Report (2) ,' ui I3 - ooa
tc cv - 72'4
7373 SE Milwaukie, OR 97268
1111111111.11NORURI
PO Box 68348-Portland, OR 97268
Brian Ferrick, Sales Representative
OF OREGON, INC. Cell: 503-519-3043
FAX: 503-653-2536
City of Tigard
13125 SW Hall Blvd
Tigard OR 97223
Dan Nelson
In regards to Bridgeport Distribution at 15705 SW 72nd Permit BUP2013-00285
Most of what they are storing is canned food and food in glass jars not encapsulated class I— III
They will also be storing some flax seed that is encapsulated class III
T - - . • ' • . ' no .- . .'_. .' -. • ._
The class I—III products that are not encapsulated will be stored to 20' high
The sprinkler system is .45GPM/2000 SQFT Hydraulic system
The heads are at 286 degrees
There are single rows and double rows but no multiple rows
The distance between the top of the commodity and the sprinkler deflector is approximately
24" or greater
Total area of rack high pile storage is 28,900 SQ FT and non public accessible
The aisles between the racks are 8' or greater
Transverse flues are provided at rack uprights and between pallet loads.
Currently no curtain boards not required
There high pile storage racks will have no solid decking
There are smoke heat vents
Required sprinkler density per NFPA 13 required for class III with storage to 20'
Non encapsulated with aisles 8' or greater
Table 12.3.2.1.2 C curve E with 286 degree heads
Requires .37 GPM /2000 SQFT
The system should meet code at .45GPM/2000 SQFT
Thanks my cell number is 503-519-3043
Brian Ferrick
• Calculations for :
BRIDGEPORT DIST .
TIGARD , OR
11/15/2013
Loading: 4000 # load levels
3 pallet levels @ 64 , 128 , 192
Seismic per IBC 2009 100% Utilization
Sds = 0 . 707 Sdl = 0 . 387
I = 1 . 00
96 " Load Beams
Uprights : 44 " wide
C 3 . 000x 3 . 000x 0 . 075 Columns
C 1 . 500x 1 . 500x 0 . 075 Braces
4 . 00x 7 . 00x 0 . 375 Base Plates
with 2- 0 . 500in x 3 . 25in Embed Anchor/Column
4 . 38x 2 . 750x 0 . 075 Load beams w/ 3-Pin Connector
by : Ben Riehl
OR Engineer
Registered 11949
g #
1(�EPN e
1949
•RE,•
C319°
,
J. 116,
.FXPDATE: 12/
Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Latitude = 45.40930000000001
Longitude = -122.74899999999998
Spectral Response Accelerations Ss and S1
Ss and S1 = Mapped Spectral Acceleration Values
Site Class B - Fa = 1.0 ,Fv = 1.0
Data are based on a 0.05 deg grid spacing
Period Sa
(sec) (g)
0.2 0.938 (Ss, Site Class B)
1.0 0.337 (S1, Site Class B)
Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Latitude = 45.40930000000001
Longitude = -122.74899999999998
Spectral Response Accelerations SMs and SM1
SMs = Fa x Ss and SM1 = Fv x S1
Site Class D - Fa = 1.125 ,Fv = 1.726
Period Sa
(sec) (g)
0.2 1.056 (SMs, Site Class D)
1.0 0.581 (SM1, Site Class D)
IBC 2009 LOADING
SEISMIC: Ss= 93.8 % g
S1= 33.7 %g
Soil Class D
Modified Design spectral response parameters
Sms= 105.6 % g Sds= 70.4 %g
Sm1= 58.1 % g Sd1= 38.7 %g
Seismic Use Group 2
Seismic Design Category D
or D
Ie= 1
R= 4 R= 6
Cs= 0.1760 W Cs= 0.1173 W
Using Working Stress Design
V=Cs*W/1.4
V= 0.1257 W V= 0.0838 W
1/
Cold Formed Channel
