Specifications EQUILIBRIUM ( 3( 7'i SGS
RECEIN9
MAR 21 2016
ENGINEERS§ �G �
l;L1Y l5�
March 14, 2016 � � ��T ��UN
Kim Cope
C/O Small Parts Solutions
6453 SW 155th Ave
Beaverton, OR 97007
RE: Cope Residence Window Wall
13674 SW White Cedar Ct.
Tigard, OR 97223
EE LLC Job No. 16056
Dear Kim:
Attached please find the structural engineering calculation set (Sheets Cl-C14) which verifies
the structural adequacy of the new window wall header and lateral resistance of the bedroom
window wall at the project residence as shown on the attached Structural Drawing SK-l. Design
is based on the provisions of the 2012 International Building Code as amended by the
Washington State Building Code.
Please call if you have any questions.
Edic L'y,�
Sincerely, s\la ,� L
19402
Peter Kahn, P.E., LEED Green Assoc. / I
Project Manager •
NI,
0 p CRO'c'4y 22, a
IExrIREs: )1431) 16 I
16325 Boones Ferry Road, Suite 202 ■ Lake Oswego, Oregon 97035
Phone 503.636.8388 ■ Cell 503.803.8576 • Email peter@equilibriumllc.com
Project
tN�w `� EQUILIBRIUM By Sheet #
Location -1---161,60 I E3 Date C k
y10/201.6
Client Revised Job #
Prc� PA(2T '7A-AA-161-C,
ENGINEERS Date 16056
a7�C 5v e_y 12.E- S1 �c /���✓�L i?�nw�� t._
(N Jnrt) p ,vV ftl�L-
Ac'T� .ni /4DE ✓ C y WIN
(1,1" CoA :.!'tUhJ
. 2o0C
,r Ro0E-
Ft-00, Lv Pw
- 1-10A Pel �►c v�,/V1 a (�
i k Po.;de-c C-t-rE •7 z y
C;,�1" lf�:. c3 �.�1 C 2_.
CS -- o .0R-� t `" s
E . Get Foec_h;,-_,A(. -r ((.._ ��..
Project EQUILIBRIUM By Sheet #
Location Date �/iok
C3
E3
Client Revised Job #
ENGINEERSY Date I bpSb
Seismic Base Shear-Per ASCE 7-10 Specifications TTITTTENT
Building Code Information-Seismic
Occupancy Category= II ASCE 7-10,Table 1.5-1
Spectral Accel.,Ss= 0.957 ASCE 7-10 Figures 22-1 to 22-11 hn
Spectral Accel.,S1= 0.422 ASCE 7-10 Figures 22-2 to 22-11
Long.Trans.Period,T1= 16.0 sec.ASCE 7-10 Fig's. 22-12 to 22-16
Importance Factor,I= 1.00 ASCE 7-10 Table 1.5-2
Soil Site Class= D ASCE 7-10 Table 20.3-1 V= CS*W -�
Structure Height,h„= 20.00 ft. Seismic Base Shear
(Regular Bldg.Config Only)
Seismic Force Resisting Sytem
Flexible Diaphragm(a) u.
Light-framed(wood)walls sheathed with wood structural panels rated for shear resistance
Response Mod.Coef.,R= 6.50 ASCE 7-10 Table 12.2-1 Note a:Dist.Between vert elements
OverstrengthFactor,S2o= 3.0 ASCE 7-10 Table 12.2-1 of the seismic force resisting system
Defl.Amplif.Factor,Cd= 4.0 ASCE 7-10 Table 12.2-1 do not exceed 40ft
Building Height Limit= 65.0 ft,ASCE 7-10 Table 12.2-1
Fundamental Period
Actual Calc.Period,Tc= from analysis(calculated if blank)
Period Coefficient,CT= 0.020 ASCE 7-10 Table 12.8-2
Period Exponent,x= 0.750 ASCE 7-10 Table 12.8-2
