal 1-1/2x1-1/2xl6ga Horizontal Member= Hannibal 1-1/2x1-1/2x16ga Area= 0.273 in^2 I I.500 rAmin= 0.496 inrea= 0.273 ^2 I.500 r min= 0.496 in Fy= 55,000 psi 1�'"-`�'1 Fy= 55,000 psi 1____1 K= 1.0 S 1.500 K= 1.0 I I.500 Qc= 1.92 L. .J b L_ ......1d Vst LC1: 0.25 X0.25 Frame Dimensions Bottom Panel Height=H= 42.0 in Clear Depth=D-B*2= 38.0 in Frame Depth=D= 44.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6::(1j .85+0.14Sds)*B*P+[0.7*rho*EJ<=1.0,ASD Method I. 1 o -'I Vtransverse= 992 lb vb 11111a6.11 Vb=Vtransv*0.7*rho= 992 lb* 0.7* 1 (kl/r)= (k* Ldiag)/r min = 694 lb = (1 x 52.3 in/0.496 in) Ldiag= [(D-B*2)^2+(H-6")^21^1/2 = 105.4 in IA = 52.3 in Fe= pi^2*E/(kl/r)^2 H Pmax= V*(Ldiag/D)* 0.75 = 26,208 psi = 619 Ib d axial load on diagonal brace member Since Fe<Fy/2, 3^ Pn= AREA*Fn Fn= Fe s � = 0.273 in^2* 26208 psi = 26,208 psi Typical Panel = 7,155 lb Configuration Pallow= Pn/Q Check End Weld = 7155 lb/1.92 Lweld= 2.5 in = 3,726 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.17 <= 1.0 OK Weld Capacity= 0.75*tmin*L* Fu/2.5 = 2,925 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 694 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 44 in)/0.496 in = 37,006 psi = 88.7 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/Qc = 34,564 psi = 0.273in^2*34564 psi = 9436 lb/1.92 1 = 9,436 lb = 4,915 lb Pn/Pallow= 0.14 <= 1.0 OK TYPE 8 SELECT-EARNEST.xIs Page/0_ of Z y 4/10/2014 Str tural oncepts Engineering 1200 N.Jefferson Ste. Ste F Anaheim.CA 92$07 Tel: 714.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Single Row Frame Overturning Configuration:TYPE B SELECTIVE RACK Loads Critical Load case(s): A 1)RMI Sec 2.1, item 9: (0.6-0.14Sds)D+ (0.6-0.14Sds)*B*Papp-0.7*E*rho hp ;;p>; • Sds= 0.7199 v Vtrans=V=E=Qe= 992 lb 0.6-0.145ds = 0.4992 ► DEAD LOAD PER UPRIGHT=D= 150 lb (0.9-0.2Sds)= 0.7560 PRODUCT LOAD PER UPRIGHT=P= 8,000 lb B= 1.0000 H h Papp=P*0.67= 5,360 lb rho= 1.0000 =Wst1=(0.499214*D+0.499214*Papp*1)= 2,750 lb Frame Depth=Df= 44.0 in T Product Load Top Level, Ptop= 0 lb Htop-Iv1=H= .0 in I DL/Lvl= 75 lb #Levels= 2 � Df-01 Seismic Ovt based on E,E(Fi*hi)= 123,006 in-lb #Anchors/Base= 2 height/depth ratio= .0 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 24.0 in Load case 1: Movt= E(Fi*hi)*0.7*E*rho Mst= Wstl *Df/2 T= (Movt-Mst)/Df = 86,104 in-lb = 2750 lb*44 in/2 = (86104 in-lb-60500 in-Ib)/44 in = 60,500 in-lb = 582 lb Net Uplift per Column Net Seismic Uplift= 582 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip* Ptop>=350 lb for H/D>6.0 Movt= [V1*h+V2*H/2]*0.7*rho = 0.18*0 lb = in-lb = 0 lb T= (Movt-Mst)/Df V1eff= 0 lb Critical Level= 4 = (0 in-lb-1647 in-lb)/44 in V2=VDD= Cs*Ip*D Cs*Ip= 0.1800 = -37 lb No Uplift = 27 lb Mst= (0.499214*D+0.499214*Ptop*1)*44 in/2 = 1,647 in-lb Net Seismic Uplift= -37 lb Anchor Check(2)0.5"x 3.25"Embed POWERS SD2 anchor(s)per base plate. Special inspection is required per ESR 2502. Pullout Capacity=Tcap= 1,250 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,250 lb Shear Capacity=Vcap= 1,840 lb Phi= 1 Vcap*Phi= 1,840 lb Fully Loaded: (291 lb/1250 Ib)^1 + (248 lb/1840 Ib)^1 = 0.37 <= 1.2 OK Top Level Loaded: (-19 lb 1250 lb ^1 + (0 lb/18401b)^1 = 0.00 <= 1.2 OK TYPE 5 SELECT-EARNEST.xIs Page /Z of L y 4/10/2014 S • tr tural • oncepts ---17-------j Engineering 1200 N.Jefferson Ste.Ste F Anaheim.CA-92$07 Tel: 714.