Depth 3 .000 in Fy = 55 ksi
Flange 3 .000 in
Lip 0.750 in
Thickness 0 .0750 in COLUMN SECTION
R 0.1000 in
Blank = 9.96 in wt = 2.5 plf
A = 0.747 in2
Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in
Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in
a 2.6500 Web w/t 35.3333
a bar 2.9250 Flg w/t 35.3333
b 2 .6500 x bar 1.2423
b bar 2.9250 m 1.6690
c 0.5750 x0 -2 .9114
c bar 0.7125 J 0.0014
u 0.2160 x web 1.2798
gamma 1.0000 x lip 1.7202
R' 0.1375 h/t 38.0000
Section Removing:
0.640 inch slot 0.75 inches each side of center on web
0.375 inch hole 0.87 inches from web in each flange
A- = 0.152 in2 A' = 0.595 in2
x bar = 1.478 in
I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in
I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1. 117 in
Cold Formed Channel
Depth 1.500 in Fy = 55 ksi
Flange 1.500 in
Lip 0.000 in
Thickness 0.0750 in BRACE SECTION
R 0.1000 in
Blank = 4.23 in wt = 1.1 plf
A = 0.317 in2
Ix = 0.125 in4 Sx = 0.166 in3 Rx = 0.627 in
Iy = 0.075 in4 Sy = 0.079 in3 Ry = 0.487 in
a 1.1500 Web w/t 15.3333
a bar 1.4250 Flg w/t 17 .6667
b 1.3250 x bar 0 .5060
b bar 1.4625 m 0.6531
c 0.0000 x0 -1.1592
c bar 0.0000 J 0.0006
u 0.2160 x web 0.5435
gamma 0.0000 x lip 0.9565
R' 0.1375 h/t 18.0000
Cold Formed Section
HEIGHT OF BEAM 4.380 INCHES
MAT'L THICKNESS 0.075 INCHES
INSIDE RADIUS 0.100 INCHES LOAD BEAM
WIDTH 2.750 INCHES
STEEL YIELD 55.0 KSI
STEP 1.625 INCHES HIGH 1.000 INCHES WIDE
ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC
L Y LY LY2 Ii X LX
LONG SIDE 4 .0300 2.1900 8 .8257 19.3283 5.4542 0.0375 0.1511
TOP 1.4000 4.3425 6.0795 26.4002 0.0000 0.8750 1.2250
STEP SIDE 1.3500 3 .5300 4 .7655 16.8222 0.2050 1.7125 2.3119
STEP BOTT 0.7250 2.7175 1.9702 5.3540 0.0000 2.2125 1.6041
SHORT SID 2.4050 1.3775 3 .3129 4 .5635 1.1592 2.7125 6.5236
BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000
CORNERS 0.2160 4.2925 0.9271 3 .9797 0.0004 0.0875 0.0189
2 0.2160 4.2925 0.9271 3.9797 0.0004 1.6625 0.3591
3 0.2160 2.7675 0.5977 1.6542 0.0004 1.8000 0.3888
4 0.2160 2.6675 0.5761 1.5369 0.0004 2.6625 0.5751
5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751
6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189
TOTALS 13.6059 28.3900 28 .1097 83.6254 6.8208 17.8875 17.0514
AREA = 1.020 IN2
CENTER GRAVITY = 2.066 INCHES TO BASE 1.253 INCHES TO LONG SIDE
Ix = 2.428 IN4 Iy = 1.142 IN4
Sx = 1.049 IN3 Sy = 0.763 IN3
Rx = 1.542 IN Ry = 1.058 IN
BEAM END CONNECTOR
COLUMN MATERIAL THICKNESS = 0.075 IN
LOAD BEAM DEPTH = 4 .38 IN
TOP OF BEAM TO TOP OF CONN= 0.000 IN
WELD @ BTM OF BEAM = 0.000 IN
LOAD = 4000 LBS PER PAIR
CONNECTOR VERTICAL LOAD = 1000 LBS EACH
RIVETS
3 RIVETS @ 2 " oc 0.4375 " DIA A502-2
1st @ 1 "BELOW TOP OF CONNECTOR
AREA = 0.150 IN2 EACH Fv = 22.0 KSI
Vcap = 3.307 KIPS EACH RIVET
BEARING Fb = 65.0 KSI
BRG CAP= 2.133 KIPS EACH RIVET
TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 16%
CONNECTOR
6 " LONG CONNECTOR ANGLE Fy = 50 KSI
1.625 " x 3 " x 0.1875 " THICK
S = 0.131 IN3 Mcap = 3.924 K-IN
3 .924 K-IN
RIVET MOMENT RESULTANT @ 0.8 IN FROM BTM OF CONN
M = PL L = 0.82 IN
