Specifications 00-
Catena c ° nsuItIng
e n g i n e e r s
• RECEIVED
NOV 5 2015
CITY OF TIGARD
BUILDING DIVISION
Ash Avenue Apartments
Tigard, Oregon
Structural Calculations
City of Tigard
Approved Plans
By-1,> Date WA(::�
• l *'2`74� 15-c� K:!!S;R
OFFIC COPY
catena project no.: 2015018.00
November 4, 2015
• II
1 1 1 1 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797
/catena e n s u l t i n g
e n n g i n e e r s
•
November 4, 2015
Mr. David Stephenson
SERA Architects
338 NW 5th Avenue
Portland, Oregon 97209
Reference: Ash Avenue Apartments, Tigard, Oregon
catena project no.: 2015018.00
Dear David,
This letter contains our responses to the structural plan check comments prepared by the City of
Tigard. For your convenience, we included the plan check comment in italics preceding our
response.
Note: Calculation pages B-77 through B-190 have been provided electronically to the plans
• examiner but have not been included here for brevity.These calculation pages are available
upon request.
Building 1
1. Provide information correlating the framing members in the RISA analysis with the
drawings. OSSC Sec. 1603
Response:see attached RISA floor plans.
l.1 Calculation page A-25 specifies 10.75x24 at grid 16-G. Does not match the drawings.
Response: Refer to pages B-1 to B-3 in the calculations.
1.2 Calculation page A-25 specifies 3.5x 12 at grids B.5-15.3,-16.1, and-16.5. Does not
match the drawings.
Response: Refer to pages B-4 to B-7 in the calculations.
1.3 Calculation page A-25 specifies 3.5x 12 at grid B-13.1. Does not match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.4 Calculation page A-25 specifies 5.5x 12 at grid D-15. Does not match the drawings.
• Response: Refer to pages B-8 to B-10 in the calculations.
connected series of related elements
1 i 11 ne flanders street - suite 206 ° portland oregon 97232 v 503.467.4980 • f 503.467.4797
November 4, 2015
Page 2
catena project no.: 2015018.00
1.5 Calculation page A-25 specifies 2.5x6 at grid D-13.4. Does not match the drawings. •
Response: The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.6 Calculation page A-25 specifies W30x 108 at grid E.5-15.5. Does not match the
drawings.
Response: Refer to pages B-11 to B-18 in the calculations. Pages include calculations
for the post and GL beam adjacent to the wide flange.
1.7 Calculation page A-25 specifies 3.5x 18 at grid F.6-13.5 and G.3-13.5. Does not match
the drawings.
Response: Refer to pages B-19 to B-21 in the calculations.
1.8 The W24 beams on calculation page A-25, grid G-15.8 is not legible.
Response: RISA designs a W24x76 at that location. Refer to pages B-22 to B-24 for
calculations confirming the adequacy of a W24x68.
1.9 Calculation page A-25 specifies 5.504.5 at grid G-14. Does not match the drawings.
Response: Refer to pages B-25 to B-27 in the calculations for calculations confirming •
the adequacy of a W21 x50 (RISA designs a W24x55).
1.10 Provide calculations for the 8-3/4x24 at grid L-13 sheet S 123.
Response: RISA designs a GL 6 1/4x 39. Refer to pages B-28 to B-30 for calculations
confirming the adequacy of a GL 10 3/.x 30.
1.11 Provide calculations for the 5-112x24 beams at grids K-14 and K.9-13.7 sheet S 123.
Response: Refer to pages B-31 to B-36 in the calculations.
1.12 Calculation page A-25 shows 3.5x 12 beams at grids J-23.5 and J-26.6. Does not
match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.13 Calculation page A-25 shows 5.5x 12 beams at grids J-21 and J-22. Does not
match the drawings.
Response: Refer to pages B-37 to B-40 in the calculations.
•
a connected series of related elements
I l 11 ne flanders street • suite 206 - portland oregon 97232 v 503.467.4980 503.467.4797
November 4, 2015
Page 3
catena project no.: 2015018.00
• 1.14 Calculation page A-25 shows a 3.5x 12 beam at grid H.3-15.3. Does not match
the drawings.
Response: The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.15 Calculation page A-26 shows 3.5x 12 beams at grids B.5-15.3, B.5-16.1 and B.5-17.7.
Does not match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.16 Calculation page A-26 shows 3.5x 12 beams at grids F.4-13.5 and G.4-13.5. Does
not match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.17 Calculation page A-26 shows 3.5x 12 beams at grids H.4-15.3 and K-13.3. Does not
match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
• item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.18 Calculation page A-26 shows a 3.125x9 beam at grid K-28.1. Does not match the
drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.19 Calculation page A-26 shows 3.5x 12 beams at grids J-23.4, and J-26.1. Does not
match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.20 Provide calculations for the 3-112x 12 at grid H.5,26 on sheet S 132.
Response: Refer to pages B-41 to B-44 in the calculations.
1.21 Calculation page A-26 shows 5.5x12 beams at grids J-21 and J-22. Does not
match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.13. By inspection, GL 5 Y2 x 9 as shown in the drawings is adequate.
•
a connected series of related elements
1 1 1 1 ne flanders street • suite 206 , portland oregon 97232 503.467.4980 503.467.4797
November 4, 2015
Page 4
catena project no.: 2015018.00
1.22 Provide calculations for the 5-112x 12 beam at grid D.5, 15.9 on sheet S 141. •
Response: Refer to pages B-45 to B-50 in the calculations. Pages include calculations
for the post supporting the GL beam.
1.23 Calculation page A-27 shows 3.5x 12 beams at grids B.5-15.3 and B.5-16.1. Does
not match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.24 Calculation page A-27 shows two 5.5x 12 beams at grid B-13.5. Does not match
the drawings.
Response: Refer to pages B-51 to B-58 in the calculations.
1.25 Calculation page A-27 shows glulam beams on grid 12.4-B to D.2. Does not
match the drawings.
Response: Calculation page A-27 reflects the framing in the RISA model,which has
GL beams placed there erroneously.The drawings show joists spanning in the east-
west direction, which provides support for the deck at those locations.
1.26 Calculation page A-27 shows 3.5x 12 glulam beams on grids F.3-14, F.4-13.5 and •
G.4-13.5. Does not match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.27 Provide calculations for the 5-112x 16-1/2 beams on grid 15.2, sheet S 143.
Response: Refer to pages B-59 to B-62 in the calculations.
1.28 Calculation page A-27 shows a 5.5x 12 beam at grid G.2-15. Does not match the
drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.29 Calculation page A-27 shows a 3.5x 12 beam at grid J.5-12.3. Does not match the
drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
a connected series of related elements
1111 ne flanders street • suite 206 � portland oregon 97232 v 503.467.4980 503.467.4797
November 4, 2015
Page 5
catena project no.: 2015018.00
• 1.30 The 5.5x 12 on calculation page A-27 at grid J-15 is not specified on the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.13. By inspection, GL 5 '/2 x 9 as shown in the drawings is adequate.
1.31 Calculation page A-27 shows a 3.5x 12 beam at grids H.4-15.3. Does not match
the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.32 Calculation page A-27 shows 3.5x 12 beams at grids K-25.2, J.5-26.6, J.5-28, J-26.2,
and J-23.4. Does not match the drawings.
Response: The beam at this location has a similar span and loading to the beam in
item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate.
1.33 Provide calculations for the 3-112x 12 at grid H.5-26 on sheet S 142.
Response:The beam at this location has a similar span and loading to the beam in
item 1.20. By inspection, GL 3 '/2 x 12 as shown in the drawings is adequate.
1.34 Calculation page A-25 shows 5.5x 12 beams at rids J-21 and J-22. Does not
P 9 g
• match the drawings.
Response:The beam at this location has a similar span and loading to the beam in
item 1.13. By inspection, GL 5 '/2 x 9 as shown in the drawings is adequate.
1.35 Sheets S151, S152 and S153 specify 4x8 headers U.N.O. This does not match
calculation page A-28. Provide revised calculations or drawings.
Response: Headers have been changed to 6x10 members to match all other floors.
Refer to the attached schematic and code check tables on page 8-129 to B-153
showing the adequacy of the headers.
1.36 Provide a schematic showing the location of beams specified on calculation
page A-29.
Response: Refer to pages B-77 for steel beam locations and B-91 for updated steel
beam code checks.
1.37 Calculation page A-30 shows 10-3/4" wide beams. Provide clarification.
Response: Refer to page 8-77 for 103/4" wide beam locations. Page A-30 contains
calculations for the connections (shown in detail 3/S607) between those beams.
•
1 1 1 1 ne flanders street • suite 206 • portland oregon 97232 503.467.4980 503.467.4797
November 4, 2015
Page 6
catena project no.: 2015018.00
1.38 Provide a schematic with beams labeled and code check for the labeled •
beams.
Response: Refer to pages 8-77 to B-91 showing beam labels and code check results.
6. Calculation pages 54-55 appear to specify columns for each Level. Where are columns
for levels 2-4 specified on the plans? OSSC Sec. 107.1
Response: Columns locations and sizes are specified at the foundation and continue up
to the roof.
Response: Refer to 5111 through S113 for Plan Note 13 denoting post sizes.
6.1 Where are columns CS 12, CS 13, CS 14, CS 15, CS 16, and CS 19 specified on the plans?
Response: Refer to page B-95 showing the location of columns at Level 3 (the columns
referred to begin at Level 3).
6.2 Calculation page A-5 evaluates an 8x8 column. Where is the column specified in the
plans?
Response:The 8x8 on page A-5 is denoted as CS22(na)_L3 (noted in the header on that
page), and is located at the clouded post on calculation page A-4. The RISA results on
A-5 and A-6 are provided only to give the source of the compression demand on page
A-7. •
6.3 Where is the 6x 10 on calculation page A-7 located?
Response:The 6x10 on page A-7 is denoted as CS22(na)_L3 (noted in the header on that
page), and is located at the clouded post on calculation page A-4.The RISA results on
A-5 and A-6 are provided solely to give the source of the compression demand on page
A-7.
6.4 Where is the 6x8 on calculation page A-10 located?
Response: The 6x8 on page A-10 is denoted as CS22(na)_L3, Lift 2,which on plan is
labeled CS22(na)_L3_1-2 and is located at the clouded post on calculation page A-9.The
RISA results on A-10 and A-1 1 are provided only to give the source of the compression
demand on page A-12.The decision was made to retain the 6x8 shape for the 2nd floor
post at that location. Refer to latest drawings.
6.5 Clarify the location of CS22 on calculation page A-12.
Response: Refer to the response to Item 6.4.
6.6 Calculation pages A-18 and A-19 show columns for levels 3 and 4. The response
indicates columns noted on the foundation plan continue to the roof. Provide
clarification.
Response: Sizes noted on the foundation plan continue up to the roof unless noted
otherwise. Refer to S1 11 through S113 for Plan Note 13 denoting post sizes. Calculation •
a connected series of related elements
1111 ne flanders street • suite 206 , portland oregon 97232 503.467.4980 503.467.4797
November 4, 2015
Page 7
catena project no.: 2015018.00
• pages A-18 and A-19 were provided solely to show that the required sizes of the posts are
smaller than what is provided in the structural drawings at those levels.
6.7 Calculation page A-20 specifies various steel columns. Provide a schematic showing
location of the columns.
Response: Refer to page B-77 for locations of columns.
8. Where are shear wall lengths specified in the calculations? OSSC Sec. 1604
Response: See attached calculations and updated detail 3A/S501
Response: Refer to pages B-63 to B-68 for calculations regarding the length discrepancies
in items 8.1-8.101.
20. Provide calculations for isolated columns. OSSC Sec. 107.1
Response: See attached RISA results and calculations.
Calculation page A-16 specifies #4 ties 10" o.c. Where is this specified on the drawings?
Response: RISA Floor designs the concrete columns as 10" members. AC1318-1 1 specifies
maximum tie spacing to be the minimum of 16 longitudinal bar diameters, 48 tie bar
diameters, and the least dimension of the compression member (AC1318-11 7.10.5.2).For
a 10" member with #5 long. bars and #4 ties, the maximum tie spacing is 10".The
structural drawings show a 12"member with #6 longitudinal bars and #4 ties (detail
• 2/S501). The maximum tie spacing is then determined to be 12", as shown in the detail.
21. Provide steel beam, column and connection calculations. OSSC Sec. 1604
Response: See attached RISA results and calculations.
Clarify which pages include the connection calculations.
Response: Refer to pages B-69 to B-70 and B-155 to B-156 for steel connection
calculations.
22. Provide calculations for prefabricated balcony connections.
Response: See attached RISA results and calculations.
Details on sheet S305 reference detail 14/S608. Provide clarification.
Response: Refer to S608 for new details.
•
a connected series of related elements
1111 ne flanders street - suite 206 • portland oregon 97232 • 503.467.4980 • f 503.467.4797
November 4, 2015
Page 8
catena project no.: 2015018.00
Buildina 2 •
24. Provide schematic drawings for each level with members identified that correspond to
the calculations. Provide calculations for all members with loading clearly identified.
OSSC Sec. 1604
Response: See attached RISA floor plans.
24.1 Calculation page A-117 specifies member M921 as 6-3/4x21. Sheet S220 shows a 6-
3/4x 18. Provide revised plans or calculations.
Response: Refer to pages A-117 through A-119 for calculations confirming the adequacy
of a GL 6 3/4x 18 (page A-119 contains calculations comparing the results of the GL 1/4x 21
to that of the GL 63/4x 18 through ratios of section properties).
24.2 Calculation page A-120 specifies member M869 as 6-314x22-112. Sheet S220 shows
6-3/4x2 1. Provide revised plans or calculations.
Response: Refer to pages A-120 through A-123 for calculations confirming the adequacy
of a GL 6 1/4x 21 (page A-123 contains calculations comparing the results of the GL 3/x 22
1/2 to that of the GL 63/4x 21 through ratios of section properties).
24.3 Calculation page A-124 specifies member M860 as 6-3/4x21. Sheet S220 shows 6-
3/4x 18. Provide revised plans or calculations.
Response: Refer to pages A-124 through A-127 for calculations confirming the adequacy
of a GL 6 3/4x 18 (page A-127 contains calculations comparing the results of the GL 3/ x 21 •
to that of the GL 63/4x 18 through ratios of section properties).
24.4 Provide a schematic showing the location of beam M927 (A-142), M34 (A-145),
M50(A-148), and M77 (A-153).
Response: Pages A-142, 145, 148, and 153 were included to provide the source of loads
used in the GL beam connections shown on pages A-137 through A-141. Refer to pages
B-156 for the location of these beams.
24.5 Calculation page A-161 appears'to specify a PSL in lieu of the glulam evaluated.
Sheet S230 shows a glulam at this location. Provide clarification.
Response:The beam design was governed by deflection.The total GL beam deflection
is 0.584",which abides by the code requirement of L/240.
24.6 Calculation page A-162 shows 3.5x 12 headers. This does not appear to match the
drawings. Provide clarification.
Response: Refer to pages A-117 through A-119 for calculations confirming the adequacy
of a GL 6 3/4x 18 (page A-119 contains calculations comparing the results of the GL 3/x 21
to that of the GL 63/4x 18 through ratios of section properties).
24.7 Provide a code check summary and schematic identifying the members.
Response: Refer to pages B-156 to B-189 for beam labels and code check results.
•
a connected series of related elements
1 11 1 ne flanders street • suite 206 • portland oregon 97232 v 503.467.4980 • f 503.467.4797
November 4, 2015
Page 9
Catena project no.: 2015018.00
• 27. Calculation page 130 appears to indicate all level 2 shear walls to be type 7, except
walls 1 and 5. Walls 6 and C are shown as type 6 on sheet S221. Provide clarification.
OSSC Sec. 107.1
Response: See calculations attached (p.#27.1-16) and updated plans for wall marks.
Calculation page #27.1 shows wall D as 28 ft. length. Clarify how this corresponds to the
drawings. .
Response: Refer to pages #27R 1-27R 12 for revised analysis at Level 1.
28. Calculation page 134 shows the length of shear wall B as 10 feet, wall E as 39 feet and
wall H as 46 feet. This does not appear to match the drawings. Provide clarification.
OSSC Sec. 1604
Response: See calculation attached (#27) and updated plans.
Calculation page #27.1 shows wall H as 46 ft. length. Clarify how this corresponds with
the drawings. .
Response: Refer to pages #27R 1-27R 12 for revised analysis at Level 1.
38. Provide calculations for all columns. OSSC Sec. 107.1
38.1 Calculation page A-100 shows a 6x6 column at grid 10.1-A.1. Provide clarification.
• Response:The 6x6 post at that location was erroneously included in the RISA model.
Refer to pages B-71 to 8-74 for calculations confirming the adequacy of the GL header
shown on S220.
38.2 Calculation page A-100 shows column CS43_1 as 10x10 and calculation page A-
103 shows a 5.5x 10. Sheet S210 appears to show a 6x8 at this location. Provide
clarification.
Response: Refer to pages B-75 to B-76 in the calculations showing the adequacy of the
6x10 member shown in the drawings. Refer to page A-101 for compression demands.
38.3 Where is the 8x 12 on calculation page A-105 located?
Response:The 8x12 on page A-105 is denoted as CS43_2 (noted in the header on that
page), and is located at the clouded post on calculation page A-4. Pages A-105 to A-
106 are results from a prior design iteration and are included only to give the source of
the compression demands of calculations on page A-107 to A-108.The design on page
A-107 corresponds to the bundled stud condition shown in detail 1/S604.
38.4 Provide a schematic showing the location of columns on calculation pages A-1 14
and A-1 15.
Response: Refer to pages B-190 for locations of columns.
•
a connected series of related elements
111 1 ne flanders street • suite 206 - portland oregon 97232 • 503.467.4980 503.467.4797
November 4, 2015
Page 10
catena project no.: 2015018.00
• General comments
39. Provide a copy of the geotechnical report for review and our records. OSSC Sec. 1803
Response: Owner to provide.
The geotechnical report was not provided.
Response: We understand the report has since been provided.
We are confident that this additional information adequately clarifies the project documents to
the satisfaction of the building official.
Thank you,
c rvR
CO q
yo
41
yt9CH 9111
�p M. T
EXPIRES: 06/30/2016
Jason M.Thompson, S.E. Gretchen E. Hall, S.E.
Principal Associate
rnnnorfprt sPrice nt rPlotpH 1111 1 1 1 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797
Item 1.1
B-1
Beam: M1882 Shape Group: Glulam_Western Code: AF&PA NDS-12: ASI
Floor: LEVEL2 Span: Single
• Size: 10.75X24FS Fixity: Pinned-Pinned
Material: 24F-1.8E DF Balanced Bending: Strong Axis
Function: Gravity
Geometry: Length =23.123ft
Points (Start to End): REV_N258 to REV_N260 (-79.8467,-85.772,0)to (-79.8467,-108.895,0) Angle: 90 degrees
Diagrams for Load Category: DLPre
Load Diagram : Distributed Loads (k/ft), Point Loads (k)
.56
.197
.179
.144
. .T.
%%:�r.'•rf:, wc•+x is
•.064 ^><` ��' �K r: 064
1.551 at 0 ft
-1.484 at 23.123 ft
9.937 at 10.357 ft
M k-ft
.002 at 23.123 ft
D -- - ---- --- — in
.05 at 10.598 ft
•
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rf1] Page 1
Item 1.1 B-2
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: 10.422 0 6.324 0 0
J-End: 9.658 0 5.463 0 0
Maximum Total I-End Reaction: 16.068k for LC 2 (Service Dead + Live)
Maximum Total J-End Reaction: 14.535k for LC 2 (Service Dead + Live)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DLPre LI-Const DI-Const DL LL
Start 0 .064 .022 0 .2 .045
End 23.123 .064 .022 0 .2 .045
Start 0 .132 .049 0 .484 .157
End 1.623 .132 .049 0 .484 .157
Start 9.123 .08 .049 0 .432 .157 •
End 13.623 .08 .049 0 .432 .157
Start 21.123 .114 .049 0 .467 .157
End 23.123 .114 .049 0 .467 .157
Point Loads (k)
Dist(ft) DLPre LLConst DI-Const DL LL
1.623 .046 .185 0 1.367 .59
9.123 .046 .185 0 1.367 .59
10.164 .56 2.377 0 6.327 7.118
13.623 .046 .185 0 1.367 .59
21.123 .046 .185 0 1.367 .59
Live Load Reduction FILL Code: None RLL Code: None
Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
1 272.265 2 .893 .893 .928
Design Rules: GL Transfer
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
24 None 10.75 None 1 1
DL DO (in) DL Ratio LL Defl (in) LL Ratio DL+LL DO (in) DL+LL Ratio
None 240 None 360 0.5 240
•
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2
Item 1.1
B-3
Shear: 35.3% Capacity at Oft for LC 2 (Service Dead + Live)
V = 16.068k at Oft fv = .093ksi Fv' = 0.265ksi
Wood Shear Factors
Fv = .23ksi CD = 1 Cm = 1 Ct = 1
Bending: 69.2% Capacity at 10.1163ft for LC 2 (Service Dead + Live)
M = 122.6k-ft RB = 1.57866 le-bend Top = 1 ft le-bend Bot = 23.123ft fb = 1.426ksi Fb' = 2.05946ksi
Wood Bending Factors
Fb = 2.4ksi CD = 1 Cm = 1 Ct= 1 Cfu = 1.01 CL = 0.999704 CF = 1 Cr= 1 CV= 0.85811
Deflections: 98.6% Capacity at 11.3206ft. (Camber= Oin)
PreDL DL LL DL+LL None None
Deflection (in): .041 .294 .199 .493 0 0
Span Ratio 6834 944 1392 563 10000 10000
RISA does not take live load reduction into account when calculating deflection (shown in screen capture below)
Beams
For beam members,the calculated reduction factors are displayed in the Member Detail Report. The effects of live load reduction,
however,will be considered in theEnd Reactions.Shear Results,and Bending Results spreadsheets,as they do reduce the load when
calculating maximum end reactions,shear,and bending stresses/forces.However,the effects of live load reduction are NOT considered in
calculations.
