Loading...
Specifications EQUILIBRIUM ( 3( 7'i SGS RECEIN9 MAR 21 2016 ENGINEERS§ �G � l;L1Y l5� March 14, 2016 � � ��T ��UN Kim Cope C/O Small Parts Solutions 6453 SW 155th Ave Beaverton, OR 97007 RE: Cope Residence Window Wall 13674 SW White Cedar Ct. Tigard, OR 97223 EE LLC Job No. 16056 Dear Kim: Attached please find the structural engineering calculation set (Sheets Cl-C14) which verifies the structural adequacy of the new window wall header and lateral resistance of the bedroom window wall at the project residence as shown on the attached Structural Drawing SK-l. Design is based on the provisions of the 2012 International Building Code as amended by the Washington State Building Code. Please call if you have any questions. Edic L'y,� Sincerely, s\la ,� L 19402 Peter Kahn, P.E., LEED Green Assoc. / I Project Manager • NI, 0 p CRO'c'4y 22, a IExrIREs: )1431) 16 I 16325 Boones Ferry Road, Suite 202 ■ Lake Oswego, Oregon 97035 Phone 503.636.8388 ■ Cell 503.803.8576 • Email peter@equilibriumllc.com Project tN�w `� EQUILIBRIUM By Sheet # Location -1---161,60 I E3 Date C k y10/201.6 Client Revised Job # Prc� PA(2T '7A-AA-161-C, ENGINEERS Date 16056 a7�C 5v e_y 12.E- S1 �c /���✓�L i?�nw�� t._ (N Jnrt) p ,vV ftl�L- Ac'T� .ni /4DE ✓ C y WIN (1,1" CoA :.!'tUhJ . 2o0C ,r Ro0E- Ft-00, Lv Pw - 1-10A Pel �►c v�,/V1 a (� i k Po.;de-c C-t-rE •7 z y C;,�1" lf�:. c3 �.�1 C 2_. CS -- o .0R-� t `" s E . Get Foec_h;,-_,A(. -r ((.._ ��.. Project EQUILIBRIUM By Sheet # Location Date �/iok C3 E3 Client Revised Job # ENGINEERSY Date I bpSb Seismic Base Shear-Per ASCE 7-10 Specifications TTITTTENT Building Code Information-Seismic Occupancy Category= II ASCE 7-10,Table 1.5-1 Spectral Accel.,Ss= 0.957 ASCE 7-10 Figures 22-1 to 22-11 hn Spectral Accel.,S1= 0.422 ASCE 7-10 Figures 22-2 to 22-11 Long.Trans.Period,T1= 16.0 sec.ASCE 7-10 Fig's. 22-12 to 22-16 Importance Factor,I= 1.00 ASCE 7-10 Table 1.5-2 Soil Site Class= D ASCE 7-10 Table 20.3-1 V= CS*W -� Structure Height,h„= 20.00 ft. Seismic Base Shear (Regular Bldg.Config Only) Seismic Force Resisting Sytem Flexible Diaphragm(a) u. Light-framed(wood)walls sheathed with wood structural panels rated for shear resistance Response Mod.Coef.,R= 6.50 ASCE 7-10 Table 12.2-1 Note a:Dist.Between vert elements OverstrengthFactor,S2o= 3.0 ASCE 7-10 Table 12.2-1 of the seismic force resisting system Defl.Amplif.Factor,Cd= 4.0 ASCE 7-10 Table 12.2-1 do not exceed 40ft Building Height Limit= 65.0 ft,ASCE 7-10 Table 12.2-1 Fundamental Period Actual Calc.Period,Tc= from analysis(calculated if blank) Period Coefficient,CT= 0.020 ASCE 7-10 Table 12.8-2 Period Exponent,x= 0.750 ASCE 7-10 Table 12.8-2 Approx.Period,Ta= 0.189 sec., Ta=CT*hnx, ASCE 7-10 Section 12.8.2.1,Eqn.12.8-7 Upper Limit Coet.,C = 1.400 ASCE 7-10 Table 12.8-1 Period