Approx.Period,Ta= 0.189 sec., Ta=CT*hnx, ASCE 7-10 Section 12.8.2.1,Eqn.12.8-7
Upper Limit Coet.,C = 1.400 ASCE 7-10 Table 12.8-1
Period max.,Tmax= 0.265 sec., Tmax=Cu*Ta, ASCE 740 Section 12.8.2
Fundamental Period,T= 0.189 sec., T=Ta<=Cu*Ta, ASCE 7-10 Section 12.8.2
Calculated Seismic Design Parameters
Using Equivalent Lateral Force Procedure for Regular Single-Level Building/Structural Systems
Site Coefficients:
Fa= 1.117 ASCE 7-10 Table 11.4-1
FV= 1.578 ASCE 7-10 Table 11.4-2
Maximum Spectral Response Accelerations for Short and 1-Second Periods:
Sims= 1.069 SMS=Fa*Ss,ASCE 7-10 Eqn.11.4-1
SMT= 0.666. SMT=FV*Sl, ASCE 7-10 Eqn. 11.4-2
Design Spectral Response Accelerations for Short and 1-Second Periods:
SpS= 0.713 Sps=2*SMs/3, ASCE 7-10 Eqn.11.4-3
SD1= 0.444 SD1=2*SMT/3,ASCE 7-10 Eqn. 11.4-4
Seismic Design Category:
Category(for Sps)= D ASCE 7-10 Table 11.6-1
Category(for SDI)= D ASCE 7-10 Table 11.6-2
Use Category= D Most critical of either category case above controls
Seismic Design Coefficients
Cs= 0.110CS=SDS/(R/I),ASCE 7-10 Section 12.8.1.1, Eqn. 12.8-2
Cs(max) = 0.361 For T<=TL,CS(max)=SD1/(T*(R/I)),ASCE 7-10 Eqn.12.8-3
Cs(min) = 0.031 CS(min)=0.044*SDS*I>=0.01,ASCE 7-10 Eqn. 12.8-5
Seismic Base Shear
Cs= 0.110 g's, Strength Design
0.7*Cs= 0.077 g's,Allowable Stress Design
Project EQUILIBRIUM By 7r.....
Sheet #
Location Date %/to C''�
-
Client E3 Revised Job #
ENGINEERS Date 14,06
t ;FE TAWKI 7-AA-110
,.1'sf ilc1 ;F�:
., _
.fie m
, it----
`F 0
--- _,
i ----- --- _______
.:77:: 1111: -1 i
, .
...,
.___ __
f
111,U
7iflilfi BEM lb
\4
, 11:111,11f.7 11,I EILL r I 11 I'3-! ir:I
` _ I u A f i1 T16-11
aaF EIA(?,`.
Hew WINt>J
.
ProjectEQUILIBRIUMBy IF Sheet *
::bohl
::eb/ b
d Job *
E3
' Date \\�� vz
ENGINEERS
^ `
'� `
'� �` -�
~-/.� `
``
-----
�� ~.
�
^
.
~ _
-
.`~
', - �� - ~�` `
-___. _ _
' _-
_ -_--__ - -_ - _
___--- - __ __ _ -
--
. .
--. ___
-'--' - |B' I
( . ---===�====�--=='=== --_==~ === ===-_--- __-===_===- -- !
~�~~^---~~~~�~~~~~-~~-- ---~~~-� `~~�^--��~�~ | �
_�_______ -_-���_����_____----- | /
-
- '____- -- - _ ___ � _-___ �
________ _ ___ ______
---' -------- ----- � --� |k } |
��
---�--- �-----'- --' -- !
----'- - --- -'---- --- ---- |
_____ ___ | � � - --�--�
------ -- - | __�- D '
------- - ------'� - ----- -�- - ---- ---- --'-- i
-- --- - -- - '-l---------
[ _ _ 6
| J[W � O �-A /
/ �_u-v x � v
H ~ �'- IT ~
r ---- �� WINDOW L
L. -'------ |K U |/Z ----------
.- ..,
--------
.^----- ----------------- ' - ZI |( 12' - ---�- -----°-
�
1
Project EQUILIBRIUM By P_ Sheet// � #
Location Date � '`'�'
isob‘
E3
Client Revised Job #
ENGINEERS Date lc,c(4,
Seksvt IL vJC16,it k-ET = SOF = tic° (f5' = ) -
fi, --_.(2)-Ko ( 63 b
'� ) Cb(2...(2ci>ku, ) .! • - -?