Pmax = Mcap/L = 4 .785 KIPS
RIVET LOAD DIST MOMENT
P1 2.844 4 .200 11.944 RIVET OK
P2 1.490 2 .200 3.277
P3 0.135 0.200 0.027
P4 0.000 0.000 0.000
TOTAL 4.469 15.248 CONNECTOR OK
WELDS
0.125 " x 4.380 " FILLET WELD UP OUTSIDE
0.125 " x 2.755 " FILLET WELD UP INSIDE
0.125 " x 1.625 " FILLET WELD UP STEP SIDE
0 " x 1.000 " FILLET WELD STEP BOTTOM
0 " x 2.750 " FILLET WELD ACROSS BOTTOM
0 " x 1.750 " FILLET WELD ACROSS TOP
USE EFFECTIVE 0.075 " THICK WELD
L = 8.76 IN A = 0.657 IN2
S = 0.480 IN3 Fv = 26.0 KSI
Mcap = 12.47 K-IN 12 .47 K-IN
7
In Upright Plane
Seismic Load Distribution
per 2009 IBC Sds = 0.707
1.00 Allowable Stress Increase
I = 1. 00 R = 4.0
V = (Sds/R) *I*P1* .67
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0. 075
192 4060 780 721 138
128 4060 520 481 62
64 4060 260 240 15 KLx = 64 in
0 0 0 0 0 KLy = 48 in
0 0 0 0 0 A = 0.595 in
0 0 0 0 0 Pcap = 15145 lbs
---- ---- ---- ====
12180
---- ---- ----
12180 1559 1442 215 Column
73% Stress
Max column load = 10983 #
Min column load = -1415 # Uplift
Overturning
( .6- .11Sds)DL+(0.6- . 14Sds) .75PLapp-.51EL= -938 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 7538 # MAX
REQUIRED HOLD DOWN = -1415 #
Anchors: 4
T = 1415 #
2 0.5 in dia POWERS STUD+SD2
3 .25 "embedment in 2500 psi concrete
Tcap = 2801 # 51% Stressed
V = 721 # per leg Vcap = 4309 # = 17% Stressed
COMBINED = 67% Stressed
OK
Braces:
Brace height = 48 "
Brace width = 44 "
Length = 65 "
P = 1600 #
Use : C 1.500x 1.500x 0.075
A = 0.317 in
L/r = 134
Pcap = 2692 # 59%
In Upright Plane
Seismic Load Distribution TOP LOAD ONLY
per 2009 IBC Sds = 0.707
1.00 Allowable Stress Increase
I = 1.00 R = 4 .0
V = (Sds/R) *I*P1
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3 .000x 3 .000x 0.075
192 4060 780 728 140
128 60 8 7 1
64 60 4 4 0 KLx = 64 in
0 0 0 0 0 KLy = 48 in
0 0 0 0 0 A = 0.595 in
0 0 0 0 0 Pcap = 15145 lbs
---- ---- ---- ====
4180
---- ---- ----
4180 791 738 141 Column
35% Stress
Max column load = 5292 #
Min column load = -1318 # Uplift
Overturning
( .6- . 11Sds)DL+(0.6- .14Sds) .75PLapp- .51EL= -1955 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 5299 # MAX
REQUIRED HOLD DOWN = -1955 #
Anchors: 4
T = 1955 #
2 0.5 in dia POWERS STUD+SD2
3 .25 "embedment in 2500 psi concrete
Tcap = 2801 # 70% Stressed
V = 369 # per leg Vcap = 4309 # = 9% Stressed
COMBINED = 78% Stressed
OK
Braces:
Brace height = 48 "
Brace width = 44 "
Length = 65 "
P = 820 #
Use : C 1.500x 1.500x 0.075
A = 0.317 in
L/r = 134
Pcap = 2692 # 30%
PAGE 1
MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:37:15
INPUT DATA LISTING TO FOLLOW:
Structure Storage Rack in Load Beam Plane 3 Levels
Type Plane Frame
Number of Joints 14
Number of Supports 8
Number of Members 15
Number of Loadings 1
Joint Coordinates
1 0.0 64.0 S
2 0. 0 128.0 S 3 7 11 14
3 0 .0 192.0 S
4 49.5 0.0 S
5 49.5 64 .0 2 6 10 13
6 49.5 128.0
7 49.5 192.0
8 148.5 0.0 S
9 148.5 64 .0 1 5 9 12
10 148 .5 128.0
11 148 .5 192.0
12 198 .0 64.0 S 4 8
13 198.0 128.0 S
14 198.0 192.0 S
Joint Releases
4 Moment Z
8 Moment Z
1 Force X Moment Z
2 Force X Moment Z