max.,Tmax= 0.265 sec., Tmax=Cu*Ta, ASCE 740 Section 12.8.2 Fundamental Period,T= 0.189 sec., T=Ta<=Cu*Ta, ASCE 7-10 Section 12.8.2 Calculated Seismic Design Parameters Using Equivalent Lateral Force Procedure for Regular Single-Level Building/Structural Systems Site Coefficients: Fa= 1.117 ASCE 7-10 Table 11.4-1 FV= 1.578 ASCE 7-10 Table 11.4-2 Maximum Spectral Response Accelerations for Short and 1-Second Periods: Sims= 1.069 SMS=Fa*Ss,ASCE 7-10 Eqn.11.4-1 SMT= 0.666. SMT=FV*Sl, ASCE 7-10 Eqn. 11.4-2 Design Spectral Response Accelerations for Short and 1-Second Periods: SpS= 0.713 Sps=2*SMs/3, ASCE 7-10 Eqn.11.4-3 SD1= 0.444 SD1=2*SMT/3,ASCE 7-10 Eqn. 11.4-4 Seismic Design Category: Category(for Sps)= D ASCE 7-10 Table 11.6-1 Category(for SDI)= D ASCE 7-10 Table 11.6-2 Use Category= D Most critical of either category case above controls Seismic Design Coefficients Cs= 0.110CS=SDS/(R/I),ASCE 7-10 Section 12.8.1.1, Eqn. 12.8-2 Cs(max) = 0.361 For T<=TL,CS(max)=SD1/(T*(R/I)),ASCE 7-10 Eqn.12.8-3 Cs(min) = 0.031 CS(min)=0.044*SDS*I>=0.01,ASCE 7-10 Eqn. 12.8-5 Seismic Base Shear Cs= 0.110 g's, Strength Design 0.7*Cs= 0.077 g's,Allowable Stress Design Project EQUILIBRIUM By 7r..... Sheet # Location Date %/to C''� - Client E3 Revised Job # ENGINEERS Date 14,06 t ;FE TAWKI 7-AA-110 ,.1'sf ilc1 ;F�: ., _ .fie m , it---- `F 0 --- _, i ----- --- _______ .:77:: 1111: -1 i , . ..., .___ __ f 111,U 7iflilfi BEM lb \4 , 11:111,11f.7 11,I EILL r I 11 I'3-! ir:I ` _ I u A f i1 T16-11 aaF EIA(?,`. Hew WINt>J . ProjectEQUILIBRIUMBy IF Sheet * ::bohl ::eb/ b d Job * E3 ' Date \\�� vz ENGINEERS ^ ` '� ` '� �` -� ~-/.� ` `` ----- �� ~. � ^ . ~ _ - .`~ ', - �� - ~�` ` -___. _ _ ' _- _ -_--__ - -_ - _ ___--- - __ __ _ - -- . . --. ___ -'--' - |B' I ( . ---===�====�--=='=== --_==~ === ===-_--- __-===_===- -- ! ~�~~^---~~~~�~~~~~-~~-- ---~~~-� `~~�^--��~�~ | � _�_______ -_-���_����_____----- | / - - '____- -- - _ ___ � _-___ � ________ _ ___ ______ ---' -------- ----- � --� |k } | �� ---�--- �-----'- --' -- ! ----'- - --- -'---- --- ---- | _____ ___ | � � - --�--� ------ -- - | __�- D ' ------- - ------'� - ----- -�- - ---- ---- --'-- i -- --- - -- - '-l--------- [ _ _ 6 | J[W � O �-A / / �_u-v x � v H ~ �'- IT ~ r ---- �� WINDOW L L. -'------ |K U |/Z ---------- .- .., -------- .^----- ----------------- ' - ZI |( 12' - ---�- -----°- � 1 Project EQUILIBRIUM By P_ Sheet// � # Location Date � '`'�' isob‘ E3 Client Revised Job # ENGINEERS Date lc,c(4, Seksvt IL vJC16,it k-ET = SOF = tic° (f5' = ) - fi, --_.(2)-Ko ( 63 b '� ) Cb(2...(2ci>ku, ) .! • - -? _ -7--,ioti Sok.lc_., -f-9.,=c, "::(,-, ',IL_ -- 0. 0- -- (2?, 6sL;) =-- 1,S2) ( frkeb- ) Co ws t) ._ z iiiiSrel) g tt r ,A-0 - t...4 ry E 9111c wit,) A--,5e-i.c ---_---) (s€--t ci-k C4,) (7oTPcL '-epAsEL Sl4e,-4,,Q- IN Ns.tc+t -z- •L12�C.Tio,J ke,64_,c s ro w4-c.c.