Therefore,the deflection with a reduced live load is DL+LL reduced�0�0.199"=0.472".Ratio the deflection
up by 10.75"analysis width/8.75'actual width--> 1.234.472=0.58"
• L/360=23.123x12/360=0.77"
Actual deflection is code compliant.By inspection,shear and bending DCRs for 8.75'width<1.0,therefore GI-8 3/4 x 24 beam is adequate.
•
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3
IICIII I.L
Project: No.: Page: B-4
Za t e n a `e onn g" :i in l u n y Ash Apts 2015018.00 1
e e r s
Subject: By: Date:
2 2x6 Header CS 11/3/2015
STRUCTURAL WOOD BEAM ANALYSIS& DESIGN (NDS) -7
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Load Envelope-Combination 1
0824-
00-
fl
82400ft i 3 5
A 1 B
kip-ft Bending Moment Envelope
0.0
1.262
1.3
ft I 3.5
A 1 B •
kips Shear Force Envelope
1.442- 1.4
0.0
-1.442
-1.4
ft I 3.5
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 300 Ib/ft
Live full UDL 520 Ib/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
•
I ICIII I
Project: No.: Page: B-5
/catena `e °n "g un i t l n a Ash Apts 2015018.00 2
i e e r s
Subject: By: Date:
(2)2x6 Header CS 11/3/2015
•
Live x 1.00
Support B Dead x 1.00
Live x 1.00
Analysis results
Maximum moment Mma.= 1262 Ib ft Mmin=0 Ib ft
Design moment M=max(abs(Mma.),abs(Mmin))= 1262 lb—ft
Maximum shear Fina.= 1442 Ib Fmin= 1442 Ib
Design shear F = max(abs(Fina),),abs(Fmin))= 1442 Ib
Total load on member Wtot=2884 Ib
Reaction at support A RA_max= 1442 Ib RA-min= 1442 Ib
Unfactored dead load reaction at support A RA—Dead=532 Ib
Unfactored live load reaction at support A RA_LWe= 910 Ib
Reaction at support B Re-max= 1442 Ib RB-min= 1442 Ib
Unfactored dead load reaction at support B RB-Dead=532 Ib
Unfactored live load reaction at support B REI—Live= 910 Ib
I
Sawn lumber section details
Nominal breadth of sections bnom=2 in
Dressed breadth of sections b= 1.5 in
Nominal depth of sections dnom=6 in
Dressed depth of sections d =5.5 in
Number of sections in member N =2
Overall breadth of member bb= N x b=3 in
Species, grade and size classification Douglas Fir-Larch,No.1 grade,2"&wider
Bending parallel to grain Fb= 1000 Ib/int
Tension parallel to grain Ft= 675 Ib/int
Compression parallel to grain Fc= 1500 Ib/int
Compression perpendicular to grain Foje,p=625 Ib/int
Shear parallel to grain F�= 180 Ib/int
Modulus of elasticity E= 1700000 Ib/int
Modulus of elasticity, stability calculations Emin= 620000 Ib/int
Mean shear modulus Gder= E/ 16= 106250 Ib/int
Member details
Service condition Dry
•
IICIII I.L
Project: No.: Page: B-6
/a t e n a ` ° " ' e ' r ' " g Ash Apts 2015018.00 3
e n g i n e e r s
Subject: By: Date:
(2)2x6 Header CS 11/3/2015
Length of bearing Lb=4 in
Load duration Ten years
Section properties
Cross sectional area of member A= N x b x d = 16.50 int
Section modulus Sx= N x b x d2/6= 15.12 in3
SY=dx(Nxb)2/6 = 8.25 in3
Second moment of area IX= N x b x d3/ 12 = 41.59 in4
ly=dx(Nxb)3/ 12 = 12.37 in
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Size factor for bending -Table 4A CFb= 1.30
Size factor for tension -Table 4A CR= 1.30
Size factor for compression -Table 4A CFc= 1.10
Flat use factor-Table 4A Cf�= 1.15
Incising factor for modulus of elasticity-Table 4.3.8
GE= 1.00
Incising factor for bending, shear, tension &compression-Table 4.3.8
Ci= 1.00
Incising factor for perpendicular compression-Table 4.3.8 •
Cic_perp= 1.00
Repetitive member factor-cl.4.3.9 Cr= 1.00
Bearing area factor-cl.3.10.4 Cb= 1.00
Depth-to-breadth ratio dnom/(N x bnom)= 1.50
- Beam is fully restrained
Beam stability factor-cl.3.3.3 CL= 1.00
Bearing perpendicular to grain -cl.3.10.2
Design compression perpendicular to grain Fc_perP= Fc perp x Ct x Ci x Cb= 625 Ib/int
Applied compression stress perpendicular to grain fc_perp= RA_max/(N x b x Lb)= 120 Ib/int
fc_perp/Fc_perp'=0.192
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending -cl.3.3.1
Design bending stress Fb'= Fb X CD X Ct X CL X CFb X Ci x Cr= 1300 Ib/int
Actual bending stress fb= M/Sx= 1001 Ib/int
fb/Fb'= 0.770
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain -cl.3.4.1
Design shear stress F�' = F„x CD x Ct x CI= 180 Ib/int
Actual shear stress-eq.3.4-2 f„=3 x F/(2 x A)= 131 Ib/int
•
IICIII I.L
Project: No.: Page: B-7
/catena ` ° " ` ° ' ' " g Ash Apts 2015018.00 4
e n g i n e e r s
Subject: By: Date:
(2)2x6 Header CS 11/3/2015
•
f�/ F�'=0.728
PASS-Design shear stress exceeds actual shear stress
Deflection -cl.3.5.1
Modulus of elasticity for deflection E' = E x CME x Ct x CE= 1700000 Ib/int
Design deflection 6adn,=0.003 x Ls, =0.126 in
Bending deflection Sb-sl =0.039 in
Shear deflection SV s1 =0.010 in
Total deflection S.=Sb s1 +&-s1 =0.050 in
Sa/Sadn,=0.395
PASS-Design deflection is less than total deflection
r�J
I TJI 1109.5 1k lk - = lk
'r. TJI 11C S. k lk TJI 110 11.875 to
Y
lk lk TJ! 110_11.875 lk
r. T. C 9.5 l k hlvi l k TJ! 1 10 1 1.875 r
iM
lk TJI 110 9.5 TJI 110 11.875 r
lk TJI 110_9.5 Ik TA 110_11.875 <
Headers at west wing units typically have 3.5'length and 13'tributary width (e.g.beam
at grids B.5-15.3)with DL=23 psf,LL=40 lost
•
Item 1.4 B_g
Beam: M895 Shape Group: Glulam_Western Code: AFBPA NDS-12: AS[
Floor: LEVEL2 Span: Single
Size: 5.5X12FS Fixity: Pinned-Pinned •
Material: 24F-1.8E DF Balanced Bending: Strong Axis
Function: Gravity
Geometry: Length = 10.8803ft
Points (Start to End): REV N238 to REV N231 (-53.5707,-41.719,0)to (-42.6962,-42.073,0) Angle: 178.135 degrees
Diagrams for Load Category: DLPre
Load Diagram : Distributed Loads (k/ft), Point Loads(k)
.015 .014
.013 .013 .013 .014
.017 017
.133 at Oft
V - --- k •
-.143 at 10.88 ft
.386 at 5.44 ft
M k-ft
D -- - — --- ------ - — ------ --- ----- -- ------- in
.006 at 5.44 ft
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rf1] Page 1
Item 1.4 B-9
• q __.._. _. __ k
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: .579 0 .777 0 0
J-End: .654 0 .891 0 0
Maximum Total I-End Reaction: 1.356k for LC 2 (Service Dead + Live)
Maximum Total J-End Reaction: 1.545k for LC 2 (Service Dead + Live)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DLPre LLConst DI-Const DL LL
Start 0 .016 .019 0 .038 .038
End 10.88 .016 .016 0 .034 .031
Start 0 0 0 0 0 0
End 7.009 .001 0 0 .001 0
• Start 0 .001 0 0 .002 0
End 3.803 .001 0 0 .001 0
Start 0 0 0 0 0 .001
End 1.815 0 0 0 0 0
Start 1.815 0 0 0 0 .001
End 10.88 0 0 0 0 0
Start 3.803 .001 0 0 .001 0
End 10.88 0 0 0 0 0
Start 3.803 0 0 0 0 0
End 5.406 0 0 0 0 0
Start 5.406 0 0 0 0 0
End 10.216 .001 0 0 .001 0
Start 5.406 0 0 0 0 0
End 8.612 0 0 0 0 0
Start 7.009 .001 0 0 .001 0
End 10.88 0 0 0 0 0
Start 8.612 0 0 0 0 0
End 10.88 .001 0 0 .001 0
Point Loads (k)
Dist(ft) DLPre LI-Const DLConst DL LL
1.815 .015 .122 0 .155 .245
3.803 .014 .112 0 .142 .223
101
5.406 .013 .101 0 .129 .201
7.009 .013 .101 0 .13 .203
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\201 51 102 Ash Apts.rfl] Page 2
Item 1.4 B-10
8.612 .013 .102 0 .131 .204
10.216 .014 .103 0 .132 .206
Live Load Reduction FLL Code: None RLL Code: None •
Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
1 41.6136 2 1 1 1
Design Rules: 5.5x12
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
12 12 5.5 5.5 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio
None 240 None 360 0.5 240
Shear: 13.3% Capacity at 10.8803ft for LC 2 (Service Dead + Live)
V = 1.545k at 10.8803ft fv = .035ksi Fv' = 0.265ksi
Wood Shear Factors
Fv = .23ksi CD = 1 Cm = 1 Ct = 1
Bending: 15.8% Capacity at 5.44013ft for LC 2 (Service Dead + Live)
M = 4.175k-ft RB = 2.18182 le-bend Top = 1ft le-bend Bot= 10.8803ft fb = .38ksi Fb' = 2.39864ksi
Wood Bending Factors
Fb = 2.4ksi CD = 1 Cm = 1 Ct = 1 Cfu = 1.07 CL = 0.999431 CF = 1 Cr= 1 CV = 1
Deflections: 12.6% Capacity at 5.44013ft. (Camber= Oin) •
PreDL DL LL DL+LL None None
Deflection (in): .006 .027 .036 .063 0 0
Span Ratio 10000 4891 3593 2071 10000 10000
For GL 5 1/2 x 12:A=66 inA2,S= 132 inA3,I=792 inA4
For GL 5 1/2 x 9:A=49.5 inA2,S=74.25 inA2,I=334 inA2
DCRs for actual GL 5 1/2 x 9 (found by proportioning RISA values by ratio of analysis shape to actual shape properties)
For Shear: (66/49.5)x0.133=0.18
For Bending: (132/74.25)x0.158=0.28
For Deflection: (792/334)x0.126=0.3
GL 5 1/2 x 9 is adequate
•
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rf11 Page 3
Item 1.6 B-1 1
Beam: M2087 Shape Group: Wide Flange Code: AISC 14th(360-10):
Floor: LEVEL2 Span: Single
• Size: W24x55 Fixity: Pinned-Pinned
Material: A572 Gr.50 (Fy= 50ksi) Bending: Strong Axis
Function: Gravity
Geometry: Length =21.8439ft
Points (Start to End): REV_N65 to N4816 (-77.8417,-72.886,0)to (-55.7478,-72.886,0) Angle: 0 degrees
Start Column Eccentricity = 2 in
End Column Eccentricity = 1 in
Diagrams for Load Combination 10 : IBC 16-11 (b) Post
Load Diagram : Distributed Loads (k/ft), Point Loads (k)
9.549
.18 .179
.147
i
4. 51
.055 1 2.511 2.511 2.51
2 1.V2 12 jf 1.272 1.
17.177 at 0 ft
V ' k
•
-30.126 at 22.094 ft
160.407 at 11.737 ft
M '" k-ft
D in
.346 at 11.737 ft
•
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1
Item 1.6 B-12
_ - --- - •
Reaction for LC 10: (k)
I-End Reaction: Axial: Ok J-End Reaction: Axial: Ok
Shear: 14.673k Shear: 25.894k
Moment: Ok-ft Moment: Ok-ft
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: 8.465 0 9.461 2.155 0
J-End: 14.629 0 15.987 4.674 0
Maximum Total I-End Reaction: 14.673k for LC 10 (IBC 16-11 (b) Post)
Maximum Total JI-End Reaction: 25.894k for LC 10 (IBC 16-11 (b) Post)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DLPre LLConst DLConst DL LL •
Start 0 .055 0 0 .055 0
End 22.094 .055 0 0 .055 0
Start 11.678 .092 0 0 .092 0
End 18.428 .092 0 0 .092 0
Start 11.694 .002 .018 0 .015 0
End 18.428 .002 .018 0 .015 0
Start 22.053 .094 .018 0 .107 0
End 22.094 .094 .018 0 .107 0
Dist(ft) LLS RLL SL SLN RL
Start 11.694 0 0 .023 0 0
End 18.428 0 0 .023 0 0
Start 22.053 0 0 .023 0 0
End 22.094 0 0 .023 0 0
Point Loads (k)
Dist(ft) DLPre LLConst DLConst DL LL
1.984 .059 .458 0 .585 .915
3.968 .059 .458 0 .585 .915
5.952 .059 .458 0 .585 .915
7.936 .059 .458 0 .585 .915
9.92 .059 .458 0 .585 .915
11.678 .866 3.898 0 4.617 4.543
11.694 .078 .607 0 .503 0 •
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2
Item 1.6 B-13
11.746 .117 .903 0 1.156 1.807
11.904 .059 .458 0 .585 .915
13.643 .078 .607 0 .503 0
• 13.704 .117 .903 0 1.156 1.807
13.888 .059 .458 0 .585 .915
15.592 .078 .607 0 .503 0
15.661 .117 .903 0 1.156 1.807
15.872 .059 .458 0 .585 .915
17.542 .078 .607 0 .503 0
17.619 .117 .903 0 1.156 1.807
17.856 .059 .458 0 .585 .915
18.428 .211 1.311 0 1.464 1.491
19.84 .059 .458 0 .585 .915
21.824 .059 .458 0 .585 .915
22.053 .271 1.776 0 1.991 2.119
Dist(ft) LLS RLL SL SLN RL
11.678 0 0 2.034 0 0
11.694 0 0 .759 0 0
13.643 0 0 .759 0 0
15.592 0 0 .759 0 0
17.542 0 0 .759 0 0
18.428 0 0 .707 0 0
22.053 0 0 .895 0 0
Live Load Reduction FLL Code: None RLL Code: None
• Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
1 713.349 2 .647 .8 .6
Design Rules: Free
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
None None None None 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio
None 240 None 360 0.5 240
Shear: 15.5% Capacity at 22.0939ft for LC 10 (IBC 16-11 (b) Post)
V = 25.894k at 22.0939ft fv = 2.778ksi Vn/om = 167.461 k
Bending: 41.3% Capacity at 11.7374ft for LC 10 (IBC 16-11 (b) Post)
M = 138.097k-ft Cb = 1.021 LbTop = 1ft LbBot = 22.0939ft fb = 14.485ksi Mn/om = 334.331k-ft L-torque = 22.0939ft
Deflections: 81.1% Capacity at 11.7374ft. (Camber= Oin)
PreDL DL LL DL+LL None None
Deflection (in): .034 .169 .236 .406 0 0
Span Ratio 7696 1565 1123 654 10000 10000
•
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3
Item 1.6 B-14
Col Stack: CS53 Code: AISC 14th(360-10): ASD
Lift: 1 Function: Gravity
Span: Single Floor Material: A500 Gr.B Rect (Fy = 46ksi) •
Shape Group: SquareTube Fixity: Shear-Moment
Size: HSS4x4x4
Geometry: Length = 12ft
Point: N4816 (-55.7478,-72.886) From: 0 ft To: 12 ft Angle: 0 degrees
32.615 at 0 ft
-.174 at 0 ft
Vy k VZ ------ k
A k
MZ k-ft My k-ft
-2.092 at 12 ft
•
Note: In above diagrams, reduction factors are considered for live loads.
All Category Column Loads
Point Loads (k)
Floor DI-Pre LLConst DI-Const DL LL
LEVEL2 3.85 15.158 0 19.075 20.512
Floor LLS RLL SL SLN RL
LEVEL2 0 0 6.127 0 0
Moment Mz (k-ft)
Floor DI-Pre LLConst DI-Const DL LL
LEVEL2 0 0 0 0 0
Floor LLS RLL SL SLN RL
LEVEL2 0 0 0 0 0
Moment My (k-ft)
Floor DI-Pre LLConst DI-Const DL LL
LEVEL2 .235 .978 0 1.219 1.332 •
Floor LLS RLL SL SLN RL
LEVEL2 0 0 .39 0 0
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1
Item 1.6
B-15
Live Load Reduction FLL Code: None RLL Code: None
Floor Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
LEVEL2 512.222 4 .581 1 .688
Design Rules: Typical
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
11.875 None 6 None 1 1
Design Results
Shear(z) : .8% Capacity at 0 ft for LC 2 (Service Dead + Live)
Vy = Ok fvy= Oksi Vny/om = 25.4228k
Vz = -.213k fvz= .138ksi Vnz/om = 25.4228k
Bending: 84.9% Capacity at 12 ft for LC 10 (IBC 16-11 (b) Post)
P = 32.615k fa = 9.678ksi Pnc/om = 50.8092k
Mz= Ok-ft fbz= Oksi Mnz/om = 10.7655k-ft
My= 2.51 k-ft fby= 7.725ksi Mny/om = 10.7655k-ft
y-y z-z
Lb 12 ft 12 ft
KL/r 94.652 94.652
Cb = 1 Lcomp Top = 12 ft Lcomp Bot= 12 ft
L-torque = 12 ft
Column Skip Loading
Bending Controlling Floor Bending Controlling Pattern
LEVEL2 DL+LL2+LL4 ILL3
Shear Controlling Floor Shear Controlling Pattern
LEVEL2 DL+LL2+LL4 L- �z
Y
Note: LL includes all loads other than DL I LL1
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2
Iter, 1.6 B-16
Beam: M2086 Shape Group: Glulam_Western Code: AF&PA NDS-12: AS[
Floor: LEVEL2 Span: Single
Size: 5.5X18FS Fixity: Pinned-Pinned
Material: 24F-1.8E DF Balanced Bending: Strong Axis
Function: Gravity
Geometry: Length = 7.6666ft
Points (Start to End): N4816 to REV-N341 (-55.7478,-72.886,0)to (-48.0812,-72.886,0) Angle: 0 degrees
Diagrams for Load Combination 2 : Service Dead + Live
Load Diagram : Distributed Loads (k/ft), Point Loads (k)
.
2.963 2.963 3 256
.131
1. Oi 1.503 1.501
5 .503
8.823at0ft
1
V k •
-7.872 at 7.667 ft
19.512 at 3.434 ft
M k-ft
D — - -- - _ -- -- - ---------- - - - - __ ._.- - -. in
.046 at 3.753 ft
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rtl] Page 1
B-17
•
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: 4.298 0 4.525 1.453 0
J-End: 4.049 0 3.824 1.758 0
Maximum Total I-End Reaction: 8.823k for LC 2 (Service Dead + Live)
Maximum Total J-End Reaction: 8.234k for LC 10 (IBC 16-11 (b) Post)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DI-Pre LLConst DI-Const DL LL
Start 0 .118 .018 0 .131 0
End 7.667 .118 .018 0 .131 0
Dist(ft) LLS RLL SL SLN RL
Start 0 0 0 .023 0 0
• End 7.667 0 0 .023 0 0
Point Loads (k)
Dist(ft) DI-Pre LLConst DI-Const DL LL
1.295 .078 .607 0 .503 0
1.398 .117 .903 0 1.156 1.807
1.715 .059 .458 0 .585 .915
3.244 .077 .607 0 .502 0
3.356 .117 .903 0 1.156 1.807
3.699 .059 .458 0 .585 .915
5.193 .077 .606 0 .501 0
5.313 .124 .995 0 1.267 1.989
5.683 .059 .458 0 .585 .915
7.142 .078 .608 0 .503 0
Dist(ft) LLS RLL SL SLN RL
1.295 0 0 .759 0 0
3.244 0 0 .758 0 0
5.193 0 0 .757 0 0
7.142 0 0 .759 0 0
Live Load Reduction FILL Code: None RLL Code: None
Span Reducible Area ft12 KILL LL Factor LLS Factor RLL Factor
• 1 68.6575 2 1 1 1
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apart men ts\calcs\Bldg 1\20151 102 Ash Apts.rfl] Page 2
Item 1.6 B-18
Design Rules: 5.5x18
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
18 18 5.5 5.5 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio •
None 240 None 360 0.5 240
Shear: 50.4% Capacity at Oft for LC 2 (Service Dead + Live)
V = 8.823k at Oft fv = .134ksi FV = 0.265ksi
Wood Shear Factors
Fv = .23ksi CD = 1 Cm = 1 Ct = 1
Bending: 32.9% Capacity at 3.434ft for LC 2 (Service Dead + Live)
M = 19.512k-ft RB = 2.67217 le-bend Top = 1ft le-bend Bot = 7.6666ft fb = .788ksi FU = 2.39794ksi
Wood Bending Factors
Fb = 2.4ksi CD = 1 Cm = 1 Ct = 1 Cfu = 1.07 CL = 0.999143 CF = 1 Cr= 1 CV = 1
Deflections: 13.9% Capacity at 3.75344ft. (Camber= Oin)
PreDL DL LL DL+LL None None
Deflection (in): .004 .022 .031 .053 0 0
Span Ratio 10000 4146 2944 1722 10000 10000
•
•
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rf1] Page 3
Item 1.7 B-19
Beam: M1901 Shape Group: Glulam_Western Code: AFBPA NDS-12: AS[
Floor: LEVEL2 Span: Continuous
• Size: 3.5X18FS Fixity: Pinned-Fixed
Material: 24F-1.8E DF Balanced Bending: Strong Axis
Function: Gravity
Geometry: Length =23.323ft
Points (Start to End): N4115 to REV N207 (-42.6962,-90.594,0)to (-19.3732,-90.594,0) Angle: 0 degrees
Diagrams for Load Combination 2 : Service Dead + Live
Load Diagram : Distributed Loads (k/ft), Point Loads (k)
5.958
1.455 1.504
t?vF^i
1.