3 Force X Moment Z
12 Force X Moment Z
13 Force X Moment Z
14 Force X Moment Z
Member Incidences
1 1 5
2 2 6
3 3 7
4 4 5
5 5 6
6 6 7
7 8 9
8 9 10
9 10 11
10 5 9
11 9 12
12 6 10
13 10 13
14 7 11
15 11 14
Member Properties
1 Thru 3 Prismatic Ax 1.020 Ay 0.714 Iz 2.428
f ()
PAGE 2
MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:37:15
4 Thru 9 Prismatic Ax 0.595 Ay 0.298 Iz 1.014
10 Thru 15 Prismatic Ax 1.020 Ay 0.714 Iz 2.428
Constants E 29000. All G 12000. All
Tabulate All
Loading Dead + Live + Seismic
Joint Loads
5 Force Y -2.03
6 Force Y -2.03
7 Force Y -2.03
9 Force Y -2.03
10 Force Y -2.03
11 Force Y -2.03
5 Force X 0.033
6 Force X 0.065
7 Force X 0.098
9 Force X 0.033
10 Force X 0.065
11 Force X 0.098
Solve
PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED
Seismic Analysis per 2009 IBC
wi di widi2 fi fidi
in
4060 0.7168 2086 66 47.3 33 66
4060 0.9387 3578 130 122.0 65 130
4060 1.0586 4550 196 207.5 98 196
O 0.0000 0 0 0.0 0 0
O 0.0000 0 0 0.0 0 0
O 0.0000 0 0 0.0 0 0
12180 10213 392 376.8 392
g = 32.2 ft/sect T = 1.6641 sec
I = 1.00 Cs = 0.0387 or 0.1178
Sdl = 0.387 Cs min = 0.070666
R = 6 Cs = 0.0707
V = (Cs*I* .67) *W* .67
V = 0 .0473 W*.67
= 392 # 100%
II
PAGE 3
MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:37:15
Structure Storage Rack in Load Beam Plane 3 Levels
Loading Dead + Live + Seismic
MEMBER FORCES
MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT
1 1 0.000 -0.152 0.00
1 5 0.000 0.152 -7.54
2 2 0.000 -0.046 0.00
2 6 0.000 0.046 -2.29
3 3 0.000 0.001 0.00
3 7 0.000 -0.001 0.07
4 4 5.992 0.192 0.00
4 5 -5.992 -0.192 12.29
5 5 3.984 0.143 4.16
5 6 -3.984 -0.143 5.02
6 6 1.994 0.066 1.94
6 7 -1.994 -0.066 2 .31
7 8 5.992 0.200 0.00
7 9 -5.992 -0.200 12 .80 _
8 9 3.984 0.183 5.32
8 10 -3 .984 -0.183 6.36
9 10 1.994 0.130 3 .78
9 11 -1.994 -0.130 4.52
10 5 -0.016 -0.175 -8.91
10 9 0.016 0.175 -8.38
11 9 0.000 -0.1979.75
C CaPivNi
11 12 0.000 0.197 0.0-0i(1
12 6 -0.012 -0.086 -4 .67 /
12 10 0.012 0.086 -3 .88
13 10 0.000 -0.126 -6.26
13 13 0.000 0.126 0.00
14 7 0.032 -0.034 -2 .38
14 11 -0.032 0.034 -1.03
15 11 0.000 -0.070 -3 .49
15 14 0.000 0.070 0.00
APPLIED JOINT LOADS, FREE JOINTS
PAGE 4
MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:37:15
JOINT FORCE X FORCE Y MOMENT Z
• 5 0.033 -2 .030 0.00
6 0.065 -2 .030 0.00
7 0.098 -2 .030 0.00
9 0. 033 -2 .030 0.00
10 0.065 -2 .030 0.00
11 0.098 -2.030 0.00
REACTIONS,APPLIED LOADS SUPPORT JOINTS
JOINT FORCE X FORCE Y MOMENT Z
1 0.000 -0.152 0.00
2 0.000 -0.046 0.00
3 0. 000 0.001 0.00
4 -0. 192 5.992 0.00
8 -0.200 5.992 0.00
12 0.000 0.197 0.00
13 0.000 0.126 0.00
14 0.000 0.070 0.00
FREE JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
5 0.7168 -0.0222 -0.0022
6 0.9387 -0.0370 -0.0013
7 1.0586 -0.0444 -0. 0009
9 0.7169 -0.0222 -0.0019
10 0. 9387 -0.0370 -0. 0007
11 1.0585 -0.0444 0.0001
SUPPORT JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
1 0.7168 0.0000 0. 0004
2 0. 9387 0.0000 -0. 0005
3 1. 0586 0 .0000 -0.0009
4 0.0000 0.0000 -0.0156
8 0. 0000 0.0000 -0.0158
12 0 .7169 0.0000 0.0016
13 0 . 9387 0.0000 0.0015