� 0 ,22 ��pc. v� +ulki- Acs = 0, Co (! 0220$ = 6/ 12- 1 C'oNs,t, ?._ Z vee- 1 ,- . -1?,/ ',JA(,1_ .,,._,,f)e. i) 066 41.- S,0 , - - /.v C oiv—€-OL t .,41<�eAL % k) 3�0 � > G/(I W � � De--s ZY Ft-;L tic_ -vo .i, \r..e(Z, ov 1. - u#Q Of\ S4 . CS -11A-C,- Loo ?PC - f-oQ 2'\1 s-ro2-Y S ��t S AAvc r is Ivor- A C71,---c 4 `l k) ) Wwti 5Oc,) , i j t'i /S r S76€-Y " \/s-r Fob tlit(..-- LA = -7 C ��0 5 0\I 27v\c2'...),ici l F-✓cc A„. G'" !i<.ybs / . Z4 S -oQ-y 0 vc_ LiI�"""�'f Fat LI Nkt,1. `S E-40 10 - 1' ,\ ' i 7-- Ov► sheat -r Z Y/Z(b)30�o (6 )+ Zo,Kp& ( J � - 1j1�646.25 = ►►Z � pWCnTv�►Ut = 112, (€,q) l/`f . C • 3/10/2016 WIND FORCES ON BUILDING File:EE-469etx US-4 BUILDING DATA: Basic wind speed(3 sec gust)= 120 MPH • Exposure 8 Roof Pitch= 4.00 :12 OK Mean Roof Height h= 20.00 ft Topographic Factor Kr= 1.00 Table 1.5-2(1.00 for all cases) 1)ASCE 7-10 CH 28 METHOD 2-SIMPLIFIED PROCEDURE Height Adjustment factor A= 1.00 Figure 28.6-1 -19.05 -14.24 -19.05 -12.09 (-27.44) (-18.71) (-27.44) (-15.57) -ffiTht • 1 ttt ttt -4.85 ► (-8.72) r 6= 18.4 III • 20.48 _. In 15.13 H =22.2 ft (30.66) All forces shown in psf 17.8 ft MI (22.87) II Ell I y I • 26ft + 25ft 11. TRANSVERSE ELEV. LONGITUDINAL ELEV. (22.87) . t �. 11 2a=6.0 ft 10%of least dimension= 2.5 ft ' 1 10.22 kips 40%of the eave height= 7.1 ft 18.4psf 26 ft 8.74 k 4%of least dimension or 3 ft= 3.0 ft 16.8 psf 15.13 > therefore a= 3.0 ft - 25 ft 2a= 6.O ft All forces shown in psf- i 6.0 ft ; Example,from Fig 28.6-1 longitudinal for wall horizontal load at end zone Ps30= 22.87 psf t t t i t t _ A Height Adjustment factor A= 1.00 20.48 Importance factor IW= 1.00 PLAN VIEW (30.66) (A)(Ke)(P530)= 22.87 psf FIGURE 28.6-1,MWFRS-Method 2,Enclosed Building Fig 28.6-1,MWFRS Horizontal Loads Vertical Loads Load Roof End Zone Interior zone End Zone Interior zone Overhang Direction Angle Wall(A) Roof(B) Wall(C) Roof(D) WW(E) LW(F) WW(G) LW(H) EON GOH Transverse 18.4 30.66 -8.72 20.48 -4.85 -27.44 -18.71 -19.05 _ -14.24 -38.44 -30.05 Longitudinal All 22.87 -11.87 15.13 -7.08 -27.44 -15.57 -19.05 -12.09 -38.44 -30.05 *If roof pressure under horizontal loads is less than zero,use zero Wind pressure shown in(xxx)for End Zone. Plus and minus signs signify pressures acting toward and away from projected surfaces,respectively. Fig30.5-1,COMPONENT AND CLADDING . Topographic Factor Kzt= 1.00 evaluated at 0.33h Area for wall element= 10 ft2 RESTRICTIONS: (30.5.1) Wall, Interior Zone 4= 25.91 -28.09 psf 1. Building Height<Least Horizontal Plan Dimension End Zone 5= 25.91 -34.73 psf 2. Building Height<60 feet. 3. Building is Enclosed. Area for Overhang element= 10 ft` '4.'Roofis Hlattor i,ableca Overhang,End Zone 2= - -48.34 psf 5. Building Plan is NOT Irregular. Corner Zone 3= - -81.23 