.632 .632 .632 .632 .632 .632 .632 .632 .632 .632
.015 111111111111111 101 1111 11 1
9.871 at 21.379 ft
• ��—
-4.073 at 21.136 ft
12.111 at 7.774 ft
M k-ft
-15.303 at 21.136 ft
-.035 at 23.323 ft
D ----- - – - - --- – -- .. in
.433 at 7.531 ft
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1
It __ B-20
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: .865 0 1.705 0 0
J-End: 9.487 0 4.458 0 0
Maximum Total I-End Reaction: 2.569k for LC 2 (Service Dead + Live)
Maximum Total J-End Reaction: 13.945k for LC 2 (Service Dead + Live)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DLPre LLConst DI-Const DL LL
Start 0 .015 0 0 .015 0
End 23.323 .015 0 0 .015 0
Start 21.323 0 0 0 0 0
End 21.573 .001 .015 0 .018 .03
Start 21.323 .111 0 0 1.44 0 •
End 23.323 .111 0 0 1.44 0
Start 21.573 .001 .015 0 .018 .03
End 23.323 .001 .015 0 .018 .03
Point Loads (k)
Dist(ft) DLPre LLConst DI-Const DL LL
1.938 .025 .193 0 .246 .386
3.877 .025 .193 0 .246 .386
5.815 .025 .193 0 .246 .386
7.754 .025 .193 0 .246 .386
9.692 .025 .193 0 .246 .386
11.631 .025 .193 0 .246 .386
13.569 .025 .193 0 .246 .386
15.508 .025 .193 0 .246 .386
17.446 .025 .193 0 .246 .386
19.385 .025 .193 0 .246 .386
21.354 .017 .133 0 .169 .265
21.379 .009 .131 0 .664 .655
22.323 .012 .067 0 .09 .135
23.323 .601 .583 0 4.224 1.734
•
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2
Ite Ive B-21
Load Reduction FLL Code: None RLL Code: None
Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
1 96.3923 2 1 1 1
• 2 33.7532 2 1 1 1
Design Rules: GL Transfer
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
24 None 10.75 None 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL DO (in) DL+LL Ratio
None 240 None 360 0.5 240
Shear: 88.7% Capacity at 21.3794ft for LC 2 (Service Dead + Live)
V = 9.871 k at 21.3794ft fv = .235ksi Fv' = 0.265ksi
Wood Shear Factors
Fv = .23ksi CD = 1 Cm = 1 Ct = 1
Bending: 48.9% Capacity at 21.1365ft for LC 2 (Service Dead + Live)
M = -15.303k-ft RB = 20.2792 le-bend Top = 1ft le-bend Bot = 23.323ft fb = .972ksi Fb' = 1.98789ksi
Wood Bending Factors
Fb = 2.4ksi CD = 1 Cm = 1 Ct = 1 Cfu = 1.1 CL = 0.828286 CF = 1 Cr = 1 CV = 0.987181
Deflections: 53.9% Capacity at 9.47497ft. (Camber= Oin)
PreDL DL LL DL+LL None None
Deflection (in): .019 .046 .229 .269 0 0
Span Ratio 10000 1251 1006 950 10000 10000
Actual beam size W 18x35
Al = 10.3 inA2
S1 =57.6 inA3
11 =510 inA4
GL31/2x18
A2=63 inA2
S2= 189 inA3
12= 1701 inA4
Comparison of wood and steel properties:
F1 =60 ksi,El =29000 ksi
F2=2.4 ksi, E2= 1800 ksi
F 1 xA 1 =618, F2xA2= 151
F 1 xS 1 =3456, F2xS2=453.6
E 1 x11 = 1479000,E2xl2=3061800
Steel properties are larger than wood properties,by inspection,W 18x35 is adequate
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\201 51 102 Ash Apts.rfl] Page 3
i
•
•tons Iliallom
%�� •,x+';%f•• .::y/{,.+Y fG ://: /;" /iA'"" :ilk:%i S.+•%;i%'fry:`.%:,+i :�.';•';+;f' F`•>.'•r
,"+.t+.,'".s�• +,,r •s 'fr :uc/J:�#' s'�,,'. ,{?/ +'�r.?::!r:t+:;':'f%::rf/.••rr }::/..••:/.•.�<<`::;r:+
+, r/
......................
f,./..rr/. /:r"' .+.{• ^•:�. , /v.... /.v:::::::ry ::t?Yt,
g
:f
:k•''ri.
%i:�t•: •�� :r� r}:'' +�' Vii% !ri'i'Yr:�}�'"Yi.•.1..:::'•ri
:i>.4i:.....n.'v..; J.. rf �+•'X•"�, :rrr^ r� /..r
.Ks:.,•::::.:..;,,::r ,:{5•}:fi'`},� •> lr:•lr:...r., "�, .:f?� !!. %::�•.. � %{/rr!r.::,::{
•.'•:;?3:.;r:..::.t:.::>.•::.�>'sta+o%:k'y.{q• .:�>�l.,c..fl:'•: ::,; r %s3,% ,QS ::y1.'r. r: f /•.�::..,;;;}!F.; •:nf::;.;.�
'+�:�" :st•F••:;{•::':%i�3. y '�'fr/��• t rt' r//,><3././/,.y,/'t •:r,:::r:�:;.;• •.•,••r.
,•r.}t'•ii:•':rri:%ti:;'•�::''+::.;;{.s;+.tss�t•::>+r•, � hr.•:�1.•'�,''/ :>'+.' •;�• ff!•:.r�+•l:s', f!.r/"•'" %>•/f'
/!.••: /" ••Ir.'r/ J S. }.� r��YR:•SF3r.:r/.•.rr •:::�:isr>::::.
+;%::::�;}�;;3i•::::;..::i:.s•.'•.,•:y.•,•:::'•v.,''•%: 3••• �rsr /,+••.•f.•.;Jf%},s:!:/�,sr,.r 1'
•;:s:•::.{•:fr•.'•%:::9.••: t`•i.: :M.;<,,:•., ;%i'.. %i �±
. +�•'•• C. >� , /3•.ry3!sf :; .f�:Jf:;;:..s;:
..;};!!..::y .-/r.^, esRy.::.k'k..s s :,r{'' r •.t: ;. •.r•,t .lrr d+t•. / I•r I3� r ;!.,,: r:k>oy.; :'•r:;f:. `•.:.a,t �'•. / • ?Fk /.•; ':iw''� ,::/n.5 / �� ./'Y�/:��fi.•/ %•..s! r.
:•:s....:.. %':: .t•3?>t:,::::: „+•s�*.}t+ ;}•� r..}. �{c•.',...�...
::..Y•:.:: .rr<, ,' •:•{c, / :k'.^,,'i,.,. :� ,{3`f rte;. :./i,•
.{;.,;!:.: •;>.,.:..,•::,•.,•:: •s•{}:;f riff r .3 :r�
%k%3:;•:i::r;.s:;•�5.,•.s:.t,:2;:��:',••:.,,,•.,,,{•:.,,•:., 3,3l,�rf�r�,'��W�± �•s ,•s:ri:'.t;. ;%�rlrYi»c•.r/////r<:w,.,.»:tsisio.J:�%:sr3.3.../:.�li� ../ ,�' .ur:..rll>:li�
•• 1
i
i 1 •
+ • 1 i •
Item 1.8 B_23
• A - k
Reaction for LC 2: (k)
I-End Reaction: Axial: Ok J-End Reaction: Axial: Ok
Shear: 29.816k Shear: 23.822k
Moment: Ok-ft Moment: Ok-ft
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: 16.516 0 17.953 0 0
J-End: 13.255 0 14.263 0 0
Maximum Total I-End Reaction: 29.816k for LC 2 (Service Dead + Live)
Maximum Total J-End Reaction: 23.822k for LC 2 (Service Dead + Live)
All Category Member Loads
Distributed Loads (k/ft)
• Dist(ft) DLPre LLConst DI-Const DL LL
Start 0 .079 .037 0 .121 .073
End 23.123 .079 .037 0 .121 .073
Point Loads (k)
Dist(ft) DLPre LI-Const DI-Const DL LL
10.164 2.764 10.56 0 26.977 30.525
Live Load Reduction FLL Code: None RLL Code: None
Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
1 466.966 2 .741 1 .733
Design Rules: Free
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
None None None None 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio
None 240 None 360 0.5 240
Shear: 14.2% Capacity at Oft for LC 2 (Service Dead + Live)
V = 29.816k at Oft fv = 2.835ksi Vn/om = 210.32k
• Bending: 58.7% Capacity at 10.1163ft for LC 2 (Service Dead + Live)
M = 292.669k-ft Cb = 1 LbTop = 1ft LbBot = 23.123ft fb = 19.985ksi Mn/om = 499.002k-ft L-torque = 23.123ft
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151 102 Ash Apts.rf1] Page 2
Item 1.8 B-24
Deflections: 93.4% Capacity at 10.8389ft. (Camber=Oin)
PreDL DL LL DL+LL None None
Deflection (in): .03 .222 .244 .467 0 0 •
Span Ratio 9152 1247 1135 594 10000 10000
RISA does not take live load reduction into account when calculating deflection (shown in screen capture below)
Beams
For beam members,the calculated reduction factors are displayed in the Member Detail Report. The effects of live load reduction,
however,will be considered in theEnd Reactions,Shear Resufts,and Bending Results spreadsheets,as they do reduce the load when
calculating maximum end reactions,shear,and bending stresses/forces.However,the effects of live load reduction are NOT considered in
calculations.
Therefore,the deflection with a reduced live load is DL+LL reduced=0.227'+ .741 x0.244"=0.403.Ratio the deflection
up by W24x76 analysis moment of inertia/W24x68 actual moment of inertia-->2100/1830x0.472=0.46"
L/360=22.69x12/360=0.76'
Actual deflection is code compliant.By inspection,shear and bending DCRs for W24x68<1.0,therefore beam as shown is adequate.
•
•
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3
Item 1.9
8-25
Beam: M1891 Shape Group: Wide Flange Code: AISC 14th(360-10):
Floor: LEVEL2 Span: Single
• Size: W24x55 Fixity: Pinned-Pinned
Material: A572 Gr.50 (Fy= 50ksi) Bending: Strong Axis
Function: Gravity
Geometry: Length = 19.64ft
Points (Start to End): REV_N358 to REV N343 (-42.6962,-87.388,0)to (-42.6962,-107.278,0) Angle: 90 degrees
End Column Eccentricity= 3 in
Diagrams for Load Category: DLPre
Load Diagram : Distributed Loads (k/ft), Point Loads (k)
1.724
.154 .154
.116
.in•}J` rr; �f'f±K `4Fl• r,.':fr f fl f f :h
rf � ,r, rry��.•r riJ'.v,:n`;.r. f" �. : f f
3.019 at 0 ft
V k
-3.031 at 19.89 ft
18.235 at 9.945 ft
M k-ft
D -- . - ------ - --- - --- -- - in
.037 at 9.531 ft
•
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1
Item 1.9
8-26
A - k •
Reaction for Category DLPre: (k)
I-End Reaction: Axial: Ok J-End Reaction: Axial: Ok
Shear: 3.019k Shear: 3.031 k
Moment: Ok-ft Moment: Ok-ft
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: 15.331 0 14.683 2.105 0
J-End: 15.331 0 14.66 2.105 0
Maximum Total I-End Reaction: 26.552k for LC 2 (Service Dead + Live)
Maximum Total J-End Reaction: 26.534k for LC 2 (Service Dead + Live)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DLPre LI-Const DLConst DL LL •
Start 0 .116 .058 0 .257 .174
End 19.89 .116 .058 0 .257 .174
Start 0 .038 0 0 .093 0
End 3.591 .038 0 0 .093 0
Start 15.591 .038 0 0 .093 0
End 19.89 .038 0 0 .093 0
Point Loads (k)
Dist(ft) DLPre LLConst DLConst DL LL
1.006 .034 .293 0 .371 .586
1.144 .044 .337 0 .28 0
2.982 .038 .319 0 .405 .639
3.1 .044 .337 0 .28 0
3.206 .199 .875 0 .851 1.701
3.591 .316 .951 0 1.312 0
4.958 .038 .319 0 .405 .639
6.935 .038 .319 0 .405 .639
8.911 .038 .319 0 .405 .639
9.945 1.724 5.184 0 15.149 16.183
10.887 .167 .319 0 .534 .639
12.863 .038 .319 0 .405 .639
14.84 .038 .319 0 .405 .639
15.591 .332 1.071 0 1.412 0
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2
J
Item 1.9 B_27
16.685 .198 .875 0 .852 1.703
16.79 .044 .336 0 .279 0
16.816 .038 .319 0 .405 .639
. 18.746 .044 .337 0 .28 0
18.792 .034 .296 0 .374 .591
Dist(ft) LLS RLL SL SLN RL
1.144 0 0 .421 0 0
3.1 0 0 .421 0 0
3.206 0 0 0 0 0
3.591 0 0 1.189 0 0
15.591 0 0 1.339 0 0
16.685 0 0 0 0 0
16.79 0 0 .421 0 0
18.746 0 0 .421 0 0
Live Load Reduction FLL Code: None RLL Code: None
Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
1 425.532 2 .764 .8 .774
Design Rules: Free
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
None None None None 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio
None 240 None 360 0.5 240
• Shear: 15.9% Capacity at Oft for LC 2 (Service Dead + Live)
V = 26.552k at Oft fv = 2.848ksi Vn/om = 167.461 k
Bending: 57.8% Capacity at 9.945ft for LC 2 (Service Dead + Live)
M = 193.203k-ft Cb = 1.02406 LbTop = 0.942143ft LbBot = 19.89ft fb = 20.265ksi Mn/om = 334.331 k-ft L-torque = 19.8
Deflections: 77.6% Capacity at 9.945ft. (Camber= Oin)
PreDL DL LL DL+LL None None
Deflection (in): .033 .186 .202 .388 0 0
Span Ratio 7285 1282 1184 615 10000 10000
RISA does not take live load reduction into account when calculating deflection (shown in screen capture below)
Beams
For beam members,the calculated reduction factors are displayed in the Member Detail Report. The effects of live load reduction,
however,will be considered in theEnd Reactions,Shear Results,and Sending Results spreadsheets as they do reduce the load when
calculating maximum end reactions,shear,and bending stresses/forces.However,the effects of live load reduction are NOT considered in
calculations.
Therefore,the deflection with a reduced live load is DL+1-1-reduced=0.186"+.764x0.207'=0.34.Ratio the deflection
up by W24x55 moment of inertia/W21 x50 moment of inertia--> 1350/984x0.34=0.47"
L/360= 19.65x12/360=0.65'
• Actual deflection is code compliant. By inspection,shear and bending DCRs for W21x50<1.0,therefore beam as shown is adequate.
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3
Item 1.10 B-28
Beam: M2084 Shape Group: Glulam_Western Code: AFBPA NDS-12: AS[
Floor: LEVEL2 Span: Single
Size: 6.75X39FS Fixity: Pinned-Pinned •
Material: 24F-1.8E DF Balanced Bending: Strong Axis
Function: Gravity
Geometry: Length =25.219ft
Points (Start to End): N4044 to N4099 (-28.5922,-170.083,0)to (-3.3732,-170.083,0) Angle: 0 degrees
Diagrams for Load Category: DLPre
Load Diagram : Distributed Loads (k/ft), Point Loads(k)
.415
.115 .331
.064 .064
146.1 17 .146 1 17.146 1 17.146.1 17.146 ,1 T 7.l a6.117
?l >; 39 .,j 0 9 .0 9 0 9 .0 9 .0 9 ..O ....... ..... ._...
2.817 at 0 ft
-2.703 at 25.219 ft
21.047 at 12.609 ft
M k-ft
D -- - --- -- - ---- ---- - --- in
.041 at 12.609 ft
0
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1
Item 1.10 B-29
• A - - k
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: 13.259 0 17.633 .048 0
J-End: 13.051 0 16.161 .168 0
Maximum Total I-End Reaction: 24.217k for LC 2 (Service Dead + Live)
Maximum Total J-End Reaction: 23.095k for LC 2 (Service Dead + Live)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DLPre LLConst DI-Const DL LL
Start 0 .064 0 0 .064 0
End 25.219 .064 0 0 .064 0
Start 6.605 .051 0 0 .051 0
End 19.605 .051 0 0 .051 0
• Point Loads (k)
Dist(ft) DLPre LLConst DI-Const DL LL
.98 .039 .175 0 .241 .351
1.94 .03 .232 0 .296 .463
1.96 .039 .175 0
241 .351
2.941 .039 .175 0 .241 .351
3.88 .03 .232 0 .296 .463
3.921 .039 .175 0 .241 .351
4.901 .039 .175 0 .241 .351
5.82 .03 .232 0 .296 .463
5.881 .039 .175 0 .241 .351
6.605 .415 1.918 0 2.621 3.837
6.862 .117 .526 0 .722 1.053
7.76 .059 .463 0 .592 .926
7.842 .146 .76 0 1.021 1.521
8.822 .117 .526 0 .722 1.053
9.7 .059 .463 0 .592 .926
9.802 .146 .76 0 1.021 1.521
10.783 .117 .526 0 .722 1.053
11.64 .059 .463 0 .592 .926
11.763 .146 .76 0 1.021 1.521
12.743 .117 .526 0 .722 1.053
• 13.579 .059 .463 0 .592 .926
13.723 .146 .76 0 1.021 1.521
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Aparfments\calcs\Bldg 1\20151 102 Ash Apts.rfI] Page 2
Item 1.10 B-30
14.704 .117 .526 0 .722 1.053
15.519 .059 .463 0 .592 .926
15.684 .146 .76 0 1.021 1.521
16.664 .117 .526 0 .722 1.053 •
17.459 .059 .463 0 .592 .926
17.645 .146 .76 0 1.021 1.521
18.625 .117 .526 0 .722 1.053
19.399 .059 .463 0 .592 .926
19.605 .331 .767 0 3.053 2.373
21.339 .03 .232 0 .296 .463
21.476 .006 .047 0 .06 .094
23.279 .03 .232 0 .296 .463
23.348 .006 .047 0 .06 .094
Dist(ft) LLS RLL SL SLN RL
19.605 0 0 .216 0 0
Live Load Reduction FLL Code: None RLL Code: None
Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
1 815.238 2 .621 .8 .6
Design Rules: Free
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
None None None None 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio
None 240 None 360 0.5 240
Shear: 52.1% Capacity at Oft for LC 2 (Service Dead + Live) •
V = 24.217k at Oft fv = .138ksi Fv' = 0.265ksi
Wood Shear Factors
Fv = .23ksi CD = 1 Cm = 1 Ct = 1
Bending: 64.2% Capacity at 12.6095ft for LC 2 (Service Dead + Live)
M = 186.393k-ft RB = 3.17313 le-bend Top = 0.98025ft le-bend Bot = 25.219ft fb = 1.307ksi Fb' = 2.03756ksi
Wood Bending Factors
Fb = 2.4ksi CD = 1 Cm = 1 Ct = 1 Cfu = 1.07 CL = 0.998783 CF = 1 Cr = 1 CV = 0.848985
Deflections: 93.4% Capacity at 12.6095ft. (Camber= Oin)
PreDL DL LL DL+LL None None
Deflection (in): .041 .201 .265 .467 0 0
Span Ratio 7344 1502 1140 648 10000 10000
RISA does not take live load reduction into account when calculating deflection
Therefore,the deflection with a reduced live load is DL+1-1-reduced=0.201"+ .621 x0.265"=0.366". Ratio the deflection
up by GL 10 3/4 x 30 beam moment of inertia divided by GL 6 3/4 x 39 moment of inertia-->33370/24170x0.366=0.51"
L/360=25.2x12/360=0.84"
Actual deflection is code compliant. By inspection,shear and bending DCRs for GL10 3/4 x 30< 1.0,therefore size is adequate.
•
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3
Item 1.1]a B-31
Beam: M2088 Shape Group: Glulam_Western Code: AF&PA NDS-12: ASI
Floor: LEVEL2 Span: Single
• Size: 5.5X24FS Fixity: Pinned-Pinned
Material: 24F-1.8E DF Balanced Bending: Strong Axis
Function: Gravity
Geometry: Length = 13.3125ft
Points (Start to End): REV N223 to REV_N782 (-43.0812,-158.146,0)to (-56.3937,-158.146,0) Angle: 0 degrees
Diagrams for Load Combination 2 : Service Dead + Live
Load Diagram : Distributed Loads (k/ft), Point Loads (k)
3.396
.337
.312
nm
.095 .,.,��:;,:fo-s: ,�.,' �..� • F
»;,.<•.•,•.t,rf:r %;',c•% :a
%. � .+x::;;,:;:.:;;:jr„', r.;•.�.•>::>:?;•. :;. r,.: :.f.::: r:., !f+,c` ,,,rte,;.