_ -7--,ioti
Sok.lc_., -f-9.,=c, "::(,-, ',IL_ -- 0. 0- -- (2?, 6sL;) =-- 1,S2) ( frkeb- )
Co ws t) ._ z iiiiSrel) g tt r ,A-0 - t...4 ry E 9111c
wit,) A--,5e-i.c ---_---) (s€--t ci-k C4,)
(7oTPcL '-epAsEL Sl4e,-4,,Q- IN Ns.tc+t -z- •L12�C.Tio,J ke,64_,c s ro w4-c.c.�
0 ,22 ��pc. v� +ulki-
Acs = 0, Co (! 0220$ = 6/ 12-
1
C'oNs,t, ?._ Z vee- 1 ,- . -1?,/ ',JA(,1_ .,,._,,f)e. i) 066
41.-
S,0 ,
- - /.v C oiv—€-OL t .,41<�eAL % k)
3�0 � > G/(I W � � De--s
ZY Ft-;L tic_ -vo .i, \r..e(Z, ov 1. - u#Q Of\ S4 . CS
-11A-C,- Loo ?PC - f-oQ 2'\1 s-ro2-Y S ��t S AAvc r is
Ivor- A C71,---c 4 `l k) ) Wwti 5Oc,) , i j t'i /S r S76€-Y
" \/s-r Fob tlit(..-- LA = -7 C ��0 5
0\I 27v\c2'...),ici l F-✓cc A„. G'" !i<.ybs / .
Z4 S -oQ-y 0 vc_ LiI�"""�'f Fat LI Nkt,1. `S E-40 10 -
1'
,\ ' i 7-- Ov► sheat -r Z Y/Z(b)30�o (6 )+ Zo,Kp& ( J � - 1j1�646.25 = ►►Z
�
pWCnTv�►Ut = 112, (€,q) l/`f
. C
• 3/10/2016
WIND FORCES ON BUILDING File:EE-469etx
US-4
BUILDING DATA:
Basic wind speed(3 sec gust)= 120 MPH
• Exposure 8
Roof Pitch= 4.00 :12 OK
Mean Roof Height h= 20.00 ft
Topographic Factor Kr= 1.00 Table 1.5-2(1.00 for all cases)
1)ASCE 7-10 CH 28 METHOD 2-SIMPLIFIED PROCEDURE
Height Adjustment factor A= 1.00 Figure 28.6-1
-19.05 -14.24 -19.05 -12.09
(-27.44) (-18.71) (-27.44) (-15.57)
-ffiTht • 1 ttt ttt
-4.85 ►
(-8.72) r 6= 18.4 III
•
20.48 _. In 15.13 H =22.2 ft
(30.66) All forces shown in psf 17.8 ft MI (22.87)
II
Ell
I
y
I •
26ft + 25ft 11.
TRANSVERSE ELEV. LONGITUDINAL ELEV.
(22.87) . t �.
11
2a=6.0 ft 10%of least dimension= 2.5 ft
' 1 10.22 kips 40%of the eave height= 7.1 ft
18.4psf
26 ft 8.74 k 4%of least dimension or 3 ft= 3.0 ft
16.8 psf
15.13 > therefore a= 3.0 ft
-
25 ft 2a= 6.O ft
All forces shown in psf- i 6.0 ft ; Example,from Fig 28.6-1 longitudinal for wall
horizontal load at end zone Ps30= 22.87 psf
t t t i t t _ A Height Adjustment factor A= 1.00
20.48 Importance factor IW= 1.00
PLAN VIEW (30.66) (A)(Ke)(P530)= 22.87 psf
FIGURE 28.6-1,MWFRS-Method 2,Enclosed Building
Fig 28.6-1,MWFRS
Horizontal Loads Vertical Loads
Load Roof End Zone Interior zone End Zone Interior zone Overhang
Direction Angle Wall(A) Roof(B) Wall(C) Roof(D) WW(E) LW(F) WW(G) LW(H) EON GOH
Transverse 18.4 30.66 -8.72 20.48 -4.85 -27.44 -18.71 -19.05 _ -14.24 -38.44 -30.05
Longitudinal All 22.87 -11.87 15.13 -7.08 -27.44 -15.57 -19.05 -12.09 -38.44 -30.05
*If roof pressure under horizontal loads is less than zero,use zero
Wind pressure shown in(xxx)for End Zone.
Plus and minus signs signify pressures acting toward and away from projected surfaces,respectively.
Fig30.5-1,COMPONENT AND CLADDING .
Topographic Factor Kzt= 1.00 evaluated at 0.33h
Area for wall element= 10 ft2 RESTRICTIONS: (30.5.1)
Wall, Interior Zone 4= 25.91 -28.09 psf 1. Building Height<Least Horizontal Plan Dimension
End Zone 5= 25.91 -34.73 psf 2. Building Height<60 feet.
3. Building is Enclosed.
Area for Overhang element= 10 ft` '4.'Roofis Hlattor i,ableca
Overhang,End Zone 2= - -48.34 psf 5. Building Plan is NOT Irregular.