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project*: 0-033114-1 Base Plate Configuration:TYPE B SELECTIVE RACK Section 4- a --1. P Baseplate= 8x5x3/8 lk, Eff Width=W= 8.00 in a = 3.00 infur Mb Eff Depth=D= 5.00 in Anchor c.c. =2*a=d= 6.00 in Column Width=b= 3.00 in N=#Anchor/Base= 2 iii' '■ I b fit- L Column Depth=dc= 3.00 in Fy= 36,000 psi I w _� L= 2.50 in Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.75*[1.1.4+0.145ds)*B*P+0.75*[0.7*rho*E1<=1.0,ASD Method COLUMN DL= 75 lb Axial=P= 1.0755895* 75 lb+0.75* (1.500786*0.7*4000 Ib) COLUMN PL= 4,000 lb = 3,232 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0756 = 8000 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.5008 = 4,200 in-lb Effec. B= 0.7000 Axial Load P= 3,232 lb Mbase=Mb= 4,200 in-lb Effec. E Axial stress=fa= P/A= P/(D*W) M1= wL^2/2=fa*LA2/2 = 81 psi = 253 in-lb Moment Stress=fb= M/S= 6*Mb/[(D*BA2] Moment Stress=fb2= 2*fb* L/W = 78.8 psi = 49.2 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 F = 29.5 psi = 92 in-lb M3 = (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*LA2 Mtotal= M1+M2+M3 = 103 in-lb = 447 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 in^3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c = 0.71 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,250 lb OK = -675 lb No Tension Cross Aisle LoadsCrmcaiload case RMI Sec 2.1,item 4:(1+0.11S )DL+(1+0.14SDS)PL'0.75+EL'0.75<_LU.A5D Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 3,232 lb hen the base plate configuration consists of two anchor balls located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 64,578 in-lb Pseismic= Movt/Frame Depth .hall be determined based on a design bending moment in the plate equal Frame Depth= 44.0 in = 1,468 lb o the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pselsmic= 4,700 lb he centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 inI T 4- c * L=Base Plate Depth-Col Depth= 2.50 in Ta MuII a ..,111111 fa = P/A= P/(D*W) M= wL^2/2=fa*L^2/2 I 1 b I = 118 psi = 367 in-lb/in Elevation Uplift per Column= 582 lb Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 291 lb c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.58 OK = 364 in-lb Splate= 0.117 in^3 . fb Fb *0.75= 0.086 OK TYPE 5 SELECT-EARNEST.xIs Page l',2-of z y 4/10/2014 . . Str tura) �oncepts -i. Engineering 1200 N.Jefferson Ste. Ste F Anaheim.CA 62$1)7 Tel:714.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Slab on Grade Configuration:TYPE B SELECTIVE RACK P .-.