7.354at0ft
• V _.. ------ --- --- _ ---- k
-10.507 at 13.313 ft
23.653 at 7.627 ft
M k-ft
D ------ . _ ._ _. ------ -- -— -- in
.069 at 6.795 ft
•
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151104 Ash Apts.rf1] Page 1
Item 1.1 la B-32
A - --- --- - ------ _ - -- - --- k •
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: 4.17 0 3.184 2.264 0
J-End: 5.577 0 4.929 2.236 0
Maximum Total I-End Reaction: 7.88k for LC 10 (IBC 16-11 (b) Post)
Maximum Total JI-End Reaction: 10.369k for LC 10 (IBC 16-11 (b) Post)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DLPre LLConst DI-Const DL LL
Start 0 .033 .02 0 .056 .039
End 13.313 .033 .02 0 .056 .039
Start 0 .119 .039 0 .164 .078
End 3.219 .119 .039 0 .164 .078
Start 7.614 .095 .039 0 .139 .078 •
End 13.313 .095 .039 0 .139 .078
Point Loads (k)
Dist(ft) DLPre LLConst DI-Const DL LL
.388 .037 .304 0 .387 .607
1.234 .013 .1 0 .083 0
1.865 .06 .49 0 .403 0
2.378 .039 .331 0 .421 .663
3.219 .15 1.147 0 1.094 .626
4.368 .014 .121 0 .154 .243
6.754 .014 .121 0 .154 .243
7.614 .166 1.289 0 1.224 .689
8.744 .039 .331 0 .421 .663
9.323 .055 .479 0 .39 0
9.555 .013 .105 0 .087 0
10.734 .039 .331 0 .421 .663
11.188 .058 .465 0 .383 0
11.536 .013 .104 0 .086 0
12.724 .037 .331 0 .417 .662
13.052 .446 .998 0 1.558 1.838
Dist(ft) LLS RLL SL SLN RL
1.234 0 0 .125 0 0
1.865 0 0 .613 0 0 •
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151104 Ash Apts.rf1] Page 2
Item 1.1 1 a B-33
3.219 0 0 1.043 0 0
7.614 0 0 1.18 0 0
9.323 0 0 .598 0 0
9.555 0 0 .131 0 0
11.188 0 0 .581 0 0
11.536 0 0 .13 0 0
13.052 0 0 .099 0 0
Live Load Reduction FLL Code: None RLL Code: None
Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor
1 320.567 2 .842 .842 .879
Design Rules: 5.5x24
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
24 24 5.5 5.5 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio
None 240 None 360 0.5 240
Shear: 41.7% Capacity at 13.3125ft for LC 2 (Service Dead + Live)
V = 9.73k at 13.3125ft fv = .111 ksi Fv' = 0.30475ksi
Wood Shear Factors
Fv = .23ksi CD = 1.15 Cm = 1 Ct = 1
Bending: 22.3% Capacity at 7.62695ft for LC 10 (IBC 16-11 (b) Post)
M = 26.223k-ft RB = 3.08556 le-bend Top = 1 ft le-bend Bot = 13.3125ft fb = .596ksi Fb' = 2.6763ksi
Wood Bending Factors
Fb = 2.4ksi CD = 1.15 Cm = 1 Ct = 1 Cfu = 1.07 CL = 0.998674 CF = 1 Cr= 1 CV= 0.969675
Deflections: 18.6% Capacity at 6.79492ft. (Camber= Oin)
PreDL DL LL DL+LL None None
Deflection (in): .01 .04 .053 .093 0 0
Span Ratio 10000 4015 3010 1720 10000 10000
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\201 51 104 Ash Apts.rf11 Page 3
::SRs.:'.'"?< :� %:•ir r>'rxr •! t::i:.9r. s� I•t:•# �%' 't' `:2:i.
rfr.y%:S###:+•::isisi::;;✓/."ryr>.'.i`:,+.•+r.:;r' :'f.!:,rr• Y :4t!. .;r ;�i' r• {` r�'r?rt`rf:'f%lr''''r,'i%`'`:� i.
��:.>•::.::::::•:::•.;..',{ ;.,.r;x.r;.a,. l'. :.� 'r t Jt%�;.t:ys r' r.+',i ,y
;.k. •?5.. l''v ?•:rrh' `:•!'••.;�;• r -:r.:: '•>• :Y, l4li,r{Jr• r•k ,.f: r.r'�r
.r.. -'w`•:a.•f.:� .d r• :j:'ri;>•:•;it` .:.t:?• :,.. y�y� > : :.
r#, r a• r
:i
.ri
i:.�. r.•/. .#.'tet..
.:r.
,�r •aa::r
r• r :.:1.•r/
:.::...............
: r. t•....Y. :#i:'t... ..:� .r:r••:: ...�. r.rr.r:', •.r`1..... ..r�:lr.!
':rS�?` 'i2i:::aa:••:::'• rn:r•::•:: .a:r:::•. r:••l.•:•'.•` ..t6 :!..,�.•.•t. : !.. r'r:S:.
t;,./.a:.,tr�•.`•:,{.,•::.a.:r:i///.,...:�:•:f.,•:::::r :: .Y:;+:.?t �..,. .{/{�..,rl:•Y/!..><!i;.::.:r•:•::•:::•n r�af�+.
•:./??? :�:::'i•:�#:�:;�:5':....:r..:r. r:.r. :;t'. it: f..:::•r r..:.:.r.. r..
....:::::.:.:
�•.,•::::::::::::::::::::::::::.::::::::: -:..a::••ri s•::::r•::::r:•::•::rs,Y�•:+�'r/'t�i:;�:�R�::;jw:,:. :.;ra• r r:•r •�{::!:•.-i:• >::t:r
mv
;. ;:: .r:.;rY%%C.'2,/ri.!`rnY�Y ��C•'�..R�.'-n��..:2?r�. r '.%r,�/r:'J%!/J�%'�r'�fr/�ifrf.'///�.•`r:?,.: / /%1l
1
1
1 � .
Item 1.1 1 b B-35
• A _- k
Envelope and Category Shear Reactions: (k)
Non Reducible (Unreduced) Non Reducible (Unreduced)
DL LL+LLS LL+LLS Roof LL Total Roof LL Total
I-End: 2.171 0 2.358 0 0
J-End: 3.183 0 3.812 0 0
Maximum Total I-End Reaction: 4.528k for LC 2 (Service Dead + Live)
Maximum Total J-End Reaction: 6.995k for LC 2 (Service Dead + Live)
All Category Member Loads
Distributed Loads (k/ft)
Dist(ft) DLPre LI-Const DI-Const DL LL
Start 0 .094 .018 0 .115 .037
End 14.489 .094 .018 0 .115 .037
Start 0 .006 .093 0 .113 .185
End 10.867 .006 .093 0 .113 .185
• Start 10.867 0 0 0 0 0
End 11.867 .004 .06 0 .073 .12
Start 10.867 .003 .037 0 .045 .074
End 14.489 .003 .037 0 .045 .074
Start 11.867 .004 .06 0 .073 .12
End 13.489 .004 .06 0 .073 .12
Start 13.489 .004 .06 0 .073 .12
End 14.489 0 0 0 0 0
Point Loads (k)
Dist(ft) DLPre LLConst DI-Const DL LL
10.867 .357 1.522 0 2.107 3.044
Live Load Reduction FILL Code: None RLL Code: None
Span Reducible Area ft12 KLL LL Factor LLS Factor RLL Factor
1 51.0846 2 1 1 1
Design Rules: 5.5x24
Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear
24 24 5.5 5.5 1 1
DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL DO (in) DL+LL Ratio
None 240 None 360 0.5 240
RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151 104 Ash Apts.rfl] Page 2
Item 1.l 1 b B-36
Shear: 30% Capacity at 14.489ft for LC 2 (Service Dead + Live)
V = 6.995k at 14.489ft fv = .079ksi FV = 0.265ksi
Wood Shear Factors •
Fv = .23ksi CD = 1 Cm = 1 Ct = 1
Bending: 22.4% Capacity at 10.1121ft for LC 2 (Service Dead + Live)
M = 22.782k-ft RB = 3.08556 le-bend Top = 1ft le-bend Bot = 14.489ft fb = .518ksi FU = 2.30759ksi
Wood Bending Factors
Fb = 2.4ksi CD = 1 Cm = 1 Ct = 1 Cfu = 1.07 CL = 0.998851 CF = 1 Cr= 1 CV = 0.961498
Deflections: 15.1% Capacity at 7.54635ft. (Camber= Oin)
PreDL DL LL DL+LL None None
Deflection (in): .011 .035 .041 .075 0 0
Span Ratio 10000 4990 4277 2303 10000 10000
•
RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151104 Ash Apts.rfl] Page 3
Item 1.13
Project: No.: Page: B-37
/Oatena cc onn "g i n s uI
e t i n g Ash Apts 2015018.00 1
e r s
Subject: By: Date:
GL 5.5 x 9- Item 1.13 CS 11/3/2015
•
STRUCTURAL GLUED LAMINATED TIMBER(GLULAM) BEAM ANALYSIS&DESIGN(NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1 6 04
Load Envelope-Combination 1
0 328
00
ft I 14.5
A 1 B
kip_ft Bending Moment Envelope
00-
8621
08621 86-
fl 1 14 5
• A 1 B
kips Shear Force Envelope
2.378 2.4
00-
-2 378
0-2.37824
ft I 14.5
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 110 Ib/ft
Live full UDL 206 Ib/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
•
IL
Item 1.13
Project: No.: Page: B-38
/catena ` ° " _ ° ' ' ' " g Ash Apts 2015018.00 2
e n g I v e e r s
Subject: By: Date:
GL 5.5 x 9- Item 1.13 CS 11/3/2015
Live x 1.00
Support B Dead x 1.00
Live x 1.00
Analysis results
Maximum moment Wax=8621 Ib ft Win = 0 Ib ft
Design moment M=max(abs(Mmax),abs(Mmin))=8621 lb—ft
Maximum shear Fina.=2378 Ib Fmin = -2378 Ib
Design shear F= max(abs(Fina=),abs(Fmin))=2378 Ib
Total load on member Wtct=4756 Ib
Reaction at support A RA_max= 2378 Ib RA_min= 2378 Ib
Unfactored dead load reaction at support A RA_Nad= 885 Ib
Unfactored live load reaction at support A RA UL.= 1494 Ib
Reaction at support B RB—max=2378 Ib RB—min=2378 Ib
Unfactored dead load reaction at support B RB-Dead= 885 Ib
Unfactored live load reaction at support B RB—Lve= 1493 Ib
5.5"� •
Glulam section details
Net finished breadth of sections b = 5.5 in
Net finished depth of sections d = 9 in
Number of sections in member N = 1
Overall breadth of member bb= N x b = 5.5 in
Alignment of laminations Horizontal
Stress class 24F-1.8E
Bending parallel to grain Fb=2400 Ib/int
Tension parallel to grain Ft= 1100 Ib/int
Compression parallel to grain Fc= 1600 Ib/int
Compression perpendicular to grain Fc_pwp= 650 Ib/int
Shear parallel to grain F�=265 Ib/int
Modulus of elasticity E = 1800000 Ib/int
Modulus of elasticity, stability calculations Emin= 950000 Ib/int
Mean shear modulus GdO= E/ 16 = 112500 Ib/inz
Member details
Service condition Dry
Item 1.13
Project: No.: Page: B-39
/catena ce "n "g i s un I t I n g Ash Apts 2015018.00 3
e e r s
Subject: By: Date:
GL 5.5 x 9-Item 1.13 CS 11/3/2015
•
Length of bearing Lb=4 in
Load duration Ten years
Section properties
Cross sectional area of member A= N x b x d =49.50 int
Section modulus &= N x b x d2/6=74.25 in3
Sy=d x(N x b)2/6=45.38 in
Second moment of area IX= N x b x d3/ 12=334.13 in°
ly=dx(Nxb)3/12= 124.78in4
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Flat use factor-Table 5A Civ= 1.01
Bearing area factor-cl.3.10.4 Cb= 1.00
Length of beam between points of zero moment Lo= 14.5 ft
For species other than Southern Pine x= 10
Volume factor-eq.5.3-1 Cv=min((21 ft/Lo)'/x x(12 in/d)'M x(5.125 in/b)", 1)= 1.00
Depth-to-breadth ratio d/(N x b)= 1.64
-Beam is fully restrained
Beam stability factor-cl.3.3.3 CL= 1.00
. Bearing perpendicular to grain-cl.3.10.2
Design compression perpendicular to grain Fc_perp'= Fc_perp x Ct x Cb=650 Ib/int
Applied compression stress perpendicular to grain fc_perp= RA_max/(N x b x Lb)= 108 Ib/int
fc_perp/Fc_perp'=0.166
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending-cl.3.3.1
Design bending stress Fe= Fb x CD x Ct x min(CL,Cv)x Cc=2400 Wine
Actual bending stress fb= M/Sx= 1393 Ib/int
fb/Fb=0.581
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-cl.3.4.1
Design shear stress F,'= Fv x CD x Ct=265 Ib/int
Actual shear stress-eq.3.4-2 f„=3 x F/(2 x A)=72 Ib/int
f,/F,'=0.272
PASS-Design shear stress exceeds actual shear stress
Deflection-cl.3.5.1
Modulus of elasticity for deflection E'=Ex x CME x Ct= 1800000 Ib/int
Design deflection Sad.=0.004 x Lst =0.696 in
Bending deflection 8b-sl =0.542 in
Shear deflection &-s, =0.022 in
•
Item 1.13
000'— Project: No.: Page: B-40
Za t e n a e n g` ° " ` ° I n ' ' " g Ash Apts 2015018.00 4
I
e e r s
Subject: By: Date:
GL 5.5 x 9- Item 1.13 CS 11/3/2015
Total deflection 6a =6b sl +& si =0.565 in
6a/6adm=0.811
PASS-Design deflection is less than total deflection
2411i TYP. 21
II U.O.N.
X -
(V \
I I I I it
II II
I i I
14 V, - HDR HDR
T GL 5 1/2 x 9 (-2 1/2") p GC 5 1/2 x 9 (-2 1/2")
2
_ - HDR _ _ HDR _ •
HDR
I I I
Tributary Width= 10'4"/2
DL=23 psf
LL=40 psf
IICIII I.LU
Project: No.: Page: B-41
/cOatena ce on g n z i vn'e t I n g Ash Apts 2015018.00 1
e r z
Subject: By: Date:
GL 3 1/2 x 12 (Item 1.20) CS 11/3/2015
STRUCTURAL GLUED LAMINATED TIMBER(GLULAM) BEAM ANALYSIS&DESIGN(NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Load Envelope-Combination 1
0 892
00
ft 9
A 1 B
kip_ft Bending Moment Envelope
00
9 034 —
9.0
ft I 9
• A 1 B
kips Shear Force Envelope
4,015- 4.0
0.0
-4.015
40
ft 9
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 322 Ib/ft
Live full UDL 560 Ib/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
IICIII I.LV
00"— Project: No.: Page: B-42
/coa t e n a ` a n s e I r i n g Ash Apts 2015018.00 2
e n g I n e e r s
Subject: By: Date:
GL 3 1/2 x 12 Item 1.20 CS 11/3/2015
Live x 1.00
Support B Dead x 1.00
Live x 1.00
Analysis results
Maximum moment Mmax=9034 Ib ft Mmin=0 Ib ft
Design moment M=max(abs(Mmax),abs(Mmin))= 9034 lb—ft
Maximum shear Fina.=4015 Ib Fmin= -4015 Ib
Design shear F=max(abs(Finax),abs(Fmin))=4015 Ib
Total load on member Wtot=8030 Ib
Reaction at support A RA_max=4015 Ib RA-Min=4015 Ib
Unfactored dead load reaction at support A RA-Dead= 1495 Ib
Unfactored live load reaction at support A RA_Ui e=2520 Ib
Reaction at support B Re-max=4015 Ib RB-min=4015 Ib
Unfactored dead load reaction at support B Re_oead= 1495 Ib
Unfactored live load reaction at support B RB_Live=2520 Ib
tV
3.5"
Glulam section details
Net finished breadth of sections b=3.5 in
Net finished depth of sections d = 12 in
Number of sections in member N = 1
Overall breadth of member bb= N x b=3.5 in
Alignment of laminations Horizontal
Stress class 24F-1.8E
Bending parallel to grain Fb=2400 Ib/inz
Tension parallel to grain Ft= 1100 Ib/int
Compression parallel to grain Fc= 1600 Ib/int
Compression perpendicular to grain Fe_perp=650 Ib/int
Shear parallel to grain F„=265 Ib/int
Modulus of elasticity E= 1800000 Ib/inz
Modulus of elasticity, stability calculations Emin=950000 Ib/inz
Mean shear modulus Gdef=E/16= 112500 Ib/inz
Member details
Service condition Dry
IICI11 I.LV
Project: No.: Page: B-43
/catena c o n s ° ' " e Ash Apts 2015018.00 3
e n g i n e e r s
Subject: By: Date:
GL 3 1/2 x 12 (Item 1.20) CS 11/3/2015
Length of bearing Lb=4 in
Load duration Ten years
Section properties
Cross sectional area of member A= N x b x d =42.00 int
Section modulus SX= N x b x d2/6=84.00 in
Sy=d x(N x b)2/6=24.50 in
Second moment of area IX= N x b x d3/ 12=504.00 in
ly=d x(N x b)3/ 12=42.87 in4
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Flat use factor-Table 5A Ctu= 1.01
Bearing area factor-cl.3.10.4 Cb= 1.00
Length of beam between points of zero moment Lo= 9 ft
For species other than Southern Pine x= 10
Volume factor-eq.5.3-1 Cv=min((21 ft/Lo)'/"x(12 in/d)'/x x(5.125 in/b)'/X, 1)= 1.00
Depth-to-breadth ratio d/(N x b)=3.43
Effective laterally unsupported span length le=9 ft
Slenderness ratio for bending members-eq.3.3-5 Rb=4[le x d/(N x b)2] = 10.286
• Adjusted bending design value for bending Fb*= Fb X CD X CMb X Ct X Cc=2400 Ib/int
Adjusted modulus of elasticity for member stability Emin'= Emin x CME x Ct
= 950000 Ib/int
Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2= 10775 Ib/int
Beam stability factor-eq.3.3-6
CL_ [1 + (FbE/Fb*)]/1.9-4[([1 +(FbE/Fb*)]/ 1.9)2-(FbE/Fb*)/0.95] =0.99
Bearing perpendicular to grain-cl.3.10.2
Design compression perpendicular to grain Fc_perp= Fc_perp x Ct x Cb=650 Ib/int
Applied compression stress perpendicular to grain fc_perp=RA_max/(N x b x Lb)=287 Ib/int
fc_perp/Fc_perp=0.441
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending-cl.3.3.1
Design bending stress Fb'= Fb x CD x Ct x min(CL, Cv)x Cc=2367 Ib/int
Actual bending stress fb= M/SX= 1291 Ib/int
fb/Fb'=0.545
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-cl.3.4.1
Design shear stress F,'= F„x CD x Ct=265 Ib/int
Actual shear stress-eq.3.4-2 f„=3 x F/(2 x A)= 143 Wine
f„/F„'=0.541
PASS-Design shear stress exceeds actual shear stress
•
i
IICIII I.LV
Project: No.: Page: B-44
/catena ` ° " s ° ' ' ' " g Ash Apts 2015018.00 4
e n g i n e e r s
Subject: By: Date:
GL 3 1/2 x 12 (Item 1.20) CS 11/3/2015
Deflection -cl.3.5.1 -7
Modulus of elasticity for deflection E'= Ex x CME x Ct= 1800000 Ib/int
Design deflection Sadm=0.003 x Ls, =0.324 in
Bending deflection Sb_,, =0.145 in
Shear deflection & s, =0.028 in
Total deflection 8a=Sb s, +&-s, =0.173 in
8./Sadm=0.533
PASS-Design deflection is less than total deflection
Ileftl I.LL
Project: No.: Page: B-45
Catena cc onn g" _i°n Ash Apts 2015018.00 1
e e r s
Subject: By: Date:
Level 4 GL5.5x12- Item 1.22 CS 11/3/2015
STRUCTURAL GLUED LAMINATED TIMBER(GLULAM)BEAM ANALYSIS&DESIGN(NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Load Envelope-Combination 1
0.859
0.0
rt 1 6.5 1 4 1
A 1 B 2 C
kip_ft Bending Moment Envelope
3.5
-3.463-
0.0-
0.4
3.4630.00.4
2.971
3.0
ft 1 6.5 1 4 1
• A 1 B 2 C
kips Shear Force Envelope
2.584
2.3 2.6
0.0
-0.9
-3.325
-3.3
ft 1 6.5 1 4 1
A 1 B 2 C
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 308 Ib/ft
Live full UDL 535 Ib/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
•
Project: No.: Page: B-46
/catena ` ° " s " ' t ' " g Ash Apts 2015018.00 2
e n g i n e e r s
Subject: By: Date:
Level 4 GL5.5xl2-Item 1.22 CS 11/3/2015
Live x 1.00
Support B Dead x 1.00
Live x 1.00
Span 2 Dead x 1.00
Live x 1.00
Support C Dead x 1.00
Live x 1.00
Analysis results
Maximum moment Mmax=2971 Ib ft Mmin= -3463 Ib ft
Design moment M=max(abs(Mma.),abs(Mmin))=3463 lb—ft
Maximum shear Fina.=2584 Ib Fmin= -3325 Ib
Design shear F=max(abs(Finax),abs(Fmin))=3325 Ib
Total load on member Wtot=9020 Ib
Reaction at support A RA—ma.=2259 Ib RA-min=2259 Ib
Unfactored dead load reaction at support A RA-Dead=852 Ib
Unfactored live load reaction at support A RA_Ui e= 1407 Ib
Reaction at support B RB_max=5908 Ib RB-min=5908 Ib
Unfactored dead load reaction at support B RB-Dead=2229 Ib
Unfactored live load reaction at support B RB_LNe=3680 Ib
Reaction at support C Rc_ma.=852 Ib Rc_min=852 Ib
Unfactored dead load reaction at support C RC-Dead=322 Ib
Unfactored live load reaction at support C Rc_Lrve=531 Ib
_N
X
Glulam section details
Net finished breadth of sections b=5.5 in
Net finished depth of sections d= 12 in
Number of sections in member N = 1
Overall breadth of member bb=N x b=5.5 in
Alignment of laminations Horizontal
Stress class 24F-1.8E
Bending parallel to grain Fb=2400 Ib/inz
Tension parallel to grain Ft= 1100 Ib/int
Compression parallel to grain Fr;= 1600 Ib/int
nein I.LL
Project: No.: Page: B-47
/catena c o n s ° ' " g Ash Apts 2015018.00 3
e n g n e e r a
Subject: By: Date:
Level 4 GL5.5xl2-Item 1.22 CS 11/3/2015
•
Compression perpendicular to grain Fc_perp=650 Ib/int
Shear parallel to grain F„=265 Ib/int
Modulus of elasticity E= 1800000 Ib/int
Modulus of elasticity, stability calculations Emin= 950000 Ib/int
Mean shear modulus Geer= E/ 16= 112500 Ib/int
Member details
Service condition Dry
Length of bearing Lb=4 in
Load duration Ten years
Section properties
Cross sectional area of member A= N x b x d = 66.00 int
Section modulus S.= N x b x d2/6= 132.00 in3
Sy=d x(N x b)2/6=60.50 in-3
Second moment of area 6= N x b x d3/ 12= 792.00 in'
ly=d x(N x b)3/12= 166.37 in4
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Flat use factor-Table 5A CfU= 1.01
. Bearing area factor-cl.3.10.4 Cb=(Lb+0.375 in)/Lb= 1.09
Length of beam between points of zero moment Lo= 11 ft
For species other than Southern Pine x= 10
Volume factor-eq.5.3-1 Cv=min((21 ft/Lo)'rx x(12 in/d)"x x(5.125 in/b)'/x, 1)= 1.00
Depth-to-breadth ratio d/(N x b)=2.18
Effective laterally unsupported span length le= 11 ft
Slenderness ratio for bending members-eq.3.3-5 Rb=4[le x d/(N x b)2] =7.236
Adjusted bending design value for bending Fb'= Fb X CD X CMb X Ct X Cc=2400 lb/int
Adjusted modulus of elasticity for member stability Emin'= Emin x CME x Ct= 950000 lb/int
Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2=21771 Ib/int
Beam stability factor-eq.3.3-6
CL_[1 + (FbE/Fb')]/ 1.9-4[([1 + (FbE/Fb")]/ 1.9)2-(FbE/Fb')/0.95] =0.99
Bearing perpendicular to grain-cl.3.10.2
Design compression perpendicular to grain Fc perp'= Fc_perp x Ct x Cb=711 Wine
Applied compression stress perpendicular to grain fc_perp= R13_max/(N x b x Lb)=269 Ib/int
fcyerp/Fc_perp'=0.378
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending-cl.3.3.1
Design bending stress Fb'= Fb x CD x Q x min(CL, Cv)x Cc=2385 Wine
Actual bending stress fb= M/S.=315 lb/int
•
IICI11 I.LL
Project: No.: Page: B-48
/Oatena `e °n ng s,' "n Ash Apts 2015018.00 4
e e r s
Subject: By: Date:
Level 4 GL5.5x12-Item 1.22 CS 11/3/2015
fb/Fe=0.132
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain -cl.3.4.1
Design shear stress F,'= F,x CD x C,=265 Ib/int
Actual shear stress-eq.3.4-2 f„=3 x F/(2 x A)= 76 Ib/int
f„/F,'=0.285
PASS-Design shear stress exceeds actual shear stress
Deflection-cl.3.5.1
Modulus of elasticity for deflection E'=EX x CME x G= 1800000 Ib/int
Design deflection Sad.=0.003 x Ls, =0.234 in
Bending deflection 6b-s1 =0.013 in
Shear deflection S, ., =0.012 in
Total deflection Sa=Sb a, +Sv s, =0.026 in
S./Sad.=0.110
PASS-Design deflection is less than total deflection
I
IHDR HDR
G
16 5 S6o7 7 S
5603 SIM. •
TYP.