Corner Zone 3= - -81.23 psf
Area for Roof element= 10 ft`
Roof, Interior Zone 1 = 14.92 -23.74 psf
End Zone 2= 14.92 -41.27 psf
Corner Zone 3= 14.92 -60.98 psf
Project EQUILIBRIUM By N. Sheet #
Location Date ' /D/'� t
Client E3 Revised ` Job #
ENGINEERS Date �6dS6
l),.)1 Nb0 w Fflok&kt AJ / L.c?ov,..a,,-al Fac)i .4. f N s t bq is As S -ouJ)v ',
QNt) ,i-t-.. c 1-+r✓G 7o € Eti l,,c. :t OA.) I Jo S 1 b-: okel7 Ei L
_
d L5If t f[ -r.:s I
1 6 x 1' FN6INEEPEE, BEAM 1
I
1 a1'1 _: ,1 , -,,
1 1
___.
_—
_
44
V A-h i 5 (P-- _ � 0 6 6r�' .t Z�, Zq�j /�..
r------ - --17— . .„ _ .
U 5 G 16132, S 1-4 A k-(, l C-) w/ loci /\00 (,S ( o•c A.:f t.C rte'
41. q " D.( . yo FleL..p
C q ECIC. C.7\Ii..-- rog-a Nti // / -S?Ai T I L A- C_
&., - 211 ( ,11. 1) _°"( 1�, )(ti(�j) `z1l-Pio _ Vf�IF i t �j►'1 = 26511
` WALI-
2 LA 1 N 5Tb
Project EQUILIBRIUM By ? Sheet #
Location Date el
sAol 6
Client E3 Revised Job #
ENGINEERS Date t 6os-6,
s H>) i 140c,b0„3A...)
Fiss9
Acr-X- 1-0) N\lk), 6 " eAkezt
1 NI-o T-7007 I &)-AA vu
1-100)cy.o&J ii="Af_ (71
Fog- AA.)( Hoi) "JA i '-/ < (O,
3 CZ I Fo
rjc---,t6,1,0 14, c:`,(2-4,4 •1/4 s/Q PA4' AL-C.- 1-. rrti•-,41-c.—
(ON Se 2 viA7L 1/2, F Y19/2„ 7-- 9 /
)1 = 2 S • 4• •r-
/
I) 0 b bo 44-
5e Y I 2_ 1-46-AbEe-- Pc1,1 ( P 4
SIMPSON Anchor Designer TM Company: Date: 3/10/2016
Engineer: Page: 414'
StrO Tie Software Project:
Version 2.4.5673.2 Address:
Phone:
E-mail:
3.Resulting Anchor Forces
Anchor Tension load, Shear load x, Shear load y, Shear load combined,
N.(Ib) Vuax(lb) Vuay(Ib) 4(Vuax)2+(Vuay)2(lb)
1 4423.0 0.0 0.0 0.0
Sum 4423.0 0.0 0.0 0.0
Maximum concrete compression strain(%o):0.00
Maximum concrete compression stress(psi):0
Resultant tension force(lb):0
Resultant compression force(Ib):0
Eccentricity of resultant tension forces in x-axis,e'N.(inch):0.00
Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00
4.Steel Strength of Anchor in Tension(Sec.D.5.11
Nsa(Ib) rd ON.(Ib)
13110 0.75 9833
6.Adhesive Strength of Anchor in Tension(Sec.5.5)
Zk,cr= Zk,crfshort-tennKsat
Zk,cr(psi) fshort-term Ksat m,cr(psi)
980 1.00 1.00 980 '
Nba=2srcr2tdahef(Eq.D-22)
2a rbr(psi) da(in) he(in) Nba(Ib)
1.00 980 0.63 6.000 11545
0/Vs=0(A Na/ANaO)P d,Na Pcp,NaNba(Sec.D.4.1 &Eq.D-18) i
ANa(in2) ANao(in2) Yed,Na fcp,Na Nba(lb) 0 cNa(lb)
165.65 243.61 0.931 1.000 11545 0.65 4749
Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility.
Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com
•
Company: Date: 3/10/2016 (3
SIMPSON Anchor Designer TM Engineer: Page: 4}
Strong-Tie Software Project:
Version 2.4.5673.2 Address:
Phone:
E-mail:
11.Results
Interaction of Tensile and Shear Forces(Sec.D.7)
Tension Factored Load,Nai (Ib) Design Strength,0N„(Ib) Ratio Status
Steel 4423 9833 0.45 Pass
Adhesive 4423 4749 0.93 Pass(Governs)
AT-XP w/5/8"0 F1554 Gr.36 with hef=6.000 inch meets the selected design criteria.
