Loading...
Specifications Catena consulting e n g i n e e r s r R • I lEVEIV\' ED NOV 5 2015 CITY OI= TIGARD BUILDING DIVISION Ash Avenue Apartments Tigard, Oregon Structural Calculations City of Tigard Approved Plans By Date L11 k `7 -5�W t � t OFFICE COPY catena project no.: 2015018.00 November 4, 2015 • 1 1 11 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797 catena engin ti r e n g i n e e r s • November 4, 2015 Mr. David Stephenson SERA Architects 338 NW 5th Avenue Portland, Oregon 97209 Reference: Ash Avenue Apartments,Tigard, Oregon catena project no.: 2015018.00 Dear David, This letter contains our responses to the structural plan check comments prepared by the City of Tigard. For your convenience,we included the plan check comment in italics preceding our response. Note: Calculation pages B-77 through B-190 have been provided electronically to the plans • examiner but have not been included here for brevity. These calculation pages are available upon request. Building 1 1. Provide information correlating the framing members in the RISA analysis with the drawings. OSSC Sec. 1603 Response:see attached RISA floor plans. 1.1 Calculation page A-25 specifies 10.75x24 at grid 16-G. Does not match the drawings. Response: Refer to pages B-1 to B-3 in the calculations. 1.2 Calculation page A-25 specifies 3.5x 12 at grids B.5-15.3,-16.1, and-16.5. Does not match the drawings. Response: Refer to pages B-4 to B-7 in the calculations. 1.3 Calculation page A-25 specifies 3.5x 12 at grid B-13.1. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.4 Calculation page A-25 specifies 5.5x 12 at grid D-15. Does not match the drawings. • Response: Refer to pages B-8 to B-10 in the calculations. 1 1 I 1 ne flanders street suite 206 portiand oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 2 catena project no.: 2015018.00 1.5 Calculation page A-25 specifies 2.5x6 at grid D-13.4. Does not match the drawings. • Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.6 Calculation page A-25 specifies W30x 108 at grid E.5-15.5. Does not match the drawings. Response: Refer to pages B-11 to B-18 in the calculations. Pages include calculations for the post and GL beam adjacent to the wide flange. 1.7 Calculation page A-25 specifies 3.5x 18 at grid F.6-13.5 and G.3-13.5. Does not match the drawings. Response: Refer to pages B-19 to B-21 in the calculations. 1.8 The W24 beams on calculation page A-25, grid G-15.8 is not legible. Response: RISA designs a W2476 at that location. Refer to pages B-22 to B-24 for calculations confirming the adequacy of a W2468. 1.9 Calculation page A-25 specifies 5.504.5 at grid G-14. Does not match the drawings. Response: Refer to pages B-25 to B-27 in the calculations for calculations confirming • the adequacy of a W21x50 (RISA designs a W2455). 1.10 Provide calculations for the 8-3/424 at grid L-13 sheet S 123. Response: RISA designs a GL 63/4x 39. Refer to pages B-28 to B-30 for calculations confirming the adequacy of a GL 103/4x 30. 1.11 Provide calculations for the 5-112x24 beams at grids K-14 and K.9-13.7 sheet S 123. Response: Refer to pages B-31 to B-36 in the calculations. 1.12 Calculation page A-25 shows 3.5x 12 beams at grids J-23.5 and J-26.6. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.13 Calculation page A-25 shows 5.5x 12 beams at grids J-21 and J-22. Does not match the drawings. Response: Refer to pages B-37 to B-40 in the calculations. • 1 1 1 1 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 3 catena project no.: 2015018.00 • 1.14 Calculation page A-25 shows a 3.5x 12 beam at grid H.3-15.3. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.15 Calculation page A-26 shows 3.5x 12 beams at grids B.5-15.3, B.5-16.1 and B.5-17.7. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.16 Calculation page A-26 shows 3.5x 12 beams at grids F.4-13.5 and G.4-13.5. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.17 Calculation page A-26 shows 3.5x 12 beams at grids H.4-15.3 and K-13.3. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in • item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.18 Calculation page A-26 shows a 3.125x9 beam at grid K-28.1. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.19 Calculation page A-26 shows 3.5x12 beams at grids J-23.4, and J-26.1. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.20 Provide calculations for the 3-112x 12 at grid H.5,26 on sheet S 132. Response: Refer to pages B-41 to B-44 in the calculations. 1.21 Calculation page A-26 shows 5.5x12 beams at grids J-21 and J-22. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.13. By inspection, GL 5 1/2 x 9 as shown in the drawings is adequate. • 1 1 1 1 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 4 catena project no.: 2015018.00 1.22 Provide calculations for the 5-112x 12 beam at grid D.5, 15.9 on sheet S 141. • Response: Refer to pages B-45 to B-50 in the calculations. Pages include calculations for the post supporting the GL beam. 1.23 Calculation page A-27 shows 3.5x 12 beams at grids B.5-15.3 and B.5-16.1. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.24 Calculation page A-27 shows two 5.5x12 beams at grid B-13.5. Does not match the drawings. Response: Refer to pages B-51 to B-58 in the calculations. 1.25 Calculation page A-27 shows glulam beams on grid 12.4-B to D.2. Does not match the drawings. Response: Calculation page A-27 reflects the framing in the RISA model, which has GL beams placed there erroneously.The drawings show joists spanning in the east- west direction,which provides support for the deck at those locations. 1.26 Calculation page A-27 shows 3.5x 12 glulam beams on grids F.3-14, F.4-13.5 and • G.4-13.5. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.27 Provide calculations for the 5-112x 16-112 beams on grid 15.2, sheet S 143. Response: Refer to pages B-59 to B-62 in the calculations. 1.28 Calculation page A-27 shows a 5.5x 12 beam at grid G.2-15. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.29 Calculation page A-27 shows a 3.5x 12 beam at grid J.5-12.3. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. • 1 1 1 1 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 5 catena project no.: 2015018.00 . 1.30 The 5.5x 12 on calculation page A-27 at grid J-15 is not specified on the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.13. By inspection, GL 5 '/2 x 9 as shown in the drawings is adequate. 1.31 Calculation page A-27 shows a 3.5x 12 beam at grids H.4-15.3. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.32 Calculation page A-27 shows 3.5x 12 beams at grids K-25.2, J.5-26.6, J.5-28, J-26.2, and J-23.4. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.2. By inspection, (2)2x6 as shown in the drawings is adequate. 1.33 Provide calculations for the 3-112x 12 at grid H.5-26 on sheet S 142. Response:The beam at this location has a similar span and loading to the beam in item 1.20. By inspection, GL 3 '/2 x 12 as shown in the drawings is adequate. • 1.34 Calculation page A-25 shows 5.5x 12 beams at grids J-21 and J-22. Does not match the drawings. Response:The beam at this location has a similar span and loading to the beam in item 1.13. By inspection, GL 5 '/2 x 9 as shown in the drawings is adequate. 1.35 Sheets S 151, S 152 and S 153 specify 4x8 headers U.N.O. This does not match calculation page A-28. Provide revised calculations or drawings. Response: Headers have been changed to 6x10 members to match all other floors. Refer to the attached schematic and code check tables on page B-129 to B-153 showing the adequacy of the headers. 1.36 Provide a schematic showing the location of beams specified on calculation page A-29. Response: Refer to pages B-77 for steel beam locations and B-91 for updated steel beam code checks. 1.37 Calculation page A-30 shows 10-3/4" wide beams. Provide clarification. Response: Refer to page B-77 for 10 3/." wide beam locations. Page A-30 contains calculations for the connections (shown in detail 3/S607) between those beams. • 1 1 1 1 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 6 catena project no.: 2015018.00 1.38 Provide a schematic with beams labeled and code check for the labeled • beams. Response: Refer to pages B-77 to B-91 showing beam labels and code check results. 6. Calculation pages 54-55 appear to specify columns for each Level. Where are columns for levels 2-4 specified on the plans? OSSC Sec. 107.1 Response: Columns locations and sizes are specified at the foundation and continue up to the roof. Response: Refer to S111 through S113 for Plan Note 13 denoting post sizes. 6.1 Where are columns CS 12, CS 13, CS 14, CS 15, CS 16, and CS 19 specified on the plans? Response: Refer to page B-95 showing the location of columns at Level 3 (the columns referred to begin at Level 3). 6.2 Calculation page A-5 evaluates an 8x8 column. Where is the column specified in the plans? Response:The 8x8 on page A-5 is denoted as CS22(na)_L3 (noted in the header on that page), and is located at the clouded post on calculation page A-4. The RISA results on A-5 and A-6 are provided only to give the source of the compression demand on page A-7. • 6.3 Where is the 6x10 on calculation page A-7 located? Response:The 6x10 on page A-7 is denoted as CS22(na)_L3 (noted in the header on that page), and is located at the clouded post on calculation page A-4. The RISA results on A-5 and A-6 are provided solely to give the source of the compression demand on page A-7. 6.4 Where is the 6x8 on calculation page A-10 located? Response:The 6x8 on page A-10 is denoted as CS22(na)_1-3, Lift 2,which on plan is labeled CS22(na)_L3_L2 and is located at the clouded post on calculation page A-9.The RISA results on A-10 and A-11 are provided only to give the source of the compression demand on page A-12.The decision was made to retain the 6x8 shape for the 2nd floor post at that location. Refer to latest drawings. 6.5 Clarify the location of CS22 on calculation page A-12. Response: Refer to the response to Item 6.4. 6.6 Calculation pages A-18 and A-19 show columns for levels 3 and 4. The response indicates columns noted on the foundation plan continue to the roof. Provide clarification. Response: Sizes noted on the foundation plan continue up to the roof unless noted otherwise. Refer to S 11 1 through S 113 for Plan Note 13 denoting post sizes. Calculation • 1 11 1 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 7 Catena project no.: 2015018.00 • pages A-18 and A-19 were provided solely to show that the required sizes of the posts are smaller than what is provided in the structural drawings at those levels. 6.7 Calculation page A-20 specifies various steel columns. Provide a schematic showing location of the columns. Response: Refer to page B-77 for locations of columns. 8. Where are shear wall lengths specified in the calculations? OSSC Sec. 1604 Response: See attached calculations and updated detail 3A/S501 Response: Refer to pages B-63 to B-68 for calculations regarding the length discrepancies in items 8.1-8.101. 20. Provide calculations for isolated columns. OSSC Sec. 107.1 Response: See attached RISA results and calculations. Calculation page A-16 specifies #4 ties 10" o.c. Where is this specified on the drawings? Response: RISA Floor designs the concrete columns as 10" members. AC1318-1 1 specifies maximum tie spacing to be the minimum of 16 longitudinal bar diameters, 48 tie bar diameters, and the least dimension of the compression member (AC1318-1 1 7.10.5.2).For a 10" member with #5 long. bars and #4 ties, the maximum tie spacing is 10".The structural drawings show a 12" member with #6 longitudinal bars and #4 ties (detail 2/S501).The maximum tie spacing is then determined to be 12", as shown in the detail. • 21. Provide steel beam, column and connection calculations. OSSC Sec. 1604 Response: See attached RISA results and calculations. Clarify which pages include the connection calculations. Response: Refer to pages B-69 to B-70 and B-155 to B-156 for steel connection calculations. 22. Provide calculations for prefabricated balcony connections. Response: See attached RISA results and calculations. Details on sheet S305 reference detail 14/S608. Provide clarification. Response: Refer to S608 for new details. • 1 1 1 1 ne flanders street suite 206 portland oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 8 catena project no.: 2015018.00 Building 2 • 24. Provide schematic drawings for each level with members identified that correspond to the calculations. Provide calculations for all members with loading clearly identified. OSSC Sec. 1604 Response: See attached RISA floor plans. 24.1 Calculation page A-117 specifies member M921 as 6-3/4x21. Sheet S220 shows a 6- 3/4x 18. Provide revised plans or calculations. Response: Refer to pages A-117 through A-119 for calculations confirming the adequacy of a GL 6 1/4x 18 (page A-119 contains calculations comparing the results of the GL'/.x 21 to that of the GL 63/4x 18 through ratios of section properties). 24.2 Calculation page A-120 specifies member M869 as 6-314x22-112. Sheet S220 shows 6-3/4x21. Provide revised plans or calculations. Response: Refer to pages A-120 through A-123 for calculations confirming the adequacy of a GL 63/4x 21 (page A-123 contains calculations comparing the results of the GI-3/4 x 22 1/2 to that of the GL 63/4x 21 through ratios of section properties). 24.3 Calculation page A-124 specifies member M860 as 6-3/4x21. Sheet S220 shows 6- 3/4x 18. Provide revised plans or calculations. Response: Refer to pages A-124 through A-127 for calculations confirming the adequacy of a GL 6 3/x 18 (page A-127 contains calculations comparing the results of the GL 3/x 21 • to that of the GL 63/4x 18 through ratios of section properties). 24.4 Provide a schematic showing the location of beam M927 (A-142), M34 (A-145), M50(A-148), and M77 (A-153). Response: Pages A-142, 145, 148, and 153 were included to provide the source of loads used in the GL beam connections shown on pages A-137 through A-141. Refer to pages B-156 for the location of these beams. 