I I�
I I
TYP 4
U.O.N.
E HDR GL51/2x12 - -
Tributary Width= 13.375'
DL=23 psf
LL 40 psf
•
Irem I.zz
Project: No.: Page: B-49
c a t e n a ` ° " ' ° ' ' ' " g Ash Apts 2015018.00 1
e n g i n e e r s
Subject: By: Date:
Ground Floor 6x6 Beneath GL 5.5x12- Item CS 11/3/2015
STRUCTURAL WOOD BEAM DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Analysis results
Design axial compression P = 17724D---Rxn
from beam x 3 Floors
to
X
Sawn lumber section details
Nominal breadth of sections bnom= 6 In
Dressed breadth of sections b =5.5 in
Nominal depth of sections dnom= 6 in
Dressed depth of sections d = 5.5 in
Number of sections in member N = 1
• Overall breadth of member bb = N x b = 5.5 in
Species, grade and size classification Douglas Fir-Larch, Select Structural grade, Posts and timbers
Bending parallel to grain Fb= 1500 Ib/int
Tension parallel to grain Ft= 1000 Ib/int
Compression parallel to grain F,= 1150 Ib/int
Compression perpendicular to grain Fcperp= 625 Ib/int
Shear parallel to grain Fv= 170 Ib/int
Modulus of elasticity E = 1600000 Ib/int
Modulus of elasticity, stability calculations Emin =580000 Ib/In2
Mean shear modulus Gdef= E/ 16 = 100000 Ib/int
Member details
Service condition Dry
Load duration Ten years
Unbraced length in x-axis Lx= 11 ft
Effective length factor in x-axis Kx= 1
Effective length in x-axis Lex= Lx x Kx= 11 ft
Unbraced length in y-axis Ly= 11 ft
Effective length factor in y-axis Ky= 1
Effective length in y-axis Ley= Ly x Ky= 11 ft
item I.LL
Project: No.: Page: B-50
/catena ce cn "g i: °n Ash Apts 2015018.00 2
e e r s
Subject: By: Date:
Ground Floor 6x6 Beneath GL 5.5x12-Item CS 11/3/2015
Section properties
Cross sectional area of member A=N x b x d=30.25 int
Section modulus S.= N x b x d2/6=27.73 in3
Sy=d x(N x b)2/6=27.73 in3
Second moment of area IX=N x b x d3/12 = 76.26 in°
ly=dx(Nxb)3/ 12= 76.26in4
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Size factor for bending-Table 4D CFb= 1.00
Size factor for tension-Table 4D CR= 1.00
Size factor for compression-Table 4D CFc= 1.00
Flat use factor-Table 413 Ctu= 1.00
Incising factor for modulus of elasticity-Table 4.3.8
CiiE= 1.00
Incising factor for bending,shear,tension&compression-Table 4.3.8
Ci= 1.00
Incising factor for perpendicular compression-Table 4.3.8
Cic_perp= 1.00
Repetitive member factor-cl.4.3.9 Cr= 1.00
Bearing area factor-cl.3.10.4 Cb= 1.00
Adjusted modulus of elasticity for column stability Emin'=Emin x CME x Ct x CiE=580000 Ib/int
Reference compression design value Fo*=Fc X CD X CW x G x CFc x Ci= 1150 Ib/int
Critical buckling design value for compression FcE=0.822 x Emin'/(L../d)2=828 Wine
c=0.80
Column stability factor-eq.3.7-1
CP= (1 +(FcE/Fc*))/(2 x c)-4[((1 + (FcE/F(:*))/(2 x C))2-(FcE/Fc*)/c] = 0.57
Depth-to-breadth ratio dnom/(N x bnom)= 1.00
-Beam is fully restrained
Beam stability factor-cl.3.3.3 CL= 1.00
Strength in compression parallel to grain-cl.3.6.3
Design compressive stress Fc'=Fc X CD X Ct X CFc x Ci x CP= 655 Ib/int
Applied compressive stress fc=P/A=586 Ib/int
fc/Fc'=0.895
PASS-Design compressive stress exceeds applied compressive stress
Item 1.24
Project: No.: Page: B-51
/cat
e n a °e °n °g_i °n ' Ing Ash Apts 2015018.00 1
e e r s
Subject: By: Date:
Level 4 GL3.5x12 - Item 1.24 CS 11/3/2015
•
STRUCTURAL GLUED LAMINATED TIMBER(GLULAM) BEAM ANALYSIS&DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Load Envelope-Combination 1
0 341
00
ft i 3.75
A 1 B
kip ft Bending Moment Envelope
00-
0600- - -06
0.6
ft 3.75
A 1 B
•
kips Shear Force Envelope
0.640 0.6
00-
-0640-
-0
0-0640 -0 6
it I 3.75
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 121 Ib/ft
Live full UDL 210 Ib/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
•
Item 1.24
Project: No.: Page: B-52
/cat e n a ` ° " ` ° ' ' " g Ash Apts 2015018.00 2
e n g n e e r s
Subject: By: Date:
Level 4 GL3.5x12- Item 1.24 CS 11/3/2015
Live x 1.00
Support B Dead x 1.00
Live x 1.00
Analysis results
Maximum moment Mmax= 600 Ib ft Mmin= 0 Ib ft
Design moment M = max(abs(Mmax),abs(Mmin)) = 600 lb—ft
Maximum shear Fina.= 640 Ib Fmin = -640 Ib
Design shear F =max(abs(Finax),abs(Fmin))= 640 Ib
Total load on member Wt°t= 1280 Ib
Reaction at support A RA-m.= 640 Ib RA-min = 640 Ib
Unfactored dead load reaction at support A RA—Dead=246 Ib
Unfactored live load reaction at support A RA_Live= 394 Ib
Reaction at support B RB_max= 640 Ib RB-min= 640 Ib
Unfactored dead load reaction at support B RB Dead= 246 Ib
Unfactored live load reaction at support B RB_-ive= 394 Ib
-1 3.5" •
Glulam section details
Net finished breadth of sections b= 3.5 in
Net finished depth of sections d = 12 in
Number of sections in member N = 1
Overall breadth of member bb= N x b= 3.5 in
Alignment of laminations Horizontal
Stress class 24F-1.8E
Bending parallel to grain Fb=2400 Ib/int
Tension parallel to grain Ft= 1100 Ib/int
Compression parallel to grain F�= 1600 Ib/int
Compression perpendicular to grain Fc_perp= 650 Ib/int
Shear parallel to grain F„=265 Ib/inz
Modulus of elasticity E = 1800000 Ib/inz
Modulus of elasticity, stability calculations Emin= 950000 Ib/inz
Mean shear modulus Gder= E/ 16 = 112500 Ib/inz
Member details
Service condition Dry
•
Item 1.24
Project: No.: Page: B-53
/catena c ° " ` e i t n y Ash Apts 2015018.00 3
engi " � � � _
Subject: By: Date:
Level 4 GL3.5x12- Item 1.24 CS 11/3/2015
•
Length of bearing Lb=4 in
Load duration Ten years
Section properties
Cross sectional area of member A= N x b x d =42.00 int
Section modulus SX= N x b x d2/6=84.00 in'
Sy=d x(N x b)2/6=24.50 in3
Second moment of area Ix= N x b x d3/ 12=504.00 in4
ly=dx(Nxb)3/ 12=42.87 in
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Flat use factor-Table 5A Cf.= 1.01
Bearing area factor-cl.3.10.4 Cb= 1.00
Length of beam between points of zero moment Lo=3.75 ft
For species other than Southern Pine x= 10
Volume factor-eq.5.3-1 Cv=min((21 ft/Lo)`x(12 in/d)'/x x(5.125 in/b)"x, 1)= 1.00
Depth-to-breadth ratio d/(N x b)= 3.43
Effective laterally unsupported span length le= 11 ft
Slenderness ratio for bending members-eq.3.3-5 Rb=4[le x d/(N x b)2] = 11.371
• Adjusted bending design value for bending Fb* = Fb x CD x CMb x Ct x Cc=2400 Ib/int
Adjusted modulus of elasticity for member stability Emin'= Emin x CME x Ct=950000 Ib/int
Critical buckling design value for bending FbE= 1.2 x Emir '/Rb2=8816 Ib/int
Beam stability factor-eq.3.3-6
CL= [1 + (FbE/Fb*)]/ 1.9-q[([1 +(FbE/Fb*)]/ 1.9)2-(FbE/Fb*)/0.95] =0.98
Bearing perpendicular to grain-cl.3.10.2
Design compression perpendicular to grain Fc perp'= Fc,perp x Ct x Cb=650 Ib/int
Applied compression stress perpendicular to grain fc_perp= RA_max/(N x b x Lb)=46 Ib/int
fc_perp/Fc-Perp'=0.070
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending-cl.3.3.1
Design bending stress Fb'= Fb x CD x Ct x min(Ci_,Cv)x Cc=2357 Ib/int
Actual bending stress fb= M/S.=86 Ib/int
fb/Fb'=0.036
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-cl.3.4.1
Design shear stress F,'= Fv x CD x Ct=265 Ib/int
Actual shear stress-eq.3.4-2 f,= 3 x F/(2 x A)=23 Ib/int
fv/F„'=0.086
PASS-Design shear stress exceeds actual shear stress
•
Item 1.24
Project: No.: Page: B-54
c a t e n a ` ° " ` " ' ' " g Ash Apts 2015018.00 4
e n g i n e e r s
Subject: By: Date:
Level 4 GL3.5xl2- Item 1.24 CS 11/3/2015
Deflection -cl.3.5.1
Modulus of elasticity for deflection E'= Ex x CME x G= 1800000 Ib/int
Design deflection badn1=0.003 x Ls1 =0.135 in
Bending deflection Sb_si =0.002 in
Shear deflection &-s1 =0.002 in
Total deflection Sa=Sb s1 +Sv s1 =0.004 in
Sa/5edn1=0.026
PASS-Design deflection is less than total deflection
15 14 13 12
5._0.. 22._0.. 78._5..
5603
TYP
r I _HDR _ ,� _ _HDR_ _ _ � _�P. A.
t
= I II 5603
OR
GL 51/2x12 p
II Ir - - 2
101-
, 5603
6
l i I I nP. I I I I
II X11 1 ISI I •
TYP. �S
I I A�yIy----yy--o.N. 3
2 c,Q 5603 TYP.
GL 31/ 12 HDR
4,9,.
0
60 _
II I
==1— JL�= - - - -_ �- - - - _ _ _ J
DR —HDR �r -"
GL 51/2x9-,�_— _ _—_—_—_—_—_—___ 1 = H—_—___�
Tributary Width= 10.5/2=5.25'
DL=23psf
LL=40 psf
Item 1.24
Project: No.: Page: B-55
/catena e` °n "g`i °n Ie' " 9 Ash Apts 2015018.00 1
e r s
Subject: By: Date:
Level 4 GL3.5x12- Item 1.24 CS 11/3/2015
STRUCTURAL GLUED LAMINATED TIMBER(GLULAM) BEAM ANALYSIS& DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Load Envelope-Combination 1
0 772-
00-
ft
7200ft 1 6.75 1 8
A 1 B 2 C
kip_ft Bending Moment Envelope
-3 658 3.7
00
0.5
4 081
3.9 4 1
ft 1 6.75 1 8
• A 1 B 2 C
kips Shear Force Envelope
2.543 2 5
0.6 ---- 0.6
a
1
-1 7
-2 511
25
fl 1 6 75 1 8
A 1 B 2 C
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 111 Ib/ft
Live full UDL 210 Ib/ft
Dead partial UDL 161 Ib/ft from 129.00 in to 177.00 in
Live partial UDL 280 Ib/ft from 129.00 in to 177.00 in
Dead point load 234 Ib at 129.00 in
Dead point load 406 Ib at 129.00 in
Item 1.24
Project: No.: Page: B-56
c a t e n a `e °n "g si°n Ash Apts 2015018.00 2
e e r s
Subject: By: Date:
Level 4 GL3.5x12- Item 1.24 CS 11/3/2015
i
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
Live x 1.00
Support B Dead x 1.00
Live x 1.00
Span 2 Dead x 1.00
Live x 1.00
Support C Dead x 1.00
Live x 1.00
Analysis results
Maximum moment Mmax=4081 Ib ft Mmin= -3658 Ib ft
Design moment M= max(abs(Mmax),abs(Mmin))=4081 lb–ft
Maximum shear Finax=2543 Ib Fmin= -2511 Ib
Design shear F =max(abs(Finax),abs(Fmin))=2543 Ib
Total load on member Wtot= 7289 Ib
Reaction at support A RA-max=576 Ib RA-min= 576 Ib
Unfactored dead load reaction at support A RA—Dead= 162 Ib
Unfactored live load reaction at support A RA—Live= 414 Ib •
Reaction at support B RB_max=4203 Ib RB-nim =4203 Ib
Unfactored dead load reaction at support B RB_Dead= 1831 Ib
Unfactored live load reaction at support B RB_Live= 2372 Ib
Reaction at support C RC-Max=2511 Ib Rc_min=2511 Ib
Unfactored dead load reaction at support C RC-Dead = 1079 Ib
Unfactored live load reaction at support C RC—Live= 1431 Ib
—X
--*13.5"
�-4"-J
Glulam section details
Net finished breadth of sections b=3.5 in
Net finished depth of sections d = 12 in
Number of sections in member N = 1
Overall breadth of member bb=N x b= 3.5 in
Item 1.24
Project: No.: Page: B-57
/catena
` ° " ` " ' ' ' " g Ash Apts 2015018.00 3
e n g i n e e r s
Subject: By: Date:
Level 4 GL3.5x12-Item 1.24 CS 11/3/2015
Alignment of laminations Horizontal
Stress class 24F-1.8E
Bending parallel to grain Fb=2400 Ib/int
Tension parallel to grain Ft= 1100 Ib/inz
Compression parallel to grain Fc= 1600 Ib/inz
Compression perpendicular to grain Fcyerp= 650 Win
Shear parallel to grain F„=265 Ib/inz
Modulus of elasticity E = 1800000 Ib/inz
Modulus of elasticity, stability calculations Emin= 950000 Ib/inz
Mean shear modulus Gdef= E/ 16= 112500 Ib/inz
Member details
Service condition Dry
Length of bearing Lb=4 in
Load duration Ten years
Section properties
Cross sectional area of member A= N x b x d =42.00 inz
Section modulus S.= N x b x d2/6=84.00 in'
Sy=d x(N x b)2/6=24.50 in3
Second moment of area IX= N x b x d3/12=504.00 in4
• lY=dx(Nxb)3/ 12=42.87 in4
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Flat use factor-Table 5A CfU= 1.01
Bearing area factor-cl.3.10.4 Cb=(Lb+0.375 in)/Lb= 1.09
Length of beam between points of zero moment Lo=3.75 ft
For species other than Southern Pine x= 10
Volume factor-eq.5.3-1 Cv= min((21 ft/Lo)'/"x(12 in/d)11 x(5.125 in/b)'/x, 1)= 1.00
Depth-to-breadth ratio d/(N x b)=3.43
Effective laterally unsupported span length le= 11 ft
Slenderness ratio for bending members-eq.3.3-5 Rb=4[le x d/(N x b)2]= 11.371
Adjusted bending design value for bending Fb*= Fb X CD X CMb X Ct x Cc=2400 Ib/inz
Adjusted modulus of elasticity for member stability Emir = Emin x CME x Ct= 950000 Ib/inz
Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2=8816 lb/inz
Beam stability factor-eq.3.3-6
CL= [1 + (FbE/Fb*)]/1.9-�[([1 +(FbE/Fb*)]/ 1.9)2-(FbE/Fb')/0.95]=0.98
Bearing perpendicular to grain-cl.3.10.2
Design compression perpendicular to grain Fc—perp= Fc_perp X Ct X Cb= 711 Ib/int
Applied compression stress perpendicular to grain fc_perp= Re_ma./(N x b x Lb)=300 Ib/int
•
Item 1.24
Project: No.: Page: B-58
C ate n a ` ° n s ° ' ' ' n 9 Ash Apts 2015018.00 4
Oe n g n e e r s
Subject: By: Date:
Level 4 GL3.5x12-Item 1.24 CS 11/3/2015
fc_perp/Fc_Perp'= 0.422
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending -cl.3.3.1
Design bending stress Fb'= Fb x CD x Ct x min(CL, Cv)x Cc=2357 Ib/inz
Actual bending stress fb= M/S.=583 Ib/inz
fb/Fb'=0.247
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain -cl.3.4.1
Design shear stress Fv'= F,x CD x Ct=265 lb/in'
Actual shear stress -eq.3.4-2 L= 3 x F/(2 x A)= 91 Ib/inz
L/F�=0.343
PASS-Design shear stress exceeds actual shear stress
Deflection -cl.3.5.1
Modulus of elasticity for deflection E'=Ex x CME x Ct= 1800000 Win
Design deflection Sad m=0.003 x Ls2=0.288 in
Bending deflection 8b_s2=0.042 in
Shear deflection & s2=0.024 in
Total deflection Sa=6b s2+&s2=0.066 in
6./6adm=0.228
PASS-Design deflection is less than total deflectio
15 14 13 12
22'-0" 18._5.
2 I
5603
—HDR —HDR TMP_
F _ —�- A.
— �I — — � , TVP.
= I 5603
HDR — HDR
I
' — GL51/2x12 p
' 6
I — �
II II _ 1 I I 1
I .O.N. 3 R`
�_— —5603 TVP.
"> — -—-—-—- B.
GL,31/2012 HDR
4'9.
o? x
II � I
I I II I
DR _ —HDR
C.
