Loading...
Report (2) ,' ui I3 - ooa tc cv - 72'4 7373 SE Milwaukie, OR 97268 1111111111.11NORURI PO Box 68348-Portland, OR 97268 Brian Ferrick, Sales Representative OF OREGON, INC. Cell: 503-519-3043 FAX: 503-653-2536 City of Tigard 13125 SW Hall Blvd Tigard OR 97223 Dan Nelson In regards to Bridgeport Distribution at 15705 SW 72nd Permit BUP2013-00285 Most of what they are storing is canned food and food in glass jars not encapsulated class I— III They will also be storing some flax seed that is encapsulated class III T - - . • ' • . ' no .- . .'_. .' -. • ._ The class I—III products that are not encapsulated will be stored to 20' high The sprinkler system is .45GPM/2000 SQFT Hydraulic system The heads are at 286 degrees There are single rows and double rows but no multiple rows The distance between the top of the commodity and the sprinkler deflector is approximately 24" or greater Total area of rack high pile storage is 28,900 SQ FT and non public accessible The aisles between the racks are 8' or greater Transverse flues are provided at rack uprights and between pallet loads. Currently no curtain boards not required There high pile storage racks will have no solid decking There are smoke heat vents Required sprinkler density per NFPA 13 required for class III with storage to 20' Non encapsulated with aisles 8' or greater Table 12.3.2.1.2 C curve E with 286 degree heads Requires .37 GPM /2000 SQFT The system should meet code at .45GPM/2000 SQFT Thanks my cell number is 503-519-3043 Brian Ferrick • Calculations for : BRIDGEPORT DIST . TIGARD , OR 11/15/2013 Loading: 4000 # load levels 3 pallet levels @ 64 , 128 , 192 Seismic per IBC 2009 100% Utilization Sds = 0 . 707 Sdl = 0 . 387 I = 1 . 00 96 " Load Beams Uprights : 44 " wide C 3 . 000x 3 . 000x 0 . 075 Columns C 1 . 500x 1 . 500x 0 . 075 Braces 4 . 00x 7 . 00x 0 . 375 Base Plates with 2- 0 . 500in x 3 . 25in Embed Anchor/Column 4 . 38x 2 . 750x 0 . 075 Load beams w/ 3-Pin Connector by : Ben Riehl OR Engineer Registered 11949 g # 1(�EPN e 1949 •RE,• C319° , J. 116, .FXPDATE: 12/ Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.40930000000001 Longitude = -122.74899999999998 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.938 (Ss, Site Class B) 1.0 0.337 (S1, Site Class B) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.40930000000001 Longitude = -122.74899999999998 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 Site Class D - Fa = 1.125 ,Fv = 1.726 Period Sa (sec) (g) 0.2 1.056 (SMs, Site Class D) 1.0 0.581 (SM1, Site Class D) IBC 2009 LOADING SEISMIC: Ss= 93.8 % g S1= 33.7 %g Soil Class D Modified Design spectral response parameters Sms= 105.6 % g Sds= 70.4 %g Sm1= 58.1 % g Sd1= 38.7 %g Seismic Use Group 2 Seismic Design Category D or D Ie= 1 R= 4 R= 6 Cs= 0.1760 W Cs= 0.1173 W Using Working Stress Design V=Cs*W/1.4 V= 0.1257 W V= 0.0838 W 1/ Cold Formed Channel Depth 3 .000 in Fy = 55 ksi Flange 3 .000 in Lip 0.750 in Thickness 0 .0750 in COLUMN SECTION R 0.1000 in Blank = 9.96 in wt = 2.5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2 .6500 x bar 1.2423 b bar 2.9250 m 1.6690 c 0.5750 x0 -2 .9114 c bar 0.7125 J 0.0014 u 0.2160 x web 1.2798 gamma 1.0000 x lip 1.7202 R' 0.1375 h/t 38.0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0.152 in2 A' = 0.595 in2 x bar = 1.478 in I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1. 