24.5 Calculation page A-161 appears'to specify a PSL in lieu of the glulam evaluated. Sheet S230 shows a glulam at this location. Provide clarification. Response:The beam design was governed by deflection.The total GL beam deflection is 0.584",which abides by the code requirement of L/240. 24.6 Calculation page A-162 shows 3.5x 12 headers. This does not appear to match the drawings. Provide clarification. Response: Refer to pages A-117 through A-119 for calculations confirming the adequacy of a GL 63/4 x 18 (page A-119 contains calculations comparing the results of the GL 3/4x 21 to that of the GL 6 1/4x 18 through ratios of section properties). 24.7 Provide a code check summary and schematic identifying the members. Response: Refer to pages B-156 to B-189 for beam labels and code check results. i 1111 ne flanders street . suite 206 , portland oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 9 catena project no.: 2015018.00 • 27. Calculation page 130 appears to indicate all level 2 shear walls to be type 7, except walls 1 and 5. Walls 6 and C are shown as type 6 on sheet S221. Provide clarification. OSSC Sec. 107.1 Response: See calculations attached (p.#27.1-16) and updated plans for wall marks. Calculation page #27.1 shows wall D as 28 ft. length. Clarify how this corresponds to the drawings. . Response: Refer to pages #27R 1-27R 12 for revised analysis at Level 1. 28. Calculation page 134 shows the length of shear wall B as 10 feet, wall E as 39 feet and wall H as 46 feet. This does not appear to match the drawings. Provide clarification. OSSC Sec. 1604 Response: See calculation attached (#27) and updated plans. Calculation page #27.1 shows wall H as 46 ft. length. Clarify how this corresponds with the drawings. . Response: Refer to pages #27R 1-27R 12 for revised analysis at Level 1. 38. Provide calculations for all columns. OSSC Sec. 107.1 38.1 Calculation page A-100 shows a 6x6 column at grid 10.1-A.1. Provide clarification. • Response:The 6x6 post at that location was erroneously included in the RISA model. Refer to pages 8-71 to 8-74 for calculations confirming the adequacy of the GL header shown on S220. 38.2 Calculation page A-100 shows column CS43_1 as l Ox 10 and calculation page A- 103 shows a 5.5x 10. Sheet S210 appears to show a 6x8 at this location. Provide clarification. Response: Refer to pages B-75 to B-76 in the calculations showing the adequacy of the 6x10 member shown in the drawings. Refer to page A-101 for compression demands. 38.3 Where is the 8x 12 on calculation page A-105 located? Response:The 8x12 on page A-105 is denoted as CS43_2 (noted in the header on that page), and is located at the clouded post on calculation page A-4. Pages A-105 to A- 106 are results from a prior design iteration and are included only to give the source of the compression demands of calculations on page A-107 to A-108.The design on page A-107 corresponds to the bundled stud condition shown in detail 1/S604. 38.4 Provide a schematic showing the location of columns on calculation pages A-1 14 and A-1 15. Response: Refer to pages B-190 for locations of columns. • 1 1 l 1 ne flanders street , suite 206 portland oregon 97232 503.467.4980 503.467.4797 November 4, 2015 Page 10 catena project no.: 2015018.00 • General comments 39. Provide a copy of the geotechnical report for review and our records. OSSC Sec. 1803 Response: Owner to provide. The geotechnical report was not provided. Response: We understand the report has since been provided. We are confident that this additional information adequately clarifies the project documents to the satisfaction of the building official. Thank you, VCTV9q 4 9 Or N AL T EXPIRES:00/30/2016 Jason M.Thompson, S.E. Gretchen E. Hall, S.E. Principal Associate • 1 11 1 ne flanders street suite 206 Portland oregon 97232 503.467.4980 503.467.4797 Item 1.1 B-1 Beam: M1882 Shape Group: Glulam_Western Code: AF&PA NDS-12: AS[ Floor: LEVEL2 Span: Single • Size: 10.75X24FS Fixity: Pinned-Pinned Material: 24F-1.8E DF Balanced Bending: Strong Axis Function: Gravity Geometry: Length =23.123ft Points (Start to End): REV_N258 to REV N260 (-79.8467,-85.772,0)to(-79.8467,-108.895,0) Angle: 90 degrees Diagrams for Load Category: DLPre Load Diagram : Distributed Loads (k/ft), Point Loads (k) .56 .197 .179 .144 fry .064 _ 064 EN ✓{r 1.551 at 0 ft -1.484 at 23.123 ft 9.937 at 10.357 ft M k-ft .002 at 23.123 ft D -- - - -- - - --.. -- __ _ -- -. __ - --- in .05 at 10.598 ft • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1 L Item 1.1 B_2 A -----______.._.__..____.___ _.--- _�. ___T k • Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 10.422 0 6.324 0 0 J-End: 9.658 0 5.463 0 0 Maximum Total I-End Reaction: 16.068k for LC 2 (Service Dead + Live) Maximum Total J-End Reaction: 14.535k for LC 2 (Service Dead + Live) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DLPre LI-Const DI-Const DL LL Start 0 .064 .022 0 .2 .045 End 23.123 .064 .022 0 .2 .045 Start 0 .132 .049 0 .484 .157 End 1.623 .132 .049 0 .484 .157 Start 9.123 .08 .049 0 .432 .157 • End 13.623 .08 .049 0 .432 .157 Start 21.123 .114 .049 0 .467 .157 End 23.123 .114 .049 0 .467 .157 Point Loads (k) Dist(ft) DLPre LI-Const DI-Const DL LL 1.623 .046 .185 0 1.367 .59 9.123 .046 .185 0 1.367 .59 10.164 .56 2.377 0 6.327 7.118 13.623 .046 .185 0 1.367 .59 21.123 .046 .185 0 1.367 .59 Live Load Reduction FILL Code: None RLL Code: None Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 272.265 2 .893 .928 Design Rules: GL Transfer Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear 24 None 10.75 None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Deft (in) DL+LL Ratio None 240 None 360 0.5 240 • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2 Item 1.1 B-3 Shear: 35.3% Capacity at Oft for LC 2 (Service Dead + Live) V= 16.068k at Oft fv = .093ksi Fv' = 0.265ksi Wood Shear Factors • Fv= .23ksi CD = 1 Cm = 1 Ct= 1 Bending: 69.2%Capacity at 10.1163ft for LC 2 (Service Dead + Live) M = 122.6k-ft RB = 1.57866 le-bend Top = 1ft le-bend Bot= 23.123ft fb = 1.426ksi Fb' =2.05946ksi Wood Bending Factors Fb = 2.4ksi CD = 1 Cm = 1 Ct= 1 Cfu = 1.01 CL = 0.999704 CF = 1 Cr= 1 CV= 0.85811 Deflections: 98.6% Capacity at 11.3206ft. (Camber=Oin) PreDL DL LL DL+LL None None Deflection (in): .041 M .199 .493 0 0 Span Ratio 6834 944 1392 563 10000 10000 RISA does not take live load reduction into account when calculating deflection (shown in screen capture below) Beams For beam members,the calculated reduction factors are displayed in the Member Detail Report. The effects of live load reduction, however,will be considered in theEnd Reactions,Shear Results,and Bending Results spreadsheets,as they do reduce the load when calculating maximum end reactions,shear,and bending stresses/forces.However,the effects of live load reduction are NOT considered in �.. I calculations. Therefore,the deflection with a reduced live load is DL+LL reduced +11111111111c0.199"=0.472".Ratio the deflection up by 10.75'analysis width/8.75'actual width--> 1.23x0.472=0.58" • L/360=23.123x12/360=0.77" Actual deflection is code compliant.By inspection,shear and bending DCRs for 8.75'width<1.0, therefore GI-8 3/4 x 24 beam is adequate. • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\colcs\Bldg 1\20151102 Ash Apts.rf1] Page 3 IICI11 I.L Project: No.: Page: B-4 /cat e n a c n g n c o n 'I v i r I n g Ash Apts 2015018.00 1 e e r s Subject: By: Date: 2 2x6 Header CS 11/3/2015 STRUCTURAL WOOD BEAM ANALYSIS 8r DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Load Envelope-Combination 1 0.824- 0.0- it .8240.0it 3.5 1 A 1 B kip_t Bending Moment Envelope 0.0- 1.262- 1.3 ft 1 3.5 1 A 1 B kips Shear Force Envelope 1.442 1.4 0.0- -1A42 -1.4 it 1 3.5 A 1 B Applied loading Beam loads Dead self weight of beam x 1 Dead full UDL 300 Ib/ft Live full UDL 520 Ib/ft Load combinations Load combination 1 Support A Dead x 1.00 Live x 1.00 Span 1 Dead x 1.00 IIU1II I Project: No.: Page: B-5 Catena e` °n g° :i°n e e r s i f i n q Ash Apts 2015018.00 2 Subject: By: Date: (2)2x6 Header CS 11/3/2015 • Live x 1.00 Support B Dead x 1.00 Live x 1.00 Analysis results Maximum moment Mmax= 1262 Ib ft Mmin=0 Ib ft Design moment M=max(abs(Mma),),abs(Mmin))= 1262 lb—ft Maximum shear Fina),= 1442 Ib Fmin= 1442 Ib Design shear F=max(abs(Finax),abs(Fmin))= 1442 Ib Total load on member Wtot=2884 Ib Reaction at support A RA-max= 1442 lb RA-min= 1442 Ib Unfactored dead load reaction at support A RA—Dead=532 Ib Unfactored live load reaction at support A RA—Live=910 lb Reaction at support B Re_max= 1442 lb Rs-min= 1442 Ib Unfactored dead load reaction at support B R13-Dead=532 Ib Unfactored live load reaction at support B Rs_Li�e= 910 Ib Sawn lumber section details Nominal breadth of sections bnom=2 in Dressed breadth of sections b= 1.5 in Nominal depth of sections dnom=6 in Dressed depth of sections d=5.5 in Number of sections in member N =2 Overall breadth of member bb=N x b=3 in Species,grade and size classification Douglas Fir-Larch,No.1 grade,2"&wider Bending parallel to grain Fb= 1000 Ib/inz Tension parallel to grain F,= 675 lb/int Compression parallel to grain Fe= 1500 lb/int Compression perpendicular to grain F.—Perp=625 Ib/int Shear parallel to grain F„= 180 lb/inz Modulus of elasticity E= 1700000 lb/inz Modulus of elasticity,stability calculations Emin=620000 Ib/inz Mean shear modulus Gdef= E/ 16= 106250 Ib/inz Member details Service condition Dry • lit"TI I 00'— Project: No.: Page: B-6 C a t e n a c o " , e ' r ' " g Ash Apts 2015018.00 3 e n g i n e e r f Subject: By: Date: 2 2x6 Header CS 11/3/2015 Length of bearing Lb=4 in Load duration Ten years Section properties Cross sectional area of member A=N x b x d = 16.50 int Section modulus SX=N x b x d2/6= 15.12 in3 Sy=d x(N x b)2/6=8.25 in Second moment of area IX=N x b x d3/ 12=41.59 in ly=dx(Nxb)3/ 12 = 12.37 in4 Adjustment factors Load duration factor-Table 2.3.2 CD= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Size factor for bending-Table 4A CFb= 1.30 Size factor for tension-Table 4A CFt= 1.30 Size factor for compression-Table 4A CFc= 1.10 Flat use factor-Table 4A Cru= 1.15 Incising factor for modulus of elasticity-Table 4.3.8 CiiE= 1.00 Incising factor for bending,shear,tension&compression-Table 4.3.8 Ci= 1.00 Incising factor for perpendicular compression-Table 4.3.8 Cic-Perp= 1.00 Repetitive member factor-cl.4.3.9 Cr= 1.00 Bearing area factor-cl.3.10.4 Cb= 1.00 Depth-to-breadth ratio dnom/(N x bnom)= 1.50 -Beam is fully restrained Beam stability factor-cl.3.3.3 CL= 1.00 Bearing perpendicular to grain-cl.3.10.2 Design compression perpendicular to grain Fc perp'= Fc_perp x Ct x Ci x Cb=625 Ib/int Applied compression stress perpendicular to grain fcperp=Rn_max/(N x b x Lb)= 120 Ib/int fe_perp/Fc_perp'=0.192 PASS-Design compressive stress exceeds applied compressive stress at bearing Strength in bending-cl.3.3.1 Design bending stress Ft;=Fb x CD X Ct X CL X CFb x Ci x Cr= 1300 Ib/int Actual bending stress fb= M/SX= 1001 Ib/int fb/Fb=0.770 PASS-Design bending stress exceeds actual bending stress Strength in shear parallel to grain-cl.3.4.1 Design shear stress F,,'= F„x CD x Ct x Ci= 180 Ib/int Actual shear stress-eq.3.4-2 f,=3 x F/(2 x A)= 131 Ib/inz IICIII I.L Project: No.: Page: B-7 /catena ` ° " s Ash Apts 2015018.00 4 Subject: By: Date: • (2)2x6 Header CS 11/3/2015 f„/F„'=0.728 PASS-Design shear stress exceeds actual shear stress Deflection-cl.3.5.1 Modulus of elasticity for deflection E'= E x CME x Ct x C;E= 1700000 Ib/inz Design deflection Sad.=0.003 x Ls, =0.126 In Bending deflection 8b_s1 =0.039 in Shear deflection &-s1 =0.010 in Total deflection Sa=8b—sl +&-s1 =0.050 in Sa/Sad.=0.395 PASS-Design deflection is less than total deflection 1 TJI 1109.5 lk lk TJI 1109.5 I lk lk TJI 110 9.5 lk lk TJI 110 11.$75 lk lk TJ1110_9.5 1 i 1 TJ' 110 11.875 I 1 C4 1k TJI 110_9.5 1 1CO 1 k TJI 110_11.875 I 1 N I TJ! 110 9.5 lk lk TP 110 11.875 I lk lk TJi 110_9.5 tk lk TJI 110 11.875 I 1k Headers at west wing units typically have 3.5'length and 13'tributary width (e.g. beam at grids 13.5-15.3) with DL=23 psf, LL=40 psf • 1 x;.f;.,;,» ;+. :::�?f?ri.<�", I:>' ::vtr+�y} .tTii•.'•<l.?F?+:,••.'••�';••:;'::,i>.j:<::!�:;:;. �r'f.•rf:ti:j�i:i�i:i:;:.'•'"{'.ii?•�T,x. :{/`n+y�:'•x ..j...�+}•{.'v' .:•Tf"?C.+ i�' ,•;A;:�. ..:J:.:.::::::•.�:::•: •r•f:•.; :.tt+?xw: .•„ •n:\^; .r.:..:.�,;: { :n:f.•:•::%••.•:••rr?;�>r:•.:•t:•s:•'•:•:?•r:•:•%:+•'i�`'•'`:%':`�: ::y{::::::::.x....:'?t;?;, :.tt;s.. ,r¢'+.;� 5,'j';1.: /r.:'?. :,t:.r.':•„ rs:,'12•x;•'.•sss• <S ff•••T.+ •9` •::rr::+V:;? •:v:{::l.;n.`•T'; �r:'n.::f:::::.::ssu•. ,?�'t=t,.� .,a Slrr--/�:.{•2.r+. ..�,:.�'., ..:.,�• r�rT':•fr• ?•:s• 5ff'+i::.'•fi:{:%::%�::•:;{.?..r:.{..;., ::•+•:•:.:�:::::::::::: «:•..0%: •r/r,!/,;J?�r.`.• l�� ,.,..t.+:.J,r:#:. :.'•cS:.=.,•::?: w.r :r:.:,:;:.. f rr::�' �''::rt.:?:?t;.r.;:: :.^.{%•:•,.::'�?�.', '�;?";Gt•.: •Yr ':.'•:�• •:d�r, �s�,•F;.TY�:}a•,....,,: w.:.'•:<,. ;://,•;•::.:rtt+j%,?•n:T::S:::..:r::';:;:{/.•r: r?•r'r,•; r;$�'.'•;:%:.'• •t3? N.J,�.,./:••r�x�:'4:i:. y.{, :<t•:. +c•T:+. :+.,� `' f {{....:";:3%:2: :;:.. 1. .C'. ,A;^.o.+,? +. !�: .4: x:!::•n: �::>:....::.:.:.•::».» X,??.,a.,.,.±T2. ..f+ .. •...+y�,.'+>:SJ.3,T:, ' �+'+'.• . •+ : >.•.•. .. r•.:.?`,•;`:3t ..?. %':�{ifs• :, '+;:r'?:%:?4R:f r x;.?s,':2::?J :.,r x ?,,:{.,,n lf:rf..;:,1,>r.,:;,f �,�,,,• .k:; �':Y,.•:..:::T:: .r.. t:;�:Tv'r TY.: + ,. q :.r/• t; '.,, ':+'y�•{..'• `:?: :x•::+•..r:`:f{:/l!.•;;x.,+.+:>:r'•:t:S: T �'4�t%��s•:$: ii?`fr:i:+.;:;;;{?{{;v.:i�:�iT:$:n•.»•:•?Tii+' .��1,r. f Tr •� .T.,�Z. t• A:: •':{ �•t� -r$.• t+.•::,.;;rflr.:r.-:..,.f,;.. :,+.;:j:;. :�, •.�~:•T:•:•:::: +:�,..n:-.:: .: .t.{:..�::>,.9 :::yxt,x! .T.. :.t3'.,: .? ��rr,, ''�.,.:: :::nu:!u`,�''•'•:•.'•?s:•;$;•::,;r:r:•!.1.,;r.: �.'•:�'t:�?:`�T.,••:.t,•T::.::•::?•::::...?..: :r,N+t�,• :?/.:::: r .�+•C•: � ,��`'••t...:•>,::.�:'•: :• :rr.•::-•s:•rr• •+:!:. •+:xr.;.,.:;+,.:. !r-.,.•,•:.,,TT.,.k•.•::.a;y,.,.,,;?:,,;..,:<> •• J {s,.