GLS I/2x9 _ _—_—_—_—_—_—_—_�=
Tributary Width=9.67/2=4.8'and 14'/2=7'
DL=23 psf
LL=40 psf
Item 1.27
Project: No.: Page: B-59
C a t e n a ` o n s ° ' ' ' n g Ash Apts 2015018.00 1
e n g i n e e r s
Subject: By: Date:
Level 4 GL5.5x12- Item 1.27 CS 11/3/2015
•
STRUCTURAL GLUED LAMINATED TIMBER(GLULAM) BEAM ANALYSIS&DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Load Envelope-Combination 1
0 607
00
ft I 11
A 1 B
kip_ft Bending Moment Envelope
0-
4 672
47
ft I 1
A 1 R
kips Shear Force Envelope
2.382 2.4
0.0-
-0 786
0H
ft I 11
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1
Dead partial UDL 210 Ib/ft from 0.00 in to 60.00 in
Snow partial UDL 375 Ib/ft from 0.00 in to 60.00 in
Load combinations
Load combination 1 Support A Dead x 1.00
Snow x 1.00
Span 1 Dead x 1.00
•
Item 1.27
Project: No.: Page: B-60
c a to n a ` o " = Ash Apts 2015018.00 2
e n g i n e e r s
Subject: By: Date:
Level 4 GL5.5x12-Item 1.27 CS 11/3/2015
Snow x 1.00
Support B Dead x 1.00
Snow x 1.00
Analysis results
Maximum moment Mmax=4672 Ib ft Mmin=0 lb ft
Design moment M=max(abs(Mma.),abs(Mmin))=4672 lb—ft
Maximum shear Fina.=2382 Ib Fmin= -786 Ib
Design shear F=max(abs(Fina.),abs(Fmin))=2382 Ib
Total load on member Wrar=3168 lb
Reaction at support A RA—max=2382 Ib RA_min=2382 Ib
Unfactored dead load reaction at support A RA-Dead= 933 Ib
Unfactored snow load reaction at support A RA_snm= 1449 Ib
Reaction at support B RB-ma.=786 Ib %-rain= 786 Ib
Unfactored dead load reaction at support B RB-Dead=360 Ib
Unfactored snow load reaction at support B RB-Snow=426 Ib
I
i"
b
�5.5'►
Glulam section details
Net finished breadth of sections b=5.5 in
Net finished depth of sections d = 16.5 in
Number of sections in member N= 1
Overall breadth of member bb=N x b=5.5 in
Alignment of laminations Horizontal
Stress class 24F-1.8E
Bending parallel to grain Fb=2400 Ib/int
Tension parallel to grain Fc= 1100 Ib/inz
Compression parallel to grain Fo= 1600 Ib/int
Compression perpendicular to grain Fo_Perp=650 Wine
Shear parallel to grain F,-=265 Ib/int
Modulus of elasticity E= 1800000 Ib/int
Modulus of elasticity, stability calculations Emin=950000 Ib/inz
Mean shear modulus Gdef=E/ 16= 112500 Ib/inz
Member details
Service condition Dry
Item 1.27
Project: No.: Page: B-61
/catena ce "n "g i n 5 " n 9 Ash Apts 2015018.00 3
e e r s
Subject: By: Date:
Level 4 GL5.5x12- Item 1.27 CS 11/3/2015
•
Length of bearing Lb=4 in
Load duration Ten years
Section properties
Cross sectional area of member A= N x b x d = 90.75 int
Section modulus SX= N x b x d2/6=249.56 in
Sy=d x(N x b)2/6=83.19 in'
Second moment of area IX= N x b x d3/12=2058.89 in
ly=d x(N x b)3/ 12=228.77 in
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Flat use factor-Table 5A Cm= 1.01
Bearing area factor-cl.3.10.4 Cb= 1.00
Length of beam between points of zero moment Lo= 11 ft
For species other than Southern Pine x= 10
Volume factor-eq.5.3-1 Cv= min((21 ft/Lo)'/),x(12 in/d)'/x x(5.125 in/b)'/x, 1)= 1.00
Depth-to-breadth ratio d/(N x b)=3.00
Effective laterally unsupported span length le= 11 ft
Slenderness ratio for bending members-eq.3.3-5 Rb=4[le x d/(N x b)2] =8.485
. Adjusted bending design value for bending Fb"= Fb x CD x CMb x Ct x Cc=2400 Ib/int
Adjusted modulus of elasticity for member stability Emin'= Emin x CME x Ct= 950000 Ib/int
Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2= 15833 Ib/int
Beam stability factor-eq.3.3-6
CL= [1 + (FbE/Fb")]/ 1.9-4[([1 +(FbE/Fb")]/ 1.9)2-(FbE/Fb")/0.95] =0.99
Bearing perpendicular to grain-cl.3.10.2
Design compression perpendicular to grain Fc_perP= Fc-perp x Ct x Cb=650 Ib/int
Applied compression stress perpendicular to grain fc_perp= Rn_mex/(N x b x Lb)= 108 Ib/int
fc-perp/Fc-perp'=0.167
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending-cl.3.3.1
Design bending stress Fe= Fb x CD x Ct x min(CL,Cv)x Cc=2379 Ib/int
Actual bending stress fb= M/S.=225 Ib/int
fb/Fb'=0.094
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-cl.3.4.1
Design shear stress F, = F„x CD x Ct=265 Ib/int
Actual shear stress-eq.3.4-2 fv=3 x F/(2 x A)=39 Ib/int
f,, F,'=0.149
PASS-Design shear stress exceeds actual shear stress
•
Item 1.27
Project: No.: Page: B-62
c a t e n a ` ° " ' ° ' ' ' " g Ash Apts 2015018.00 4
e n g 1 n e e r s
Subject: By: Date:
Level 4 GL5.5x12- Item 1.27 CS 11/3/2015
Deflection -cl.3.5.1
Modulus of elasticity for deflection E'= EX x CME x Cc= 1800000 Ib/int
Design deflection Sad,,,=0.003 x Ls, =0.396 in
Bending deflection 6b—si =0.024 in
Shear deflection &-s, =0.007 in
Total deflection 6a=6b—sl +6v s, = 0.031 in
ba/6adm=0.078
PASS-Design deflection is less than total deflection
TYP 4
16 U.O.N. 15
HDR GL51/2x12 - - - - -
o GL 3 1/2x 12
L
T.O.PLYWOOD
SHEATHING C
EL:131'-11 _
HDR
T.O.6.DECKING _ _
EL:130'-11 1/4" o 4
o< x
Cli
M: 3 3 F PLANTER
W/TREES „
J
G�3 1/2x 12 — GL 3 1/2x 12 O —
J
1
_-
REFER GHEETS143
n i i
Tributary Width= 15'
Roof DL= 14 lost
SL=25 psf
Minimal load from floor because joists run parallel to beam
Item 8
B-63
Project: Page:
ASN APTS ]Vts015�.�0
C a t e n a e •'^ " Subject Date
• SHCAR v)AL.L LtNbrH RFdwIT CS t0• Zd. 1015
HETrioD : EXAMPLE : WALL WP IOL16 ( WA" 12 ON
i. 10BNTIFY WkL-La W/ LeN(,Tti sv11)
Lo : ao.ytr " C 1N 0.tsh)
plsc.REoANLII?5 aT 0-AAtaIN(X5 E AISA
L= IIr -Z Jb. tb'1 " ( IN vQJtt.J IN&tS)
2. DET ERMINE ANtT SHEAA W/ UPDATED
LCN&%Tt4 AND SHt;hA FOP" F AOM V= 12•S k
RISA ANAL•Yy11
• OP-L&kiNAL ANALYSIS 4SSLAMED I�/31 TIiWG SNCATHINfo w! JodG LO.C.•
A R16410 DIAPMR-AACrtM: NEIa ANALY4I-% �
�svo� - �ZU I{'
LhO,A�tTy s s t.i.s. F111? A-4) - Q
(►TCC 2. A60VO A's-41AMEs aAMF
FOQC-E 9-E5116Tf17 &Y SK00-76P v�ALL
(Fo2c.E NOT R.t;Dts-TRMaTEO BASfO �! x o.�-( !<�f ok ! ASE tod o.(_
ON STI FFNf IS ) TM &"NDS THE
l0L1.1TwN FOR THE SHORTEA IDAILS •% INCAFA,SE IN WNIT sHIAR J-
RETOEEN PutZE A%wD JIAPtiaAiA /
AND FLEXILE 01APNRA14M T r L, 0&TFAtAtNAT10N
ANALYStS,
3, tAPOATE NAIILINL► PATfra.N IF
4. DETERMINE % JNt,2F.ASE IN LtNtT to
S1-IEAA FOR. Ck-H M". J Nc.lt.>'ASE Mo-r LovBitTvJLNIN 6 o :� STwi HT c F.
T if DOWN t LOMPAESStON POST
DemANDS isy S,AMF 6/a . 15.St 10 3.•1 10 r O.bk' iL = 1 Lb 4 .
• J=vR rJALLS W/ ,tAG SPEuFIFO MQ = M..x a�
Folz TENs,oN ( SO TENStvN FOQA E F¢vM 0.1 SA
INID(dLED IN o;Ltet1K&4. 215A AN^LYbtS)
TCNctoN FUQC.E rAoM THE Fw0JZ
L
IiCww IS sPEc.IFI%D 1=012 THC
WALLS IN atAt�TlWA L ��T r MR Ib.g r % IN�tr lSE •
• S. REPEAT P20(.E0aAi i1)2 Ai.t j-L410RS
I� b L UIQ
Item 8
B-64
Project:
rvc. Page:
ASN Ap7S 101Wl$.oal
/catena en g s ^ Subject: By: Dote
SN 1:AJL WALLS C S 1 0. 7--h. 2.411
WAIL 1)97s4 (O-V L- 3
z T k.uc.T I W/ w a. 6? 2."10.L.. -> 0.161
kl f
v - O.-a1 L4 f = 0. it 164f
LV = 0.11 k{l - 2't.8&'AGTLIAL LEN(nTH
3. 3 k
lZEMAININ(n SHEAQ WILL T2ANSrEQ
T"v WALL WPIO16 C"HE WHEoFWAW.
2g.ti1�
0. 72. Of
RRa. SHEATHIN& W/ tad G 2,"o. .. -0.77 •
k{�
0.17k0.72lQf vI.
A D bc�usrt
✓ WCL WPIoi1. SH*AR e LVi- t
VI`
V +AVS Zi. tZ
LOd @
AD Ea kA A-T i
•
B-65
Project: Ash Apts No: 2015018.00 Page:
/catena• eo° f� nri° Subject: Shear Wall By: cs Date:
/ Analysis
Wall# RISA Wall RISA Wall Actual RISA Shear RISA Shear Actual Shear Shear
Panel Label Length (ft) Length (ft) (kips) (klf) (klf) Ratio
LVL 2 5 WP1155B 15.6 12.67 8.60 0.55 0.68 1.23
9 WP1156C 18.1 16.33 10.24 0.57 0.63 1.11
12 WP1152C 19.0 13.75 10.94 0.58 0.80 1.38
17 WP1153C 19.1 14.75 11.05 0.58 0.75 1.30
20 WP1229A 15.2 10.83 6.07 0.40 0.56 1.40
22 WP1046 21.0 16.17 12.53 0.60 0.77 1.30
25 WP1141B 28.9 29.83 26.04 0.90 0.87 0.97
26 WP1342C 4.0 4.00 2.17 0.55 0.54 0.99
28 WP1294A 9.0 6.50 3.14 0.35 0.48 1.39
34 WP1148C 17.4 15.50 6.59 0.38 0.42 1.12
35 WP1320 8.5 7.00 4.59 0.54 0.66 1.21
37 WP1162D 11.0 12.00 2.86 0.26 0.24 0.92
38 WP1346 24.8 22.25 16.27 0.66 0.73 1.12
39 WP1318 7.5 6.25 1.53 0.20 0.24 1.20
40 WP1363A 23.4 18.25 14.04 0.60 0.77 1.28
• 46 WP1056 10.9 8.75 4.91 0.45 0.56 1.24
47 WP1163B 15.0 7.75 5.27 0.35 0.68 1.93
52 WP1132B 17.6 15.08 6.71 0.38 0.45 1.16
55 WP1170B 10.1 7.92 2.45 0.24 0.31 1.27
56 WP1130B 19.6 14.75 7.51 0.38 0.51 1.33
60 WP1178B 22.5 18.25 13.34 0.59 0.73 1.23
61 WP1166B 21.0 18.50 9.05 0.43 0.49 1.14
64 WP1307A 16.9 12.67 6.83 0.40 0.54 1.33
68 WP1167A 21.0 13.42 12.37 0.59 0.92 1.57
78 WP1063 13.3 10.42 7.63 0.57 0.73 1.28
•
B-66
Project: Ash Apts No: 2015018.00 Page:
/catena e - a s n le e 9 Subject: Shear Wall By: cs Date: •
Analysis
Wall# RISA Wall RISA Wall Actual RISA Shear RISA Shear Actual Shear Shear
Panel Label Length (ft) length(ft) (kips) (klf) (klf) Ratio
LVL 3 5 WP798 15.6 12.67 5.77 0.37 0.46 1.23
9 WP799 18.1 16.33 7.11 0.39 0.44 1.11
12 WP795 19.0 13.75 7.70 0.41 0.56 1.38
17 WP796 19.1 14.75 7.86 0.41 0.53 1.30
20 WP872 15.2 10.83 3.68 0.24 0.34 1.40
22 WP689 21.0 16.17 11.92 0.57 0.74 1.30
25 WP784 28.9 29.83 29.37 1.02 0.98 0.97
26 WP1286C 4.0 4.00 0.84 0.21 0.21 0.99
28 WP1289C 9.0 6.50 1.43 0.16 0.22 1.39
34 WP791 17.4 15.50 6.19 0.36 0.40 1.12
35 WP963 8.5 7.00 1.19 0.14 0.17 1.21
37 W P805 11.0 12.00 2.63 0.24 0.22 0.92
38 WP989 24.8 22.25 15.42 0.62 0.69 1.12
39 WP961 7.5 6.25 1.02 0.14 0.16 1.20
40 WP1006 23.4 18.25 9.67 0.41 0.53 1.28
46 WP699 10.9 8.75 3.90 0.36 0.45 1.24 •
47 WP806 15.0 7.75 3.65 0.24 0.47 1.93
52 WP775 17.6 15.08 6.57 0.37 0.44 1.16
55 WP813 10.1 7.92 2.31 0.23 0.29 1.27
56 WP773 19.6 14.75 7.27 0.37 0.49 1.33
60 WP821 22.5 18.25 9.75 0.43 0.53 1.23
61 WP809 21.0 18.50 8.32 0.40 0.45 1.14
64 WP950 16.9 12.67 5.82 0.34 0.46 1.33
68 WP810 21.0 13.42 8.35 0.40 0.62 1.57
78 WP706 13.3 1 10.42 5.66 0.43 0.54 1.28
B-67
0"0- Project: Ash Apts No: 2015018.00 Page:
c a to n a e n g Si n J
Subject: Shear Wall By: cs Date:
Analysis
Wall# RISA Wall RISA Wall Actual RISA Shear RISA Shear Actual Shear Shear
Panel Label Length(ft) Length (ft) (kips) (klf) (klf) Ratio
LVL 4 5 REV_WP1103 15.6 12.67 3.58 0.23 0.28 1.23
9 REV_WP1105 18.1 16.33 4.57 0.25 0.28 1.11
12 REV_WP1096 19.0 13.75 5.01 0.26 0.36 1.38
17 REV_WP1098 19.1 14.75 5.10 0.27 0.35 1.30
20 WP1126E 15.2 10.83 2.72 0.18 0.25 1.40
22 REV_WP897 21.0 16.17 8.48 0.40 0.52 1.30
25 REV_WP1064 28.9 29.83 14.31 0.50 0.48 0.97
26 WP1289D 4.0 4.00 0.95 0.24 0.24 0.99
28 WP1292A 9.0 6.50 1.07 0.12 0.17 1.39
34 REV_WP1084 17.4 15.50 3.90 0.22 0.25 1.12
35 WP1197 8.5 7.00 0.79 0.09 0.11 1.21
37 WP1152B 11.0 12.00 2.08 0.19 0.17 0.92
38 WP351 24.8 22.25 11.67 0.47 0.52 1.12
39 WP1196B 7.5 6.25 0.65 0.09 0.10 1.20
40 WP1380B 23.4 18.25 8.43 0.36 0.46 1.28
• 46 REV_WP911 10.9 8.75 2.64 0.24 0.30 1.24
47 WP1148 15.0 7.75 2.93 0.20 0.38 1.93
52 REV_WP1046 17.6 15.08 4.45 0.25 0.29 1.16
55 WP1142A 10.1 7.92 1.90 0.19 0.24 1.27
56 REV_WP1033 19.6 14.75 4.65 0.24 0.32 1.33
60 WP1127B 22.5 18.25 8.78 0.39 0.48 1.23
61 WP1140 3.7 18.50 0.97 0.26 0.05 0.20
64 WP1192A 1 16.9 1 12.67 3.63 0.22 0.29 1.33
68 WP1141A 21.0 13.42 5.55 0.26 0.41 1.57
78 REV WP921 13.3 10.42 4.77 0.36 0.46 1.28
B-68
Project: Ash Apts No: 2015018.00 Page:
/'atena e n g SI n le'e 9 Subject: Shear Wall By: cs Date:
Analysis
Wall# RISA Wall RISA Wall Actual RISA Shear RISA Shear Actual Shear Shear
Panel Label Length (ft) Length(ft) (kips) (klf) (klf) Ratio
ROOF 5 WP1220 15.6 12.67 2.13 0.14 0.17 1.23
9 WP1221 18.1 16.33 2.77 0.15 0.17 1.11
12 WP1217 19.0 13.75 3.13 0.17 0.23 1.38
17 WP1218 19.1 14.75 3.17 0.17 0.22 1.30
20 WP1295 15.2 10.83 0.93 0.06 0.09 1.40
25 WP1203C 28.9 29.83 7.34 0.25 0.25 0.97
28 WP1297C 9.0 6.50 0.99 0.11 0.15 1.39
34 WP1213 17.4 15.50 2.46 0.14 0.16 1.12
35 WP1387 8.5 7.00 0.15 0.02 0.02 1.21
37 WP1227 11.0 12.00 1.02 0.09 0.08 0.92
38 WP1414 24.8 22.25 6.03 0.24 0.27 1.12
39 WP1385 7.5 6.25 0.13 0.02 0.02 1.20
40 WP1382B 23.4 18.25 4.80 0.21 0.26 1.28
46 WP1113 10.9 8.75 2.60 0.24 0.30 1.24
47 WP1229 15.0 7.75 1.63 0.11 0.21 1.93
52 WP1194D 17.6 15.08 3.39 0.19 0.22 1.16 •
55 WP1236 10.1 7.92 0.69 0.07 0.09 1.27
56 WP1192D 19.6 14.75 3.23 0.17 0.22 1.33
60 WP1244 22.5 18.25 4.56 0.20 0.25 1.23
61 WP1232 21.0 18.50 3.74 0.18 0.20 1.14
64 WP1373 16.9 12.67 2.27 0.13 0.18 1.33
68 WP1233 21.0 13.42 3.79 0.18 0.28 1.57
J
• • • B-70
7 Table 10-10a (continued) 4 Table 10-10a (continued)
/8-in•- Single-Plate Connections Plate Plate Single Plate Connections 7/g-in•-
F - si
diameter Bolt, Weld and Single-Plate y - 36 ksi Fy= 36 k Bolt, Weld and Single-Plate diameter
boltsAvailable Strengths, kips Available Strengths, kips bolts
Plate Thickness,in. Plate Thickness,in.
8011 Thread Hole �/� a 3/e 'ha 1/2 Bolt Thread Hole
Group Cond. Type !y Group Cond. Type '/' 5/16 3!e '/,a '/z eha
ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASO LRFD A� lRW ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD
STD 69.6 104 87.0 131 104 t 57 - _ _ H STD 34.8 52.2 43.5 65.3 52.2 78.3 56.5 84 8 56.5 84.8 - -
H Group SSLT 34.8 52.2 43.5 65.3 52.2 78.3 56.5 84.8 56.5 84.8 56.5 Group SSLT 69.1 104 86.4 130 104 156 121 18' 124 'd:: -
A STD 69.6 104 87.0 H1104 157 - - A XS7D 34.8 52.2 43.5 65.3 52.2 78.3 60.9 91.4 69.6 104g X SSLT 69.1 104 86.4 04 156 121 181 138 %07 _ 4 SSLT 34.8 52.2 43.5 65.3 52.2 78.3 60.9 91 4 69.6 104 71.2 107
(1=24) H STD 69.6 104 87.0 04 157 - -- - - - _ ' (L,12) H STD 34.8 52.2 43.5 65.3 52.2 78 3 60.9 91 4 69.6 104 - -
Group SSLT 69.1 104 86.404 156 121 181 138 2J - _ Group SSLT 34.8 52.2 43.5 65.3 52.2 78.3 60.9 91.4 69.6 104 71.2 107
B X STD 69.6 104 87.0 131 104 157 - - - - - B X STD 34.8 52.2 43.5 65.3 52.2 78.3 60.9 91.4 69.6 104 -
SSLT 69.1 104 86.4 130 104 156 121 1181 138 207 - _ SSLT 34.8 52.2 43.5 65.3 52.2 78.3 60.9 91 4 69.6 104 78.3 117
STD 60.9 91.4 76.1 114 91.4 137 - - - - - H STD 26.1 39.2 32.6 48.9 39.2 58.7 39.2 589 39.2 58.9 - -
H Group SSLT 26.1 39.2 32.6 48.9 39.2 58J 392158.9 39.2 58.9 39.2 5891
Group SSLT 60.9 91.4 76.1 114 91.4 137 107 160 107 161 - _
A STD 60.9 91.4 76.1 114 91.4 137 - - - - - - A X STD 26.1 39.2 32.6 48.9 39.2 58.7 45.7 68.5 49.4 74.4 - -
7 X SSLT 60.9 91.4 76.1 114 91.4 137 107 160 122 183 - - } 3 SSLT 26.1 39.2 32.6 48.9 39.2 58.7 45.7 68.5 49.4 74.4 49.4 74 4
(L=21) ti STD 60.9 91.4 76.1 114 91.4 137 - - - - - (L-9) H STD 26.1 39.2 32.6 48.9 39.2 58 7 45.7 68.5 49.4 74.4 - --
SSLT 60.9 91.4 76.1 114 91.4 137 107 160 122 18"s - - Group SSLT 26.1 39.2 32.6 48.9 39.2 58.7 45.7 68.5 49.4 74.4 49.4 74.4
Group STD 26.1 39.2 32.6 48.9 39.2 58 7 45.7 68.5 52.2 78.3 -
B X STD 60.9 91.4 76.1 114 91.4 137 - - - - -
X -
SSLT 60.9 91.4 76.1 114 91.4 137 107 160 122 183 - - SSLT 26.1 39.2 32.6 48.9 39.2 58.7 45.7 68.5 52.2 78.3 58.7 88.1
STD 52.2 78.3 65.3 97.9 78.3 117 - -- - - - 1 STD 17.4 26.1 21.8 32.6 22.4 337 22.4 33 7 22.4113 7 -
H i H
Group SSLT 52.2 78.3 65.3 97.9 78.3 117 90.5 t 36 90.5 136 --
Group SSLT 17.4 26.1 21.8 32.6 22.4 33.7 22.4 33.7 22.433.722.4 33.7
A X STD 52.2 78.3 65.3 97.9 78.3 117 - - - - - - A X STD 17.4 26.1 21.8 32.6 26.1 39.2 28.3 42.5 28.3 42.5 - -
6 SSLT 52.2 78.3 65.3 97.9 78.3 117 91.4 137 104 157 - 2 SSLT 17.4 26 1 21.8 32.6 26.1 39.2 28.3 42 5 28.3 42.5 28.3 42.5
(L=6) STD 17.4 26.1 218132.6 26.1 39.2 28.3 42 5 28.3 42.5 -
(1=18) H STD 52.2 78.3 65.3 97.9 78.3 117 - - - - _ � -
Group
SSLT 52.2 78.3 65.3 97.9 78.3 117 91.4 137 104 157 - Group N SSLT 17.4 26.1 21.8 32.6 26.1 39.2 28.3 42.5 28.3 42.5 28.3 42.5
B X STD 52.2 78.3 65.3 97 9 78.3 117 - - - - - - ' B X STD 17.4 26.1 21.8 32.6 26.1 39.2 30.5 45.7 34.8 52.2 -
SSLT 52.2 78.3 65.3 97.9 78.3 1 t 7 91.4 137 104 157 - - �- SSLT 17.4 26.1 21.8 32.6 26.1 39.2 30.5 45 7 34.8 52.2 34.9 52.5
H STD 43.5 65.3 54.4 81.6 65.3 97.9 73.6 110 73.6 110 - -I i
Group SSLT 43.5 65.3 54.4 81.6 65.3 97.9 73.6 110 73.6 110 73.6 1 tD
A STD 43.5 65.3 54.4 81.6 65.3 97.9 76.1 114 87.0 131 -
5 X SSLT 43.5 65.3 54.4 81.6 65.3 97.9 76.1 114 87.0 131 92.7 139
(1=15) H STD 43.5 65.3 54.4 81.6 65.3 97.9 76.1 114 87.0 131
Group SSLT 43.5 65.3 54.4 81.6 65.3t97 114 87.0 131 917 139
B STD 43.5 65.3 54.4 61.6 65.3 114 87.0 131 -
X SSLT 43.5 65.3 54.4 81.6 65.3 114 87.0 131 97 J.._
B-69
SINGLE ROW BEARING BOLTED BEAM
CONNECTION SCHEDULE
No. OF PLATE MIN. WEB THICKNESS (IN)
CONN. X8 0 A325 N LENGTH COMMENTS
TYPE BOLTS (IN) TOP FLANGE BOTH FLANGES
COPED COPED
2 6 STANDARD 0.216
HOLE
3] 3 9 STANDARD 0.237 0.292
HOLE
4 12 STANDAHOLERD 0.264 0.300
❑5 5 15 STANDARD
HOLE
6 18 STANDARD
HOLE
7 21 STANDARD
HOLE
NOTES:
1. BEARING TYPE CONNECTION w/THREADS INCLUDED IN SHEAR PLANE.
2. FOR tw< MIN.THICKNESS, CAPACITY IS REDUCED BY FACTOR tw/t MIN.
SINGLE ROW BOLTED
2 BEAM CONNECTION SCHEDULE
Item 38.1
Project: No.: Page: B-71
Catena c o n s ° ' I n g Ash Apts 2015018.00 1
e n g i n e e r s
Subject: By: Date:
Bldg 2 Header at Gridline 10- Item 38.1 CS 10/22/2015
•
STRUCTURAL GLUED LAMINATED TIMBER(GLULAM) BEAM ANALYSIS&DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Load Envelope•Combination 1
6 650-
00-
ft
5000ft I s
A 1 B
kip-ft Bending Moment Envelope
00
19 276
19.3
ft I 9
A 1 B
•
kips Shear Force Envelope
5,242- 5.2
0,0- L
-5 242 - _ __._ -
52
ft I 9
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1
Dead point load 3800 Ib at 54.00 in
Live point load 1250 Ib at 54.00 in
Snow point load 1600 Ib at 54.00 in
Dead full UDL 150 Ib/ft
Dead full UDL 260 Ib/ft
•
Item 38.1
Project: No.: Page: B-72
/coatena ` ° ° I ' I n „ Ash Apts 2015018.00 2
e n p I n e e r s
Subject: By: Date:
Bldg 2 Header at Gridline 10-Item 38.1 CS 10/22/2015
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Snow x 1.00
Span 1 Dead x 1.00
Live x 1.00
Snow x 1.00
Support B Dead x 1.00
Live x 1.00
Snow x 1.00
Analysis results
Maximum moment Mmax= 19276 Ib ft Mmin=0 Ib ft
Design moment M=max(abs(Mma.),abs(Mmin))= 19276 lb—ft
Maximum shear Fina.=5242 Ib Fmin= -5242 Ib
Design shear F=max(abs(Fina.),abs(Fmin))=5242 lb
Total load on member Wt°t= 10484 Ib
Reaction at support A RA—ma.=5242 Ib RA—min=5242 Ib
Unfactored dead load reaction at support A RA—Dead=3817 Ib
Unfactored live load reaction at support A RA—U,.=625 Ib
Unfactored snow load reaction at support A RA_sn°w=800 Ib
Reaction at support B RB_max=5242 Ib RB-min=5242 Ib
Unfactored dead load reaction at support B RB-Dead=3817 Ib
Unfactored live load reaction at support B RB_Live=625 Ib
Unfactored snow load reaction at support B RB_sn°W=800 Ib
,I
N_
X
Glulam section details
Net finished breadth of sections b=5.5 in
Net finished depth of sections d = 12 in
Number of sections in member N = 1
Overall breadth of member bb=N x b=5.5 in
Alignment of laminations Horizontal
Stress class 24F-1.8E
Item 38.1
Project: No.: Page: B-73
/catena ` ° " " g Ash Apts 2015018.00 3
e n g i n e e r s
Subject: By: Date:
Bldg 2 Header at Gridline 10-Item 38.1 CS 10/22/2015
•
Bending parallel to grain Fb=2400 Ib/inz
Tension parallel to grain Ft= 1100 Ib/inz
Compression parallel to grain Fe= 1600 Win
Compression perpendicular to grain Fc_perp= 650 Ib/inz
Shear parallel to grain F„=265 Ib/inz
Modulus of elasticity E = 1800000 Ib/inz
Modulus of elasticity, stability calculations Emin= 950000 Ib/inz
Mean shear modulus Gdef= E/ 16= 112500 Win
Member details
Service condition Dry
Length of bearing Lb=4 in
Load duration Ten years
Section properties
Cross sectional area of member A= N x b x d = 66.00 in
Section modulus SX= N x b x d /6= 132.00 in3
Sy=dx(Nxb)z/6=60.50 in
Second moment of area Ix= N x b x d3/ 12= 792.00 in"
ly=d x(N x b)3/12= 166.37 in'
Adjustment factors
• Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Flat use factor-Table 5A CfU= 1.01
Bearing area factor-cl.3.10.4 Cb= 1.00
Length of beam between points of zero moment Lo= 9 ft
For species other than Southern Pine x= 10
Volume factor-eq.5.3-1 Cv=min((21 ft/Lo)'/x x(12 in/d)'/x x(5.125 in/b)'/x, 1)= 1.00
Depth-to-breadth ratio d/(N x b)=2.18
Effective laterally unsupported span length le= 1 ft
Slenderness ratio for bending members-eq.3.3-5 Rb=J[le x d/(N x b)z]=2.182
Adjusted bending design value for bending Fb' = Fb X CD X CMb X Ct X Cc=2400 Win
Adjusted modulus of elasticity for member stability Emin'= Emin x CME x Ct=950000 Win
Critical buckling design value for bending FbE= 1.2 x Emin'/Rbz=239479 Ib/inz
Beam stability factor-eq.3.3-6
CL= [1 +(FbE/Fb")]/1.9-4[([1 +(FbE/Fb')]/ 1.9)2-(FbE/Fb')/0.95] = 1.00
Bearing perpendicular to grain-cl.3.10.2
Design compression perpendicular to grain F"_perp'= Fc_perp x Ct x Cb= 650 Ib/inz
Applied compression stress perpendicular to grain fc_perp= RB_max/(N x b x Lb)=238 Ib/inz
fc_perp/Fc_perp=0.367
PASS-Design compressive stress exceeds applied compressive stress at bearing
Item 38.1
Project: No.: Page: B-74
Xatena ` ° " : " ' ' ' " g Ash Apts 2015018.00 4
e n g i n e e r s
Subject: By: Date:
Bldg 2 Header at Gridline 10-Item 38.1 CS 10/22/2015
Strength in bending-cl.3.3.1
Design bending stress Fe= Fb x CD x Ct x min(CL,Cv)x Cc=2399 Win
Actual bending stress fb=M/S,,= 1752 Ib/int
fb/Fti=0.731
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-cl.3.4.1
Design shear stress F,'= Fv x CD x Ct=265 lb/int
Actual shear stress-eq.3.4-2 fv=3 x F/(2 x A)= 119 Ib/int
f,./R'=0.450
PASS-Design shear stress exceeds actual shear stress
Deflection-cl.3.5.1
Modulus of elasticity for deflection E'=EX x CME x Ct= 1800000 Ib/int
Design deflection Sad.=min(0.5 in, 0.0041 x Lai)=0.443 in
Bending deflection Sb_S1 =0.167 in
Shear deflection &-$I =0.037 in
Total deflection Sa=Sb s1 +& s1 =0.204 in
Sa/Sad.=0.461
PASS-Design deflection is less than total deflection
Item 38.2
Project: No.: Page: B-75
Catena ` ° " s e e r : Ash Apts 2015018.00 1
n g i n
Subject: By: Date:
CS43_1 CS 11/4/2015
Structural wood member designSTRUCTURAL WOOD BEAM DESIGN(NDS)
In accordance with the ANSI/AF&PA NDS-2012 using the ASD method
TEDDS calculation version 1.6.04
Analysis results
Design axial compression P=34891 Ib
Sawn lumber section details
Nominal breadth of sections br,°m= 6 In
Dressed breadth of sections b=5.5 in
Nominal depth of sections dr,°m= 10 in
Dressed depth of sections d = 9.5 in
Number of sections in member N = 1
Overall breadth of member bb= N x b=5.5 in
Species, grade and size classification Douglas Fir-Larch,Select Structural grade, Beams and stringers
Bending parallel to grain Fb= 1600 Ib/int
Tension parallel to grain F,= 950 Ib/inz
Compression parallel to grain Fc= 1100 Ib/int
Compression perpendicular to grain Fc_perp=625 Ib/int
Shear parallel to grain F„= 170 Ib/inz
Modulus of elasticity E= 1600000 Ib/inz
Modulus of elasticity,stability calculations Emir,=580000 Ib/inz
Mean shear modulus Gder= E/ 16= 100000 Ib/inz
Member details
Service condition Dry
Load duration Two months
Unbraced length in x-axis U= 11 ft
Effective length factor in x-axis K.= 1
Effective length in x-axis Le.= LX x K.= 11 ft
Unbraced length in y-axis Ly= 11 ft
Effective length factor in y-axis Ky= 1
Effective length in y-axis Ley= Ly x Ky= 11 ft
•
Item M.2
Project: No.: Page: B-76
Catena ` ° ° ' " i t i " 9 Ash Apts 2015018.00 2
e n g i n e e r s
Subject: By: Date:
CS43 1 CS 11/4/2015
Section properties
Cross sectional area of member A= N x b x d =52.25 int
Section modulus %= N x b x d2/6=82.73 in3
Sy=d x(N x b)2/6=47.90 in3
Second moment of area IX=N x b x d3/12 =392.96 in4
ly=dx(Nxb)3/ 12= 131.71 in4
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.15
Temperature factor-Table 2.3.3 Ct= 1.00
Size factor for bending-Table 4D CFb= 1.00
Size factor for tension-Table 4D CR= 1.00
Size factor for compression-Table 4D CFc= 1.00
Flat use factor-Table 4D Ctu= 1.00
Incising factor for modulus of elasticity-Table 4.3.8
CiE= 1.00
Incising factor for bending, shear,tension&compression-Table 4.3.8
Ci= 1.00
Incising factor for perpendicular compression-Table 4.3.8
Cic-perp= 1.00
Repetitive member factor-cl.4.3.9 Cr= 1.00
Bearing area factor-cl.3.10.4 Cb= 1.00
Adjusted modulus of elasticity for column stability Emir =Emin x CME x Ct x CiE=580000 Ib/int
Reference compression design value Fc`=Fc X CD X CW X Ct x CFc X Ci= 1265 Ib/int
Critical buckling design value for compression FcE=0.822 x Emir /(L.y/b)2=828 Wine
c=0.80
Column stability factor-eq.3.7-1
CP=(1 +(FcE/Fc'))/(2 x c)-J[((1 + (FcE/Fc'))/(2 x C))2-(FcE/Fc')/c] =0.53
Depth-to-breadth ratio do°m/(N x bn°m)= 1.67
-Beam is fully restrained
Beam stability factor-cl.3.3.3 Ci_= 1.00
Strength in compression parallel to grain-cl.3.6.3
Design compressive stress Fc'= Fc x CD X Ct X CFc X Ci x CP=674 Ib/int
Applied compressive stress fc=P/A=668 Wine
fc/F,:'=0.991
PASS-Design compressive stress exceeds applied compressive stress
PL,.ary C bWcz r- eA - z-7
7zi � 28
/coatena
Project Number: 2015018.00 Page/of:
Project: Ash Apts-Building 2 By: gh
Subject: Rigid Diaphragm Analysis Level 1-2 Date: 11/04/15
Walls on Level 1-2
INPUT DAT
Y
Center of Mass from Origin: t.
Lx
Lx: Building overall peon dimension X-dir = 220.00 feet �
Ly: Building overall pion dimension Y-dir = 70.00 feet
XCm: Center of mass X-dir = 87.10 feet
Ycm: Center of mass Y-dir = 29.00 feet
Xcm
Consider accidental torsion?IYjes or(N)o= y ]P1,P2
�1
T1
'14,Loads(Enter up to 2): LL1P1: First Load= 771.50 kips
Thetat: Angle of first loud from X-axis= 0.00 degrees Y
P2: Second load= 0.00 kips Y1 X1
Thetat: Angle of second load from X-axis= 90.00 degrees
X
O
Location of Walls:
Are walls fixed at stories?(Y,N) y
FF: Fixity Factor for Flexural Rigidity= 12
• If Known' Input if Stiffness is not Known
Local Modulus of Angle from Center of Mass
Stiffness Thickness Length Height Elasticity X-Dir. from Ongin
K T L H E An X Y
Wal'# r/io It ft. k deaft ft.
1 8.0 6.0 12.0 1.0 90.0 0.0 44.8
2 8.0 19.0 12.0 1.0 90.0 34.0 42.8
3 8.0 19.0 12.0 1.0 90.0 44.0 42.8
4 8.0 23.5 12.0 1.0 90.0 54.5 48.8
5 8.0 19.5 12.0 1.0 90.0 154.5 0,4
6 8.0 42.0 12.0 1.0 90.0 164.5 16.7
A 8.0 19.0 12.0 1.0 0.0 9.5 0.0
8 8.0 5.5 12.0 1.0 0.0 F' i 8.8
C 8.0 9.7 12.0 1.0 0.0 ave 33.5
LD1 8.0 4.0 12.0 1.0 0.0 102.0 33.5
E 8.0 5.5 12.0 1.0 0.0 36.7 52.5
F 8.0 19.0 12.0 1.0 0.0 ld? 52.5
7 8.0 20.0 12.0 1.0 90.0 97.5 43.5
�D2 8.0 16.5 12.0 1.0 0.0 116.2 33.5
9 8.0 28 12.0 1.0 90.0 209.5 8.0 43.0 12.0 1.0 0.0 76.0 52.5 s
8.0 42.0 12.0 1.0 0.0 185.5 •10.0
D3 8.0 9.0 12.0 1.0 0.0 133.4 33.5
It wall is pierced or hos other irregularities,enter the combined shear and flexurai stiffness.
�272Z
/catena
Project Number. 2015018.00 Pogo/of:
Project Ash Apts-8uilding 2 By: gh
Subject Rigid Diaphragm Analysis Level 1-2 Date: 11/04/15
CALCULATIONS
Compule Relative RlgkMy of Want Along Major RuRdng Axes
Locos R I G I D I T Y
Area(AI) Shear Flexural Total Rigidity Moments
Al Rvx RvY RfX RfY RtX RtY RtX•Y RtY'X
Wall N sf k/in k/in k/'n kCn k/in On kips kips
1 4.0 0.0 1.3 OA 1.0 0.00 0.57 0 0
2 12.7 0.0 4.2 OA 31A 0.00 3.73 0 1520
3 12.7 0.0 4.2 OA 31.8 0.00 3.73 0 1968
4 15.7 0.0 5.2 OA 60.1 0.00 4.80 0 3142
5 13.0 OA 4.3 OA 34.3 0.00 3.85 0 7134
6 28.0 OA 9.3 0.0 343.0 DAO 9.09 0 17936
A 12.7 4.2 0.0 31.8 0.0 3.73 0.00 0 0
8 3.7 1.2 0.0 0.8 0.0 0.47 0.00 50 0
C 6.4 2.1 0.0 4.2 0.0 1.42 OAO 571 0
DI 2.7 0.9 0.0 0.3 0.0 0.22 0.00 89 0
E 3.7 1.2 0.0 Ob OA 0.47 0.00 298 0
F 12.7 4.2 0.0 31.8 OA 3.73 0.00 2348 0
7 13.3 OA 4.4 0.0 37.0 0.0 4.0 0 4643
D2 11.0 3.7 0.0 20.8 0.0 3.1 0.0 1253 0
9 6.6 0 2 0 4 OA 1.5 0 3669
G 28.7 10 0 368 0 9.3 0.0 5868 0
H 28.0 9 0 343 0 9.1 0.0 -1090 0
D3 6.0 2 0 3 0 1.3 0.0 505 0
33 31 9891(CI ID)40 •
(A) (B) (C) ID)
Ay &Ax: Wall area tributary to X or Y direction- T(L)sin(An) or T(L)cos(An)
RvX &RvY: Wall shear rigidity- Ax(0.4E)/(1.2HJ or Ay(O.4E)/(1.2H)
Rfx &RfY: Wall flexural rigidity- (FF)E(I/HA3)
1: Moment of Inertia= T(Ax/T)A3 or 7(Ay/T)A3
RtX 8 R1Y: Total wall rigidity= K or,if unknown.(RvX)(RfX)/(RvX+RfX) and
(RvY)(RfY)/(RvY+RIY)
R1X'Y &RtY•X: Wall rigidly•Moment arm- (Y)RtX or (X)RfY
•
�2� Q3
/catena
Project Number: 2015018.00 Pate/of:
Project: Ash Apts-Wbfng 2 by: gh
Subject: Rigid Diaphragm Analysis Level 1-2 Dale: 11/04/15
CALCULATIONS(cont)
Compute Torslonol Coefficients:
Xcr: Center of Rigidify,- (D/8) = 106.9 feet
Ycr: (C/A) - 25.1 feet
Xf: Torsional Eccentricity- (Xcr-Xcm) - 19.1 feel
Yi: (Yd-Ycm) _ -3.9 feet
XAt: Accidental Torsion= 10.O5Lx) if considered - 11.0 feet
YAf: (0.05Ly) if considered - -3.5 feet
Px: Resultant Forces= (Llcos(g1))+(L2cos(g2)) 171.5 kips
Py: (Llsin(gl))+(L2sin(g2)) 0.0 kips
Xme+: Maximum Eccentricity w/+Acc.Torsion= (Xf+XAt) = 30.1 feet
Yme+: (Yt+YAt) _ -7.4 feet
Xme-: Maximum Eccentricity w/-Acc.Torsion= (Xf-XAt) - 8.1 feet
Yme-: (Yt-YAt) _ -0.4 feet
+Mt: +Maximum Torsional Moment- Px(Yme+)-Py(Xme+) _ 1266 kip-feet
-Mt: -Maximum Torsional Moment= Px(Yme-)-Py(Xme-I = -65 kip-feet
Compute ItWdffy DIs41bu9on:
Distance from C.R.
Total Rigidity to C.M.of wall Riddty•Distance Rigidity•Distance Sard.
Rix Rty X" Y" R1x•Y- Rty')C" Rix'Y"2 Rty'X-2
Wall a kin. On- ft. ft. kips kips k ft. k ft.
• 1 0 1 106.9 19.7 0 733 0 78361
2 0 4 -72.9 17.6 0 -3260 0 237665
3 0 4 -62.9 17.6 0 -2813 0 176935
4 0 5 -52.4 23.6 0 -3021 0 158310
5 0.0 3.8 47.6 -24.7 0 2198 0 104612
6 OA 9.1 57.6 -8.4 0 6280 0 361741
A 3.7 0.0 -97.4 -25.1 -1123 0 28218 0
8 0.5 OA 54.6 -16.3 -92 0 1504 0
C 1.4 0.0 -67.9 8.4 143 0 1197 0
D 1 0.2 0.0 -4.9 8.4 22 0 187 0
E 0.5 0.0 -70.2 27.4 155 0 4251 0
F 3.7 0.0 -92.7 27.4 1224 0 33527 0
7 OA 4.0 -9.4 18.4 0 -448 0 4206
D2 3.1 0.0 9.3 8.4 313 0 2627 0
9 OA 1.5 102.6 -30.0 0 1797 0 184360
G 93 0.0 -30.9 27.4 3060 0 83791 0
H 9.1 0.0 78.6 -35.1 -3829 0 134477 0
D3 13 0.0 26.5 8.4 126 0 1058 0
290838 1306192
(E) (F)
J Tosional Moment of Inertia - (E)+(F) = 1597030 kip-toot
•
catena
Project Number: 2015018.00 Pape/of:
Project: Ash Apt$-Building 2 by: gh
Subject Rigid Diaphragm Analysis Level 1-2 Date: 11/04/15
Compute ResullaM forces:
WALLFORCES+ACCIDENTAL TORSION
Maximum Force of Direct,
Direct From Moment Total(Global Axes) From Moment,Total
Wall Fpx Fpy Fmx Fmy Fix Fly Fx Fy Total
Wall# Orientation kips kips kips kips kips kips kips kips kips
1 Principal 0.0 0.0 0.0 0.6 0.0 0.6 0.0 0.6 0.6
2 Principal 0.0 0.0 0.0 2.6 0.0 2.6 0.0 2.6 2.6
3 Principal 0.0 0.0 0.0 2.2 0.0 2.2 0.0 2.2 2.2
4 Principal 0.0 0.0 0.0 2.4 0.0 2.4 0.0 2.4 2.4
5 Principal 0.0 0.0 0.0 -1.7 0.0 -1.7 0.0 1.7 1.7
6 Principal 0.0 0.0 0.0 -5.0 0.0 -5.0 0.0 5.0 5.0
A Principal 19.5 0.0 -0.9 OA 18.6 0.0 19.5 0.0 19.5
B Principal 2.5 0.0 -0.I 0.0 2.4 0.0 2.5 0.0 2.5
C Principal 7.4 0.0 0.1 0.0 7.5 0.0 7.5 0.0 7.5
DI Principal 1.2 0.0 0.0 0.0 1.2 0-0 1.2 0.0 1.2
E Principal 2.5 0.0 0.1 0.0 2.6 0.0 2.6 0.0 2.6
F Principal 19.5 0.0 1.0 0.0 20.4 0.0 20A 0.0 20.4
7 PrkscIpd 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.4 0.4
D2 Principal 16.3 0.0 0.2 OA 16.5 0.0 16.5 0.0 16.5
9 Principal 0.0 0.0 0.0 -1.4 0.0 -1.4 0.0 1.4 1.4
G Principal 48.7 OA 2.4 0.0 51.1 0.0 51.1 0.0 51.1
H Principal 47.5 0.0 -3.0 0.0 44.5 0.0 47.5 0.0 47.5
D3 Principal 6.6 0.0 0.1 0.0 6.7 0.0 6.7 0.0 6.7
WALLFORCES-ACCIDENTAL TORSION
Maximum Force of Direct.