-:•:-:•:-:-:•:•:•:•:•:•:•:-: slab ill a Concrete (: ! . ra7 : . .:slab t 1 . . tslab=t= 6.0 in Cross teff= 6.0 in IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIhuIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII c - Aisle phi=0= 0.6 X �I 14- c -+I Soil Y . . . fsoil= 1,000 psf Down Aisle Movt= 86,104 in-lb SLAB ELEVATION Frame depth= 44.0 in Baseplate Plan View Sds= 0.720 Base Plate 0.2*Sds= 0.144 Effec.Baseplate width=B= 8.00 in width=a= 3.00 in midway dist face of column to edge of plate=c= 5.50 in Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in midway dist face of column to edge of plate=e=4.00 in Column Loads DEAD LOAD=D= 75 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactored ASO load = 1.34398*75 lb+ 1.34398*0.7*4000 lb+ 1 * 1956 lb PRODUCT LOAD=P= 4,000 lb per column = 5,820 lb unfactored ASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+ rho*E RMI SEC 2.2 EQTN 7 _ Papp= 2,680 lb per column = 0.75602*75 lb+0.75602*0.7*2680 lb+ 1*1956 lb P-seismic=E= (Movt/Frame depth) = 3,431 lb = 1,956 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*75 lb+ 1.4*4000 lb B= 0.7000 = 5,690 lb rho= 1.0000 Effective Column Load=Pu= 5,820 lb per column Sds= 0.7199 1.2+0.2*Sds= 1.3440 0.9-0.20Sds= 0.7560 Puncture Apunct= [(c+t)+(e+t)]*2*t Fpunct= 2.66*phi*sgrt(fc) = 258.0 in^2 = 79.8 psi fv/Fv= Pu/(Apunct*Fpunct) = 0.283 < 1 OK Slab Bending Pse=DL+PL+E= 5,820 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+ 2*t = 838 in^2 = 28.95 in = 16.7 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 6.1 in = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 130.4 in-lb fb/Fb= M/(S-slab*Fb) = 150. psi = 0.145 < 1,OK TYPE 5 SELECT-EARNEST.xIs Page 13 of Z / 4/10/2014 S • tr tural • Loncepts --- --"" Engineering 1200 N.Jefferson Ste.Ste F Anaheim_ CA 928)7 Te1:114.632.7330 Fax:714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Configuration&Summary:TYPE A SELECTIVE RACK **RACK COLUMN REACTIONS ASD LOADS 24" AXIAL DL= 75/b 60" AXIAL LL= 3,000/b -` SEISMIC AXIAL Ps=+/- 1,481/b BASE MOMENT= 8,000 in-/b 120" 120" 42" 60" 42" 96" 4f 44" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.972,Fa=1.111 2 44 in 120.0 in 3 96 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=3075 Ib,M=9556 in-lb 0.41-0K Column&Backer None None None N/A Beam Fy=55 ksi HMH 30140/3"Face x 0.075"thk Lu=96 in Capacity:3004 lb/pr 1-OK Beam Connector Fy=55 ksi Lvl 1:3 pin OK Mconn=5803 in-lb Mcap=12691 in-lb 0.46-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.11-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.13-OK Base Plate Fy=36 ksi 8x5x3/8 Fixity=8000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=440 Ib) 0.233-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.21-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv _ Longit. Axial Moment Moment Connector 1 3,000 lb 60.0 in 42.0 in 250 lb 205 lb 3,075 lb 9,556 "# 5,803 "# 3 pin OK 2 3,000 lb 60.0 in 42.0 in 501 lb 411 lb 1,538 lb 6,161 "# 2,459 "# 3 pin OK 24.0 in **Load defined as product weight per pair of beams Total: 751 lb 616 lb Notes TYPE A SELECT-EARNEST.xIs Page (%l pf Z y 4/3/2014 Str tural #oncepts , -, ::::---_-----, Engineering 1200 N. Jefferson Ste.Ste_F Anaheim,CA 92807 Tel: 714.632-7330 Fax: 714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Configuration&Summary:TYPE C SELECTIVE RACK N - - \ _ 1 / **RACK COLUMN REACTIONS ASD LOADS 42" / AXIAL DL= 75/b 60" AXIAL LL= 3,000/b \\ SEISMIC AXIAL Ps=+/- 1,481/b BASE MOMENT= 8,000/n-lb 