14 1. 0585 0.0000 0.0013
•
13
Beam-Column Check
C 3.000x 3.000x 0.075 Fy = 55 ksi
A = 0.595 in2
Sx = 0.676 in3
Rx = 1.305 in Ry = 1.117 in
kx = 1.00 ky = 1.00
Stress Factor 1.000
Point P M Lx Ly Pcap Mcap Ratio
9 6.1 12.8 64.0 48.0 15.14 22.30 98%
10 4 .1 6.4 64.0 48.0 15.14 22.30 56%
11 2.1 4.5 64 .0 48.0 15.14 22.30 34%
0 0.0 0.0 64 . 0 48.0 15.14 22.30 0%
0 0.0 0.0 64 .0 48.0 15.14 22.30 0%
0 0.0 0.0 64.0 48.0 15.14 22.30 0%
Load Beam Check
4 .38x 2.750x 0.075 Fy = 55 ksi
A = 1.020 in2 E = 29,500 E3 ksi
Sx = 1.049 in3 Ix = 2.428 in4
Length = 96 inches
Pallet Load 4000 lbs
Assume 0.5 pallet load on each beam
M = PL/8= 24 .00 k-in
fb = 22.87 ksi Fb = 33 ksi 69%
Mcap = 34 .62 k-in
46.17 k-in with 1/3 increase
Defl = 0.32 in = L/ 298
w/ 25% added to one pallet load
M = .232 PL = 22.27 k-in 64%
' Li
• Base Plate Design
Column Load 8.2 kips
Allowable Soil 1500 psf basic
Assume Footing 28. 1 in square on side
Soil Pressure 1500 psf
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax = wl'2/3
Use 4 "square base plate
w = 10.4 psi 1 = 9.56 in
Load factor = 1.67 M = 530 #-in
5 in thick slab f'c = 2500 psi
s = 4.17 in3 fb = 127 psi
Fb = 5 (phi) (f'cA.5) = 163 psi OK ! !
Shear :
Beam fv = 33 psi Fv = 85 psi OK ! !
Punching fv = 69 psi Fv = 170 psi OK ! !
Base Plate Bending Use 0.375 " thick
1 = 1.5 in w = 515 psi
fb = 24712 psi Fb = 37500 psi OK ! !
Calculations for : la)
BRIDGEPORT DIST.
TIGARD , OR
11/15/2013
Loading: 4600 # load levels
2 pallet levels @ 94, 160
Seismic per IBC 2009 100% Utilization
Sds = 0 . 707 Sdl = 0 . 387
I = 1 . 00
144 " Load Beams
Uprights : 44 " wide
C 3 . 000x 3 . 000x 0 . 075 Columns
C 1 . 500x 1. 500x 0 . 075 Braces
4 . 00x 7 . 00x 0 . 375 Base Plates
with 2- 0 . 500in x 3 . 25in Embed Anchor/Column
5 . 00x 2 . 750x 0 . 075 Load beams w/ 4-Pin Connector
by : Ben Riehl
Registered Engineer OR# 11949
lC/
Cold Formed Section
HEIGHT OF BEAM 5.000 INCHES
MAT'L THICKNESS 0.075 INCHES
INSIDE RADIUS 0.100 INCHES LOAD BEAM
WIDTH 2.750 INCHES
STEEL YIELD 55.0 KSI
STEP 1.625 INCHES HIGH 1.000 INCHES WIDE
ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC
L Y LY LY2 Ii X LX
LONG SIDE 4 .6500 2.5000 11.6250 29.0625 8.3787 0.0375 0.1744
TOP 2.4000 4 .9625 11.9100 59.1034 0.0000 1.3750 3 .3000
STEP SIDE 1.3500 4 .1500 5.6025 23.2504 0.2050 1.7125 2.3119
STEP BOTT 0.7250 3.3375 2.4197 8.0757 0.0000 2 .2125 1.6041
SHORT SID 3.0250 1.6875 5.1047 8.6142 2.3067 2 .7125 8.2053
BOTTOM 3.4000 0.0375 0.1275 0.0048 0.0000 1.3750 4.6750
CORNERS 0.2160 4.9125 1.0610 5.2124 0.0004 0 .0875 0.0189
2 0.2160 4.9125 1.0610 5.2124 0.0004 1.6625 0.3591
3 0.2160 3.3875 0.7316 2.4784 0.0004 1.8000 0.3888
4 0.2160 3 .2875 0.7101 2.3343 0.0004 2 .6625 0.5751
5 0.2160 0.0875 0.0189 0.0017 0.0004 2 .6625 0.5751
6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189
TOTALS 16.8459 33.3500 40.3909 143.3517 10.8928 18 .3875 22.2064
AREA = 1.263 IN2
CENTER GRAVITY = 2.398 INCHES TO BASE 1.318 INCHES TO LONG SIDE
Ix = 4.305 IN4 Iy = 1.522 IN4
Sx = 1.654 IN3 Sy = 1.063 IN3
Rx = 1.846 IN Ry = 1.097 IN
11
BEAM END CONNECTOR