{G. � {x '�• tl,.,• •.x f+fi f�r f.+•:.:':: %sT rrTs?{:x+ '•:kk::::...:..,.,-:s.•.,.. v�J.'J•pr::? �;: .r.••:3i;;??41�'• .3 .r "':t :;'''t;•?+••:�r,.• •.,•.r r{.• .::f':;'::;r.:: ':%r:�:{.i:.•:?;��c;.:, r.o,y,.�;;T;{:, /tel...,+.{lJ..+'x .2?'�'..., ?;:G$ y ,!'Y(C{S: !?r :$,::,1.:.:fr.f:?�::�j•:;:':;:x: f•,•:.rs:•rxt..:, »?:'::.v::tiv.•:T;:ays;.;{.sr.;{.;?:Y:j: ;{:ii Y+fi•:::}.frYlS:Ty..j/{�L?i•-0�. .. �j. �' .:?y.;:••{+:/? rJ fi::•:nlii:S:r Y:%:rf.{.•yn:•;y {'i%; .•:�':•sT•Tirk�::S:{•:;-::+rS+:;t�:^ •r:/f:••q:.;•.ryr.�r.+rs:::'!r:'?r,i•,: }�'•�:t- G '•�3�.f +•/,;f.:.y.;;:,.,/,:.,•:•„1,?;;,/.. f;,; il;... .J ::•,••'•,lr'r.::;,'.•: , 1, ;r :!;x::;;{:,,.;;<.;r.?+., .<r'r.;r •',�};:y�•,.�?:,;sy:::r/,?fx �:x+. "A.' sfJO..:�,;•xl+{5C•r ;++v .!;. mm"M �+ r�irl//ri„%'/:•: 11. . Item 1.4 B-9 0 A k Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: .579 0 .777 0 0 J-End: .654 0 .891 0 0 Maximum Total I-End Reaction: 1.356k for LC 2 (Service Dead + Live) Maximum Total J-End Reaction: 1.545k for LC 2 (Service Dead + Live) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DLPre LI-Const DI-Const DL LL Start 0 .016 .019 0 .038 .038 End 10.88 .016 .016 0 .034 .031 Start 0 0 0 0 0 0 End 7.009 .001 0 0 .001 0 • Start 0 .001 0 0 .002 0 End 3.803 .001 0 0 .001 0 Start 0 0 0 0 0 .001 End 1.815 0 0 0 0 0 Start 1.815 0 0 0 0 .001 End 10.88 0 0 0 0 0 Start 3.803 .001 0 0 .001 0 End 10.88 0 0 0 0 0 Start 3.803 0 0 0 0 0 End 5.406 0 0 0 0 0 Start 5.406 0 0 0 0 0 End 10.216 .001 0 0 .001 0 Start 5.406 0 0 0 0 0 End 8.612 0 0 0 0 0 Start 7.009 .001 0 0 .001 0 End 10.88 0 0 0 0 0 Start 8.612 0 0 0 0 0 End 10.88 .001 0 0 .001 0 Point Loads (k) Dist(ft) DLPre LI-Const DI-Const DL LL 1.815 .015 .122 0 .155 .245 3.803 .014 .112 0 .142 .223 • 5.406 .013 .101 0 .129 .201 7.009 .013 .101 0 .13 .203 RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2 Item 1.4 B-10 8.612 .013 .102 0 .131 .204 10.216 .014 .103 0 .132 .206 Live Load Reduction FLL Code: None RLL Code: None • Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 41.6136 2 1 1 1 Design Rules: 5.5x12 Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear 12 12 5.5 5.5 1 1 DL Defl (in) DL Ratio LL DO (in) LL Ratio DL+LL DO (in) DL+LL Ratio None 240 None 360 0.5 240 Shear: 13.3% Capacity at 10.8803ft for LC 2(Service Dead + Live) V= 1.545k at 10.8803ft fv= .035ksi Fv' =0.265ksi Wood Shear Factors Fv= .23ksi CD = 1 Cm = 1 Ct= 1 Bending: 15.8% Capacity at 5.44013ft for LC 2 (Service Dead + Live) M =4.175k-ft RB = 2.18182 le-bend Top= 1ft le-bend Bot= 10.8803ft fb= .38ksi Fb' =2.39864ksi Wood Bending Factors Fb= 2.4ksi CD = 1 Cm = 1 Ct= 1 Cfu = 1.07 CL =0.999431 CF = 1 Cr= 1 CV= 1 Deflections: 12.6% Capacity at 5.44013ft. (Cambell Oin) • PreDL DL LL DL+LL None None Deflection (in): .006 .027 .036 .063 0 0 Span Ratio 10000 4891 3593 2071 10000 10000 For GL 5 1/2 x 12:A=66 inA2,S= 132 inA3,I=792 inA4 For GL 5 1/2 x 9:A=49.5 inA2,S=74.25 inA2,I=334 inA2 DCRs for actual GL 5 1/2 x 9 (found by proportioning RISA values by ratio of analysis shape to actual shape properties) For Shear: (66/49.5)x0.133=0.18 For Bending: (132/74.25)x0.158=0.28 For Deflection: (792/334)x0.126=0.3 GL 5 1/2 x 9 is adequate • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3 Item 1.6 B-11 Beam: M2087 Shape Group: Wide Flange Code: AISC 14th(360-10): Floor: LEVEL2 Span: Single • Size: W24x55 Fixity: Pinned-Pinned Material: A572 Gr.50 (Fy= 50ksi) Bending: Strong Axis Function: Gravity Geometry: Length =21.8439ft Points (Start to End): REV_N65 to N4816 (-77.8417,-72.886,0)to (-55.7478,-72.886,0) Angle: 0 degrees Start Column Eccentricity = 2 in End Column Eccentricity= 1 in Diagrams for Load Combination 10 : IBC 16-11 (b) Post Load Diagram : Distributed Loads (k/ft), Point Loads (k) 9.549 .l .179 .147 �r f 22 4. 51 .055 055 17.177 at 0 ft V k • -30.126 at 22.094 ft 160.407 at 11.737 ft M k-ft D -_.___ ___._ _.__.. ___ __ ____-. _ .__ __ in .346 at 11.737 ft • RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1 Item 1.6 B-12 A k • Reaction for LC 10: (k) I-End Reaction: Axial: Ok J-End Reaction: Axial: Ok Shear: 14.673k Shear: 25.894k Moment: Ok-ft Moment: Ok-ft Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 8.465 0 9.461 2.155 0 J-End: 14.629 0 15.987 4.674 0 Maximum Total I-End Reaction: 14.673k for LC 10 (IBC 16-11 (b) Post) Maximum Total J-End Reaction: 25.894k for LC 10 (IBC 16-11 (b) Post) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DI-Pre LI-Const DI-Const DL LL • Start 0 .055 0 0 .055 0 End 22.094 .055 0 0 .055 0 Start 11.678 .092 0 0 .092 0 End 18.428 .092 0 0 .092 0 Start 11.694 .002 .018 0 .015 0 End 18.428 .002 .018 0 .015 0 Start 22.053 .094 .018 0 .107 0 End 22.094 .094 .018 0 .107 0 Dist(ft) LLS RLL SL SLN RL Start 11.694 0 0 .023 0 0 End 18.428 0 0 .023 0 0 Start 22.053 0 0 .023 0 0 End 22.094 0 0 .023 0 0 Point Loads (k) Dist(ft) DI-Pre LI-Const DI-Const DL LL 1.984 .059 .458 0 .585 .915 3.968 .059 .458 0 .585 .915 5.952 .059 .458 0 .585 .915 7.936 .059 .458 0 .585 .915 9.92 .059 .458 0 .585 .915 11.678 .866 3.898 0 4.617 4.543 11.694 .078 .607 0 .503 0 • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\ca1cs\B1dg 1\20151102 Ash Apts.rfl] Page 2 Item 1.6 B-13 11.746 .117 .903 0 1.156 1.807 11.904 .059 .458 0 .585 .915 13.643 .078 .607 0 .503 0 18 13.704 .117 .903 0 1.156 1.807 13.888 .059 .458 0 .585 .915 15.592 .078 .607 0 .503 0 15.661 .117 .903 0 1.156 1.807 15.872 .059 .458 0 .585 .915 17.542 .078 .607 0 .503 0 17.619 .117 .903 0 1.156 1.807 17.856 .059 .458 0 .585 .915 18.428 .211 1.311 0 1.464 1.491 19.84 .059 .458 0 .585 .915 21.824 .059 .458 0 .585 .915 22.053 .271 1.776 0 1.991 2.119 Dist(ft) LLS RLL SL SLN RL 11.678 0 0 2.034 0 0 11.694 0 0 .759 0 0 13.643 0 0 .759 0 0 15.592 0 0 .759 0 0 17.542 0 0 .759 0 0 18.428 0 0 .707 0 0 22.053 0 0 .895 0 0 Live Load Reduction FLL Code: None RLL Code: None • Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 713.349 2 .647 .8 .6 Design Rules: Free Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear None None None None 1 1 DL Defl (in) DL Ratio LL Deft (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 0.5 240 Shear: 15.5% Capacity at 22.0939ft for LC 10 (IBC 16-11 (b) Post) V=25.894k at 22.0939ft fv= 2.778ksi Vn/om = 167.461 k Bending: 41.3% Capacity at 11.7374ft for LC 10 (IBC 16-11 (b) Post) M = 138.097k-ft Cb = 1.021 LbTop = 1ft LbBot= 22.0939ft fb = 14.485ksi Mn/om = 334.331k-ft L-torque = 22.0939ft Deflections: 81.1% Capacity at 11.7374ft. (Camber=Oin) PreDL DL LL DL+LL None None Deflection (in): .034 .169 .236 .406 0 0 Span Ratio 7696 1565 1123 654 10000 10000 • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3 Item 1.6 B-14 Col Stack: CS53 Code: AISC 14th(360-10): ASID Lift: 1 Function: Gravity Span: Single Floor Material: A500 Gr.B Rect(Fy=46ks!) • Shape Group: SquareTube Fixity: Shear-Moment Size: HSS4x4x4 Geometry: Length = 12ft Point: N4816 (-55.7478,-72.886) From: 0 ft To: 12 ft Angle: 0 degrees 32.615 at 0 ft -.174 at 0 ft Vy k Vz k A k Mz -------- k-ft My k-ft -2.092 at 12 ft • Note: In above diagrams, reduction factors are considered for live loads. All Category Column Loads Point Loads (k) Floor DI-Pre LI-Const Dl-Const DL LL LEVEL2 3.85 15.158 0 19.075 20.512 Floor LLS RLL SL SLN RL LEVEL2 0 0 6.127 0 0 Moment Mz(k-ft) Floor DI-Pre LI-Const DI-Const DL LL LEVEL2 0 0 0 0 0 Floor LLS RLL SL SLN RL LEVEL2 0 0 0 0 0 Moment My(k-ft) Floor DI-Pre Ll-Const DI-Const DL LL LEVEL2 .235 .978 0 1.219 1.332 • Floor LLS RLL SL SLN RL LEVEL2 0 0 .39 0 0 RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1 Item 1.6 B-15 Live Load Reduction FLL Code: None RLL Code: None Floor Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor LEVEL2 512.222 4 .581 1 .688 Design Rules: Typical Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear 11.875 None 6 None 1 1 Design Results Shear(z) : .8% Capacity at 0 ft for LC 2 (Service Dead + Live) Vy= Ok fvy= Oksi Vny/om = 25.4228k Vz= -.213k fvz= .138ksi Vnz/om = 25.4228k Bending: 84.9%Capacity at 12 ft for LC 10 (IBC 16-11 (b) Post) P = 32.615k fa = 9.678ksi Pnc/om = 50.8092k Mz = Ok-ft fbz = Oksi Mnz/om = 10.7655k-ft My= 2.51 k-ft fby= 7.725ksi Mny/om = 10.7655k-ft y-y z-z Lb 12 ft 12 ft KUr 94.652 94.652 Cb = 1 Lcomp Top= 12 ft Lcomp Bot= 12 ft L-torque = 12 ft • Column Skip Loading Bending Controlling Floor Bending Controlling Pattern LEVEL2 DL+LL2+LL4 '1-1-3 Shear Controlling Floor Shear Controlling Pattern LEVEL2 DL+LL2+LL4 L- F z Y Note: LL includes all loads other than DL RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2 :.',:.k rr"9 > ,:}" .r. ..,+ ...,,xd..'•%rr.5:•'t•''?.++.,,. 2t.. ••r,•J.,.;; ..1.:.?.t`:tt�i p'+:•}}}'•:�v r f r.. ..rf�r�' t..�• nvh• .t.vA:y: �Jr:• .�•f•• r: tY.Y...rxr {r. 'tf.•• •:'•;t ^ /r...rf ..i;:�:,.;:f:'{•:.........:: .r7 rr•:3'`+r'r�:'•• xrf.Y .r.ct.:t �;'-.?:ti++ ,+., :'r• .0 vl f+t?•r:. rfr. :>' ','+� J it�.. :.� !7'. .,�• •'ti✓.' }} } ,4?+,?4} .•r�.{tv.,r"r•.:$:r.•r .,'v!n r�}..�. :r rrr� /:$ l�'•.v=i� r::•,•: �..3• .. .fff .{•;{.:. r.r. ..r t � r,r•: r�t• •::•i Jr:O r $•:r .. ${{t:. ./ v?.rt;;.�.•. :r. F.:�f'.}rr�r:: ?:i%L�':�+::;:;?' �rf:!::•:t:t-•r.✓:�r.!�n�:{r>}`f ????-x?'-''tt.r �.:r. ,r.<,u.?.r.,1.,..r:r:+r•+• ''3c.. ?�:-:.,�+.5+'+.:„}', >:?:, + ,x!;?6xr�::''f?;tfi:<::••:,;.':;:::'t't%%;'><$:::: <:.r•}:::!•:::•:?..; .�:;,,iti;,..: Y3 /r.;,.,: :r;.rr.; rr..}.:r�r,., .:.,.+.':f,•.�,,, 'rf}:.::,a,}v .+. `•;1,,,. fx{.:?:.}:•}••:??:?•}}:•::?•r:�•;:•:?•}:t:. ?+:t•.y 4::,. :$+$r J.:,?.,,:... r'.;,f.}„f.,r ,Y .;.+..r'..,} .:} •.a:•3::.. •./.$.�:.,: •r�,'.YYr•9i3:::}'!.^ •i'.,:..$.F.;:.::::•:•::.•.•::::•�?•:.•.•:::f }�$$$$$$;.';:;:y};5:.. •:.'kw�:�<�',�•')+�.t.;{/• r. .{..,}'�,,,�',':;.,f•., t}'.'r'.;:, ��}},,..r .'.t f::. ..,r.',.}.�... �.;ef :•f:,.,,..,;Y.;i.tN,.;'{.F irt..::::r.::::::::r. .::f n,.2;V.}. •�;,;.:, ../f:• r.••f. }.F.,rf �.t :+,•"r'f"•,','„.<; rf, ?.,{ .,: ••Yrf,.}}}'•$}}.'•x•}`•??•$:;t:n. ;?.{,yf';:�:••}}f i.�,•}.^..?\'tt':':}'Y„r ri 3'•Yr{�•:}:��>•:r�••••, ri+r. :� ri}.:Fi}'•:${•$%�$?;•: %kt.f:r.'r•¢.:-�.:•}.i::;���;$::'?.•�:':$?••:;.�r<}$.:v$:::�:,.\%}+a•:•;?ix..:}:,Yi•:�}}::;}}f..•+}:,;j\•.}•;::}..•::$,,'ft{;u.::,;�Y•r`••.:+:•:.r.�t.3.:�.}•:x$ry:•:$}.�:�R:::.i+;:••�}.+`:.S.•,•,,::i:••:?};;a?n:,;Kv:.:.;•:•kwa:a•};.;.;�::2;.F::•$::k$::;::$::;:::;•):},,::$:}::;•:.;t:t}/:}f:.?r;rrr'•?r',b,:r;ryi'!l»'!r.,•..!:i�:J?:i:r'tlr t'"./•/}fr:.:.}'i�..�,!',rf:'ran:•,rh••..r•,•y'.r:r:Fu+f;{r'.rrr{'tt.+,•-.',...,t•:':,.%t•+..fr:rkr.wr,rfr,{','.'::.✓x.`r,:,t>'rt.}:,.tr..>::f,.r�}.:n${:.,::,/'1.rr,:}!!•:R,+:.ox.,}?.n,•t+.3:•..',,rr.$�>,.'Y+.,,�•�','.•r',��•'.'.:�'+''•,''.•',>'}S'•.'•,..r'•',-'t".,,:i,•+}r.�:�.:.'}<}.y•,•;.?:.:.•.:'.'.S.�yf;,.',7.,.��:�f.f$.rf+::::.:{...,•:..yo,.�?;r,...,r/•:•$t.#..fr$•f3:..t�.>.�(�}fr't,T'.'..'.�+.}.....3};•.4.t;•:r�.:,;. f+ .r..:•3�'�trf•�.'}trf.;••$...:�:;�Jf ;.;.,QY,:$."�'?:�+t�...it,'L{+.,$:•�4y•:`f}j�C..t}f:'.:�..r3t''}%:{ii•/}},...:?.}::.}r:{✓,?}•f r :.r . f :.y...}f�i::f:;•!':.r::/?•f.rr...:fy...tFrr:r.r:r'rr..r:Ff..f.?:.r•$}::��:•i.rf,f..:%;/{..;:..}rr:rft:.r�?:.rr�/f�rr�f/f.,`f•%r:•r.�::r:.r+:rr::.;}:}r;}{:;:.,}tl??;..,.}r:::,..;•:;'ff;:';:.�}ufn':�:�y.;Y{fr:.:r..��rf...F:•r..•.r•.;••f.•.::•f•'>...:�:,.•.f.f•t•:�.r../•./xd: r3:•{t4t}.:::+.:}Fr:rr.}:..;.•:;•v:}:�r•...}::r}.;..r$:.^.?r:ft.•'r?.t:/•..;f }•.:u.}.:.:. ..•$f s .r. ;; �;: } : .+t•'+""v..•. :t�. t? :::rF,,f;•',::5/ : } $.f f•,•f f'',J;:''y`y� �-4v�:�'�tk%t)'�"•$:�:;��:•`:+?8i f;:�: tf� ,it ?:i�{ r''`�' .1•'• r,},.f4!;f! ':�/:,:.�f//.tf; fr%;;9% r:�'?�'h,?;•r.•:.vo?t�;ct•:..�?t:t::•}:a::,•}•.: :f3. z�'>�,G:rr:�tj+, Nh.. �X.>"��� � .4 4.'.. '.:•/%. t�:.:t.{,::���///.::x/,��.xffJ: x,rrnx:..::ri : : 1 • u B-17 • A .. -- --- - --- --. --- - ---- -- Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 4.298 0 4.525 1.453 0 J-End: 4.049 0 3.824 1.758 0 Maximum Total I-End Reaction: 8.823k for LC 2 (Service Dead + Live) Maximum Total J-End Reaction: 8.234k for LC 10 (IBC 16-11 (b) Post) All Category Member Loads Distributed Loads(k/ft) Dist(ft) DI-Pre LI-Const DLConst DL LL Start 0 .118 .018 0 .131 0 End 7.667 .118 .018 0 .131 0 Dist(ft) LLS RLL SL SLN RL Start 0 0 0 .023 0 0 • End 7.667 0 0 .023 0 0 Point Loads (k) Dist(ft) DLPre LI-Const DI-Const DL LL 1.295 .078 .607 0 .503 0 1.398 .117 .903 0 1.156 1.807 1.715 .059 .458 0 .585 .915 3.244 .077 .607 0 .502 0 3.356 .117 .903 0 1.156 1.807 3.699 .059 .458 0 .585 .915 5.193 .077 .606 0 .501 0 5.313 .124 .995 0 1.267 1.989 5.683 .059 .458 0 .585 .915 7.142 .078 .608 0 .503 0 Dist(ft) LLS RLL SL SLN RL 1.295 0 0 .759 0 0 3.244 0 0 .758 0 0 5.193 0 0 .757 0 0 7.142 0 0 .759 0 0 Live Load Reduction FLL Code: None RLL Code: None Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor • 1 68.6575 2 1 1 1 RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2 Item 1.6 B-18 Design Rules: 5.5x18 Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear 18 18 5.5 5.5 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio • None 240 None 360 0.5 240 Shear: 50.4% Capacity at Oft for LC 2 (Service Dead + Live) V= 8.823k at Oft fv = .134ksi Fv' = 0.265ksi Wood Shear Factors Fv= .23ksi CD = 1 Cm = 1 Ct= 1 Bending: 32.9% Capacity at 3.434ft for LC 2(Service Dead+ Live) M = 19.512k-ft RB =2.67217 le-bend Top = 1ft le-bend Bot= 7.6666ft fb= .788ksi Fb' =2.39794ksi Wood Bending Factors Fb = 2.4ksi CD = 1 Cm = 1 Ct= 1 Cfu = 1.07 CL= 0.999143 CF = 1 Cr= 1 CV= 1 Deflections: 13.9% Capacity at 3.75344ft. (Camber=Oin) PreDL DL LL DL+LL None None Deflection (in): .004 .022 .031 .053 0 0 Span Ratio 10000 4146 2944 1722 10000 10000 • • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3 Item 1.7 B-19 Beam: M1901 Shape Group: Glulam_Western Code: AFBPA NDS-12: AS[ Floor: LEVEL2 Span: Continuous • Size: 3.5X18FS Fixity: Pinned-Fixed Material: 24F-1.8E DF Balanced Bending: Strong Axis Function: Gravity Geometry: Length =23.323ft Points (Start to End): N4115 to REV N207 (-42.6962,-90.594,0)to (-19.3732,-90.594,0) Angle: 0 degrees Diagrams for Load Combination 2 : Service Dead + Live Load Diagram : Distributed Loads (k/ft), Point Loads (k) 5.958 1.455 1.504 1. .632 .632 .632 .632 .632 .632 .632 .632 .632 .632 .015 9.871 at 21.379 ft • V k -4.073 at 21.136 ft 12.111 at 7.774 ft M k-ft -15.303 at 21.136 ft ---------- -.035 -._.