144" 144" 42" -,-,. ` 60" / 42" / 96" -T +- 44" . Seismic Criteria #Bm Lvls Frame Depth_Frame Height #Diagonals Beam Length Frame Type Ss=0.972,Fa=1.111 2 44 in 144.0 in 3 _ 96 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=3075 lb, M=9556 in-lb 0.41-0K Column&Backer None None None N/A Beam Fy=55 ksi HMH 30140/3"Face x 0.075"thk Lu=96 in Capacity: 3004 lb/pr 1-0K Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=5803 in-lb Mcap=12691 in-lb 0.46-0K Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.11-0K Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.13-0K Base Plate Fy=36 ksi 8x5x3/8 Fixity=8000 in-lb 0.61-0K Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=440 lb) 0.233-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.21-0K Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3,000 lb 60.0 in 42.0 in 250 lb 205 lb 3,075 lb 9,556 "# 5,803 "# 3 pin OK 2 3,000 lb 60.0 in 42.0 in 501 lb 411 lb 1,538 lb 6,161 "# 2,459 "# 3 pin OK 42.0 in **Load defined as product weight per pair of beams Total: 751 lb 616 lb Notes C TYPE C SELECT-EARNEST Page/4"j-of '� 8/4/20 14 S • tr tural Loncepts ---- ---:---3? Engineering 1200 N. Jefferson Ste.Ste F Anaheim. CA 92807 Tel, 714,632.7330 Fax: 714.632.7763 By: BOB Project: EARNEST IMAGING Project#: 0-033114-1 Configuration&Summary:TYPE D SELECTIVE RACK - N - j **RACK COLUMN REACTIONS /J ASD LOADS 42" / AXIAL DL= 75/b 60 AXIAL LL= 4,000/b SEISMIC AXIAL Ps=+/- 1,956 lb BASE MOMENT= 8,000 in-lb 144" 144" 42" 60" / 42" ,, ..[ .., 'L / 4- 108" -f- +- 44" -- Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.972,Fa=1.111 2 44 in 144.0 in 3 108 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=4075 Ib,M=15199 in-lb 0.63-OK Column&Backer None None None N/A • Beam Fy=55 ksi Intik 485/4.04"deepx2.75"x0.07" Lu=108 in Capacity: 4052 lb/pr 0.99-OK Beam Connector Fy=55 ksi Lvl 1: 2 pin OK Mconn=8471 in-lb Mcap=9726 in-lb 0.87-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.140K - Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.17-OK Base Plate Fy=36 ksi 8x5x3/8 Fixity=8000 in-lb 0.71-OK Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=582 Ib) 0.308-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.28-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,000 lb 60.0 in 42.0 in 331 lb 271 lb 4,075 lb 15,199 "# 8,471 "# 2 pin OK 2 4,000 lb 60.0 in 42.0 in 661 lb 543 lb 2,038 lb 8,141 "# 3,152 "# 2 pin OK 42.0 in **Load defined as product weight per pair of beams Total: 992 lb 814 lb Notes TYPE 0 SELECT-EANEST Page!ii`J of 2- Lf 8/4/201 4 • Strtural on 9� c�is , ..�,- / n ineerin 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel: 714.632.7330 Fax:714.632.7763 LIGHT DUTY SHELVING ANALYSIS Str tural • kion is engineering • 1200 N.Jefferson Ste.Ste F Anaheim.CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Design Data Configuration:WPSS RIVETIER II SHELVING TYPE C: 120 in x 72 in x 30 in 1) The analyses of the light duty storage fixtures conforms to the requirements of the 2012 IBC,2013 and ASC 7-10 2) Steel minimum yield, Fy= 36 ksi unless otherwise noted on the plans or analysis herein. 