COLUMN MATERIAL THICKNESS = 0.075 IN
LOAD BEAM DEPTH = 5 IN
TOP OF BEAM TO TOP OF CONN= 0. 000 IN
WELD @ BTM OF BEAM = 0.000 IN
LOAD = 4600 LBS PER PAIR
CONNECTOR VERTICAL LOAD = 1150 LBS EACH
RIVETS
4 RIVETS @ 2 " oc 0.4375 " DIA A502-2
1st @ 1 "BELOW TOP OF CONNECTOR
AREA = 0.150 IN2 EACH Fv = 22.0 KSI
Vcap = 3.307 KIPS EACH RIVET
BEARING Fb = 65.0 KSI
BRG CAP= 2.133 KIPS EACH RIVET
TOTAL RIVET VERTICAL CAPACITY = 8.531 KIPS 13%
CONNECTOR
8 " LONG CONNECTOR ANGLE Fy = 50 KSI
1.625 " x 3 " x 0.1875 " THICK
S = 0.131 IN3 Mcap = 3.924 K-IN
3.924 K-IN
RIVET MOMENT RESULTANT @ 2.25 IN FROM BTM OF CONN
M = PL L = 0.75 IN
Pmax = Mcap/L = 5.232 KIPS
RIVET LOAD DIST MOMENT
P1 2 .844 4 .750 13.508 RIVET OK
P2 1.646 2 .750 4.528
P3 0.449 0 .750 0.337
P4 0.000 0.000 0.000
TOTAL 4. 939 18.372 CONNECTOR OK
WELDS
0.125 " x 5.000 " FILLET WELD UP OUTSIDE
0.125 " x 3 .375 " FILLET WELD UP INSIDE
0.125 " x 1.625 " FILLET WELD UP STEP SIDE
0 " x 1.000 " FILLET WELD STEP BOTTOM
0 " x 2 .750 " FILLET WELD ACROSS BOTTOM
0 " x 1.750 " FILLET WELD ACROSS TOP
USE EFFECTIVE 0.075 " THICK WELD
L = 10. 00 IN A = 0.750 IN2
S = 0.625 IN3 FIT = 26.0 KSI
Mcap = 16.25 K-IN 16.25 K-IN
ir
In Upright Plane
Seismic Load Distribution
per 2009 IBC Sds = 0.707
1.00 Allowable Stress Increase
I = 1.00 R = 4.0
V = (Sds/R) *I*P1*.67
Weight
60 # per level frame weight
Columns @ 44
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0 .075
160 4660 746 695 111
94 4660 438 408 38
0 0 0 0 0 KLx = 94 in
0 0 0 0 0 KLy = 48 in
0 0 0 0 0 A = 0.595 in
0 0 0 0 0 Pcap = 12901 lbs
---- ---- ---- ====
9320
---- ---- ----
9320 1184 1103 150 Column
62% Stress
Max column load = 8059 #
Min column load = -738 # Uplift
Overturning
( .6- .11Sds)DL+(0.6-.14Sds) .75PLapp- .51EL= -544 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 5590 # MAX
REQUIRED HOLD DOWN = -738 #
Anchors: 4
T = 738 #
2 0.5 in dia POWERS STUD+SD2
3.25 "embedment in 2500 psi concrete
Tcap = 2801 # 26% Stressed
V = 552 # per leg Vcap = 4309 # = 13% Stressed
COMBINED = 39% Stressed
OK
Braces:
Brace height = 48 "
Brace width = 44 "
Length = 65 "
P = 1224 #
Use : C 1.500x 1.500x 0.075
A = 0.317 in
L/r = 134
Pcap = 2692 # 45%
t �
In Upright Plane
Seismic Load Distribution TOP LOAD ONLY
per 2009 IBC Sds = 0.707
1.00 Allowable Stress Increase
I = 1.00 R = 4 .0
V = (Sds/R) *I*Pl
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0.075
160 4660 746 828 132
94 60 6 6 1
0 0 0 0 0 KLx = 94 in
O 0 0 0 0 KLy = 48 in
O 0 0 0 0 A = 0.595 in
O 0 0 0 0 Pcap = 12901 lbs
---- ---- ---- ----
---- ---- ---- ----
4720 751 834 133 Column
42% Stress
Max column load = 5383 #
Min column load = -896 # Uplift
Overturning
( .6- .11Sds)DL+(0.6- .14Sds) .75PLapp-.51EL= -1612 # MIN
(1+0. 11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 5388 # MAX
REQUIRED HOLD DOWN = -1612 #
Anchors: 4
T = 1612 #
2 0.5 in dia POWERS STUD+SD2
3 .25 "embedment in 2500 psi concrete
Tcap = 2801 # 58% Stressed
V = 417 # per leg Vcap = 4309 # = 10% Stressed
COMBINED = 67% Stressed
OK
Braces:
Brace height = 48 "
Brace width = 44 "
Length = 65 "