117 in Cold Formed Channel Depth 1.500 in Fy = 55 ksi Flange 1.500 in Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 4.23 in wt = 1.1 plf A = 0.317 in2 Ix = 0.125 in4 Sx = 0.166 in3 Rx = 0.627 in Iy = 0.075 in4 Sy = 0.079 in3 Ry = 0.487 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 17 .6667 b 1.3250 x bar 0 .5060 b bar 1.4625 m 0.6531 c 0.0000 x0 -1.1592 c bar 0.0000 J 0.0006 u 0.2160 x web 0.5435 gamma 0.0000 x lip 0.9565 R' 0.1375 h/t 18.0000 Cold Formed Section HEIGHT OF BEAM 4.380 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 4 .0300 2.1900 8 .8257 19.3283 5.4542 0.0375 0.1511 TOP 1.4000 4.3425 6.0795 26.4002 0.0000 0.8750 1.2250 STEP SIDE 1.3500 3 .5300 4 .7655 16.8222 0.2050 1.7125 2.3119 STEP BOTT 0.7250 2.7175 1.9702 5.3540 0.0000 2.2125 1.6041 SHORT SID 2.4050 1.3775 3 .3129 4 .5635 1.1592 2.7125 6.5236 BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 4.2925 0.9271 3 .9797 0.0004 0.0875 0.0189 2 0.2160 4.2925 0.9271 3.9797 0.0004 1.6625 0.3591 3 0.2160 2.7675 0.5977 1.6542 0.0004 1.8000 0.3888 4 0.2160 2.6675 0.5761 1.5369 0.0004 2.6625 0.5751 5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 13.6059 28.3900 28 .1097 83.6254 6.8208 17.8875 17.0514 AREA = 1.020 IN2 CENTER GRAVITY = 2.066 INCHES TO BASE 1.253 INCHES TO LONG SIDE Ix = 2.428 IN4 Iy = 1.142 IN4 Sx = 1.049 IN3 Sy = 0.763 IN3 Rx = 1.542 IN Ry = 1.058 IN BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 4 .38 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD @ BTM OF BEAM = 0.000 IN LOAD = 4000 LBS PER PAIR CONNECTOR VERTICAL LOAD = 1000 LBS EACH RIVETS 3 RIVETS @ 2 " oc 0.4375 " DIA A502-2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 16% CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K-IN 3 .924 K-IN RIVET MOMENT RESULTANT @ 0.8 IN FROM BTM OF CONN M = PL L = 0.82 IN Pmax = Mcap/L = 4 .785 KIPS RIVET LOAD DIST MOMENT P1 2.844 4 .200 11.944 RIVET OK P2 1.490 2 .200 3.277 P3 0.135 0.200 0.027 P4 0.000 0.000 0.000 TOTAL 4.469 15.248 CONNECTOR OK WELDS 0.125 " x 4.380 " FILLET WELD UP OUTSIDE 0.125 " x 2.755 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE 0 " x 1.000 " FILLET WELD STEP BOTTOM 0 " x 2.750 " FILLET WELD ACROSS BOTTOM 0 " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 " THICK WELD L = 8.76 IN A = 0.657 IN2 S = 0.480 IN3 Fv = 26.0 KSI Mcap = 12.47 K-IN 12 .47 K-IN 7 In Upright Plane Seismic Load Distribution per 2009 IBC Sds = 0.707 1.00 Allowable Stress Increase I = 1. 00 R = 4.0 V = (Sds/R) *I*P1* .67 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0. 075 192 4060 780 721 138 128 4060 520 481 62 64 4060 260 240 15 KLx = 64 in 0 0 0 0 0 KLy = 48 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 15145 lbs ---- ---- ---- ==== 12180 ---- ---- ---- 12180 1559 1442 215 Column 73% Stress Max column load = 10983 # Min column load = -1415 # Uplift Overturning ( .6- .11Sds)DL+(0.6- . 