Direct From Moment Total(Global Axes) From Moment,Total
Wall Fpx Fpy Fmx Fmy Fix Fly Fx Fy Total
Wall R Orientation kips kips kips kips kips kips kips kips kips •
1 Principal 0.0 0.0 0.0 OA 0.0 OA 0.0 0.0 0.0
2 Principal 0.0 OA OA 0.1 0.0 0.1 0.0 0.1 0.1
3 Principal 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1
4 Principal 0.0 0.0 0.0 OJ 0.0 0.1 0.0 0.1 0.1
5 Principal 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.1 0.1
6 Principal 0.0 0.0 0.0 -0.3 0.0 -0.3 0.0 0.3 0.3
A Principal 19.5 0.0 0.0 0.0 19.4 0.0 19.5 0.0 19.5
B Principal 2.5 0.0 0.0 0.0 2.5 0.0 2.5 0.0 2.5
C Principal 7.4 0.0 0.0 0.0 7.4 0.0 7.4 0.0 7.4
01 Principal 1.2 0.0 0.0 OA 1.2 0.0 1.2 0.0 1.2
E Principal 2.5 0.0 0.0 OA 2.5 0.0 2.5 0.0 2.5
F Principal 19.5 0.0 0.1 0.0 19.5 0.0 19.5 0.0 19.5
7 Principal 0.0 0.0 0.0 OD 0.0 0.0 0.0 OA 0.0
D2 Principal 16.3 0.0 0.0 0.0 16.3 0.0 16.3 0.0 16.3
9 Principal 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.1 0.1
G Principal 48.7 0.0 0.1 OD 48.8 0.0 48.8 0.0 48.8
H Principal 47.5 0.0 -0.2 0.0 47.3 0.0 47.5 0.0 47.5
D3 Principal 6.6 0.0 0.0 OD 6.6 0.0 6.6 0.0 6.6
Fpx&Fpy: Direct force from P only= (Px(RtX/Sum RtX))or(Py(RfY/Sum RfY)
Fmx&Fmy: Force resultant from torsional moment- (Mt(Rx(Y)/J))or(Mi(Ry(X)/J))
Fix 8 Fly: Total actual force of direct and torsion= (Fp+Fm)
Fx 8 Fy: Design force-Maximum of three forces above- (Max of(Fp.Fm.Ft))
Total: Resultant force along ads of wall(Walls Orientated to Principal Axes)_ ((FXA2+FyA2)A.5)
Total: Resultant force along ads of wall(Walls Orientated to Skewed Axes)- Fx/Cos(q)+Fy/Sin(q)
•
�k2� 25
/catena
Project Number: 2015018.00 Page/of:-
Project: Ash Apts-Building 2 6y: gh
Subject: Rigid Diaphragm Analysis level 1-2 Date: 11104/15
Wall forces Summary
Q O
*Accident. -Accident. Design O Q 0
Torsion Torsion Maximum 1
Wall Total Total Total X-DIR Y-DIR MAX MAX WAIL
Wall# Orientation kips kips kips pit pit p8 ptl _ klps TYPE
1 Principal 1 0 1 97 97 919 919 5.51 2
2 Principal 3 0 3 136 136 1633 1633 31.0 5
3 Principal 2 0 2 117 117 1557 1557 29.6 5
4 Principal 2 0 2 102 102 1540 1540 36.2 5
5 Principal 2 0 2 89 89 1085 1085 21.2 1
6 Principal 5 0 5 119 119 1189 1189 50.0 1
A Principal 19 19 19 1025 1025 191 1025 19.5 1
8 Principal 2 2 2 449 449 54 449 2.5 4
C Principal 8 7 8 779 779 48 779 7.5 2
DI Principal 1 1 1 295 295 18 295 1.2
E Principal 3 2 3 471 471 91 471 2.6 4
F Principal 20 20 20 1076 1076 208 1076 20.4 1
7 Principal 0 0 0 18 18 1163 1163 23.3 1
D2 Principal 17 16 17 1002 1002 61 1002 16.5
9 Principal 1 0 1 145 145 816 816 8.0 2
G Principal 51 49 51 1188 1188 230 1188 51.1 1
H Principal 47 47 47 1131 1131 295 1131 47.5 1
D3 Principal 7 7 7 740 740 45 740 6.7
I •
•
L? Q�
/catena e c ° s u 1 I 1 n p •
e n g i n e e r s
Project Number: 2015018.00 Page/of:
Project: Ash Apts-Building 2 By: gh
Subject: Rigid Diaphragm Analysis Date: 10/30/15
REVISED WALL FORCES AND WALL TYPES ORIGINAL WALL FORCES AND WALL TYPES COMPARISON
Length REVISED wall shear WALL Length original wall shear WALL NEW/ORIGINAL
Wall ID (ft) (plf) (k) TYPE Wall ID (ft) (pit) (k) TYPE pit kips
1 6 919 5.5 2 1 6 909 5.45 2 1.01 1.01
2 19 1633 31.0 5 2 19 1629 30.9 5 1.00 1.00
3 19 1557 29.6 5 3 19 1558 29.6 5 1.00 1.00
4 24 1540 36.2 5 4 24 1546 36.3 5 1.00 1.00
5 20 1085 21.2 1 5 20 1135 22.1 1 0.96 0.96
6 42 1189 50.0 1 6 42 1232 51.8 1 0.97 0.97
A 19 1025 19.5 1 A 19 961 18.3 1 1.066 1.07
B 6 449 2.5 4 B 6 421 2.3 4 1.066 1.07
C 10 779 7.5 2 C 10 734 7.1 2 1.062 1.06
D 1 4 295 1.2 4 D 28 1046 29.3 1
E 6 471 2.6 4 E 6 446 2.5 4 1.056 1.06
F 19 1076 20.4 1 F 19 1019 19.4 1 1.056 1.06
7 20 1163 23.3 1 7 20 1190 23.8 1 0.98 0.98
D2 17 1002 16.5 1
9 10 816 8.0 2 9 10 854 8.4 2 0.96 0.96
G 43 1188 51.1 1 G 43 1126 48.4 1 1.056 1.06
H 42 1131 47.5 1 H 46 1065 49.0 1 1.062 0.97
D3 9 740 6.7 2 •
W
c a t e n a ti o n 51 n let
AAA,5 ND
Project Number: 2015018.00 Page/of:
Project: Ash Apts-Building 2
By: aiam/gh
Subject: Overturning Date: 09/25/15
SUMMARY
Floor
Wall ID 1 2 3 Wall ID
Tension Comp. Tension Co Tension Comp. Sheet S021
(kips) (kips) (kips) ips) (kips) (kips)
1 19 25 11 14 5 6 1
2 29 32 1 16 7 7 2 G
3 28 28 15 15 6 6 3
4 17 18 14 14 6 6
4 T 91 moi'
5 20 11 12 5 5
6 19 20 12 12 5 5 6
7 8 I1 N/A N/A N/A N/A 7
9 6 7 N/A N/A N/A N/A
A 18 23 20 26 8 11 10
a' B 22 22 13 13 5 5 11 �' C-
Af C 1 18 14 15 6 6 t .oro� `3 X3.2 t 4 Z32
D 46 26 27 12 12 13 \ �' Z G \b, \ IL e
' E 34 36 20 20 8 8 14 _ \
l
4' F 7 8 N/A N/A N/A N/A 15 _ PJ
4` G 8 9 N/A N/A N/A N/A 17 �' o \' 6-� ,L v-aC r-
4-
� H 7 8 N/A N/A N/A N/A
16
t-JSso G '7 D,� IDA0
Z t•'1 '� 0.4`� 7 -sem
• d- Q> AA—ID VA2,t=2, T 1T Tt�,n>`sla� CAM91Z
-T A, OZ\ -T Ax�rL-eL C>Z 1
M--�� V4l.uri5 w'tFR Zovty� � vP �n/gc,L CX4 rocvke�
to
uAu- o ec c- r�
vt-
• �Cn.tr�G,�d3•l� 'r�S� \�-.�s.. tA�-D ,L ��eren�-e- o�- l 2_ L b O C- � {'
2� °� -A
�pt.l. Lfl
�Z l.) 'S
ct = Q.00F D— t G es�^t(-' T,Zt4 L7 \-0 Ic�'C 2b
` x z\ x zc��1-� (0 7 ale.. _
/ Pro j,` Iy�
cont oiling /'.27L�'S
Catena ° n 91_neers
�J«�►J6. Z iQ.- Z7_�f.
w 4 LA- � f ( D-3 v fv -:507-1 �fvc.W�. �. L F, L Z
Y�,�u� T�Sti q�, ►S �� f� irs3� � G.4-� r�
o --7 cue ,,�� +-�2c.�s v s n� o.�. �� s�e.4 a U-1
�Z
lXf IR1
4f 17 q '
�?� �,2` o• 001
C).
oIL
Z
�lf•S'o` 1�f-�
r
di
i
Tj _ _ 0.23
t_
41 40
0.71. o 60 �
l7
NJ tv�i.`'1 (�t✓�(� .
` Project: t`c Page:
l+ 2o1'S�t�.O�p 212
Catena o t`'�' e Subject:
L-p I I.J C 2
uv ArLL-
'54
fl
�s1�.N
pL No
� (C�L,bv.-c C �Zx-� � w Ate- ���.. �.►�3
Il) j�.2C�M W Z:7 x t54 �=�L A-#A t AJ b,
►tet Q 2�S6
w L-o
�A- t_a) X rp v ti NSS co w&n AJ
YAl A--..O Ll.O L v
�-&2_ r tJ A--t• Lv�4O5
r COMA 1?e4ZI: �Jim e.`T soul N c7: w�1-cc_ '�3
C- _ �� LD� } D•'�„
-C`(� !A_)ALL 1R-A-M 1 A-)6, �,44LA.'--,
CA Q
•
w4t
�L Z CP . 34--e
(YI I IO 913
C l_t�tLrj QKN
VYl ?UM 1N27Xtad
,` +A_
4�Ik tk f)1110_95 Ik 3/{, r ,SIA
IJI
Y sr IkT11110 951k O /r_
1I IO A.E IiJ1110 9.5k —a Tp 110116 _ V- WA� ` ID
Iuli 4y 11,11 110 9 S Ik tJl 110 9.5 I
Ik 111 I to II. T111109.6 1 Ik ; -
Fyi �_ �
,� j(t{�IO V.6 IIJI 110 It '4 1JI 11011.875--- Ik— — a �Ik !1. tJI,ID 95 II —'-_ --
IiJ1 110.9.Sk
Ik 11110%IO% 1"11109.3k Ik Ill Ito 11.875 ! Ik It Tit1109 Ik 1Tit -
Ik T11110 9.5 II
I4 111110 46 111,01 110 9.Sk It, T11 110 11.875 It, 9
Ik 11 9. Ik
Ik Tit 1109.5 IV
k ILA 110 A6 WI 110 94k Ik III 110 11.875 It Ik lit 10 95 Ik '�
Ik. Tit 110 9.5 Ik -
Ik R 1 I11 10 9.6 IIJI 110_9,Sk Ik TJI 110 11.875 I!. II Tit 11 9. Ik It ill 110 9.5 Ik y
Po ) Y
IN10.75%33FS ItI11109.3k It, Tit 110 11.875 14 _ Po� a
# 4.Ik UI 110 9 ik L T.),Ito 45 1t _ _ -�
�If1J1I ID 95 � 4 c
5LL z!5
n 216.7 2F f�5.%1 5 6k 5k 5.5%12FS 9k 26A W _
111
1,0 9s It
Ix Ik Tit 1104.5 Ik
Ik 111110 9.5 Ik —
I, Ik IJI 110 9S k
Ik 111110 9.5 Ik
C
L)-rAA-
tr, Kik IJI 1109.5 Ik F KV
Ik 1/111005 Ik
---
Ik 1111109,5 Ik m
w. _ 2t_s : Z .
' Z ^7 '^ n It, ,11110 95 Ik
IL� St ik 111110.9.5 Ik \V
eaa.rl^•. � 1
tiwh b��
_ at 10:07 AM
20150923 Ash Apts Bldg 2 Trans Break.rfl
Pr ect: No. Page:
/catenaBv Date
: 1
.
Q� :
L- \
N U
fly 117
Lt
15,?- 40(c- t-c7L L2) Lx- Co TK
W,A�
lit36 OttT
•
L
07 LIV
'Yl ''► P��^°��S oto, a-e► }
01
�a+
�•S ��•L1 L'aY -3L'O
-� cr-- L•g �q'�b� �l X a'p• �� = tom
�1
W -7v
3yDQ A9 __ ,�a(gns . . ' ! a " D U a jD
G t7p#
A-45
G� c
roles'
ASH AtnS LU1SOIg. 00
/coat e n a t . . ' ° t,p; 9 SAJC�I, a.,
• &AN0Pi FS C s
ANGLE D&SIGnN
sLO
S L Zr p&f DL = 10 Ps F' ►� _ ( S s�Z �t0.14)� ( 10 )% lg k
' ti..
sL _ M •1L 1$ L 1
S Lp= 2 2. Srtq'd - /y 3 b less I �„
S�sf
+` S b --moi L S n 3 r iy A DI'QNATt
►tAX
R I ALT)ON R,- S S/2 x (Io+3v) ' t0/2 s 60.ti
EQNIv LtNIFDA" SNOW LOAD
CHANNIL DESIE,PI
i 6
ZS �1�""��SS '9k�'Z 2,x2
�-4 I—� X—S.S —�t•
It M 2nR
• lu pzf
LIS
3
DECie DESIIn N d : rL
t O 0faV^TE _ n
W L 2. (t 3 1 ) [ 12 20 A Zj - 2 1 .5
8
1 10
TORSION AT SLIP PORT
IL M k T o 1?-7 -TRY ri sS
Sr�drZAS-O IGSi = �.OFs ;NS
Hit 1. 45 y /F = (91.S
2 2 gGiap_ 1 iZ OE( e 1S ADMUATE F`r = 0.6 �r Z•7.6 L's�
AafnLE ANb�t
TM • rar [ _ 1. 6 G
" M 40I` 480�� ( &LD6 Z (/AMOPY AT WEST
CKLNNEL GHINNEL
r
r——to ---�t=— —
-- vnh' - II
• �crt�: g N o.,v ,�?.t r-c ►.��� 3�c. ASA ( M' a`/t-�`� -+ � �' "��✓ �� ) � - I. v
Yo
5 4 es, vte-rt- _ 16k R5i: 9 -c 25 95C- SNUva/
A-46) �-Z
Page
F ASH Aprs i01S01k.00
catena = � 1 - .
CA NOr-I9 S C S
PROV I D E W t-'PA(.3 S EGT 10 N WELD
T - C
h/t I. IZ %Y = 22 J
� 12N = 1.3g20q D= S
1♦SS12xb " �Z J 67 �
H6 kSi W.4ih� kN r�j'a �. 3`L •S
VJ b f y A.0Aw° 2k 10;n�
Icy L,
1 .0
11 = I. S
DET L EGTIONS
L/3bo oa 0. S
ANGLES .
S'wL� _ 5• ( 'ZlPlr)(lo )y(12 �)
3bk E Z 314 - 2g OW 1.Z 3
= O.lb1y
tuc LN .Li T: 3
�HANNIF L.S
A ?L J 2Y (L,') ; ()2S)
3E 1 = U.OH
3• 24Do0 129;N"
toNN cf-riON
�..
N
�IyS 2�`I
REQ'D PL THI:ICNESS t (ASMA"C-
36t )/ %141
t ' Mµ 0.9 • 3b ks'
act 64 n 2 SY it k-
Project: No: Page
__ fAxfbie AJ
c a t e n a s + : S hiect: Date:
• �� 2 Jnr C^4*h
•o
a �� ._..•
0 � N
« "SS, 4A k 14
N r �
t �
• .d' !-��(ox 4
M conseN_
N Mo M�n Go N tJ�.c.•t,�o�J
tt P,
Vo H�,, c ZSb SL ,r %0^,
Mts(-
C-My. `° p�^�' lo" _ �'7 �'� < c�2,��.-7
avv%
+� 4
t o ,�sG
5c.p�tnr+poscd
Le
Lw1c q� the _`°'�'► CA- v
5 +1I a-
tvtl\ ct�',n
• 1tiCJ�t }b1.e '0091aqA Au P P1,�jL,e,
L.m�
of
C-�
�.acr,aer�, ups
TABLE: Beam Forces
Beam Unique Name Load Case/Combo Station P V2 V3 T M2 M3
in kip kip kip kip-in kip-in kip-in •
B32 3 Combl 79 0 1 3571 0 0.071 0 37.907
647 2 Combl 79 0 2.877 0 0.078 0 -184.108
B50 4 Combl 79 0 1.369 0 0 0 -70.804
842 6 Combl 0 0 -1.447 0 -0.078 0 -75.687
843 5 Combl 0 0 -137 0 -0.065 0 -36.378
B44 1 Combl 0 0 -3.348 0 -0.07 0 -187.854 Plate 0.5x10
Bl 21 Combl 150 0 0.860 18 954 0 29.992
82 22 Combl 0 0 -0.874 0 18.189 0 31.639 HSS 12x4xl/4
M Axx
/a GoQ.fn`t12.
Load Case/Combo Deflection
inch Comb1= 1.2DLf1.65N
Dead -0.147 Comb2= 1.4DL
Snow -0.153
s x Use SN=25psf
� � r d'1 b1 e� `� '
0,4 off(/ is 13 „
it
•
3
a
A
C�Cr oV11 CNG S M L 7c� dY�i►t h L t�
%NvlVtSh�`50.kc
�hll -JCS
c �C* cQ I v-,L,.r;s. qr,
�s.t�,2 1c,.•�; �� PL
cep npC,Pi,cN (D - Gc.e
�
Project: No: Page:
Catena e � o���.��° 9 os� �C�enk 2o1�.ati4s. �,o G�
Subject: By: Date:
• om ng ,,, S W 514n 2,
Cut- MUA9%R,5 :
H55iz ,x�-�
TvYSic y� '� S� OAIY 'F �lplvv 1 G Cc ��
2
.�,M r + Vr .f LY 3-4
Cp � V
C 'n/c., C
b4, I o- S --� Fr r YA Tay-e 3-1.2 A S sc t-If
-rq.1 14(P
`Vii 12 = 2 Lia � L33J (G bcZ
Y 4`"
• �� S -0 web 'mtihw.+
� x sato o ltyt
4 4K S1
l.1 c !zv FI Ry = 61.j,
h/ cv
Aw= 2 4 - 2 610.6 cz (G• 2 33 _ .cf411i1z
Vv►= G. 6 r!9 Av4cv a0.6461e-sl 4A41�' 1 0 = 136 . 31�1ps
vG= (p„v V C.q k 136. 3 : 7
2.41; C _ Z 4t;
h�-N„ 2. 4qj ---► For = O-6 Fy = G• 6 h =Z . (o k51
Project: No: Page'.
c a to n a e ^ c s'^ <°s Subject: By: Date:
-- Caw►ap.v� SW bb1�, Z
n F*oM I.2 Di--tl•6S N
Th Cl
TG
'h o.CA k
••• c GWn reDl,eol eke )mv 5^ohc I e is
err � I�Z. �► G ��
v r _ o 6 l s
I TJ Gt.v17'�_ !1 9�v cm V R)W, l.�'4-;�7 I N 5 t��Cf.•NU I t S `.
lel►� c.v1-7 -c��3
4 Az-
k Ck
5'x2 } Z'1�� t t•� C26�"Z� •t o.0 (�C-Zf)
off/
Project: No: Page:
Catena e n 9sCn q
'^Icl
/ � Subject: By: Date:
� e 0.5 x O 36��Sl ��C. 'fit x q o�c. , s� e�•-
C;Ls
Ir
ViA, < ir,
• GJ- I U
C ' V vl-( G_f F j (�nr Gv =c���O. x 3 b-� G.5�•�U� I = �I �- L P,S r f o(c
V
dib
M r,
Lid � �6�x ,a
-° 1 Ci F/Sq
36�� - kph
Project: ^' No: Page:
c o n s u l t nr g
c a to n a e n o ' n ° S Subject: By: Date:
Fcr L T(3 kr. 1.9 F- Gb 1.Cl-F. 290Vo x 1 . Us-
Lbvl
3 3.Cl
+z Z L4tU
Mn= 33.E ��.�� Z�z.� 1�iP-�'�i�I� UIC • '�-�� °•��
0.11
12
!L
12.5MW4kle lZ� Cl$��
G
2, +Me, -+3M c. �, s Ceti t 3 G `��)t q•(�a *3 C4��
14
/catena
e n q si n e e s Subject:
M 5 ♦ 3 HSS 1 'x PL t� �+ss zx 4 dna
�x�
�n
to" bas-�•, S cQ a s 2
., .1>(— f z
�O ckes:ron
• aP Qr, = O ,*S �4J`to)
y C k;L�,c�c,t
sN►�R.e. t ,vim �� ux�
l`2, 75(0.(oY`7o
C-7155 6 x 4,�or 4x4cQ A ." w S 5 6 �,c.¢d� Q - Z 3c�L ti 3
S c5Z LA - 4 L s. 1 DC7 ~� a—
c
C.a.�Or"< CAD L-A:M Lfi> s Ath.- CI>Sr-- , o'C- —