--.035 at 23.323 ft D _-- _ . . _-_ ._ _ _ __.--.- in .433 at 7.531 ft • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Pagel It i.7 B-20 A - -- ------ - ---------- __ .. k • Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: .865 0 1.705 0 0 J-End: 9.487 0 4.458 0 0 Maximum Total I-End Reaction: 2.569k for LC 2 (Service Dead + Live) Maximum Total J-End Reaction: 13.945k for LC 2 (Service Dead + Live) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DLPre LI-Const DI-Const DL LL Start 0 .015 0 0 .015 0 End 23.323 .015 0 0 .015 0 Start 21.323 0 0 0 0 0 End 21.573 .001 .015 0 .018 .03 Start 21.323 .111 0 0 1.44 0 • End 23.323 .111 0 0 1.44 0 Start 21.573 .001 .015 0 .018 .03 End 23.323 .001 .015 0 .018 .03 Point Loads (k) Dist(ft) DLPre LI-Const DI-Const DL LL 1.938 .025 .193 0 .246 .386 3.877 .025 .193 0 .246 .386 5.815 .025 .193 0 .246 .386 7.754 .025 .193 0 .246 .386 9.692 .025 .193 0 .246 .386 11.631 .025 .193 0 .246 .386 13.569 .025 .193 0 .246 .386 15.508 .025 .193 0 .246 .386 17.446 .025 .193 0 .246 .386 19.385 .025 .193 0 .246 .386 21.354 .017 .133 0 .169 .265 21.379 .009 .131 0 .664 .655 22.323 .012 .067 0 .09 .135 23.323 .601 .583 0 4.224 1.734 • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2 Relive Load Reduction FLL Code: None RLL Code: None B-21 Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 96.3923 2 1 1 1 • 2 33.7532 2 1 1 1 Design Rules: GL Transfer Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear 24 None 10.75 None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 0.5 240 Shear: 88.7% Capacity at 21.3794ft for LC 2 (Service Dead + Live) V= 9.871 k at 21.3794ft fv = .235ksi Fv' = 0.265ksi Wood Shear Factors Fv= .23ksi CD = 1 Cm = 1 Ct= 1 Bending: 48.9% Capacity at 21.1365ft for LC 2 (Service Dead + Live) M = -15.303k-ft RB =20.2792 le-bend Top = 1ft le-bend Bot= 23.323ft fb = .972ksi Fb' = 1.98789ksi Wood Bending Factors Fb = 2.4ksi CD = 1 Cm = 1 Ct= 1 Cfu = 1.1 CL = 0.828286 CF = 1 Cr= 1 CV=0.987181 Deflections: 53.9% Capacity at 9.47497ft. (Camber=Oin) PreDL DL LL DL+LL None None • Deflection (in): .019 .046 .229 .269 0 0 Span Ratio 10000 1251 1006 950 10000 10000 Actual beam size W 18x35 Al = 10.3 inA2 S1 =57.6 in A3 11 =510 inA4 GL 3 1/2 x 18 A2=63 inA2 S2= 189 inA3 12= 1701 inA4 Comparison of wood and steel properties: F1 =60 ksi, E1 =29000 ksi F2=2.4 ksi, E2= 1800 ksi F1xA1 =618, F2xA2= 151 F 1 xS 1 =3456, F2xS2=453.6 E 1 Al = 1479000, E2xl2=3061800 Steel properties are larger than wood properties,by inspection, W 18x35 is adequate • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rf1] Page 3 1 :v:;0i}.:$,t,+:::. .,}.$$+r. i$.` $`+/.::{•l:•, ::;{>rs• Jr.;••••: ;;{.{+> •4 r;?l/,•y:Y/${r• :.}:•'/,..}}:•:+r.::tivf:f:4:$:f..}%:$:•ltf�r .vS ..r�.r+•ir�.•r'r••': �.1+•. .tiv� q .,5:. �:%l:••.•. •:F.:•.:. $i''r.$'; y`•.},v. :C»fJ. ..{ ;'�'i:. ..� '}'i.•r. }•r.•}.•:/.•.4.+�:vi ^:.•r� '•}'v::. .r:+ '^f •+.{•. rx�..... ..+Y4• l+. r:... i$%.:ir•.x:}$:•'.•:r+•: :.fi:?:i}`$:+{'4r+ ,�{ r$$' >.:+ .•.•:{•:•• ;.J..rr.::+`F:+•+....r. ..r`$i:'v:•:•: :.; i{.:}::•� l}'•:•Y• r .{✓r...+ .`•$.•:.// ::}• :4 .! ..l .F.•irfi: .J ..r./r }....r .4r.1'• ..r::. {Y.4::{4r�.•�Y':++4...K•••}. 'f•�/.✓.r ..�{v:::... •r{+'{+rj4 r•J.••x,../•` M. vry r'��'rr•'/`.:$i'•$:•':•fr::: ::•�4i:;?:v'iK:»: '`•'4}}$: r`r• ${$: .•.'Y.. ..'{+:'{ •f+• ...f!{.. FF r..r:•r.:::.,v.{H.•$$::'r.'.r{rF• i.+`.4 v:/r}4' /r.•�`$$:}{>} >¢... ..�••• rrl.r v•:::.:.4 xv;?.+•.}.; }..1+..,..»r r'r..J...:.:::••};+;:$Y;s.::v +.:. r r?. y� •.v�.• :::f ;.{:j rj:$:'^:•}:::+' .::t{{r' !s r.::.. ...{ r.$r. ${5+`..•'4 r.$ff ii }.. .f... rrr•. :.:Y•.. ..$»} +ctt4: d,• 4:•%:{::•;;,}{.,{.{$$$$$:?1$f;�$f••f.:;�$i:::•:. :%rl:�•}x:::4:•.`•:, r.{•r$ ...�,}::r r st;; �,+''?•'{:•{`f :r$2"+ .::J:F;: .:}::t. ::.y;;... '.is l}•r:l.;}.•.:.. ..1,... ..;. .+:. '?f+:F ..r:. :4f+:: }}}•4:t+ ::}:.3:f :•`+>:... {%%s5rf'i!•. 4?4fc•+: ±±ss..��,,,,,, rf..:'f:-+:>kkt�%�t;:f..ri<::r:��:...r. :./ •:;{4::,r. ..rr J r}r$rY+:f{>»}r••${:+:$. ..,2't .4.,,.J ,�j +rl.� •rrr.rf..�r•}Y•: ..$,r,{}4'• tr}4 :.�.::r;rr$ :� .{! .,:•rr+.,r•f{{r "•"� •Ri• .J•3:ir• r•'K;{%��,::,{•rJnri.{�: f:4 ::lr::4::t. :$:c.: rr•�.. ..r:R. .l..4.^.•�.. �. .x:..y.,{ .r:•r•r.•}<:..r :.}. :•• :$. •.,}.:t f v`l•+• .,f•:. :2}}r Y ••}r. .Fr+F4..: r:�lr:t/. f�F..: ..3.'x,4::,ffr• rrl:r+ :::>••4}r.'.+ ..{:, •3•r.":�/�.' »i•+ r:•.:.� :rf::•Jr+• :'•i•/ .Y.,{$;;�,+,^.;tt;:$;»:{�}....,t}Y;.}}Yr.{r;``.•rr }?�,{�"!r:'{•.!.t:.y:}::} �• ir•., '? I v$r F:f},/%`+�+,{:'+•$$'I.,:+�'•>:$}%•n;err+r..::/.; :.},$:.::.{tt;•}::}•>•`'+•"•+•k+•}}}}}}.4.$: ..tJr•: o-1{}{43r F,+ttt�Rk' $}^,+'<. ./J.,f�.tfj/ �f:f/`rr.4•+'•j`•'{+••/%fr•}:%}: ^rY� 3}'t+, {t;�:•:t:$�:t%,t:.:+..:::.4 ,. ;• :;• �+, , » l'4Y•.�J+/•1•::: ••;••f•1..::rr r,.;f...:;;{J r ,•t',.:::•,fi•:•::'•>:#•:::::•,••.,+}}.�•.:�, ''y. •• '•}:::�!1,::�••>,^,r. ���:,,�*�•,`..••: r r�.:.!/r••r,rr :{.r.•: .•:.Ir.::•r/•::•rrr ::n+.v: .{.lr'M�J:r ;; .:I:.,,•q} , r;,.}:,+•.�. .:'+ v{;�J � � t^:+JJ�f rr JF.•` �v:r ,4: r .•,r/s:!rr .r4+ti•}�:4:}.,,.,+,.:f•.•'Jr':l"2•'�' ?Fr.•:• , :�, ,a ;.$;+,, 'a•t ,.r. :i: F! •.fF{.. .,,,F/,r,.{$.;}+J•. : i'�::::::3}:>i3+:•'}':.}•r' +'.�iti�:a:t..,.,:::..... l. rr:$`'.'.. ¢ 4 0 5' /... :rrl`r $:•:+r+ /r}••}<Y.r.: rr.::>$$t:;};:::^ii}:::w.};f,.{:.:•:t.;r.;,r?,$ r.4��}.���/ !+ •1+;.;?• rF + 1 '•rf F` f y srl;yr• /•irrf rY�i}r/r:+•:+//.. •ri:•,'•.r?;:};$•.;..,:4Y:4i:r;}:•:..4•:•}�?••.y+{t:.}.,H;f::.,},::r:.�•`r`•�J}{�?F: .•. :.�,� •�p� rl Fi.{r%i r ;'}r%�.r.•.i%/:v�Y!{:'r';;??fi. f �f��:•.;:?f?;".::ifi,';,�•'i:;it$:;^;.ti:':::Y;'+;t•:.•.?tM.f:,,\,•;x;S:;;:rr• ',, fr{,;�Jry,t+;, ^. k�.�., .J4+.+r3 �j$Y j�? ;%'f�Yfr';':;l/irri�;f/�f: �}:•::::{:{.+x•:.a•n'••»:,.• `f,'•f•;+,{.}•v••:.; rl'• .;}{;f,F J `r/;r ,.., ,:.1 r,•;•r,{};r�I•r r} / ts:ry;::r, $?t`.;:•;'•;• ,\r.?.y:F�r`., o .J'�,"' 3 ri�r :r+` :. Yr::;+rf,:`rr.•}$r v...... '�.,...:.,•.::f.C�'•`$}:. :;Yr .•r:`{nik�tt,•�;;+;r, 1 • hr , Item 1.8 B-23 • A k Reaction for LC 2: (k) I-End Reaction: Axial: Ok J-End Reaction: Axial: Ok Shear: 29.816k Shear: 23.822k Moment: Ok-ft Moment: Ok-ft Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 16.516 0 17.953 0 0 J-End: 13.255 0 14.263 0 0 Maximum Total I-End Reaction: 29.816k for LC 2 (Service Dead + Live) Maximum Total J-End Reaction: 23.822k for LC 2 (Service Dead + Live) All Category Member Loads Distributed Loads (k/ft) • Dist(ft) DI-Pre LI-Const DI-Const DL LL Start 0 .079 .037 0 .121 .073 End 23.123 .079 .037 0 .121 .073 Point Loads (k) Dist(ft) DI-Pre LI-Const DLConst DL LL 10.164 2.764 10.56 0 26.977 30.525 Live Load Reduction FILL Code: None RILL Code: None Span Reducible Area ftA 2 KLL LL Factor LLS Factor RLL Factor 1 466.966 2 .741 1 .733 Design Rules: Free Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear None None None None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 0.5 240 Shear: 14.2%Capacity at Oft for LC 2 (Service Dead + Live) V= 29.816k at Oft fv=2.835ksi Vn/orn = 210.32k • Bending: 58.7%Capacity at 10.1 163ft for LC 2 (Service Dead + Live) M = 292.669k-ft Cb= 1 LbTop = 1ft LbBot= 23.123ft fb, = 19.985ksi Mn/om =499.002k-ft L-torque =23.123ft RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2 Item 1.8 B-24 Deflections: 93.4% Capacity at 10.83891t. (Camber=Oin) PreDL DL LL DL+LL None None Deflection (in): .03 .222 .244 .467 0 0 • Span Ratio 9152 1247 1135 594 10000 10000 RISA does not take live load reduction into account when calculating deflection (shown in screen capture below) Beams For beam members,the calculated reduction factors are displayed in the Member Detail Report. The effects of live load reduction, however,will be considered in theEnd Reactions,Shear Results,and Bending Results spreadsheets,as they do reduce the load when calculating maximum end reactions,shear,and bending stresses/forces.However,the effects of live load reduction are NOT considered in "MOR."calculations. Therefore,the deflection with a reduced live load is DL+LL reduced =0.222''+ .741 x0.244"=0.403. Ratio the deflection up by W24x76 analysis moment of inertia/W24x68 actual moment of inertia-->2100/1830x0.472=0.46" L/360=22.69x12/360=0.76" Actual deflection is code compliant.By inspection,shear and bending DCRs for W24x68<1.0,therefore beam as shown is adequate. • • RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3 Item 1.9 B_25 Beam: M1891 Shape Group: Wide Flange Code: AISC 14th(360-10): Floor: LEVEL2 Span: Single . Size: W24x55 Fixity: Pinned-Pinned Material: A572 Gr.50 (Fy= 50ksi) Bending: Strong Axis Function: Gravity Geometry: Length = 19.64ft Points (Start to End): REV N358 to REV N343 (-42.6962,-87.388,0)to (-42.6962,-107.278,0) Angle: 90 degrees End Column Eccentricity= 3 in Diagrams for Load Category: DLPre Load Diagram : Distributed Loads (k/ft), Point Loads (k) 1.724 .154 .154 z 116 :••l f 3.019 at 0 ft -3.031 at 19.89 ft 18.235 at 9.945 ft M k-ft D -- .. - ----- - ----- _- __ - - ---- in 037 at 9.531 ft RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 1 Item 1.9 B-26 A ---- - ------. _... --- k • Reaction for Category DLPre: (k) I-End Reaction: Axial: Ok J-End Reaction: Axial: Ok Shear: 3.019k Shear: 3.031 k Moment: Ok-ft Moment: Ok-ft Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 15.331 0 14.683 2.105 0 J-End: 15.331 0 14.66 2.105 0 Maximum Total I-End Reaction: 26.552k for LC 2 (Service Dead + Live) Maximum Total J-End Reaction: 26.534k for LC 2 (Service Dead + Live) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DLPre LI-Const DI-Const DL LL • Start 0 .116 .058 0 .257 .174 End 19.89 .116 .058 0 .257 .174 Start 0 .038 0 0 .093 0 End 3.591 .038 0 0 .093 0 Start 15.591 .038 0 0 .093 0 End 19.89 .038 0 0 .093 0 Point Loads (k) Dist(ft) DLPre LI-Const DI-Const DL LL 1.006 .034 .293 0 .371 .586 1.144 .044 .337 0 .28 0 2.982 .038 .319 0 .405 .639 3.1 .044 .337 0 .28 0 3.206 .199 .875 0 .851 1.701 3.591 .316 .951 0 1.312 0 4.958 .038 .319 0 .405 .639 6.935 .038 .319 0 .405 .639 8.911 .038 .319 0 .405 .639 9.945 1.724 5.184 0 15.149 16.183 10.887 .167 .319 0 .534 .639 12.863 .038 .319 0 .405 .639 14.84 .038 .319 0 .405 .639 • 15.591 .332 1.071 0 1.412 0 RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2 Item 1.9 B-27 16.685 .198 .875 0 .852 1.703 16.79 .044 .336 0 .279 0 16.816 .038 .319 0 .405 .639 • 18.746 .044 .337 0 .28 0 18.792 .034 .296 0 .374 .591 Dist(ft) LLS RLL SL SLN RL 1.144 0 0 .421 0 0 3.1 0 0 .421 0 0 3.206 0 0 0 0 0 3.591 0 0 1.189 0 0 15.591 0 0 1.339 0 0 16.685 0 0 0 0 0 16.79 0 0 .421 0 0 18.746 0 0 .421 0 0 Live Load Reduction FLL Code: None RLL Code: None Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 425.532 2 .764 .8 .774 Design Rules: Free Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear None None None None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 0.5 240 • Shear: 15.9% Capacity at Oft for LC 2(Service Dead + Live) V= 26.552k at Oft fv= 2.848ksi Vn/om = 167.461 k Bending: 57.8% Capacity at 9.945ft for LC 2 (Service Dead + Live) M = 193.203k-ft Cb = 1.02406 LbTop= 0.942143ft LbBot= 19.89ft fb = 20.265ksi Mn/om = 334.331 k-ft L-torque = 19.8E Deflections: 77.6% Capacity at 9.945ft. (Camber=Oin) PreDL DL LL DL+LL None None Deflection (in): .033 .186 .202 .388 0 0 Span Ratio 7285 1282 1184 615 10000 10000 RISA does not take live load reduction into account when calculating deflection (shown in screen capture below) Beams For beam members,the calculated reduction factors are displayed in the Member Detail Report. The effects of live toad reduction, however,will be considered in theEnd Reactions,Shear Results,and Bending Results spreadsheets,as they do reduce the load when calculating maximum end reactions,shear,and bending stresses/forces.However,the effects of live load reduction are NOT considered in calculations. Therefore, the deflection with a reduced live load is DL+ LL reduced=0.186'+ .7640.202"=0.34. Ratio the deflection up by W24x55 moment of inertia/W21 x50 moment of inertia--> 1350/984x0.34=0.47" L/360= 19.65x12/360=0.65' • Actual deflection is code compliant. By inspection,shear and bending DCRs for W21x50<1.0,therefore beam as shown is adequate. RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 3 1 ,,,....,x,+ rv. . ,l...,.. ,;,,`•;}+%%:•':;:•%+}•}} ,I%>'$:�•:•' �'+r. .:'+,tJ�'.,•,'n f�, /r' r�ljf'a�. ;I% rJ'•:s{3:::1r'•f{%{:;;'•,�•:,:',fi.fr: �31�+?••3�.^.re•,' +{�� ,:?.•. ''�{::l r? ::•::x}•$:;::•}:;•!.t.{:•%i;%,: >} �.;3i }"Tti,�ig ,?�'�'d r't;,,f 'fir:. !!nv+c{'ok's}nar;>:,+:1 ^�'�'•�' ':•,,'�t�,+'>,y. tr <''"' ,<';� �'•}$•:•;:; {'�,tn;.^'>: 1• %;:;;�'•.•r•:•}:•}:{j:�;f' ••"}�'''•r+:;:4 ..t•�}';i {k°.}'w�t'';';r �.;r •il;: .'•,J�,;•rr'v� <,�:»' 1 yr:.%•:::�:�$:•r:$5:';t,r...p.�, ?•$•>;•.>'',:: :.;t;•v�' �?'' •r r.Y,r•.,:'$. �f{+J I:xlrrlrrx+rl:{rx}xar mx r :ki'kk$$: i'>f?::=?• ^'{;{:k tij}'•+ %., r r{ J fr f s���•rir;}{{;•?>%?rr,...x :f��� v nv}••••;;?:f:•.,: %{..::v:��.{%...OnC•J.4:T'•$ . :''�':•..•}:{•. $yy. r' :'. Y �I J•!r vly:n{;{..nF,1J n?� 'r.�� ^.+.4 r`.kk?Y{i?> nrYAn f. Yn':, :h:;.'•.{Y..!• .P... f If. ..f. ..::?.... .O:\''}ir •.:r r.f::::r.r.r..vF.-.r.... A,... �vvf r.�' I.. •:fi�vr:i•::::lr:...r./r ••:I.•f�.' f' :<;:x} '•'#'y +•4 w+ �.fr ':•:rr:�•'•�$:.r..r.:. {}.}:v:•:w»}:•$$$:'v> ::$? v/:•: f .}w}'•:f.• �j ;{{•..•: �•�� *'?b 1.r: .'�$ :{•• r:+f.•.ri r •:J• $.......}} :•7 ..- .v v+; S. i::�E•:•6 fr:r•. f f!1•'.f:::?Ai••:::•:Y.::: f.. .w?;3,.;..y.; �ryr.f•. ..Y�'i?i' .t.:..' $r(���"y ¢ .•+C4: :l..r� �. lr...-.+....r. .:�%>f r. r�?Y% r.f.' r.!.•:r:•... .,,±±•>.. �}; {: }'F f }v" I.. f. � ..f/••...�.. I.. !.. .$'S.•}$.. ..rxv.'ii 1i Y•'i• Ar 'ix•v e44- .............. :::>..a:•$?�o: ••f7c•.'•'rk' .::/• ':'$,Y� ;.} : %fi.$�?� R fff%...:{}.::r... .r:%{{.;:: ..2 ,.f iz.. /+ 'tq. r:r.F.:::f:::+f/:•:...f .r:/.. v.\......--. :.%.;}:;:•}:}t�'v /•{}f,:./ ;{++.v,)fv.,;: ?. .}.;:' y 'k:.:' $4'.' E.:.v f���/ /�.rYfx.�vin;•rr v:fr r .r�•::. r r$'3>%k r,.. �' ,k �•,9?.:'S•Y... '}.mac; <o + -:•�'{. ••,,, � � `�w' J�rt-J .