psf Area for Roof element= 10 ft` Roof, Interior Zone 1 = 14.92 -23.74 psf End Zone 2= 14.92 -41.27 psf Corner Zone 3= 14.92 -60.98 psf Project EQUILIBRIUM By N. Sheet # Location Date ' /D/'� t Client E3 Revised ` Job # ENGINEERS Date �6dS6 l),.)1 Nb0 w Fflok&kt AJ / L.c?ov,..a,,-al Fac)i .4. f N s t bq is As S -ouJ)v ', QNt) ,i-t-.. c 1-+r✓G 7o € Eti l,,c. :t OA.) I Jo S 1 b-: okel7 Ei L _ d L5If t f[ -r.:s I 1 6 x 1' FN6INEEPEE, BEAM 1 I 1 a1'1 _: ,1 , -,, 1 1 ___. _— _ 44 V A-h i 5 (P-- _ � 0 6 6r�' .t Z�, Zq�j /�.. r------ - --17— . .„ _ . U 5 G 16132, S 1-4 A k-(, l C-) w/ loci /\00 (,S ( o•c A.:f t.C rte' 41. q " D.( . yo FleL..p C q ECIC. C.7\Ii..-- rog-a Nti // / -S?Ai T I L A- C_ &., - 211 ( ,11. 1) _°"( 1�, )(ti(�j) `z1l-Pio _ Vf�IF i t �j►'1 = 26511 ` WALI- 2 LA 1 N 5Tb Project EQUILIBRIUM By ? Sheet # Location Date el sAol 6 Client E3 Revised Job # ENGINEERS Date t 6os-6, s H>) i 140c,b0„3A...) Fiss9 Acr-X- 1-0) N\lk), 6 " eAkezt 1 NI-o T-7007 I &)-AA vu 1-100)cy.o&J ii="Af_ (71 Fog- AA.)( Hoi) "JA i '-/ < (O, 3 CZ I Fo rjc---,t6,1,0 14, c:`,(2-4,4 •1/4 s/Q PA4' AL-C.- 1-. rrti•-,41-c.— (ON Se 2 viA7L 1/2, F Y19/2„ 7-- 9 / )1 = 2 S • 4• •r- / I) 0 b bo 44- 5e Y I 2_ 1-46-AbEe-- Pc1,1 ( P 4 SIMPSON Anchor Designer TM Company: Date: 3/10/2016 Engineer: Page: 414' StrO Tie Software Project: Version 2.4.5673.2 Address: Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.(Ib) Vuax(lb) Vuay(Ib) 4(Vuax)2+(Vuay)2(lb) 1 4423.0 0.0 0.0 0.0 Sum 4423.0 0.0 0.0 0.0 Maximum concrete compression strain(%o):0.00 Maximum concrete compression stress(psi):0 Resultant tension force(lb):0 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'N.(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 4.Steel Strength of Anchor in Tension(Sec.D.5.11 Nsa(Ib) rd ON.(Ib) 13110 0.75 9833 6.Adhesive Strength of Anchor in Tension(Sec.5.5) Zk,cr= Zk,crfshort-tennKsat Zk,cr(psi) fshort-term Ksat m,cr(psi) 980 1.00 1.00 980 ' Nba=2srcr2tdahef(Eq.D-22) 2a rbr(psi) da(in) he(in) Nba(Ib) 1.00 980 0.63 6.000 11545 0/Vs=0(A Na/ANaO)P d,Na Pcp,NaNba(Sec.D.4.1 &Eq.D-18) i ANa(in2) ANao(in2) Yed,Na fcp,Na Nba(lb) 0 cNa(lb) 165.65 243.61 0.931 1.000 11545 0.65 4749 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com • Company: Date: 3/10/2016 (3 SIMPSON Anchor Designer TM Engineer: Page: 4} Strong-Tie Software Project: Version 2.4.5673.2 Address: Phone: E-mail: 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) Tension Factored Load,Nai (Ib) Design Strength,0N„(Ib) Ratio Status Steel 4423 9833 0.45 Pass Adhesive 4423 4749 0.93 Pass(Governs) AT-XP w/5/8"0 F1554 Gr.36 with hef=6.000 inch meets the selected design criteria. 