14Sds) .75PLapp-.51EL= -938 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 7538 # MAX REQUIRED HOLD DOWN = -1415 # Anchors: 4 T = 1415 # 2 0.5 in dia POWERS STUD+SD2 3 .25 "embedment in 2500 psi concrete Tcap = 2801 # 51% Stressed V = 721 # per leg Vcap = 4309 # = 17% Stressed COMBINED = 67% Stressed OK Braces: Brace height = 48 " Brace width = 44 " Length = 65 " P = 1600 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 134 Pcap = 2692 # 59% In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2009 IBC Sds = 0.707 1.00 Allowable Stress Increase I = 1.00 R = 4 .0 V = (Sds/R) *I*P1 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3 .000x 3 .000x 0.075 192 4060 780 728 140 128 60 8 7 1 64 60 4 4 0 KLx = 64 in 0 0 0 0 0 KLy = 48 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 15145 lbs ---- ---- ---- ==== 4180 ---- ---- ---- 4180 791 738 141 Column 35% Stress Max column load = 5292 # Min column load = -1318 # Uplift Overturning ( .6- . 11Sds)DL+(0.6- .14Sds) .75PLapp- .51EL= -1955 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 5299 # MAX REQUIRED HOLD DOWN = -1955 # Anchors: 4 T = 1955 # 2 0.5 in dia POWERS STUD+SD2 3 .25 "embedment in 2500 psi concrete Tcap = 2801 # 70% Stressed V = 369 # per leg Vcap = 4309 # = 9% Stressed COMBINED = 78% Stressed OK Braces: Brace height = 48 " Brace width = 44 " Length = 65 " P = 820 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 134 Pcap = 2692 # 30% PAGE 1 MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:37:15 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 3 Levels Type Plane Frame Number of Joints 14 Number of Supports 8 Number of Members 15 Number of Loadings 1 Joint Coordinates 1 0.0 64.0 S 2 0. 0 128.0 S 3 7 11 14 3 0 .0 192.0 S 4 49.5 0.0 S 5 49.5 64 .0 2 6 10 13 6 49.5 128.0 7 49.5 192.0 8 148.5 0.0 S 9 148.5 64 .0 1 5 9 12 10 148 .5 128.0 11 148 .5 192.0 12 198 .0 64.0 S 4 8 13 198.0 128.0 S 14 198.0 192.0 S Joint Releases 4 Moment Z 8 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 12 Force X Moment Z 13 Force X Moment Z 14 Force X Moment Z Member Incidences 1 1 5 2 2 6 3 3 7 4 4 5 5 5 6 6 6 7 7 8 9 8 9 10 9 10 11 10 5 9 11 9 12 12 6 10 13 10 13 14 7 11 15 11 14 Member Properties 1 Thru 3 Prismatic Ax 1.020 Ay 0.714 Iz 2.428 f () PAGE 2 MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:37:15 4 Thru 9 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 10 Thru 15 Prismatic Ax 1.020 Ay 0.714 Iz 2.428 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 5 Force Y -2.03 6 Force Y -2.03 7 Force Y -2.03 9 Force Y -2.03 10 Force Y -2.03 11 Force Y -2.03 5 Force X 0.033 6 Force X 0.065 7 Force X 0.098 9 Force X 0.033 10 Force X 0.065 11 Force X 0.098 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2009 IBC wi di widi2 fi fidi in 4060 0.7168 2086 66 47.3 33 66 4060 0.9387 3578 130 122.0 65 130 4060 1.0586 4550 196 207.5 98 196 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0 0.0 0 0 12180 10213 392 376.8 392 g = 32.2 ft/sect T = 1.6641 sec I = 1.00 Cs = 0.0387 or 0.1178 Sdl = 0.387 Cs min = 0.070666 R = 6 Cs = 0.0707 V = (Cs*I* .67) *W* .67 V = 0 .0473 W*.67 = 392 # 100% II PAGE 3 MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:37:15 Structure Storage Rack in Load Beam Plane 3 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.152 0.00 1 5 0.000 0.152 -7.54 2 2 0.000 -0.046 0.00 2 6 0.000 0.046 -2.29 3 3 0.000 