��lY•. 1 Item 1.10 B-29 • A - . ------- - - - _ ...----- - -- -- -- --- - ---------------- ------ ---- k Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 13.259 0 17.633 .048 0 J-End: 13.051 0 16.161 .168 0 Maximum Total I-End Reaction: 24.217k for LC 2 (Service Dead + Live) Maximum Total J-End Reaction: 23.095k for LC 2 (Service Dead + Live) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DLPre LI-Const DI-Const DL LL Start 0 .064 0 0 .064 0 End 25.219 .064 0 0 .064 0 Start 6.605 .051 0 0 .051 0 End 19.605 .051 0 0 .051 0 • Point Loads (k) Dist(ft) DLPre LI-Const DI-Const DL LL .98 .039 .175 0 .241 .351 1.94 .03 .232 0 .296 .463 1.96 .039 .175 0 .241 .351 2.941 .039 .175 0 .241 .351 3.88 .03 .232 0 .296 .463 3.921 .039 .175 0 .241 .351 4.901 .039 .175 0 .241 .351 5.82 .03 .232 0 .296 .463 5.881 .039 .175 0 .241 .351 6.605 .415 1.918 0 2.621 3.837 6.862 .117 .526 0 .722 1.053 7.76 .059 .463 0 .592 .926 7.842 .146 .76 0 1.021 1.521 8.822 .117 .526 0 .722 1.053 9.7 .059 .463 0 .592 .926 9.802 .146 .76 0 1.021 1.521 10.783 .117 .526 0 .722 1.053 11.64 .059 .463 0 .592 .926 11.763 .146 .76 0 1.021 1.521 12.743 .117 .526 0 .722 1.053 • 13.579 .059 .463 0 .592 .926 13.723 .146 .76 0 1.021 1.521 RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151102 Ash Apts.rfl] Page 2 Item 1.10 B-30 14.704 .117 .526 0 .722 1.053 15.519 .059 .463 0 .592 .926 15.684 .146 .76 0 1.021 1.521 16.664 .117 .526 0 .722 1.053 • 17.459 .059 .463 0 .592 .926 17.645 .146 .76 0 1.021 1.521 18.625 .117 .526 0 .722 1.053 19.399 .059 .463 0 .592 .926 19.605 .331 .767 0 3.053 2.373 21.339 .03 .232 0 .296 .463 21.476 .006 .047 0 .06 .094 23.279 .03 .232 0 .296 .463 23.348 .006 .047 0 .06 .094 Dist(ft) LLS RLL SL SLN RL 19.605 0 0 .216 0 0 Live Load Reduction FLL Code: None RLL Code: None Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 815.238 2 .621 .8 .6 Design Rules: Free Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear None None None None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 0.5 240 Shear: 52.1% Capacity at Oft for LC 2 (Service Dead+ Live) • V= 24.217k at Oft fv= .138ksi Fv' = 0.265ksi Wood Shear Factors Fv= .23ksi CD = 1 Cm = 1 Ct= 1 Bending: 64.2% Capacity at 12.6095ft for LC 2 (Service Dead + Live) M = 186.393k-ft RB = 3.17313 le-bend Top= 0.98025ft le-bend Bot= 25.219ft fb = 1.307ksi Fb' =2.03756ksi Wood Bending Factors Fb = 2.4ksi CD = 1 Cm = 1 Ct= 1 Cfu = 1.07 CL =0.998783 CF = 1 Cr= 1 CV= 0.848985 Deflections: 93.4% Capacity at 12.6095ft. (Camber=Oin) PreDL DL LL DL+LL None None Deflection (in): .041 .201 .265 .467 0 0 Span Ratio 7344 1502 1140 648 10000 10000 RISA does not take live load reduction into account when calculating deflection Therefore,the deflection with a reduced live load is DL+LL reduced=0.201''+ .621 x0.265"=0.366". Ratio the deflection up by GL 10 3/4 x 30 beam moment of inertia divided by GL 6 3/4 x 39 moment of inertia-->33370/24170x0.366=0.51" [/360=25.2x 12/360=0.84" Actual deflection is code compliant. By inspection,shear and bending DCRs for GL10 3/4 x 30< 1.0,therefore size is adequate. • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bid g 1\20151102 Ash Apts.rf11 Page 3 Item 1.1 la B-31 Beam: M2088 Shape Group: Glulam_Western Code: AF&PA NDS-12: AS[ Floor: LEVEL2 Span: Single • Size: 5.5X24FS Fixity: Pinned-Pinned Material: 24F-1.8E DF Balanced Bending: Strong Axis Function: Gravity Geometry: Length = 13.3125ft Points (Start to End): REV N223 to REV N782 (-43.0812,-158.146,0)to (-56.3937,-158.146,0) Angle: 0 degrees Diagrams for Load Combination 2 : Service Dead + Live Load Diagram : Distributed Loads (k/ft), Point Loads (k) 3.396 .337 .312 2 r{ t .095 Mr,'f. fr 7.354 at 0 ft -10.507 at 13.313 ft 23.653 at 7.627 ft M k-ft D ___-__-- -- ____._. -- --_._-_ -___ ___ ____ __. _.----------__. _ in .069 at 6.795 ft • RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151104 Ash Apts.rfl] Page 1 Item 1.11 a B-32 A ____.._.�_ ___..____._-- ------------..___ .___._--------------__-.__.__.______-. .._ _._.------.____ -_--___-______._._ k • Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 4.17 0 3.184 2.264 0 J-End: 5.577 0 4.929 2.236 0 Maximum Total I-End Reaction: 7.88k for LC 10 (IBC 16-11 (b) Post) Maximum Total J-End Reaction: 10.369k for LC 10 (IBC 16-11 (b) Post) All Category Member Loads Distributed Loads (k/ft) Dist(ft) DI-Pre LI-Const DI-Const DL LL Start 0 .033 .02 0 .056 .039 End 13.313 .033 .02 0 .056 .039 Start 0 .119 .039 0 .164 .078 End 3.219 .119 .039 0 .164 .078 Start 7.614 .095 .039 0 .139 .078 • End 13.313 .095 .039 0 .139 .078 Point Loads (k) Dist(ft) DI-Pre LLConst DI-Const DL LL .388 .037 .304 0 .387 .607 1.234 .013 .1 0 .083 0 1.865 .06 .49 0 .403 0 2.378 .039 .331 0 .421 .663 3.219 .15 1.147 0 1.094 .626 4.368 .014 .121 0 .154 .243 6.754 .014 .121 0 .154 .243 7.614 .166 1.289 0 1.224 .689 8.744 .039 .331 0 .421 .663 9.323 .055 .479 0 .39 0 9.555 .013 .105 0 .087 0 10.734 .039 .331 0 .421 .663 11.188 .058 .465 0 .383 0 11.536 .013 .104 0 .086 0 12.724 .037 .331 0 .417 .662 13.052 .446 .998 0 1.558 1.838 Dist(ft) LLS RLL SL SLN RL 1.234 0 0 .125 0 0 1.865 0 0 .613 0 0 • RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151104 Ash Apts.rfl] Page 2 Item 1.11 a B-33 3.219 0 0 1.043 0 0 7.614 0 0 1.18 0 0 9.323 0 0 .598 0 0 9.555 0 0 .131 0 0 11.188 0 0 .581 0 0 11.536 0 0 .13 0 0 13.052 0 0 .099 0 0 Live Load Reduction FLL Code: None RLL Code: None Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 320.567 2 .842 .842 .879 Design Rules: 5.5x24 Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear 24 24 5.5 5.5 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 0.5 240 Shear: 41.7% Capacity at 13.3125ft for LC 2 (Service Dead + Live) V= 9.73k at 13.3125ft fv= .111 ksi Fv' =0.30475ksi Wood Shear Factors Fv= .23ksi CD = 1.15 Cm = 1 Ct= 1 Bending: 22.3% Capacity at 7.62695ft for LC 10 (IBC 16-11 (b) Post) M = 26.223k-ft RB = 3.08556 le-bend Top = 1ft le-bend Bot= 13.3125ft fb= .596ksi Fb' =2.6763ksi Wood Bending Factors Fb = 2.4ksi CD = 1.15 Cm = 1 Ct= 1 Cfu = 1.07 CL = 0.998674 CF= 1 Cr= 1 CV=0.969675 Deflections: 18.6% Capacity at 6.79492ft. (Camber=Oin) PreDL DL LL DL+LL None None Deflection (in): .01 .04 .053 .093 0 0 Span Ratio 10000 4015 3010 1720 10000 10000 RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151104 Ash Apts.rfI] Page 3 is .•- • • ••- I .. •. - I - . '• • • • • � li • • 1 • • • • 1 • • 1 •-• .�:Y:r :.r.:. 'K.d. :r :!./... KYk'{•':•t¢:?2:,.�?. ':fi •kk+•'t+ �r� ::/rlY��2`'•.:%��:�:•. ?• :•,•'%f: %%�t::;•r ..�:,, :.k. .t:...,5 ,•r:}r'r::'1...: i.tri• �"w � ••.} � .h•., I• •r f`:Yr::+:•:,ani}. •.Y. .:•r.'•'r.,!r:::r•tix::i:.�:,•rrk, �:�•r t•.. ''?•. +•lf:�.?}>`•a' r.) •'r'�'S{• ..r :. ::. ttrr••,r..•:?•i•••i ii.. :4?;i'r,./{!'�'•'.+vi:,,'$'•� r�•r:. ..•.J.. k.: r� :ff :..,I/:+r:r.Y kv: i;ry:: :'r:'. >'i.•:•::\-�.:v.r r�.:r• :::{:3:•ar.Y.r �:+•� /.. � .'4±i: : .�+i:ilii`'.:i::::}:...r'f {•...{2.,T.•... f •:Ar r :.�Y.rri::. :•rY.9'i •.•Y� .{ :.,rr :.�}', fr;::.r.•v{.:�:�::.. ,.\., t.a.• . .. •• :{::d:✓.' .: •::rt•w::.nom:•v .h, r� i5i.•• .}. r.rrr �r• r..r .:.::: .� F.'•: 3xxi t..t. }ii r •.:rr ./..x::•::: >:%F%ilii}:•i'r:• :'rit +t:4 k :.Y frl :}f..}..•'r':t: ::ry'?r,{t.:::i��� '.r .:r' ..rrr... ::::::: :::rm.r. ::::::::::. v.:.r ..f.•::•}:•{}:i:',•:i}i: .•$•:{: t�. .•.•Yri:•.••::r ..ti �.�/.:..ffr .,il..�:f : rr}.. .�:�: is yis: ;;.,� .:..iv. r�.:: �% •r. %�k�iii:tty: y•r<••{fF:`' Sv: r•t: fi::...{.• r,"F.�ii?1:•r .,t..:::::+n?�::/.•:a.r r.�..;r..:,.:i},:'.•✓f•. .� r.r:r' '•:l iii;.'•:j,:+k... rr• rrl.:., •l:. •,.F•:: :� •:rr• yaY:•Y+• ..rYi:::•.,•:.5•:.+5•%�? r i:...r:f..:...../ •r9•i:+•i:•i'•••i:•x �ik?o:•i:•i:•ixa+ ./ :.+.+..::•::fir }f•:.':�kt�.'••;}... .. •f;•" .. •'.✓k:. .r� .%r.:r::•r f�.. .rrr r :.r.::.t:..rr::.. .'?. v i,i. .t:,r.5r.,>. , .:r: r rfl r r:r ?iirrl•.•, / •�{.•:•: •5.•:,�+ ,..,,Fy: /:.. r/'�:r •:.F;a••t. •iii:•:•ii:•i:•i:.>.}$•'.'•;_k.:i`i::;;};i ry••'}:d d/ :i:X. .� •7�iii:+,:•;r.:}r,•.L a••:r•.:.,:::x,:�Y'`k%;':a 2: :.r.. .:rr ..:r� +.•:kw::: x .^, Y ../ ;;t:'.. .f I/r .l. ..ri : .rr .r v/ .v:f..; r:+{r:• a x.k .:{' :l..r •i:•r... /•i .�:• :!fiii� ri :.rf/f.. i nt... i vY isii�i'i:t:::�:�:�ik�:iti:?ii}:??:h ,r .�i v.}.. r?�: fi:;:,• ,! �'•:r'}' '•u., k ,.Y::Y:.•%:: :r�•.:/•.r •:ltrrr ..:rrr•i.. '�•..� � .::::...:.. :..r r•r 1r;•,•,r,?,.,. ti. .•,:,,., .a.� '.`ec:•r:..... +}�'•,r3:k�`.:.r r�r ': r.r.`r 5:•::y..,/.! ::::::.�:•i:::......:.... •.ir>i:?;:::::r:,:::•.,,,• :.::r r.,;•ii.. :. .}. .,.: .;.,. �+ r ... :..:.'1..::.l.:rn:::ri:••:..:..r...: .x't4%•;f i. :. �frr:.....r:i: � ,.�, i:.a•",. rr/:. ,• }. .•5"J�i� l.,• ..::::::::::• .r ?:{:�:ir.'i'••+" iit:3iiii;:;. ,.� !:. fi}..,.,+. .:,•i:, k':' i:•:�urrl.••.r r ...r..... v::.�:::. :;:i\:<?ki>.{:•i:..........r: rrfr:•Fi•'r'/"•:.; .•k•. v X..... f9r. '+ r'`r.:i:.. f: 1 a:kii f '��� } r .,�.....a... .�s t� ..}� . .,} :•}i:•i:•i:.}•. .. , r ':�k�iiir'f.:�:i:�....:...............:i..:'+':l'•}:•r:•}:??•}i:r 1`;:i`yYj }:}Y ',.k ,'y.r.. r.{. :.i.:r "F�I'r•`}r%I r!rf i??fir.;r; f...:. rri`::.vnvr. :.,:.r..;? .:. ' r.f„�l;?.;�"t3;+'. �';#;t,,•.t,,.:t�:kr,•.: :'T.';�'r'�'�:,t�f':' ;'u,{r,'. rn... ::+�+:t•.r/.lr., ;:rr'�..r YYrrttra?•. }i:q::;:i•:::;i ir;�. '.::;t�a..S....iY.::<x:;::.::;:>� .rt?•tt:::Y: .,•::, .?.. � .,. rrr': ft.�..•i+tf:f5:r?l:t::::r/.//i'i;:,5,.;:.'•r r r.::•:.....�. F;:•#::::?•:::•.,ifi•,"••.'r•ri::.i}}r}:: .?rr .�6'•., ::r..�,�i+ r••' •:?,j".• ;.::,•r/:r.:,:.:•/,r+ri.•.r/.;,;..i.:;r•�. i:•/••:•>••i:,ar•.;.}:•:»i}.....,r}•?:.ii•:�$i''•:�i:;{+/:: ,r,?;`•:�:;;i'r}rl.; .,.+,;. :;�;:r;•:'�2•;+' {., ..fr/.+.;1.., ../fr..'r.•ik?+.::r/.;.Yr.;:k;:>.:: 13?t:•,':;;:{};fr,:;'r,:•vY�:,irit:;:ik�'ik':'•i?;}r+'�t•{�:�rr:::;:•,+,f,•:•r,:rr.:}�.r,:.}k:Y Yah. 't; ;'+:3+ �:+1":�l'•'lF•:��:/:�rf., i':f�:r,::.;: r . rl+'.: �.Y' r5tr ��,�.;��+�,,''q t• ,,��/.i. fir.,,,/,`: %/r'/: f �:rr:?:�`.r`r/l,%%%r✓r'. '. :�tfi�,.'•rk'ti,:;.':+':<••r.'•}'•::'•:3:::,k•'.t;:;;.rt:;.%:r�/f..`F.:S.'•:%:.'••k,•/}fk:+'.'t>.'2`+,"e;5 .�: t•;5:, 'K.�w.i.. •ft ..fi..�. ,S•n.L.i'/,.6r.5� rr{,.r,; 3 % r' : 1 • •• � � �• 1 ��x 1 � • •• • / 1 I I I 11 •• - • •• 1 1• • •••- Item 1.1 1 b B-35 • A - ..__.._ __ _ _. -- ...__�._ .._...__- _..._._.. _..... k Envelope and Category Shear Reactions: (k) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 2.171 0 2.358 0 0 J-End: 3.183 0 3.812 0 0 Maximum Total I-End Reaction: 4.528k for LC 2 (Service Dead + Live) Maximum Total J-End Reaction: 6.995k for LC 2 (Service Dead + Live) All Category Member Loads Distributed Loads(k/ft) Dist(ft) DI-Pre LI-Const DI-Const DL LL Start 0 .094 .018 0 .115 .037 End 14.489 .094 .018 0 .115 .037 Start 0 .006 .093 0 .113 .185 End 10.867 .006 .093 0 .113 .185 • Start 10.867 0 0 0 0 0 End 11.867 .004 .06 0 .073 .12 Start 10.867 .003 .037 0 .045 .074 End 14.489 .003 .037 0 .045 .074 Start 11.867 .004 .06 0 .073 .12 End 13.489 .004 .06 0 .073 .12 Start 13.489 .004 .06 0 .073 .12 End 14.489 0 0 0 0 0 Point Loads (k) Dist(ft) DLPre LI-Const DI-Const DL LL 10.867 .357 1.522 0 2.107 3.044 Live Load Reduction FILL Code: None RLL Code: None Span Reducible Area ft^2 KILL LL Factor LLS Factor RLL Factor 1 51.0846 2 1 1 1 Design Rules: 5.5x24 Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear 24 24 5.5 5.5 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio • None 240 None 360 0.5 240 RISAFloor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151104 Ash Apts.rfl] Page 2 Item 1.11b B-36 Shear: 30%Capacity at 14.489ft for LC 2 (Service Dead+ Live) V=6.995k at 14.489ft fv= .079ksi Fv' =0.265ksi Wood Shear Factors Fv= .23ksi CD = 1 Cm = 1 Ct= 1 • Bending: 22.4%Capacity at 10.1121ft for LC 2 (Service Dead + Live) M = 22.782k-ft R13 = 3.08556 le-bend Top= 1ft le-bend Bot= 14.489ft fb= .518ksi Fb' = 2.30759ksi Wood Bending Factors Fb =2.4ksi CD = 1 Cm = 1 Ct= 1 Cfu = 1.07 CL= 0.998851 CF = 1 Cr= 1 CV=0.961498 Deflections: 15.1% Capacity at 7.54635ft. (Camber=Oin) PreDL DL LL DL+LL None None Deflection (in): .011 .035 .041 .075 0 0 Span Ratio 10000 4990 4277 2303 10000 10000 • RISAFIoor Version 9.0.0 [P:\2015\2015018.00 Ash Ave Apartments\calcs\Bldg 1\20151104 Ash Apts.rfl] Page 3 Item 1.13 Project: No.: Page: B-37 Catena cc n° "g:i°n 1 1 1 n g Ash Apts 2015018.00 1 e e r s Subject: By: Date: GL 5.5 x 9-Item 1.13 CS 11/3/2015 • STRUCTURAL GLUED LAMINATED TIMBER(GLULAM)BEAM ANALYSIS&DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Load Envelope•Combination 1 0.328- 0.0- ft .3280.0ft I 14.5 A 1 B kip_ft Bending Moment Envelope 0.0- 8.621- 8.6 ft I 14.5 A 1 B kips Shear Force Envelope 2.378- 2.4 0.0 -2.378 -2.4 ft I 14.5 A 1 B Applied loading Beam loads Dead self weight of beam x 1 Dead full UDL 110 Ib/ft Live full UDL 206 Ib/ft Load combinations Load combination 1 Support A Dead x 1.00 Live x 1.00 Span 1 Dead x 1.00 • Item 1.13 Project: No.: Page: B-38 /catena `e °n ng si un i t I n g Ash Apts 2015018.00 2 e e r s Subject: By: Date: GL 5.5 x 9-Item 1.13 CS 11/3/2015 Live x 1.00 Support B Dead x 1.00 Live x 1.00 Analysis results Maximum moment Mmax=8621 Ib ft Mmin=0 Ib ft Design moment M=max(abs(Mmax),abs(Mmin))=8621 lb—ft Maximum shear Finax=2378 Ib Fmin= -2378 Ib Design shear F=max(abs(Finax),abs(Fmin))=2378 Ib Total load on member Wtot=4756 Ib Reaction at support A RA-ma.=2378 Ib RA-min=2378 Ib Unfactored dead load reaction at support A RA—Dead=885 Ib Unfactored live load reaction at support A RA—Live= 1494 Ib Reaction at support B Rema.=2378 Ib RB-min=2378 Ib Unfactored dead load reaction at support B RB-Dead=885 Ib Unfactored live load reaction at support B RB—Live= 1493 Ib 5. Glulam section details Net finished breadth of sections b=5.5 in Net finished depth of sections d = 9 in Number of sections in member N = 1 Overall breadth of member bb= N x b=5.5 in Alignment of laminations Horizontal Stress class 24F-1.8E Bending parallel to grain Fb=2400 Ib/int Tension parallel to grain Ft= 1100 Wine Compression parallel to grain F.