12.Warnings -Concrete breakout strength in tension has not been evaluated against applied tension load(s)per designer option. Refer to ACI 318 Section D.4.2.1 for conditions where calculations of the concrete breakout strength may not be required. -Concrete breakout strength in shear has not been evaluated against applied shear load(s)per designer option. Refer to ACI 318 Section D.4.2.1 for conditions where calculations of the concrete breakout strength may not be required. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Title Block Line 1 Project Title: You can change this area Engineer: Project ID: C/LI using the"Settings"menu item Project Descr: and then using the"Printing& Title Block"selection. Title Block Line 6 Printed:10 MAR 2016,5:34PM File=Q:12016 Projects\16017 Mahon Residence Remodel\CALCULATION WORK\Enercalc\16017 mahon,ec6 • WOOCI Bea111 ENERCALC,INC.1983-2016,Build:6.16 3.4,Ver:6.16 3,4: Lic.#: KW-06008381 Licensee: EQUILIBRIUM ENGINEERS LLC Description: header CODE REFERENCES Calculations per NDS 2012, IBC 2012, CBC 2013,ASCE 7-10 Load Combination Set: IBC 2015 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 875 psi E:Modulus of Elasticity Load Combination IBC 2015 Fb-Compr 875 psi Ebend-xx 1 300 ksi Fc-Pill 600 psi Eminbend-xx 470 ksi Wood Species : Douglas Fir- Larch Fc-Perp 625 psi Wood Grade : No.2 Fy 170 si Ft 425 psi Density 31.2 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 0(0.08) $ $ $ $ i D(0.135))S(0.225) 1l K 1 6x12 Span=6.0ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Uniform Load: D=0.1350, S=0.2250, Tributary Width=1.0 ft Uniform Load: D=0.080, Tributary Width=1.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.195 1 Maximum Shear Stress Ratio = 0.110 : 1 Section used for this span 6x12 Section used for this span 6x1 2 fb:Actual = 195.99psi fv:Actual = 21.48 psi FB:Allowable = 1,006.25 psi Fv:Allowable = 195.50 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 3.000ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.007 in Ratio= 9886>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.014 in Ratio= 5055>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 1.320 1.320 Overall MINimum 0.645 0.645 +D+S+H 1.320 1.320 D Only 0.645 0.645 S Only 0.675 0.675 Project W I,v dAtt3W AIL EQUILIBRIUM By 7,v.,_, Sheet # Location E3 Date J�� --r(4-1,5<u:. n2 �d'u - Client Revised Job # Sona L L Qoc(!T5 S 0(,v7- 1Q5 ENGINEERS Date 1665,6 6,c 12_ IDF-i)#z/ SN� W , ke *I PSH C-tAP �S Q- EG1CxE �b �2,Ttte_940611tik/ _-- ._— --- F -> k)/loci NIA( �kT J i 6'0.c GiCa.Fb 4k n r i 1 i` _ 121'0,(- i /, �. r Y,. \ r i. i __ 1 i i i \A1I'JC,CW ;,, I : , om,'1`11(1.1‘4-(1 Sk-I ):,... ' ' MSN b'Typ _____.�____. `� —STS u-OCN, 14,-( ) N ,T,5 . —5lnl,PSoN ,,,Du2.. S,2 s cice4tA... / Routa*, rii). (4) i - ,1,0FI "( gUNk C1)9"41 4gaiiii _ ,,, ,,, ANsirk \\/ \''''t ti1,1•1 FAA C;C: I kilo rSr<N4) w I P26LAAN ST614\ A/k1A, i. CZ 1 1-4ot �owtiJ DF.;A tr SK I