0.001 0.00 3 7 0.000 -0.001 0.07 4 4 5.992 0.192 0.00 4 5 -5.992 -0.192 12.29 5 5 3.984 0.143 4.16 5 6 -3.984 -0.143 5.02 6 6 1.994 0.066 1.94 6 7 -1.994 -0.066 2 .31 7 8 5.992 0.200 0.00 7 9 -5.992 -0.200 12 .80 _ 8 9 3.984 0.183 5.32 8 10 -3 .984 -0.183 6.36 9 10 1.994 0.130 3 .78 9 11 -1.994 -0.130 4.52 10 5 -0.016 -0.175 -8.91 10 9 0.016 0.175 -8.38 11 9 0.000 -0.1979.75 C CaPivNi 11 12 0.000 0.197 0.0-0i(1 12 6 -0.012 -0.086 -4 .67 / 12 10 0.012 0.086 -3 .88 13 10 0.000 -0.126 -6.26 13 13 0.000 0.126 0.00 14 7 0.032 -0.034 -2 .38 14 11 -0.032 0.034 -1.03 15 11 0.000 -0.070 -3 .49 15 14 0.000 0.070 0.00 APPLIED JOINT LOADS, FREE JOINTS PAGE 4 MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:37:15 JOINT FORCE X FORCE Y MOMENT Z • 5 0.033 -2 .030 0.00 6 0.065 -2 .030 0.00 7 0.098 -2 .030 0.00 9 0. 033 -2 .030 0.00 10 0.065 -2 .030 0.00 11 0.098 -2.030 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.152 0.00 2 0.000 -0.046 0.00 3 0. 000 0.001 0.00 4 -0. 192 5.992 0.00 8 -0.200 5.992 0.00 12 0.000 0.197 0.00 13 0.000 0.126 0.00 14 0.000 0.070 0.00 FREE JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 5 0.7168 -0.0222 -0.0022 6 0.9387 -0.0370 -0.0013 7 1.0586 -0.0444 -0. 0009 9 0.7169 -0.0222 -0.0019 10 0. 9387 -0.0370 -0. 0007 11 1.0585 -0.0444 0.0001 SUPPORT JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 1 0.7168 0.0000 0. 0004 2 0. 9387 0.0000 -0. 0005 3 1. 0586 0 .0000 -0.0009 4 0.0000 0.0000 -0.0156 8 0. 0000 0.0000 -0.0158 12 0 .7169 0.0000 0.0016 13 0 . 9387 0.0000 0.0015 14 1. 0585 0.0000 0.0013 • 13 Beam-Column Check C 3.000x 3.000x 0.075 Fy = 55 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.000 Point P M Lx Ly Pcap Mcap Ratio 9 6.1 12.8 64.0 48.0 15.14 22.30 98% 10 4 .1 6.4 64.0 48.0 15.14 22.30 56% 11 2.1 4.5 64 .0 48.0 15.14 22.30 34% 0 0.0 0.0 64 . 0 48.0 15.14 22.30 0% 0 0.0 0.0 64 .0 48.0 15.14 22.30 0% 0 0.0 0.0 64.0 48.0 15.14 22.30 0% Load Beam Check 4 .38x 2.750x 0.075 Fy = 55 ksi A = 1.020 in2 E = 29,500 E3 ksi Sx = 1.049 in3 Ix = 2.428 in4 Length = 96 inches Pallet Load 4000 lbs Assume 0.5 pallet load on each beam M = PL/8= 24 .00 k-in fb = 22.87 ksi Fb = 33 ksi 69% Mcap = 34 .62 k-in 46.17 k-in with 1/3 increase Defl = 0.32 in = L/ 298 w/ 25% added to one pallet load M = .232 PL = 22.27 k-in 64% ' Li • Base Plate Design Column Load 8.2 kips Allowable Soil 1500 psf basic Assume Footing 28. 1 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = wl'2/3 Use 4 "square base plate w = 10.4 psi 1 = 9.56 in Load factor = 1.67 M = 530 #-in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 127 psi Fb = 5 (phi) (f'cA.5) = 163 psi OK ! ! Shear : Beam fv = 33 psi Fv = 85 psi OK ! ! Punching fv = 69 psi Fv = 170 psi OK ! ! Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 515 psi fb = 24712 psi Fb = 37500 psi OK ! ! Calculations for : la) BRIDGEPORT DIST. TIGARD , OR 11/15/2013 Loading: 4600 # load levels 2 pallet levels @ 94, 160 Seismic per IBC 2009 100% Utilization Sds = 0 . 707 Sdl = 0 . 387 I = 1 . 00 144 " Load Beams Uprights : 44 " wide C 3 . 000x 3 . 000x 0 . 075 Columns C 1 . 500x 1. 500x 0 . 075 Braces 4 . 00x 7 . 00x 0 . 375 Base Plates with 2- 0 . 500in x 3 . 25in Embed Anchor/Column 5 . 00x 2 . 750x 0 . 