P = 926 #
Use : C 1.500x 1.500x 0.075
A = 0.317 in
L/r = 134
Pcap = 2692 # 34%
70
PAGE 1
MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:45:11
INPUT DATA LISTING TO FOLLOW:
Structure Storage Rack in Load Beam Plane 2 Levels
Type Plane Frame
Number of Joints 10
Number of Supports 6
Number of Members 10
Number of Loadings 1
Joint Coordinates
1 0.0 94 .0 S 2 5 8 10
2 0. 0 160.0 S
3 73.5 0.0 S
4 73.5 94 .0
5 73.5 160.0
6 220.5 0.0 S 1 4 7 9
7 220 .5 94.0
8 220.5 160.0
9 294.0 94 .0 S
10 294 . 0 160.0 S
Joint Releases 3 6
3 Moment Z
6 Moment Z
1 Force X Moment Z
2 Force X Moment Z
9 Force X Moment Z
10 Force X Moment Z
Member Incidences
1 1 4
2 2 5
3 3 4
4 4 5
5 6 7
6 7 8
7 4 7
8 7 9
9 5 8
10 8 10
Member Properties
1 Thru 2 Prismatic Ax 1.113 Ay 0 .779 Iz 3 .394
3 Thru 6 Prismatic Ax 0.595 Ay 0 .298 Iz 1.014
7 Thru 10 Prismatic Ax 1.113 Ay 0.779 Iz 3.394
Constants E 29000. All G 12000. All
Tabulate All
Loading Dead + Live + Seismic
Joint Loads
4 Force Y -2 .33
5 Force Y -2.33
7 Force Y -2 .33
8 Force Y -2.33
4 Force X 0.056
PAGE 2
MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:45:11
5 Force X 0.094
7 Force X 0.056
8 Force X 0.094
Solve
PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED
Seismic Analysis per 2009 IBC
wi di widi2 fi fidi
# in #
4660 1.6103 12084 112 180.4 56 112
4660 1.7725 14641 188 333.2 94 188
0 0. 0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
9320 26724 300 513 .6 300
g = 32.2 ft/sec2 T = 2 .3057 sec
I = 1.00 Cs = 0.0279 or 0.1178
Shc = 0.387 Cs min = 0.070666
R = 6 Cs = 0.0707
V = (Cs*I* .67) *W*.67
V = 0.0473 W*.67
= 300 # 100%
71
PAGE 3
MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:45:11
Structure Storage Rack in Load Beam Plane 2 Levels
Loading Dead + Live + Seismic
MEMBER FORCES
MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT
1 1 0.000 -0.101 0.00
1 4 0.000 0.101 -7.45
2 2 0.000 -0.014 0.00
2 5 0.000 0.014 -1.03
3 3 4 .637 0. 149 0.00
3 4 -4.637 -0.149 13.96
4 4 2.318 0.079 1.93
4 5 -2.318 -0.079 3.26
5 6 4.637 0.151 0.00
5 7 -4.637 -0.151 14.24
6 7 2.318 0.109 2.86
6 8 -2.318 -0.109 4 .36
7 4 -0.014 -0.112 -8.44
7 7 0.014 0.112 -8.05
8 7 0.000 -0.123 -9'04 ,CEPAA44
8 9 0.000 0.123 .00 ititaltigkar
9 5 0.015 -0.026 -2.23
9 8 -0.015 0.026 -1.58
10 8 0.000 -0.038 -2.78
10 10 0.000 0.038 0.00
APPLIED JOINT LOADS, FREE JOINTS
JOINT FORCE X FORCE Y MOMENT Z
4 0.056 -2.330 0.00
5 0.094 -2.330 0.00
7 0.056 -2.330 0.00
8 0.094 -2.330 0.00
REACTIONS,APPLIED LOADS SUPPORT JOINTS
PAGE 4
MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:45:11
JOINT FORCE X FORCE Y MOMENT Z
1 0.000 -0.101 0.00
2 0.000 -0.014 0.00
3 -0. 149 4 .637 0.00
6 -0.151 4 .637 0.00
9 0.000 0.123 0.00
10 0. 000 0.038 0.00
FREE JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
4 1.6103 -0.0253 -0.0022
5 1.7725 -0.0341 -0.0007
7 1.6103 -0.0253 -0. 0019
8 1.7725 -0.0341 -0. 0002
SUPPORT JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
1 1.6103 0.0000 0.0006
2 1.7725 0.0000 -0.0003
3 0.0000 0.0000 -0.0245
6 0.0000 0.0000 -0.0247
9 1.6103 0.0000 0.0015 _
10 1.7725 0.0000 0.0008 .