3) Anchor bolts shall be provided by installer per ICC reference on the calculations herein. 4) All welds shall conform to AWS procedures, utilizing E70x(electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5) Slab on grade is 6 in thick concrete with fc=2500 psi&1000 psf allowable soil bearing pressure WPSS Rivetierll Shelving 2012 IBC 2013 CBC EARNEST.xIs Page /4, of L y 4/10/2014 Stturai toon is engineering 1200 N.Jefferson Ste.Ste F Anaheim.CA 92807 Tel:714632.7330 Fax:714.632/763 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Summary of Results Configuration:WPSS RIVETIER II SHELVING TYPE C:120 in x 72 in x 30 in SHELVING TYPE C 7T— I r— 30" H Shelf Configuration TiF H I #of Levels= 3 D= 30.0 in H= 120.0 in 9372 9 L= 72.0 in T-- — � I Location Elevation Load I h1= 3.0 in 200 lb I 4a.1 1 h2= 45.0 in 200 lb h3= 48.0 in 200 Ib 120 y 5572 I I 5530 li 11 4b I =. 1 � I j 1 SS72 ss30 FRONT VIEW SIDF VIEW Seismic Coeff: Ss= 0.972 Product Load/Lvl= 200 lb S1= 0.421 Fa= 1.111 Fv= 1.579 Steel Fy= 36,000 psi I I Total Height= 96.0 in Component Summary Column LURH L1-1/2"x14ga 0.38 OK Beam SS Double Rivet Beam& 0.27 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.31 OK Anchor** (1)3/8"x 2"Embed POWERS SD2 per post(ICC ESR 2502)Inspection Required.Net Uplift=72 lb 0.30 OK Foot Plate 3-3/4 x 2-3/8 x 14 ga DF @ T Post,2-1/16 x 2-3/8 x 14 ga SF @ L Post 0.63 OK Slab on Grade 6 in thick concrete with f c=2500 psi&1000 psf allowable soil bearing pressure 0.03 OK Notes Column Reactions(ASD): Axial column DL= 33 lb Axial column LL= 300 lb Axial column seismic load=+/- 72 lb WPSS Rivetierll Shelving201 2 IBC 2013 CSC EARNEST.xls Page/7 of Ly 4/10/2014 Str tura) koon is /` Cngineering • 1200 N.Jefferson Ste.Ste F Anaheim.CA 92807 Tel 714.632.7330 Fax:714.632.7763 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Seismic Forces Configuration:WPSS RIVETIER II SHELVING TYPE C: 120 in x 72 in x 30 in V1= SDs*W/R Ss= 0.97 1/2= [0.4*ap*SDs*Ws*(1+2*z/h)/(Rp/Ip)] I_ Deck DL= 0 Psf S1= 0.42 V3= 0.044*Sds ' ■ Deck LL= 0 psf Fa= 1.11 V4= 0.5*S1/R F Trib Area=A= 0.0 ft^2 Fv= 1.58 v Deck level LL= 0 lb Sds= 0.720 V1= 0.1800 hb F' Deck level DL= 0 lb Sdl= 0.443 V2= 0.1800 R=Rp= 4.00 V3= 0.0317M _ Ip= 1.00 V4= 0.0000 op= 2.5 Vminimum= 0.015 z/h= 0.00 Elevation #of levels= 3 Seismic Coeff=Cs= 0.1800 Depth= 30.0 in (Either Direction) Product LL/Shlf= 200 lb Cs*Ip= 0.1800 DL/Shlf= 22 lb Down Aisle Seismic Shear(Longitudinal) Cross Aisle Seismic Shear(Transverse) Wlong= E(LL*0.67+DL) Wtransv= E(LL*0.67+DL) = 468 lb = 468 lb Vlong=VL= 0.18*468 lb Vtransverse=VT= 0.18*468 lb = 84 lb = 84 lb VT/col= 42 lb VJ2= 42 lb Transverse Distribution Moment Resisting Dbl Rivet Beams 11 } Level LL DL hi wi*hi Fi Fi*hi Vn hb Mn Mconn 1 200 lb 22 lb 3 in 666 1.7 lb 5 in-lb 42.00 lb 3 in 126 in-lb 378 in-lb 2 200 lb 22 lb 48 in 10,656 27.4 lb 1,315 in-lb 28.00 lb 45 in 630 in-lb 483 in-lb 3 200 lb 22 lb 96 in 21,312 54.9 lb 5,270 in-lb 14.00 lb 48 in 336 in-lb 168 in-lb Sum: 600 lb 66 lb W=666 lb 32,634 84 lb Movt=6590.7 in-lb Smilarly,Mlong= 709 in-lb Mconn-long= 606 in-lb Transverse