075 Load beams w/ 4-Pin Connector by : Ben Riehl Registered Engineer OR# 11949 lC/ Cold Formed Section HEIGHT OF BEAM 5.000 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 4 .6500 2.5000 11.6250 29.0625 8.3787 0.0375 0.1744 TOP 2.4000 4 .9625 11.9100 59.1034 0.0000 1.3750 3 .3000 STEP SIDE 1.3500 4 .1500 5.6025 23.2504 0.2050 1.7125 2.3119 STEP BOTT 0.7250 3.3375 2.4197 8.0757 0.0000 2 .2125 1.6041 SHORT SID 3.0250 1.6875 5.1047 8.6142 2.3067 2 .7125 8.2053 BOTTOM 3.4000 0.0375 0.1275 0.0048 0.0000 1.3750 4.6750 CORNERS 0.2160 4.9125 1.0610 5.2124 0.0004 0 .0875 0.0189 2 0.2160 4.9125 1.0610 5.2124 0.0004 1.6625 0.3591 3 0.2160 3.3875 0.7316 2.4784 0.0004 1.8000 0.3888 4 0.2160 3 .2875 0.7101 2.3343 0.0004 2 .6625 0.5751 5 0.2160 0.0875 0.0189 0.0017 0.0004 2 .6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 16.8459 33.3500 40.3909 143.3517 10.8928 18 .3875 22.2064 AREA = 1.263 IN2 CENTER GRAVITY = 2.398 INCHES TO BASE 1.318 INCHES TO LONG SIDE Ix = 4.305 IN4 Iy = 1.522 IN4 Sx = 1.654 IN3 Sy = 1.063 IN3 Rx = 1.846 IN Ry = 1.097 IN 11 BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 5 IN TOP OF BEAM TO TOP OF CONN= 0. 000 IN WELD @ BTM OF BEAM = 0.000 IN LOAD = 4600 LBS PER PAIR CONNECTOR VERTICAL LOAD = 1150 LBS EACH RIVETS 4 RIVETS @ 2 " oc 0.4375 " DIA A502-2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 8.531 KIPS 13% CONNECTOR 8 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K-IN 3.924 K-IN RIVET MOMENT RESULTANT @ 2.25 IN FROM BTM OF CONN M = PL L = 0.75 IN Pmax = Mcap/L = 5.232 KIPS RIVET LOAD DIST MOMENT P1 2 .844 4 .750 13.508 RIVET OK P2 1.646 2 .750 4.528 P3 0.449 0 .750 0.337 P4 0.000 0.000 0.000 TOTAL 4. 939 18.372 CONNECTOR OK WELDS 0.125 " x 5.000 " FILLET WELD UP OUTSIDE 0.125 " x 3 .375 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE 0 " x 1.000 " FILLET WELD STEP BOTTOM 0 " x 2 .750 " FILLET WELD ACROSS BOTTOM 0 " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 " THICK WELD L = 10. 00 IN A = 0.750 IN2 S = 0.625 IN3 FIT = 26.0 KSI Mcap = 16.25 K-IN 16.25 K-IN ir In Upright Plane Seismic Load Distribution per 2009 IBC Sds = 0.707 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds/R) *I*P1*.67 Weight 60 # per level frame weight Columns @ 44 Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0 .075 160 4660 746 695 111 94 4660 438 408 38 0 0 0 0 0 KLx = 94 in 0 0 0 0 0 KLy = 48 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 12901 lbs ---- ---- ---- ==== 9320 ---- ---- ---- 9320 1184 1103 150 Column 62% Stress Max column load = 8059 # Min column load = -738 # Uplift Overturning ( .6- .11Sds)DL+(0.6-.14Sds) .75PLapp- .51EL= -544 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 5590 # MAX REQUIRED HOLD DOWN = -738 # Anchors: 4 T = 738 # 2 0.5 in dia POWERS STUD+SD2 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 26% Stressed V = 552 # per leg Vcap = 4309 # = 13% Stressed COMBINED = 39% Stressed OK Braces: Brace height = 48 " Brace width = 44 " Length = 65 " P = 1224 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 134 Pcap = 2692 # 45% t � In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2009 IBC Sds = 0.707 1.00 Allowable Stress Increase I = 1.00 R = 4 .0 V = (Sds/R) *I*Pl Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0.075 160 4660 746 828 132 94 60 6 6 1 0 0 0 0 0 KLx = 94 in O 0 0 0 0 KLy = 48 in O 0 0 0 0 A = 0.595 in O 0 0 0 0 Pcap = 12901 lbs ---- ---- ---- ---- ---- ---- ---- ---- 4720 751 834 133 Column 42% Stress Max column load = 5383 # Min column load = -896 # Uplift Overturning ( .6- .11Sds)DL+(0.6- .14Sds) .75PLapp-.51EL= -1612 # MIN (1+0. 