= 1600 Wine Compression perpendicular to grain Fc_,erp=650 Wine Shear parallel to grain F,=265 Ib/int Modulus of elasticity E= 1800000 Ib/int Modulus of elasticity,stability calculations Emin=950000 Wine Mean shear modulus Gdet=E/16= 112500 Ib/int Member details Service condition Dry Item 1.13 0'0— Project: No.: Page: B-39 c a t e n a `e °n "g si"n Irl n g Ash Apts 2015018.00 3 e e r s Subject: By: Date: GL 5.5 x 9- Item 1.13 CS 11/3/2015 • Length of bearing Lb=4 in Load duration Ten years Section properties Cross sectional area of member A=N x b x d =49.50 in Section modulus S.= N x b x d2/6=74.25 in3 Sy=d x(N x b)2/6=45.38 in3 Second moment of area I.= N x b x d3/12=334.13 in° ly=d x(N x b)3/ 12= 124.78 in Adjustment factors Load duration factor-Table 2.3.2 Co= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Flat use factor-Table 5A Cr„= 1.01 Bearing area factor-cl.3.10.4 Cb= 1.00 Length of beam between points of zero moment Lo= 14.5 ft For species other than Southern Pine x= 10 Volume factor-eq.5.3-1 Cv= min((21 ft/Lo)'/"x(12 in/d)'/x x(5.125 in/b)'/x, 1)= 1.00 Depth-to-breadth ratio d/(N x b)= 1.64 -Beam is fully restrained Beam stability factor-cl.3.3.3 CL= 1.00 • Bearing perpendicular to grain-cl.3.10.2 Design compression perpendicular to grain Fc_perp= Fc_perp x Ct x Cb=650 Ib/int Applied compression stress perpendicular to grain fc_Perp= RA_max/(N x b x Lb)= 108 Ib/inz fc_perp/Fc perp'=0.166 PASS-Design compressive stress exceeds applied compressive stress at bearing Strength in bending-cl.3.3.1 Design bending stress Fe= Fb x Co x Ct x min(CI.,Cv)x Cc=2400 Ib/inz Actual bending stress fb= M/S.= 1393 Ib/inz fb/Fb=0.581 PASS-Design bending stress exceeds actual bending stress Strength in shear parallel to grain-cl.3.4.1 Design shear stress F„'= F�x CD x Ct=265 Ib/inz Actual shear stress-eq.3.4-2 fv= 3 x F/(2 x A)=72 Ib/inz fv/Fv'=0.272 PASS-Design shear stress exceeds actual shear stress Deflection-cl.3.5.1 Modulus of elasticity for deflection E'= Ex x CME x Ct= 1800000 Ib/inz Design deflection Sadm=0.004 x Ls1 =0.696 in Bending deflection 8b_s1 =0.542 in Shear deflection &-o =0.022 in • Item 1.13 Project: No.: Page: B-40 /catena `e an ng: °n Ash Apts 2015018.00 4 l e e r s Subject: By: Date: GL 5.5 x 9-Item 1.13 CS 11/3/2015 Total deflection 8a=Sb s, + s, =0.565 in Sa/cSadm=0.$11 PASS-Design deflection is less than total deflection 24 I I i TYP. 21 U.O.N. I N X N _\ CO M J I I I I I I I I I O14 j - HDR HDR J GE-5-1/2 x 9 (-2 1/2"' p - - Gx 55 f/2—x9 (--2—1/2")- 2 I I I HDR HDR HDR I I I Tributary Width= 10'4"/2 DL=23 psf LL 40 psf IICIII I.LV Project: No.: Page: B-41 Catena consuIfIng Ash Apts 2015018.00 1 e n g i n e e r s Subject: By: Date: GL 3 1/2 x 12(Item 1.20) CS 11/3/2015 STRUCTURAL GLUED LAMINATED TIMBER(GLULAM)BEAM ANALYSIS&DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Load Envelope-Combination 1 0.892- 0.0- 9 .8920.09 A 1 B kip_ft Bending Moment Envelope 0.0- 9.034- 9.0 ft I 9 I • A 1 B kips Shear Force Envelope 4.015 4.0 0.0- 4.015- 4.0 .0-0.0154.0 nl 9 A 1 B Applied loading Beam loads Dead self weight of beam x 1 Dead full UDL 322 Ib/ft Live full UDL 560 Ib/ft Load combinations Load combination 1 Support A Dead x 1.00 Live x 1.00 Span 1 Dead x 1.00 • IICIII I.LV Project: No.: Page: B-42 /catena ` on " ' ° Ash Apts 2015018.00 2 Subject: By: Date: GL 3 1/2 x 12 Item 1.20 CS 11/3/2015 Live x 1.00 Support B Dead x 1.00 Live x 1.00 Analysis results Maximum moment Mmax=9034 Ib ft Win=0 Ib ft Design moment M=max(abs(Mmax),abs(Mmin))= 9034 lb—ft Maximum shear F,nax=4015 Ib Fmin= -4015 Ib Design shear F=max(abs(Finax),abs(Fmin))=4015 Ib Total load on member Wtot=8030 Ib Reaction at support A RA_max=4015 Ib RA-min=4015 Ib Unfactored dead load reaction at support A RA—Dead= 1495 Ib Unfactored live load reaction at support A RA—Live=2520 Ib Reaction at support B RB-max=4015 Ib RB-min=4015 Ib Unfactored dead load reaction at support B RB-Dead= 1495 Ib Unfactored live load reaction at support B RB—Live=2520 Ib fV 3.5" Glulam section details Net finished breadth of sections b=3.5 in Net finished depth of sections d= 12 in Number of sections in member N = 1 Overall breadth of member bb=N x b=3.5 in Alignment of laminations Horizontal Stress class 24F-1.8E Bending parallel to grain Fb=2400 Ib/int Tension parallel to grain Ft= 1100 Ib/int Compression parallel to grain F,= 1600 Ib/int Compression perpendicular to grain Fc_pelp=650 Ib/int Shear parallel to grain F„=265 Wine Modulus of elasticity E= 1800000 Ib/int Modulus of elasticity, stability calculations Emin=950000 Ib/int Mean shear modulus Gdef=E/ 16= 112500 Ib/int Member details Service condition Dry IRV 11 I.LU Project: No.: Page: B-43 c a t e n a ce en "g i' en i " Ash Apts 2015018.00 3 e e r : Subject: By: Date: GL 3 1/2 x 12(Item 1.20) CS 11/3/2015 • Length of bearing Lb=4 in Load duration Ten years Section properties Cross sectional area of member A= N x b x d =42.00 int Section modulus Sx= N x b x d2/6=84.00 in3 Sy=d x(N x b)2/6=24.50 in3 Second moment of area Ix= N x b x d3/ 12=504.00 in ly=d x(N x b)3/ 12=42.87 in° Adjustment factors Load duration factor-Table 2.3.2 CD= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Flat use factor-Table 5A Cf.= 1.01 Bearing area factor-cl.3.10.4 Cb= 1.00 Length of beam between points of zero moment Lo= 9 ft For species other than Southern Pine X= 10 Volume factor-eq.5.3-1 Cv= min((21 ft/Lo)'/"x(12 in/d)'/x x(5.125 in/b)"x, 1)= 1.00 Depth-to-breadth ratio d/(N x b)=3.43 Effective laterally unsupported span length le= 9 ft Slenderness ratio for bending members-eq.3.3-5 Rb=q[le x d/(N x b)2]= 10.286 • Adjusted bending design value for bending Fb* = Fb x Co x CMb x Ct x Cc=2400 Ib/int Adjusted modulus of elasticity for member stability Emin' = Emin x CME x Ct= 950000 Ib/int Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2= 10775 Ib/int Beam stability factor-eq.3.3-6 CL= [1 +(FbE/Fb*)]/ 1.9-�[([l +(FbE/Fb*)]/ 1.9)2-(FbE/Fb*)/0.95]=0.99 Bearing perpendicular to grain-cl.3.10.2 Design compression perpendicular to grain Fc_perp= Fc_perp x Ct x Cb= 650 Ib/int Applied compression stress perpendicular to grain fc_Perp= RA_max/(N x b x Lb)=287 Ib/int fc_perp/Fc-Perp'=0.441 PASS-Design compressive stress exceeds applied compressive stress at bearing Strength in bending-cl.3.3.1 Design bending stress Fb'= Fb x Co x Ct x min(CI., Cv)x Cc=2367 lb/int Actual bending stress fb= M/S.= 1291 Ib/int fb/Fb'=0.545 PASS-Design bending stress exceeds actual bending stress Strength in shear parallel to grain-cl.3.4.1 Design shear stress F„'= F„x CD x Ct=265 Ib/int Actual shear stress-eq.3.4-2 fv=3 x F/(2 x A)= 143 Wine fv/F„'=0.541 PASS-Design shear stress exceeds actual shear stress • IICIII I.-U Project: No.: Page: B-44 Catena consulting Ash Apts 2015018.00 4 e n g i n e e r s Subject: By: Date: GL 3 1/2 x 12 Item 1.20 CS 11/3/2015 Deflection-cl.3.5.1 -7 Modulus of elasticity for deflection E'=EX x CME x C,= 1800000 Ib/inz Design deflection Sad.=0.003 x L51 =0.324 in Bending deflection Sb_51 =0.145 in Shear deflection SV s1 =0.028 in Total deflection Sa=Sb s1 +&-s1 =0.173 in Sa/Sad.=0.533 PASS-Design deflection is less than total deflection IerrI I.LL Project: No.: Page: B-45 /catena ` o " , u l t I n g Ash Apts 2015018.00 1 e n g i n e e r s Subject: By: Date: Level 4 GL5.5x12-Item 1.22 CS 11/3/2015 STRUCTURAL GLUED LAMINATED TIMBER(GLULAM)BEAM ANALYSIS&DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Load Envelope-Combination 1 0.859- 0.0- ft 1 6.5 1 4 1 A 1 B 2 C kip_tt Bending Moment Envelope -3.5 -3.463 0.0 0.4 2.971 3.0 ft 1 6.5 1 4 • A 1 B 2 C kips Shear Force Envelope 2.584 2.3 2.6 0.0 0.9 -3.325 3. ft l 6.5 3l 4 I A 1 B 2 c Applied loading Beam loads Dead self weight of beam x 1 Dead full UDL 308 Ib/ft Live full UDL 535 Ib/ft Load combinations Load combination 1 Support A Dead x 1.00 Live x 1.00 Span 1 Dead x 1.00 nern I.tt Project: No.: Page: B-46 /catena ` ° " s v I t I n g Ash Apts 2015018.00 2 e n g I v e e r s Subject: By: Date: Level 4 GL5.5x12-Item 1.22 CS 11/3/2015 Live x 1.00 Support B Dead x 1.00 Live x 1.00 Span 2 Dead x 1.00 Live x 1.00 Support C Dead x 1.00 Live x 1.00 Analysis results Maximum moment Mmax=2971 Ib ft Mmin= -3463 Ib ft Design moment M=max(abs(Mmax),abs(Mmin))=3463 lb_ft Maximum shear Finax=2584 Ib Fmin= -3325 Ib Design shear F=max(abs(Finax),abs(Fmn))=3325 lb Total load on member Wt°t=9020 Ib Reaction at support A RA—max=2259 Ib RA-min=2259 Ib Unfactored dead load reaction at support A RA-Dead=852 Ib Unfactored live load reaction at support A RA-t_�e= 1407 Ib Reaction at support B RB-max=5908 lb RB-min=5908 Ib Unfactored dead load reaction at support B RB-Dead=2229 Ib Unfactored live load reaction at support B RB-U. e=3680 Ib Reaction at support C Rc-max=852 Ib Rc_min=852 Ib Unfactored dead load reaction at support C RC-Dead=322 Ib Unfactored live load reaction at support C RC_Liw=531 Ib Ix Glulam section details Net finished breadth of sections b=5.5 in Net finished depth of sections d= 12 in Number of sections in member N = 1 Overall breadth of member bb=N x b=5.5 in Alignment of laminations Horizontal Stress class 24F-1.8E Bending parallel to grain Fb=2400 lb/int Tension parallel to grain Ft= 1100 Ib/inz Compression parallel to grain F�= 1600 Ib/int HUM I.LL Project: No.: Page: B-47 /catena e` °n "g'i"n e e r s I " n g Ash Apts 2015018.00 3 Subject: By: Date: Level 4 GL5.5x12-Item 1.22 CS 11/3/2015 • Compression perpendicular to grain Fc_perp=650 Ib/int Shear parallel to grain F„=265 Ib/int Modulus of elasticity E = 1800000 Ib/int Modulus of elasticity, stability calculations Emin= 950000 Ib/int Mean shear modulus Gde+= E/ 16= 112500 Ib/int Member details Service condition Dry Length of bearing Lb=4 in Load duration Ten years Section properties Cross sectional area of member A= N x b x d = 66.00 int Section modulus SX= N x b x d2/6= 132.00 in' Sy=d x(N x b)2/6= 60.50 in3 Second moment of area IX= N x b x d3/12=792.00 in4 ly=d x(N x b)3/12= 166.37 in4 Adjustment factors Load duration factor-Table 2.3.2 CD= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Flat use factor-Table 5A Civ= 1.01 . Bearing area factor-cl.3.10.4 Cb= (Lb+0.375 in)/Lb= 1.09 Length of beam between points of zero moment Lo= 11 ft For species other than Southern Pine X= 10 Volume factor-eq.5.3-1 Cv=min((21 ft/Lo)'/"x(12 in/d)'/x x(5.125 in/b)'tx, 1)= 1.00 Depth-to-breadth ratio d/(N x b)=2.18 Effective laterally unsupported span length le= 11 ft Slenderness ratio for bending members-eq.3.3-5 Rb=1[le x d/(N x b)2]= 7.236 Adjusted bending design value for bending Fb"= Fb X CD X CMb X Ct X Cc=2400 Ib/int Adjusted modulus of elasticity for member stability Emin= Emin x CME x Ct=950000 Ib/int Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2=21771 Ib/int Beam stability factor-eq.3.3-6 CL= [1 + (FbE/Fb")]/1.9-4[([1 +(FbE/Fb`)]/ 1.9)2-(FbE/Fb")/0.95] =0.99 Bearing perpendicular to grain-cl.3.10.2 Design compression perpendicular to grain Fc-perp= Fc_perp x Ct x Cb=711 Ib/int Applied compression stress perpendicular to grain fc_perp= RB_ma,,/(N x b x Lb)=269 Ib/int fc_perp/Fc_perp'=0.378 PASS-Design compressive stress exceeds applied compressive stress at bearing Strength in bending-cl.3.3.1 Design bending stress Fe= Fb x CD x C,x min(CL,Cv)x Cc=2385 Ib/int Actual bending stress fb= M/S.=315 ib/int • nern I.LL Project: No.: Page: B-48 /catena `e °n "g Ash Apts 2015018.00 4 i n e e r s Subject: By: Date: Level 4 GL5.5xl2-Item 1.22 CS 11/3/2015 fb/Fe=0.132 PASS-Design bending stress exceeds actual bending stress Strength in shear parallel to grain-cl.3.4.1 Design shear stress R'=R x CD x Ct=265 Ib/int Actual shear stress-eq.3.4-2 f„=3 x F/(2 x A)= 76 Ib/int L/R'=0.285 PASS-Design shear stress exceeds actual shear stress Deflection-cl.3.5.1 Modulus of elasticity for deflection E'=EX x CME x Ct= 1800000 Ib/int Design deflection Sad.=0.003 x Ls, =0.234 In Bending deflection 8b—s1 =0.013 in Shear deflection S s1 =0.012 in Total deflection 88=Sb s1 +&-S1 =0.026 in S./Sad.=0.110 PASS-Design deflection is less than total deflection i iHDR HDR _ r 5 5607 1 51 o� 5603 SIM. � TYP. iA 1 1 , �:: 6 TYP 4 U.O.N. E HDR GL51/2x12 - - - - -- Tributary Width= 13.375' DL=23 psf LL=40 psf iTem i.zz Project: No.: Page: B-49 /catena ` o " ` o " e Ash Apts 2015018.00 1 Subject: By: Date: Ground Floor 6x6 Beneath GL 5.5x12-Item CS 11/3/2015 STRUCTURAL WOOD BEAM DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Analysis results Design axial compression P= 17724 )—,—Rxn from beam x 3 Floors U) X5.5" ' Sawn lumber section details Nominal breadth of sections bnom=6 in Dressed breadth of sections b=5.5 in Nominal depth of sections dnom=6 in Dressed depth of sections d =5.5 in Number of sections in member N = 1 . Overall breadth of member bb= N x b=5.5 in Species, grade and size classification Douglas Fir-Larch,Select Structural grade, Posts and timbers Bending parallel to grain Fb= 1500 Ib/int Tension parallel to grain Ft= 1000 Ib/int Compression parallel to grain Fc= 1150 Ib/int Compression perpendicular to grain Fo_Pem=625 Ib/int Shear parallel to grain Fv= 170 Ib/int Modulus of elasticity E= 1600000 Ib/int Modulus of elasticity, stability calculations Em"=580000 Ib/int Mean shear modulus Gdef=E/16= 100000 Ib/int Member details Service condition Dry Load duration Ten years Unbraced length in x-axis L.= 11 ft Effective length factor in x-axis K.= 1 Effective length in x-axis Le.= LX x K.= 11 ft Unbraced length in y-axis Ly= 11 ft Effective length factor in y-axis Ky= 1 Effective length in y-axis Ley= Ly x Ky= 11 ft • Rem I./,Z Project: No.: Page: B-50 /catena `e onn "g i: "n Ash Apts 2015018.00 2 e e r s Subject: By: Date: Ground Floor 6x6 Beneath GL 5.5x12- Item CS 11/3/2015 Section properties Cross sectional area of member A=N x b x d =30.25 int Section modulus S.=N x b x d2/6=27.73 in3 Sy=d x(N x b)2/6=27.73 in3 Second moment of area Ix= N x b x d3/ 12 = 76.26 in4 ly=dx(Nxb)3/12=76.26 in4 Adjustment factors Load duration factor-Table 2.3.2 CD= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Size factor for bending-Table 4D CFb= 1.00 Size factor for tension-Table 4D CR= 1.00 Size factor for compression-Table 4D CF.