Column Loads Longitudinal Column Loads Movt= 6,591 in-lb Pstatic DL= 33 lb Pseismic= Movt/D Pstatic= E(LL+DL) Mlong= MT'vJvT Pstatic LL= 300 lb = 220 lb = 333 lb = 709 in-lb Mconn= 1,383 in-lb 61transv=MT= 630 in-lb WPSS Rivetierll Shelving 2012 IBC 2013 CDC LARNEST.xIs Page /d of Z cf 4/10/2014 Str tura) kion is engineering • 1200 N.Jefferson Ste.Ste F Anaheim,CA_92807 Tel:714.632.7330 Fax:714.632.7763 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Transverse Column Loads(Weak Axis Bending) Configuration:WPSS RIVETIER II SHELVING TYPE C: 120 in x 72 in x 30 in Net Section Properties Column= LURH L1-1/2"xl4ga Aeff= 0.358 in^2 4f= 1.67 Ix(downaisle) = 0.148 inA4 E= 29,500 ksi ` Sx(downaisle) = 0.099 in^3 Cb= 1.0 rx(downaisle)= 0,642 in Cmx= 0.85 11 1 1/2" Iy(crossaisle) = 0.087 inA4 Kx= 1.0 1tI Sy(crossaisle) = 0.090 in^3 Lx= 48.0 in C Ty(crossaisle) = 0.494 in Ky= 1.0 1 1/2" 1 1/2"- Fy= 36 ksi Ly= 48.0 in Axial DL= 33 lb Axial LL= 300 lb Pseismic= 220 lb Loads Load Case: (Fully Loaded) Axial=P= DL+0.75LL+0.75*0.7*Pseismic = 374 lb Moment=My= 630 in-lb Axial Analysis KxLx/rx= 1*48"/0.642" KyLy/ry= 1*48"/0.494" Fe > Fy/2 = 74.8 = 97.2 Fn= Fy(1-Fy/4Fe) = 36 ksi*[1-36 ksi/(4*30.8 ksi)] Fe= n^2E/(KLJr)max^2 Fy/2= 18.0 ksi = 25.5 ksi = 30.8ksi Pn= Aeff*Fn S2c= 1.92 Pa= Pn/Qc = 9,127 lb = 9127 lb/1.92 = 4,754 lb P/Pa= 0.08 < 0.15 Bending Analysis Check: P/Pa+My/May<_ 1.0 Pno= Ae*Fy Pao= Pno/52c Myield=My= Sy*Fy = 0.358 in^2*36000 psi = 128881b/1.92 = 0.09 in^3*36000 psi = 12,888 lb = 6,713 lb = 3,240 in-lb May= My/Qf Pcr= n^2Ei/(KL)max^2 = 3240 in-lb/1.67 = nA2*29500000 psi/(1*48 in)^2 = 1,940 in-lb = 18,703 lb p= {1/[1-(4c*P/Pcr)]}^-1 = {1/[1-(1.92*374 lb/18703 Ib)]}^-1 = 0.96 Combined Stresses (374 lb/4754 Ib)+(630 in-Ib/1940 in-lb) = 0.38 < 1.0,OK (EQ C5-3) WPSS Rivetierll Shelving 201 2 IBC 2013 CDC EARNEST.xIs Pace / of 2- / 4/10/2014 S • tr tural kion is engineering 1200 N.Jefferson Ste.Ste F Anaheim.CA 92807 TeL 714_632.7330 Fax:714.632.7763 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Longitudinal Column Loads(Strong Axis Bending) Configuration:WPSS RIVETIER II SHELVING TYPE C: 120 in x 72 in x 30 in Net Section Properties Column= LURH L1-1/2"xl4ga Aeff= 0.358 in^2 4f= 1.67 Ix(downaisle) = 0.148 in^4 E= 29,500 ksi Sx(downaisle) = 0.099 inA3 Cb= 1.0 / " nc(downaisle) = 0.642 in Cmx= 0.85 1 1 2 Iy(crossaisle) = 0.087 inA4 Kx= 1.0 ft Sy(crossaisle) = 0.090 inA3 Lx= 48.0 in ry(crossaisle) = 0.494 in Ky= 1.0 --1 1/2" r 1 1/2"- Fy= 36 ksi Ly= 48.0 in Axial DL= 33 lb Axial LL= 300 lb Pseismic= 0 lb Loads Load Case: (Fully Loaded) Axial=P= DL+0.75LL+0.75*0.7*Pseismic = 258 lb Moment=Mx= 709 in-lb Axial Analysis KxLx/rx= 1*48"/0.642" KyLy/ry= 1*48"/0.494" Fe > Fy/2 = 74.8 = 97.2 Fn= Fy(1-Fy/4Fe) = 36 ksi*[1-36 ksi/(4*30.8 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 25.5 ksi = 30.8ksi Pn= Aeff*Fn Qc= 1.92 Pa= Pn/Qc = 9,127 lb = 9127 lb/1.92 = 4,754 lb P/Pa= 0.05 < 0.15 Bending Analysis Check: P/Pa+ My/May<_ 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.358 in^2*36000 psi = 128881b/1.92 = 0.099 inA3*36000 psi = 12,888 lb = 6,713 lb = 3,564 