12.Warnings
-Concrete breakout strength in tension has not been evaluated against applied tension load(s)per designer option. Refer to ACI 318 Section
D.4.2.1 for conditions where calculations of the concrete breakout strength may not be required.
-Concrete breakout strength in shear has not been evaluated against applied shear load(s)per designer option. Refer to ACI 318 Section
D.4.2.1 for conditions where calculations of the concrete breakout strength may not be required.
-Designer must exercise own judgement to determine if this design is suitable.
-Refer to manufacturer's product literature for hole cleaning and installation instructions.
Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility.
Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com
Title Block Line 1 Project Title:
You can change this area Engineer: Project ID: C/LI
using the"Settings"menu item Project Descr:
and then using the"Printing&
Title Block"selection.
Title Block Line 6 Printed:10 MAR 2016,5:34PM
File=Q:12016 Projects\16017 Mahon Residence Remodel\CALCULATION WORK\Enercalc\16017 mahon,ec6
• WOOCI Bea111 ENERCALC,INC.1983-2016,Build:6.16 3.4,Ver:6.16 3,4:
Lic.#: KW-06008381 Licensee: EQUILIBRIUM ENGINEERS LLC
Description: header
CODE REFERENCES
Calculations per NDS 2012, IBC 2012, CBC 2013,ASCE 7-10
Load Combination Set: IBC 2015
Material Properties
Analysis Method: Allowable Stress Design Fb-Tension 875 psi E:Modulus of Elasticity
Load Combination IBC 2015 Fb-Compr 875 psi Ebend-xx 1 300 ksi
Fc-Pill 600 psi Eminbend-xx 470 ksi
Wood Species : Douglas Fir- Larch Fc-Perp 625 psi
Wood Grade : No.2 Fy 170 si
Ft 425 psi Density 31.2 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling
0(0.08)
$ $ $ $ i
D(0.135))S(0.225)
1l K
1
6x12
Span=6.0ft
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Uniform Load: D=0.1350, S=0.2250, Tributary Width=1.0 ft
Uniform Load: D=0.080, Tributary Width=1.0 ft
DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio = 0.195 1 Maximum Shear Stress Ratio = 0.110 : 1
Section used for this span 6x12 Section used for this span 6x1 2
fb:Actual = 195.99psi fv:Actual = 21.48 psi
FB:Allowable = 1,006.25 psi Fv:Allowable = 195.50 psi
Load Combination +D+S+H Load Combination +D+S+H
Location of maximum on span = 3.000ft Location of maximum on span = 0.000 ft
Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1
Maximum Deflection
Max Downward Transient Deflection 0.007 in Ratio= 9886>=360
Max Upward Transient Deflection 0.000 in Ratio= 0<360
Max Downward Total Deflection 0.014 in Ratio= 5055>=180
Max Upward Total Deflection 0.000 in Ratio= 0<180
Vertical Reactions Support notation:Far left is#1 Values in KIPS
Load Combination Support 1 Support 2
Overall MAXimum 1.320 1.320
Overall MINimum 0.645 0.645
+D+S+H 1.320 1.320
D Only 0.645 0.645
S Only 0.675 0.675
Project W I,v dAtt3W AIL EQUILIBRIUM By 7,v.,_, Sheet #
Location E3 Date J��
--r(4-1,5<u:. n2 �d'u -
Client Revised Job #
Sona L L Qoc(!T5 S 0(,v7- 1Q5
ENGINEERS Date 1665,6
6,c 12_ IDF-i)#z/ SN�
W , ke *I PSH C-tAP
�S
Q- EG1CxE �b �2,Ttte_940611tik/
_-- ._— ---
F -> k)/loci NIA( �kT
J i 6'0.c GiCa.Fb 4k
n r i 1 i` _ 121'0,(-
i
/, �. r
Y,. \
r
i. i
__ 1 i i
i \A1I'JC,CW ;,,
I :
,
om,'1`11(1.1‘4-(1 Sk-I
):,... ' '
MSN b'Typ
_____.�____. `� —STS u-OCN,
14,-( ) N ,T,5
. —5lnl,PSoN ,,,Du2.. S,2 s
cice4tA... /
Routa*, rii). (4)
i
- ,1,0FI "( gUNk
C1)9"41 4gaiiii _ ,,, ,,, ANsirk \\/ \''''t ti1,1•1
FAA C;C: I kilo rSr<N4)
w I
P26LAAN ST614\ A/k1A,
i.
CZ 1 1-4ot �owtiJ DF.;A tr
SK I