= 1.00 Flat use factor-Table 4D CfU= 1.00 Incising factor for modulus of elasticity-Table 4.3.8 CiE= 1.00 Incising factor for bending,shear,tension&compression-Table 4.3.8 Ci= 1.00 Incising factor for perpendicular compression-Table 4.3.8 C;o-perp= 1.00 Repetitive member factor-cl.4.3.9 C,= 1.00 Bearing area factor-cl.3.10.4 Cb= 1.00 Adjusted modulus of elasticity for column stability Emin'=Emin x CME x Ct x C;E=580000 lb/int Reference compression design value F.*=F�x CD x CM.x Ct x CFC x Ci= 1150 Ib/int Critical buckling design value for compression FoE=0.822 x Emin'/(Lex/d)2=828 Ib/int c=0.80 Column stability factor-eq.3.7-1 CP=(1 +(FoE/Fc*))/(2 x c)-�[((1 +(FoE/Fc*))/(2 x c))2-(FoE/Fc*)/c] =0.57 Depth-to-breadth ratio dnom/(N x bnom)= 1.00 -Beam is fully restrained Beam stability factor-cl.3.3.3 CL= 1.00 Strength in compression parallel to grain-cl.3.6.3 Design compressive stress Fc'=Fc x CD x Ct x CFc x Q x CP=655 Ib/int Applied compressive stress fc=P/A=586 Ib/int fc/Fc'=0.895 PASS-Design compressive stress exceeds applied compressive stress Item 1.24 Project: No.: Page: B-51 /catena ` o " _ u i ' ' " g Ash Apts 2015018.00 1 e n g i n e e r s Subject: By: Date: Level 4 GL3.5x12-Item 1.24 CS 11/3/2015 • STRUCTURAL GLUED LAMINATED TIMBER(GLULAM) BEAM ANALYSIS&DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Load Envelope•Combination 1 0.341- 0.0- ft 1 3.75 A 1 B kip_ft Bending Moment Envelope 0.0- 0.600- 0.6 ft 1 3.75 A 1 B • kips Shear Force Envelope 0.640 0.6 0.0- -0.640- 0.6 .0-0.640 -0.6 ft 1 3.75 A 1 B Applied loading Beam loads Dead self weight of beam x 1 Dead full UDL 121 Ib/ft Live full UDL 210 Ib/ft Load combinations Load combination 1 Support A Dead x 1.00 Live x 1.00 Span 1 Dead x 1.00 • Item 1.24 Project: No.: Page: 8-52 Catena ` ° " ' e " ' Ash Apts 2015018.00 2 e n g l n e e � s Subject: By: Date: Level 4 GL3.5x12-Item 1.24 CS 11/3/2015 Live x 1.00 Support B Dead x 1.00 Live x 1.00 Analysis results Maximum moment Mmax=600 Ib ft Mmin=0 Ib ft Design moment M=max(abs(Mmax),abs(Mmin))= 600 lb—ft Maximum shear Fina.=640 Ib Fmin= -640 Ib Design shear F=max(abs(Finax),abs(Fmin))= 640 Ib Total load on member Wtot= 1280 Ib Reaction at support A RA—ma.=640 Ib RA-min=640 Ib Unfactored dead load reaction at support A RA-Dead=246 Ib Unfactored live load reaction at support A RA-Live=394 Ib Reaction at support B Rs_max= 640 Ib RB-min=640 Ib Unfactored dead load reaction at support B RB-Dead=246 Ib Unfactored live load reaction at support B RB_LNe=394 Ib _X 3.5" Glulam section details Net finished breadth of sections b=3.5 in Net finished depth of sections d = 12 in Number of sections in member N= 1 Overall breadth of member bb=N x b=3.5 in Alignment of laminations Horizontal Stress class 24F-1.8E Bending parallel to grain Fb=2400 Ib/inz Tension parallel to grain Ft= 1100 Ib/int Compression parallel to grain F:= 1600 Ib/int Compression perpendicular to grain F._erp=650 Ib/inz Shear parallel to grain F„=265 Ib/inz Modulus of elasticity E= 1800000 Ib/inz Modulus of elasticity, stability calculations Emin=950000 Ib/inz Mean shear modulus Gdef=E/16= 112500 Ib/inz Member details Service condition Dry Item 1.24 Project: No.: Page: B-53 /cate n a c on "9 i` ev a Ash Apts 2015018.00 3 e e r s Subject: By: Date: Level 4 GL3.5xl2- Item 1.24 CS 11/3/2015 • Length of bearing Lb=4 in Load duration Ten years Section properties Cross sectional area of member A= N x b x d =42.00 int Section modulus S.= N x b x d2/6=84.00 in Sy=dx(Nxb)2/6=24.50 in3 Second moment of area 1,(= N x b x d3/ 12=504.00 in^ ly=d x(N x b)3/12=42.87 in Adjustment factors Load duration factor-Table 2.3.2 CD= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Flat use factor-Table 5A Cr„= 1.01 Bearing area factor-cl.3.10.4 Cb= 1.00 Length of beam between points of zero moment Lo=3.75 ft For species other than Southern Pine x= 10 Volume factor-eq.5.3-1 Cv=min((21 ft/Lo)"x x(12 in/d)'/x x(5.125 in/b)'/x, 1)= 1.00 Depth-to-breadth ratio d/(N x b)=3.43 Effective laterally unsupported span length le= 11 ft Slenderness ratio for bending members-eq.3.3-5 Rb=J[le x d/(N x b)2] = 11.371 • Adjusted bending design value for bending Fb"= Fb X CD x CMb X Ct x Cc=2400 Ib/int Adjusted modulus of elasticity for member stability Emir = Emin x CME x Ct= 950000 Ib/int Critical buckling design value for bending FbE= 1.2 x Emir '/Rb2=8816 Ib/int Beam stability factor-eq.3.3-6 CL= [1 + (FbE/Fb")]/1.9-4[([1 +(FbE/Fb`)]/ 1.9)2-(FbE/Fb`)/0.95] =0.98 Bearing perpendicular to grain-cl.3.10.2 Design compression perpendicular to grain Fc_p rp= Fc_perp x Ct x Cb=650 Ib/int Applied compression stress perpendicular to grain fc_perp= RA_ma./(N x b x Lb)=46 Ib/int fc_perp/Fc-Perp'=0.070 PASS-Design compressive stress exceeds applied compressive stress at bearing Strength in bending-cl.3.3.1 Design bending stress Fe= Fb x CD x Ct x min(CL,Cv)x Cc=2357 Wine Actual bending stress fb= M/S.= 86 Wine fb/Fb'=0.036 PASS-Design bending stress exceeds actual bending stress Strength in shear parallel to grain-cl.3.4.1 Design shear stress F, = Fv x CD x Ct=265 Ib/int Actual shear stress-eq.3.4-2 fv=3 x F/(2 x A)=23 Ib/int fv/F,,'=0.086 PASS-Design shear stress exceeds actual shear stress • Item 1.24 Project: No.: Page: B-54 /cat e n a e n g` ° n ' u l ' l n g Ash Apts 2015018.00 4 i n e e r s Subject: By: Date: Level 4 GL3.5x12-Item 1.24 CS 11/3/2015 Deflection-cl.3.5.1 —7 Modulus of elasticity for deflection E'=EX x CME x Ct= 1800000 Wine Design deflection Sad.=0.003 x Ls, =0.135 in Bending deflection Sb_g, =0.002 in Shear deflection S S, =0.002 in Total deflection Sa=Sb S, +&-S, =0.004 in ba/Sad m=0.026 PASS-Design deflection is less than total deflection 15 14 13 12 5'-0" 22._0.. 5603 HDR HDR ryP' = A. I I I I s6o3 HDR LL= — HDR — GLS1/2x12 p r — = 2 5305 C- 5603 TYP. l nl TYP II 13 p,N 3 dS TYP. — GL31/ 12 HDR 49 � � I I II —L JL r— — — — — - — — — — — — — — J DR —HDR IF GL51/2x9— — _ _—_—_—_—_ Tributary Width = 10.5/2=5.25' DL=23 pst LL=40 psf Item 1.24 Project: No.: Page: B-55 /catena ce on "g i' vn l t i n g Ash Apts 2015018.00 1 e e r s Subject: By: Date: Level 4 GL3.5x12-Item 1.24 CS 11/3/2015 STRUCTURAL GLUED LAMINATED TIMBER(GLULAM)BEAM ANALYSIS 8,DESIGN(NDS) In accordance with the ANSI/AF8,PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Load Envelope-Combination 1 0.772- 0.0- 6.75 .7720.06.75 I 8 1 A 1 B 2 C kip_ft Bending Moment Envelope -3.658 -3.7 0.0 0.5 4.081 3.9 4.1 ft 1 6.75 1 8 1 . A 1 B 2 C kips Shear Force Envelope 2.543 2.5 0.6 6 00 -2.511 -1.7 -2.5 ft 1 6.75 1 8 1 A 1 B 2 C Applied loading Beam loads Dead self weight of beam x 1 Dead full UDL 111 Ib/ft Live full UDL 210 Ib/ft Dead partial UDL 161 Ib/ft from 129.00 in to 177.00 in Live partial UDL 280 Ib/ft from 129.00 in to 177.00 in Dead point load 234 Ib at 129.00 in Dead point load 406 Ib at 129.00 in Item 1.24 Project: No.: Page: 8-56 /catena `e °n "g: "n I ' Ing Ash Apts 2015018.00 2 i e e r s Subject: By: Date: Level 4 GL3.5x12-Item 1.24 CS 11/3/2015 Load combinations Load combination 1 Support A Dead x 1.00 Live x 1.00 Span 1 Dead x 1.00 Live x 1.00 Support B Dead x 1.00 Live x 1.00 Span 2 Dead x 1.00 Live x 1.00 Support C Dead x 1.00 Live x 1.00 Analysis results Maximum moment Mmax=4081 Ib ft Mmin= -3658 Ib ft Design moment M=max(abs(Mmax),abs(Mmin))=4081 lb—ft Maximum shear Finax=2543 Ib Fmin= -2511 Ib Design shear F=max(abs(Fina),),abs(Fmin))=2543 Ib Total load on member Wtoc=7289 Ib Reaction at support A RA-max=576 Ib RA-min=576 Ib Unfactored dead load reaction at support A RA—Dead= 162 Ib Unfactored live load reaction at support A RA—Lie=414 Ib Reaction at support B RB_max=4203 Ib RB-min=4203 Ib Unfactored dead load reaction at support B RB_Dead= 1831 Ib Unfactored live load reaction at support B RB_Li�e=2372 Ib Reaction at support C Rc_max=2511 Ib Rc_min=2511 Ib Unfactored dead load reaction at support C Rc_oaad= 1079 Ib Unfactored live load reaction at support C RC_Live= 1431 Ib I _X l_V 3.5" Glulam section details Net finished breadth of sections b=3.5 in Net finished depth of sections d= 12 in Number of sections in member N = 1 Overall breadth of member bb=N x b=3.5 in Item 1.24 Project: No.: Page: B-57 C a t e n a c ° " : " Ash Apts 2015018.00 3 e n g i n e e r s Subject: By: Date: Level 4 GL3.5x12-Item 1.24 CS 11/3/2015 • Alignment of laminations Horizontal Stress class 24F-1.8E Bending parallel to grain Fb=2400 Ib/int Tension parallel to grain Ft= 1100 Ib/inz Compression parallel to grain Fc= 1600 Ib/inz Compression perpendicular to grain Fc—Perp= 650 Ib/inz Shear parallel to grain F„=265 Ib/inz Modulus of elasticity E= 1800000 Ib/inz Modulus of elasticity, stability calculations Emin= 950000 Ib/inz Mean shear modulus Gdef=E/ 16= 112500 Win Member details Service condition Dry Length of bearing Lb=4 in Load duration Ten years Section properties Cross sectional area of member A= N x b x d =42.00 in Section modulus S.= N x b x d2/6=84.00 in-' Sy=d x(N x b)2/6=24.50 in3 Second moment of area Ix=N x b x d3/12=504.00 in4 lY=dx(Nxb)3/ 12=42.87 in4 Adjustment factors Load duration factor-Table 2.3.2 CD= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Flat use factor-Table 5A Cm= 1.01 Bearing area factor-cl.3.10.4 Cb=(Lb+0.375 in)/Lb= 1.09 Length of beam between points of zero moment Lo=3.75 ft For species other than Southern Pine x= 10 Volume factor-eq.5.3-1 Cv=min((21 ft/Lo)'/x x(12 in/d)"x(5.125 in/b)'/x, 1)= 1.00 Depth-to-breadth ratio d/(N x b)=3.43 Effective laterally unsupported span length le= 11 ft Slenderness ratio for bending members-eq.3.3-5 Rb=4[le x d/(N x b)2] = 11.371 Adjusted bending design value for bending Fb' = Fb x CD x CMb x Ct x Cc=2400 Ib/inz Adjusted modulus of elasticity for member stability Emin'= Emin x CME x Ct=950000 Ib/inz Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2=8816 Win Beam stability factor-eq.3.3-6 Ci.= [1 + (FbE/Fb')]/ 1.9-4[([1 +(FbE/Fb")]/ 1.9)2-(FbE/Fb')/0.95]=0.98 Bearing perpendicular to grain-cl.3.10.2 Design compression perpendicular to grain Fc_perp= Fc_perp x Ct x Cb=711 Ib/inz Applied compression stress perpendicular to grain fc_perp=RB_max/(N x b x Lb)=300 Ib/int Item 1.24 Project: No.: Page: B-58 /catena ` ° " ' " ' ' ' " g Ash Apts 2015018.00 4 e n g n e e r s Subject: By: Date: Level 4 GL3.5x12-Item 1.24 CS 11/3/2015 fa_perp/Fc_perp=0.422 PASS-Design compressive stress exceeds applied compressive stress at bearing Strength in bending-cl.3.3.1 Design bending stress Fe=Fb x CID x Cc x min(CL, Cv)x Cc=2357 Ib/int Actual bending stress fb=M/Sx=583 Ib/int fb/Fb=0.247 PASS-Design bending stress exceeds actual bending stress Strength in shear parallel to grain-cl.3.4.1 Design shear stress F,'=F„x CID x Cc=265 Ib/int Actual shear stress-eq.3.4-2 f,.=3 x F/(2 x A)= 91 Ib/int fv/F,'=0.343 PASS-Design shear stress exceeds actual shear stress Deflection-cl.3.5.1 Modulus of elasticity for deflection E'= Ex x CME x Cc= 1800000 lb/int Design deflection Sad.=0.003 x L52=0.288 in Bending deflection 6b-s2=0.042 in Shear deflection &-s2=0.024 in Total deflection Sa=bb s2+&-s2=0.066 in Sa/Sad.=0.228 PASS-Design deflection is less than total deflectio 15 14 13 12 5' 0' 220" 5603 —HDR HDR TMP' A. FTYP. >= 5603 H L= — HDR II _ GL 51/2x 12 I p — I z cO / 6 10 -------- \ 5603 TYP. II I I 0 rl TYP 75 O.N. ` 3 — II i b—Q ` 5603 TYP.-8 - --- -I- - - --- -- -_- GL31/ 12 HDR 4 9 I o II a i I I IiI I —� JL r— - — - - - - - - - - - - _ J DR HDR r GL51/2x9—�_— Tributary Width=9.67'/2-4.8'and 14'/2=7' DL=23 psf LL=40 psf Item 1.27 Project: No.: Page: B-59 /catena `e n° "gi' °n e e r :I ' ' " g Ash Apts 2015018.00 1 Subject: By: Date: Level 4 GL5.5x12-Item 1.27 CS 11/3/2015 STRUCTURAL GLUED LAMINATED TIMBER(GLULAM)BEAM ANALYSIS&DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Load Envelope-Combination 1 0.607- 0.0- ft .6070.0ft I 11 A 1 B kip_ft Bending Moment Envelope 0.0- 4.672- 4.7 ft I 11 • A 1 B kips Shear Force Envelope 2.382 2.4 0.0- -0.786- -0.8 .0-0.786 -0.8 it I 11 A 1 B Applied loading Beam loads Dead self weight of beam x 1 Dead partial UDL 210 ib/ft from 0.00 in to 60.00 in Snow partial UDL 375 Ib/ft from 0.00 in to 60.00 in Load combinations Load combination 1 Support A Dead x 1.00 Snow x 1.00 Span 1 Dead x 1.00 Item 1.27 Project: No.: Page: 8-60 /catena `e °n "g` n Ash Apts 2015018.00 2 i e e r s Subject: By: Date: Level 4 GL5.5x12-Item 1.27 CS 11/3/2015 Snow x 1.00 Support B Dead x 1.00 Snow x 1.00 Analysis results Maximum moment Mmax=4672 Ib ft Mmin=0 Ib ft Design moment M=max(abs(Mmax),abs(Mmin))=4672 lb—ft Maximum shear Finax=2382 Ib Fmin= -786 Ib Design shear F=max(abs(Finax),abs(Fmin))=2382 Ib Total load on member Wt"t=3168 Ib Reaction at support A RA-max=2382 Ib RA-min=2382 Ib Unfactored dead load reaction at support A RA-Dead=933 Ib Unfactored snow load reaction at support A RA-snow= 1449 Ib Reaction at support B Re_max= 786 Ib RB-min= 786 Ib Unfactored dead load reaction at support B RB-Dead=360 Ib Unfactored snow load reaction at support B RB_sn"W=426 Ib _X [>< x.5.5"► Glulam section details Net finished breadth of sections b=5.5 in Net finished depth of sections d= 16.5 in Number of sections in member N = 1 Overall breadth of member bb= N x b=5.5 in Alignment of laminations Horizontal Stress class 24F-1.8E Bending parallel to grain Fb=2400 Ib/int Tension parallel to grain Ft= 1100 Ib/int Compression parallel to grain IF,= 1600 Ib/int Compression perpendicular to grain Fc—perp=650 Ib/inz Shear parallel to grain F,=265 Ib/inz Modulus of elasticity E= 1800000 Ib/inz Modulus of elasticity, stability calculations Emin=950000 Ib/inz Mean shear modulus Gder=E/ 16= 112500 Ib/inz Member details Service condition Dry Item 1.27 Project: No.: Page: B-61 /catena cee an "g I` °n " a Ash Apts 2015018.00 3 e e r f Subject: By: Date: Level 4 GL5.5xl2-Item 1.27 CS 11/3/2015 • Length of bearing Lb=4 in Load duration Ten years Section properties Cross sectional area of member A= N x b x d=90.75 int Section modulus SX= N x b x d2/6=249.56 in Sy=d x(N xb)2/6=83.19 in3 Second moment of area Ix= N x b x