in-lb May= My/S2f Pcr= n^2EI/(KL)max^2 = 3564 in-Ib/1.67 = n^2*29500000 psi/(1*48 in)^2 = 2,134 in-lb = 18,703 lb p= {1/[1-(4c*P/Pcr)]}^-1 = {1/[1-(1.92*258 lb/18703 Ib)]}^-1 = 0.97 Combined Stresses (258 Ib/4754 Ib) + (709 in-lb/2134 in-Ib) = 0.37 < 1.0,OK (EQ C5-3) WPSS Rivetierll Shelving 2012 IBC 2013 CBC EARNEST.xls Page .Za of 2 y 4/10/2014 Sttura) • rLoon is engineering 1200 N.Jefferson Ste.Ste F Anaheim.CA 92607 Tel:714.632.7330 Fax:714.632.7763 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Double Rivet Beam Configuration:WPSS RIVETIER II SHELVING TYPE C: 120 in x 72 in x 30 in 1-3/32" l< Downaisle beam Beam Type= SS Double Rivet Beam IA Ix= 0.2060 in^4 t=14 ga A A A AA AA A Sx= 0.123 in^3 7 Fy-beam= 36,000 psi Shelf Span=L= 71 in v v v v v vv v Downaisle beam Dbl Rivet Beam Shelf Plan View SS Check Beam Bending Check Beam Deflection Shelf DL= 22 lb Shelf LL= 200 lb E= 29,500,000 psi Shelf LL+DL= 222 lb Load=w=LL*0.67/(2*L)= 13.8 plf D= 5*w* L.^4/(384*E*Ix) = 0.0646 in M= w*L^2/8 = 725 in-lb Dallow= L/140 0.51 in OK fb= M/Sx = 5,891 psi 0.7454" Fb= 0.6* Fy — — — — 21,600 psi 5:i 2.6530' I 1.�5" 2.560" fb/Fb= 0.27 OK ! �� Check DRB Beam Rivets For Static+Seismic Loads Check load case: DL+0.75LL+0.75*0.7*Mseismic Rivet Spacing=d= 1.5 in tmin= 0.075 in Rivet diameter= 0.25 in Fu= 58,000 psi Column Fy-rivet= 36,000 psi Rivet M*0.7*0.75= 331 in-lb W= (LL*0.75+DL)/4 � Beam C= M/d = 43 lb = : e:rea Shear Capacity= *0.4* Fy-rivet 4 :; = [(0.25 in)^2*pi/4] *0.4*36000 psi = 707 lb w Bearing Capacity= Rivet Diam*tmin* Fu* 1.2 = 1,305 lb Beam to Column Effective Shear= [(W/2)^2+C^2]^0.5 = 2221b OK WPSS Rivetierll Shelving 20 12 IBC 2013 CBC EARNEST.xIs Page a / of Z c.f 4/10/2014 Sttura) rLIon is engineering 1200 N.Jefferson Ste.Ste F Anaheim.CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Anchors Configuration:WPSS RIVETIER II SHELVING TYPE C: 120 in x 72 in x 30 in Check load case: 0.6D+0.67LL+0.7V Loads Vtrans=V= 84 lb v DL/Frame= 66 lb LL/Frame= 600 lb Frame Depth=D= 30.0 in Wst=(0.6*DL+0.67LL)total= 442 lb Htop-Ivl= 96.0 in LL @ TOP= 200 lb #Levels= 3 DL/Lvl= 22 lb #Anchors/End= 1 DL*0.60= 13 lb T Lateral Ovt Forces=E(Fi*hi)*1.15*0.7= 5,306 in-lb I�D-01 SIDE ELEVATION Fully Loaded rack Vtrans= 84 lb Movt= I(Fi*hi) Mst= Wst*D/2 Uplift=T= (Movt-Mst)/D = 5,306 in-lb = 442 lb*30 in/2 = (5306 in-lb-6630 in-lb)/30 in = 6,630 in-lb = -44 lb No Uplift Top Level Loaded Only • Critical Level= 3 Hgt @ Lvl 3= 96.0 in • Vtop= Cs* LLtop Vtop= 0.18*200 lb Movt= Vtop*Htop*1.15 = 36 lb = 36 lb*96 in* 1.15 = 3,974 in-lb Mst= 0.6*(LL-top)*D/2 Uplift=T= (Movt-Mst)/D = (200 lb*0.6)*30 in/2 = (3974 in-lb-1800 in-lb)/30 in = 1,800 in-lb = 72 lb Anchor Net Seismic Max Uplift=172 LB Check(1)3/8"x 2"Embed POWERS SD2 anchor(s)per footplate** Special inspection is required per ICC ESR 2502. **Alternate approved anchor:Powers Power Stud+SD2,3/8"diam x 2.375"min embedment,(1)per footplate **ALL SINGLE ROW SHELVING POSTS MUST BE ANCHORED.BACK TO BACK TIED UNITS SHALL BE ANCHORED AT THE AISLE SIDE POSTS ONLY Pullout Capacity=Tcap= 250 lb Shear Capacity=Vcap= 250 lb Phi= 