11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 5388 # MAX REQUIRED HOLD DOWN = -1612 # Anchors: 4 T = 1612 # 2 0.5 in dia POWERS STUD+SD2 3 .25 "embedment in 2500 psi concrete Tcap = 2801 # 58% Stressed V = 417 # per leg Vcap = 4309 # = 10% Stressed COMBINED = 67% Stressed OK Braces: Brace height = 48 " Brace width = 44 " Length = 65 " P = 926 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 134 Pcap = 2692 # 34% 70 PAGE 1 MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:45:11 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 2 Levels Type Plane Frame Number of Joints 10 Number of Supports 6 Number of Members 10 Number of Loadings 1 Joint Coordinates 1 0.0 94 .0 S 2 5 8 10 2 0. 0 160.0 S 3 73.5 0.0 S 4 73.5 94 .0 5 73.5 160.0 6 220.5 0.0 S 1 4 7 9 7 220 .5 94.0 8 220.5 160.0 9 294.0 94 .0 S 10 294 . 0 160.0 S Joint Releases 3 6 3 Moment Z 6 Moment Z 1 Force X Moment Z 2 Force X Moment Z 9 Force X Moment Z 10 Force X Moment Z Member Incidences 1 1 4 2 2 5 3 3 4 4 4 5 5 6 7 6 7 8 7 4 7 8 7 9 9 5 8 10 8 10 Member Properties 1 Thru 2 Prismatic Ax 1.113 Ay 0 .779 Iz 3 .394 3 Thru 6 Prismatic Ax 0.595 Ay 0 .298 Iz 1.014 7 Thru 10 Prismatic Ax 1.113 Ay 0.779 Iz 3.394 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 4 Force Y -2 .33 5 Force Y -2.33 7 Force Y -2 .33 8 Force Y -2.33 4 Force X 0.056 PAGE 2 MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:45:11 5 Force X 0.094 7 Force X 0.056 8 Force X 0.094 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2009 IBC wi di widi2 fi fidi # in # 4660 1.6103 12084 112 180.4 56 112 4660 1.7725 14641 188 333.2 94 188 0 0. 0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 9320 26724 300 513 .6 300 g = 32.2 ft/sec2 T = 2 .3057 sec I = 1.00 Cs = 0.0279 or 0.1178 Shc = 0.387 Cs min = 0.070666 R = 6 Cs = 0.0707 V = (Cs*I* .67) *W*.67 V = 0.0473 W*.67 = 300 # 100% 71 PAGE 3 MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:45:11 Structure Storage Rack in Load Beam Plane 2 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.101 0.00 1 4 0.000 0.101 -7.45 2 2 0.000 -0.014 0.00 2 5 0.000 0.014 -1.03 3 3 4 .637 0. 149 0.00 3 4 -4.637 -0.149 13.96 4 4 2.318 0.079 1.93 4 5 -2.318 -0.079 3.26 5 6 4.637 0.151 0.00 5 7 -4.637 -0.151 14.24 6 7 2.318 0.109 2.86 6 8 -2.318 -0.109 4 .36 7 4 -0.014 -0.112 -8.44 7 7 0.014 0.112 -8.05 8 7 0.000 -0.123 -9'04 ,CEPAA44 8 9 0.000 0.123 .00 ititaltigkar 9 5 0.015 -0.026 -2.23 9 8 -0.015 0.026 -1.58 10 8 0.000 -0.038 -2.78 10 10 0.000 0.038 0.00 APPLIED JOINT LOADS, FREE JOINTS JOINT FORCE X FORCE Y MOMENT Z 4 0.056 -2.330 0.00 5 0.094 -2.330 0.00 7 0.056 -2.330 0.00 8 0.094 -2.330 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS PAGE 4 MSU STRESS-11 VERSION 9/89 --- DATE: 11/15/;3 --- TIME OF DAY: 10:45:11 JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.101 0.00 2 0.000 -0.014 0.00 3 -0. 