29
Beam-Column Check
C 3. 000x 3.000x 0.075 Fy = 55 ksi
A = 0.595 in2
Sx = 0.676 in3
Rx = 1.305 in Ry = 1.117 in
kx = 1.00 ky = 1.00
Stress Factor 1.000
Point P M Lx Ly Pcap Mcap Ratio
7 4 .7 14.2 94.0 48. 0 12.90 22.30 100%
8 2 .4 4.4 66.0 48 .0 15.02 22 .30 35%
0 0.0 0.0 94.0 48.0 12. 90 22.30 0%
0 0.0 0.0 94.0 48.0 12 .90 22.30 0%
0 0.0 0.0 94.0 48.0 12 .90 22.30 0%
0 0.0 0.0 94.0 48. 0 12. 90 22.30 0%
Load Beam Check
5.00x 2.750x 0.075 Fy = 55 ksi
A = 1.263 in2 E = 29,500 E3 ksi
Sx = 1.654 in3 Ix = 4.305 in4
Length = 144 inches
Pallet Load 4600 lbs
Assume 0.5 pallet load on each beam
M = PL/8= 41.40 k-in
fb = 25.03 ksi Fb = 33 ksi 76%
Mcap = 54 .59 k-in
72.79 k-in with 1/3 increase
Defl = 0.70 in = L/ 205
w/ 25% added to one pallet load
M = .232 PL = 38.42 k-in 70%
2c
Base Plate Design
Column Load 6.0 kips
Allowable Soil 1500 psf basic
Assume Footing 24.1 in square on side
Soil Pressure 1500 psf
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax = w1A2/3
Use 4 "square base plate
w = 10.4 psi 1 = 7.54 in
Load factor = 1.67 M = 330 #-in
5 in thick slab f'c = 2500 psi
s = 4 .17 in3 fb = 79 psi
Fb = 5 (phi) (f'c" .5) = 163 psi OK ! !
Shear :
Beam fv = 26 psi Fv = 85 psi OK ! !
Punching fv = 48 psi Fv = 170 psi OK ! !
Base Plate Bending Use 0 .375 " thick
1 = 1.5 in w = 378 psi
fb = 18133 psi Fb = 37500 psi OK ! !
E 3 E LT,L i ,t-te 3 ob'P )1
P.O. BOX 4010 • TUALATIN, OR 97062-4010
14795 S.W. 72ND • PORTLAND, OR 97224-7952
FIRE , I
NC. RECEIVE120_402cocB.:6A4x,75403,620_,058
N0V252013 A
October 22, 2001 CITY OF TIGARD FcF/fFO
PLANNING/ENGINEERING Oc, 3
f Q )(- u .' S �' ��
,i
Pactrust Corporations j /-o r i f C 1G 4> _- —�
c/o Wiitala Management ,— , �,""
00 15115 SW Sequoia Parkway yr 1.1-, i '7 e - U i3
Portland, Oregon 97224
Attn: John Wiitala
Re: Oregon Business Park III
is 70C 15605 SW 72nd Avenue
Tigard, Oregon
We have reviewed our fire sprinkler 'as builts' for a project we completed for Nike Tetra Plastics in
1996. During this project we were contracted to convert the existing dry pipe systems into wet
systems. We have generated some preliminary hydraulic calculations to determine the systems
capacities. Our preliminary calculations reveal that a design density of .45/2000 can be achieved
from the existing system piping. The following chart outlines the limitations of the system as it
t relates to commodity class and height of storage. All storage is assumed to be non-encapsulated,
stored in conventional (no shelves) racks, with eight foot aisles. If these criteria are met, in rack
sprinkler protection should not be required.
CLASS I 23 FT
CLASS II __ 22 FT
CLASS III 21 FT
CLASS IV 18 FT
We trust this information is to your satisfaction. If you have any questions, please feel free to call.
Sincerely,
' Ceiii/4 & M
Steven G. Cartales
FIRE PROTECTION CONTRACTORS