1.00 Tcap*Phi= 250 lb Vcap*Phi= 250 lb Fully Loaded: (42 lb/250 1b)^1 = 0.17 <= 1.2 OK Top Level Loaded: (72 lb/250 Ib)^1 + (18 Ib/250 Ib)^1 = 0.36 <= 1.2 OK WPSS Rivet erll Shelving 201 2 IDC 2013 CBC EARNEST.xls Page a 4 of Z y 4/10/2014 StrturaI LOP on is engineering 1200 N.Jefferson Ste.Ste F Anaheim.CA 92807 Tel:714.632,7330 Fax:714.632.7763 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Base Plate Configuration:WPSS METIER II SHELVING TYPE C: 120 in x 72 in x 30 in Section Actual base plate for T Post is 3.75 in x 2.375 in x 14 ga,but a smaller area is considered to be effective due to the rigidity limitations of the baseplate P Width=B = 3.75 in Column Width=b= 3.000 in Depth=D= 2.38 in Column depth=b= 1.500 in 14 Plate Thickness=t= 0.075 in L= 0.88 in mi' Mb Fy= 36,000 psi N'ommemommiqm b It—L 1_4 W—� Cross Aisle Loads Axial DL= 33 lb Axial L= 300 lb DL+0.75LL+0.75*0.7*Pseismic= 374 lb Pseismic= 220 lb L= Base Plate Depth-Col Depth = 0.88 in fa = P/A= P/(D*B) M= wL^2/2=fa*L^2/2 = 42 psi = 16 in-lb/in Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy = 0.001 in^3/in = 27,000 psi fb/Fb = M/[(S-plate)(Fb)] 0.63 OK WPSS Rvetierll Shelving 2012 IBC 2013 CBC EARNEST.xls Page ch of 2 C/ 4/10/2014 tontural is • L-:,14"----V ngineering • 1729 S.Douglass Rd.Ste B.CA 92806 Tel:714.456.0056 Fax:714.456.0066 By: BOB S Project: EARNEST IMAGING Project#:0-033114-1 Slab on Grade Configuration:WPSS RIVETIER II SHELVING TYPE C:120 in x 72 in x 30 in P :. s191°. .... a.. . il a Concrete a i fc= 2,500 psi II D. . . . . . r b e tslab=t= 6.0 in slab I • • • • • phi=0= 0.65 Cross / OIIIIIIIHIIOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1 --- a -- Aisle Lii.- x -101 II- c RI i_______ y ri • • • • • • • • • Soil fsoil= 1,000 psf Down Aisle Movt= 6,591 in Ib SLAB ELEVATION Frame depth= 30.0 in Base Plate Baseplate Plan View 8= 3.75 in width=a= 3.00 in eff.baseplate width=c= 3.75 in D= 2.38 in depth=b= 1.50 in eff. baseplate depth=e= 2.38 in Load Case 1:Product+Seismic Product DL= 33 lb P-seismic=E= Movt/Frame depth (Strength Design Loads) Product LL= 300 lb = 220 lb Puncture Pu= 1.2DL+ LOLL+ 1.0*E Fpunct= 2.66*phi*sqrt(fc) = 526 lb = 86.5 psi Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct) = 217.50 inA2 = 0.03 < 1.0 OK Slab Bending Asoil= (P*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5 +t*2 = 76 inA2 = 8.72 in = 15.0 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6 = 0.0 in = (fsoil*xA2)/(144*2) = 6.0 inA3 Fb= 5*(phi)*(fc)^0.5 = 0 in-lb fb/Fb= M/(S-slab*Fb) = 162.5 psi = 0.00 < 1.0 OK Load Case 2:Static Loads DL= 33 lb LL= 300 lb Puncture • Pu= 1.2*DL+ 1.6*LL Fpunct= 2.66*phi*sqrt(fc) = 478 lb = 86.5 psi Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct) = 218 inA2 = 0.03 < 1.0 OK Slab Bending Asoil= (Pu*144)/(fsoil) L= (Asoil)A0.5 y= (c*e)A0.5+t*2 = 69 inA2 = 8.29 in = 15.0 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6 = 0.0 in = (fsoil*x^2)/(144*2) = 6.0 inA3 Fb= 5*(phi)*(fc)^0.5 = 0 in-lb fb/Fb= M/(S-slab*Fb) = 162.5 psi = 0.00 < 1.0,OK VVPSS RivetierlI Shelving 201 2 IBC 20 13 CBC EARNEST.xls Page 2c(of z-y 4/10/2014