149 4 .637 0.00 6 -0.151 4 .637 0.00 9 0.000 0.123 0.00 10 0. 000 0.038 0.00 FREE JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 4 1.6103 -0.0253 -0.0022 5 1.7725 -0.0341 -0.0007 7 1.6103 -0.0253 -0. 0019 8 1.7725 -0.0341 -0. 0002 SUPPORT JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 1 1.6103 0.0000 0.0006 2 1.7725 0.0000 -0.0003 3 0.0000 0.0000 -0.0245 6 0.0000 0.0000 -0.0247 9 1.6103 0.0000 0.0015 _ 10 1.7725 0.0000 0.0008 . 29 Beam-Column Check C 3. 000x 3.000x 0.075 Fy = 55 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.000 Point P M Lx Ly Pcap Mcap Ratio 7 4 .7 14.2 94.0 48. 0 12.90 22.30 100% 8 2 .4 4.4 66.0 48 .0 15.02 22 .30 35% 0 0.0 0.0 94.0 48.0 12. 90 22.30 0% 0 0.0 0.0 94.0 48.0 12 .90 22.30 0% 0 0.0 0.0 94.0 48.0 12 .90 22.30 0% 0 0.0 0.0 94.0 48. 0 12. 90 22.30 0% Load Beam Check 5.00x 2.750x 0.075 Fy = 55 ksi A = 1.263 in2 E = 29,500 E3 ksi Sx = 1.654 in3 Ix = 4.305 in4 Length = 144 inches Pallet Load 4600 lbs Assume 0.5 pallet load on each beam M = PL/8= 41.40 k-in fb = 25.03 ksi Fb = 33 ksi 76% Mcap = 54 .59 k-in 72.79 k-in with 1/3 increase Defl = 0.70 in = L/ 205 w/ 25% added to one pallet load M = .232 PL = 38.42 k-in 70% 2c Base Plate Design Column Load 6.0 kips Allowable Soil 1500 psf basic Assume Footing 24.1 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1A2/3 Use 4 "square base plate w = 10.4 psi 1 = 7.54 in Load factor = 1.67 M = 330 #-in 5 in thick slab f'c = 2500 psi s = 4 .17 in3 fb = 79 psi Fb = 5 (phi) (f'c" .5) = 163 psi OK ! ! Shear : Beam fv = 26 psi Fv = 85 psi OK ! ! Punching fv = 48 psi Fv = 170 psi OK ! ! Base Plate Bending Use 0 .375 " thick 1 = 1.5 in w = 378 psi fb = 18133 psi Fb = 37500 psi OK ! ! E 3 E LT,L i ,t-te 3 ob'P )1 P.O. BOX 4010 • TUALATIN, OR 97062-4010 14795 S.W. 72ND • PORTLAND, OR 97224-7952 FIRE , I NC. RECEIVE120_402cocB.:6A4x,75403,620_,058 N0V252013 A October 22, 2001 CITY OF TIGARD FcF/fFO PLANNING/ENGINEERING Oc, 3 f Q )(- u .' S �' �� ,i Pactrust Corporations j /-o r i f C 1G 4> _- —� c/o Wiitala Management ,— , �,"" 00 15115 SW Sequoia Parkway yr 1.1-, i '7 e - U i3 Portland, Oregon 97224 Attn: John Wiitala Re: Oregon Business Park III is 70C 15605 SW 72nd Avenue Tigard, Oregon We have reviewed our fire sprinkler 'as builts' for a project we completed for Nike Tetra Plastics in 1996. During this project we were contracted to convert the existing dry pipe systems into wet systems. We have generated some preliminary hydraulic calculations to determine the systems capacities. Our preliminary calculations reveal that a design density of .45/2000 can be achieved from the existing system piping. The following chart outlines the limitations of the system as it t relates to commodity class and height of storage. All storage is assumed to be non-encapsulated, stored in conventional (no shelves) racks, with eight foot aisles. If these criteria are met, in rack sprinkler protection should not be required. CLASS I 23 FT CLASS II __ 22 FT CLASS III 21 FT CLASS IV 18 FT We trust this information is to your satisfaction. If you have any questions, please feel free to call. Sincerely, ' Ceiii/4 & M Steven G. Cartales FIRE PROTECTION CONTRACTORS