d3/12=2058.89 in" ly=d x(N x b)3/12=228.77 in^ Adjustment factors Load duration factor-Table 2.3.2 CD= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Flat use factor-Table 5A Cr„= 1.01 Bearing area factor-cl.3.10.4 Cb= 1.00 Length of beam between points of zero moment Lo= 11 ft For species other than Southern Pine x= 10 Volume factor-eq.5.3-1 Cv= min((21 ft/Lo)""x(12 in/d)"x(5.125 in/b)"x, 1)= 1.00 Depth-to-breadth ratio d/(N x b)=3.00 Effective laterally unsupported span length le= 11 ft Slenderness ratio for bending members-eq.3.3-5 Rb=4[le x d/(N x b)2] =8.485 • Adjusted bending design value for bending Fb"= Fb X CD x CMb X Ct x Cc=2400 Ib/int Adjusted modulus of elasticity for member stability Emin'= Emin x CME x Ct=950000 Ib/int Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2= 15833 Wine Beam stability factor-eq.3.3-6 CL= [1 + (FbE/Fb")]/1.9-4[([1 +(FbE/Fb")]/1.9)2-(FbE/Fb`)/0.95] =0.99 Bearing perpendicular to grain-cl.3.10.2 Design compression perpendicular to grain Fc perp'= Fc—Perp x Ct x Cb=650 Ib/int Applied compression stress perpendicular to grain fc_perp=RA_max/(N x b x Lb)= 108 lb/int fc_perp/Fc-Perp'=0.167 PASS-Design compressive stress exceeds applied compressive stress at bearing Strength in bending-cl.3.3.1 Design bending stress Fe= Fb x CD x Ct x min(CL, Cv)x Cc=2379 Ib/int Actual bending stress fb= M/SX=225 Ib/int fb/Fb'=0.094 PASS-Design bending stress exceeds actual bending stress Strength in shear parallel to grain-cl.3.4.1 Design shear stress F„'= F„x CD x Ct=265 Ib/int Actual shear stress-eq.3.4-2 f„= 3 x F/(2 x A)=39 Wine f„/F„'=0.149 PASS-Design shear stress exceeds actual shear stress Item 1.27 Project: No.: Page: 8-62 Catena ` on " ' u,, Ash Apts 2015018.00 4 Subject: By: Date: Level 4 GL5.5x12-Item 1.27 CS 11/3/2015 Deflection-cl.3.5.1 -7 Modulus of elasticity for deflection E'=EX x CneE x Cc= 1800000 Ib/int Design deflection Sad m=0.003 x Ls, =0.396 in Bending deflection 8b-5, =0.024 in Shear deflection & s, =0.007 in Total deflection Sa=Sb s, +SV s, =0.031 in Sa/Sadm=0.078 PASS-Design deflection is less than total deflection 4 6 u o 1 .N. 15 HDR GL5I/2x12 - - -- - - --- o GL 3 1/2x 12 T.O.PLYWOOD SHEATHING EL:131'-1 1" _ - - - - - - - - - - - - - -I _ o = HDR T.O.6x DECKING — — — - EL:130'-11 1/4" o 4 i X: 3-FT PLANTER 3 W/TREES G�3 1/2x 12 — — _ _GL 3 1/2x 12 REFER2HEETS1437777 u i i Tributary Width= 15' Roof DL= 14 lost SL=25 lost Minimal load (turn floor because joists run parallel to beam Item 8 B-63 Prc;ec1: Na Page_ ASH APTS wicol-C. e a to n a a " 9 'y �'e'9 Subject: 8y Date' . SNrAP PALL. 1,04(iri ROVIMT CS IQ. Zts. L015" METr►oD: EXAMPLE : WALL WP 1046 4 A)A" Z2 ON 1. IDENTIFY WAI.L5 W1 l.IfMaTH Soil) La : L0.`1Set � ItN at1b4) Dlbc.ltEOAN�.iJ'!S 8. aa�►Ia,NGS $ R,s� L- lir -2."= Ib. lb-7 • ( IN PILAWIN(ris) 2. DETERMJNE ANIT SHEAR W/ (APDATEp LfN&%TH AND %NEMA FORGE rAOM jtMA ANAL.YSIl OR,Ib►INAL ANALYSIS hSSJAMED 1/32 TH1UG SNE,4TNINis N+! lL6C•� ZvO.G• A RIWD MAPHRAGtM; NEW ANALY41N GhPJ�-I,rY : Jsvopli/= li.s.FOR 4,&D) (ITCH 2. ABOVE) JlssutMES b.+►MC Foga RE5116Tfo &Y SMOATEQ GALL (FO2c.6 IaQT AfAlslAWATfp BAUD 10 % 0.11 k1f 04 ! PUF 10d Q 2." O.G. ON bTIFfN'ESS) . TM &"NDb TME iOLtAnUN FOQ THE SHOATBA PALLS '/. 1NGREASE IN 14NJT SHEAR I&FTWEEN PUQE A%wi> DIAPHAAcnM • AND Ft ExIl31E OIAP04AA14" T c, p&TGR.MINATION ANALYSIS. DL ZA f � 3, tokPDATE NAtLJNjo PAT eaN IF '-- 4. DCTERMIN E % 04L2EASE IN L NI SM EAR FOR. f-k—H M". 1 Nc.1t CA'I E Mo-r (OvaJLTVANIN&� z bTO&Y MT F, T 1E 0OWN t LOMPAESSON POST 3 iS.St t0 a �.�II`10 + O.bk• ILS= 12b "'• DEMANDS AY SAME' '/, . • Fri P. WALLS W/ �aL: SPEGII~IEp t'�q = M�.x D� br1i& RxN L 20,-7 i FItnM QI S.� . FOR SC-NS►ON (, NO TEMS.10N FOCUE �• t Z 9 �•, IND'ALED IN oRlaaNal.. R.lSA ANALYSIS) TIF RF&IoN FORGE FRvM TME FLOOR L MCLOW Is SPEG1171ED Fog THI; WAILS IN G11+ "TIUA1 L _ µ�T r M+t Ih.EC t` ry % JIJGQJr+ISas x L- C = 12. • S• AgPEAT PIZOGCW&i rVQ AM,. FtWRS UK- Item 8 B-64 e: �'rojeci: No, Pa 9 Ass APTs. T016t�i$ •Oa /catena S ibject' By: Date: SN .4t: WALt� C S 10 i WALL1�s4 (L V V 3 1)z 0.9% k!f ( AurLIA L. ) STAAA(.•T 1 W/ lud. @ v- o.%-1 k4 f = o.it AV = 0.11 k 1l % 2't.>SS'AGTLtA1. LEN(nTH M s 2 2g /�►NINlr► SHEAR WILL T/ZikN rE ry WALL WPloli. C"ME WNEoFwAu.) �tr.w1' 0. 7L QEcn. SHfATHINfa W1 tod LZ Z �.u• =0.77 • 0.77 k > 0.72 lief OI tode A D WLAATt J W Ai.L W P►o 1l► %HArAR @ LVL L V v;AV - Zi-2-;t Lod [Q L" O.L. AD i"S4µ+A'Tk • B-65 Project: Ash Apts No: 2015018.00 Page: Catena a nn I nJ • ° Subject: Shear Wall By: cs Date: Analysis Wall# RISA Wall RISA Wall Actual RISA Shear RISA Shear Actual Shear Shear Panel Label Length(ft) Length(ft) (kips) (kif) (kif) Ratio LVL 2 5 WP1155B 15.6 12.67 8.60 0.55 0.68 1.23 9 WP1156C 18.1 16.33 10.24 0.57 0.63 1.11 12 WP1152C 19.0 13.75 10.94 0.58 0.80 1.38 17 WP1153C 19.1 14.75 11.05 0.58 0.75 1.30 20 WP1229A 15.2 10.83 6.07 0.40 0.56 1.40 22 WP1046 21.0 16.17 12.53 0.60 0.77 1.30 25 WP1141B 28.9 29.83 26.04 0.90 0.87 0.97 26 WP1342C 4.0 4.00 2.17 0.55 0.54 0.99 28 W P 1294A 9.0 6.50 3.14 0.35 0.48 1.39 34 W P 1148C 17.4 15.50 6.59 0.38 0.42 1.12 35 WP1320 8.5 7.00 4.59 0.54 0.66 1.21 37 WP1162D 11.0 12.00 2.86 0.26 0.24 0.92 38 WP1346 24.8 22.25 16.27 0.66 0.73 1.12 39 WP1318 7.5 6.25 1.53 0.20 0.24 1.20 40 WP1363A 23.4 18.25 14.04 0.60 0.77 1.28 • 46 WP1056 10.9 8.75 4.91 0.45 0.56 1.24 47 WP1163B 15.0 7.75 5.27 0.35 0.68 1.93 52 WP1132B 17.6 15.08 6.71 0.38 0.45 1.16 55 WP1170B 10.1 7.92 2.45 0.24 0.31 1.27 56 WP1130B 19.6 14.75 7.51 0.38 0.51 1.33 60 WP1178B 22.5 18.25 13.34 0.59 0.73 1.23 61 WP1166B 21.0 18.50 9.05 0.43 0.49 1.14 64 WP1307A 16.9 12.67 6.83 0.40 0.54 1.33 68 WP1167A 21.0 13.42 12.37 0.59 0.92 1.57 78 WP1063 13.3 1 10.42 1 7.63 1 0.57 0.73 1.28 • Project: Ash Apts No: 2015018.00 Page: B-66 c ate n a -e �e i °° Subject: Shear Wall By: cs Date: • Analysis Wall# RISA Wall RISA Wall Actual RISA Shear RISA Shear Actual Shear Shear Panel Label Length(ft) Length(ft) (kips) (kIf) (k1f) Ratio LVL 3 S WP798 15.6 12.67 5.77 0.37 0.46 1.23 9 WP799 18.1 16.33 7.11 0.39 0.44 1.11 12 WP795 19.0 13.75 7.70 0.41 0.56 1.38 17 WP796 19.1 14.75 7.86 0.41 0.53 1.30 20 WP872 15.2 10.83 3.68 0.24 0.34 1.40 22 WP689 21.0 16.17 11.92 0.57 0.74 1.30 2S WP784 28.9 29.83 29.37 1.02 0.98 0.97 26 WP1286C 4.0 4.00 0.84 0.21 0.21 0.99 28 WP1289C 9.0 6.50 1.43 0.16 0.22 1.39 34 WP791 17.4 15.50 6.19 0.36 0.40 1.12 35 WP963 8.5 7.00 1.19 0.14 0.17 1.21 37 WP805 11.0 12.00 2.63 0.24 0.22 0.92 38 WP989 24.8 22.25 15.42 0.62 0.69 1.12 39 WP961 7.5 6.25 1.02 0.14 0.16 1.20 40 WP1006 23.4 18.25 9.67 0.41 0.53 1.28 46 WP699 10.9 8.75 3.90 0.36 0.45 1.24 • 47 WP806 15.0 7.75 3.65 0.24 0.47 1.93 S2 WP775 17.6 15.08 6.57 0.37 0.44 1.16 S5 WP813 10.1 7.92 2.31 0.23 0.29 1.27 56 WP773 19.6 14.75 7.27 0.37 0.49 1.33 60 WP821 22.5 18.25 9.75 0.43 0.53 1.23 61 WP809 21.0 18.50 8.32 0.40 0.45 1.14 64 WP950 16.9 12.67 5.82 0.34 0.46 1.33 68 WP810 21.0 13.42 8.35 0.40 0.62 1.57 78 WP706 13.3 10.42 5.66 0.43 0.54 1.28 • B-67 Project: Ash Apts No: 2015018.00 Page: /catena e n p t n Subject: Shear Wall By: cs Date: Analysis Wall# RISA Wall RISA Wall Actual RISA Shear RISA Shear Actual Shear Shear Panel Label Length(ft) Length(ft) (kips) (klf) (klf) Ratio LVL 4 5 REV WP1103 15.6 12.67 3.58 0.23 0.28 1.23 9 REV_WP1105 18.1 16.33 4.57 0.25 0.28 1.11 12 REV_WP1096 19.0 13.75 5.01 0.26 0.36 1.38 17 REV_WP1098 19.1 14.75 5.10 0.27 0.35 1.30 20 WP1126E 15.2 10.83 2.72 0.18 0.25 1.40 22 REV_WP897 21.0 16.17 8.48 0.40 0.52 1.30 25 REV_WP1064 28.9 29.83 14.31 0.50 0.48 0.97 26 WP1289D 4.0 4.00 0.95 0.24 0.24 0.99 28 WP1292A 9.0 6.50 1.07 0.12 0.17 1.39 34 REV_WP1084 17.4 15.50 3.90 0.22 0.25 1.12 35 WP1197 8.5 7.00 0.79 0.09 0.11 1.21 37 WP1152B 11.0 12.00 2.08 0.19 0.17 0.92 38 WP351 24.8 22.25 11.67 0.47 0.52 1.12 39 WP1196B 7.5 6.25 0.65 0.09 0.10 1.20 40 WP1380B 23.4 18.25 8.43 0.36 0.46 1.28 • 46 REV_WP911 10.9 8.75 2.64 0.24 0.30 1.24 47 WP1148 15.0 7.75 2.93 0.20 0.38 1.93 52 REV_WP1046 17.6 15.08 4.45 0.25 0.29 1.16 55 WP1142A 10.1 7.92 1.90 0.19 0.24 1.27 56 REV_WP1033 19.6 14.75 4.65 0.24 0.32 1.33 60 WP1127B 22.5 18.25 8.78 0.39 0.48 1.23 61 WP1140 3.7 18.50 0.97 0.26 0.05 0.20 64 WP1192A 16.9 12.67 3.63 0.22 0.29 1.33 F68 WP1141A 21.0 13.42 5.55 0.26 0.41 1.57 78 REV WP921 13.3 10.42 4.77 0.36 0.46 1.28 Project: Ash Apts No: 2015018.00 Page: B-68 /catena e n g 1 n let e ° Subject: Shear Wall By: cs Date: Analysis Wall# RISA Wall RISA Wall Actual RISA Shear RISA Shear Actual Shear Shear Panel Label Length(ft) Length(ft) (kips) (klf) (klf) Ratio ROOF 5 WP1220 15.6 12.67 2.13 0.14 0.17 1.23 9 WP1221 18.1 16.33 2.77 0.15 0.17 1.11 12 WP1217 19.0 13.75 3.13 0.17 0.23 1.38 17 WP1218 19.1 14.75 3.17 0.17 0.22 1.30 20 WP1295 15.2 10.83 0.93 0.06 0.09 1.40 25 WP1203C 28.9 29.83 7.34 0.25 0.25 0.97 28 WP1297C 9.0 6.50 0.99 0.11 0.15 1.39 34 WP1213 17.4 15.50 2.46 0.14 0.16 1.12 35 WP1387 8.5 7.00 0.15 0.02 0.02 1.21 37 WP1227 11.0 12.00 1.02 0.09 0.08 0.92 38 WP1414 24.8 22.25 6.03 0.24 0.27 1.12 39 WP1385 7.5 6.25 0.13 0.02 0.02 1.20 40 WP1382B 23.4 18.25 4.80 0.21 0.26 1.28 46 WP1113 10.9 8.75 2.60 0.24 0.30 1.24 47 WP1229 15.0 7.75 1.63 0.11 0.21 1.93 52 WP1194D 17.6 15.08 3.39 0.19 0.22 1.16 • 55 WP1236 10.1 7.92 0.69 0.07 0.09 1.27 56 WP1192D 19.6 14.75 3.23 0.17 0.22 1.33 60 WP1244 22.5 18.25 4.56 0.20 0.25 1.23 61 WP1232 21.0 18.50 3.74 0.18 0.20 1.14 64 WP1373 16.9 12.67 2.27 0.13 0.18 1.33 68 WP1233 21.0 13.42 3.79 0.18 0.28 1.57 B-69 SINGLE ROW BEARING BOLTED BEAM CONNECTION SCHEDULE No. OF PLATE MIN. WEB THICKNESS (IN) CONN. /$0 A325 N LENGTH COMMENTS TYPE BOLTS (IN) TOP FLANGE BOTH FLANGES COPED COPED �2 2 6 STANDARD 0.216 HOLE �3 3 9 STANDARD 0.237 0.292 HOLE ❑4 4 12 STANDARD 0.264 0.300 HOLE �5 5 15 STANDARD HOLE © 6 18 STANDARD HOLE �7 7 21 STANDARD HOLE NOTES: 1. BEARING TYPE CONNECTION w/THREADS INCLUDED IN SHEAR PLANE. 2. FOR tw<MIN.THICKNESS, CAPACITY IS REDUCED BY FACTOR tw/t MIN. SINGLE ROW BOLTED 2 BEAM CONNECTION SCHEDULE Item 38.1 Project: No.: Page: B-71 /catena `e n° "g`i un e e r s i r l n g Ash Apts 2015018.00 1 Subject: By: Date: Bldg 2 Header at Gridline 10-Item 38.1 CS 10/22/2015 • STRUCTURAL GLUED LAMINATED TIMBER(GLULAM)BEAM ANALYSIS&DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Load Envelope•Combination 1 6.650- 0.0- it 1 9 1 A 1 B kip_ft Bending Moment Envelope 0.0- 19.276- 19.3 ft 1 9 1 A 1 B • kips Shear Force Envelope 5.242 5.2 0.0- -5.242- -5.2 .0-5.242 -5.2 it 9 I A 1 B Applied loading Beam loads Dead self weight of beam x 1 Dead point load 3800 Ib at 54.00 in Live point load 1250 Ib at 54.00 in Snow point load 1600 Ib at 54.00 in Dead full UDL 150 Ib/ft Dead full UDL 260 Ib/ft • Item 38.1 Project: No.: Page: B-72 /catena ` o ° ' " " i Ash Apts 2015018.00 2 e n g I n e e r s Subject: By: Date: Bldg 2 Header at Gridline 10-Item 38.1 CS 10/22/2015 Load combinations Load combination 1 Support A Dead x 1.00 Live x 1.00 Snow x 1.00 Span 1 Dead x 1.00 Live x 1.00 Snow x 1.00 Support B Dead x 1.00 Live x 1.00 Snow x 1.00 Analysis results Maximum moment Mmax= 19276 Ib ft Mmin=0 Ib ft Design moment M=max(abs(Mmax),abs(Mmin))= 19276 lb—ft Maximum shear Finax=5242 Ib Fmin= -5242 Ib Design shear F=max(abs(Finax),abs(Fmin))=5242 Ib Total load on member Wtot= 10484 Ib Reaction at support A RA_max=5242 Ib RA—min=5242 Ib Unfactored dead load reaction at support A RA_Nad=3817 Ib Unfactored live load reaction at support A RA_Urve= 625 Ib Unfactored snow load reaction at support A RA—Snow=800 Ib Reaction at support B Re_max=5242 Ib RB-min=5242 Ib Unfactored dead load reaction at support B RB-Dead=3817 Ib Unfactored live load reaction at support B RB_Live= 625 Ib Unfactored snow load reaction at support B RB-snow= 800 Ib N Glulam section details Net finished breadth of sections b=5.5 in Net finished depth of sections d= 12 in Number of sections in member N = 1 Overall breadth of member bb= N x b=5.5 in Alignment of laminations Horizontal Stress class 24F-1.8E Item 38.1 Project: No.: Page: B-73 /catena c c n s u ' ring Ash Apts 2015018.00 3 e n g i n e e r s Subject: By: Date: Bldg 2 Header at Gridline 10-Item 38.1 CS 10/22/2015 • Bending parallel to grain Fb=2400 Ib/int Tension parallel to grain Ft= 1100 Ib/int Compression parallel to grain Fc= 1600 Ib/int Compression perpendicular to grain Fc_perp=650 Ib/int Shear parallel to grain F�=265 Ib/int Modulus of elasticity E = 1800000 Ib/int Modulus of elasticity, stability calculations Emin= 950000 Ib/In2 Mean shear modulus Gdef= E/ 16= 112500 Win Member details Service condition Dry Length of bearing Lb=4 in Load duration Ten years Section properties Cross sectional area of member A= N x b x d = 66.00 inz Section modulus Sx= N x b x d2/6= 132.00 in3 Sy=d x(N x b)2/6=60.50 in3 Second moment of area IX=N x b x d3/12= 792.00 in' ly=d x(N x b)3/12= 166.37in4 Adjustment factors • Load duration factor-Table 2.3.2 CD= 1.00 Temperature factor-Table 2.3.3 Ct= 1.00 Flat use factor-Table 5A Cf.= 1.01 Bearing area factor-cl.3.10.4 Cb= 1.00 Length of beam between points of zero moment Lo= 9 ft For species other than Southern Pine x= 10 Volume factor-eq.5.3-1 Cv= min((21 ft/Lo)"x x(12 in/d)'/x x(5.125 in/b)'/x, 1)= 1.00 Depth-to-breadth ratio d/(N x b)=2.18 Effective laterally unsupported span length le= 1 ft Slenderness ratio for bending members-eq.3.3-5 Rb=q[le x d/(N x b)2] =2.182 Adjusted bending design value for bending Fb*= Fb x CD x Crab x G x Cc=2400 Ib/inz Adjusted modulus of elasticity for member stability Emin'= Emin x CME x G=950000 Ib/inz Critical buckling design value for bending FbE= 1.2 x Emin'/Rb2=239479 Ib/inz Beam stability factor-eq.3.3-6 Ct.= [1 +(FbE/Fb*)]/1.9-4[([l +(FbE/Fb*)]/1.9)2-(FbE/Fb*)/0.95] = 1.00 Bearing perpendicular to grain-cl.3.10.2 Design compression perpendicular to grain Fc_perp= Fc_perp x Ct x Cb=650 Ib/In2 Applied compression stress perpendicular to grain fc_Perp= Rema./(N x b x Lb)=238 Ib/int fc_perp/Fc__perp=0.367 PASS-Design compressive stress exceeds applied compressive stress at bearing • Item 38.1 Project: No.: Page: B-74 /coatena ` ° " s " � ' � " s Ash Apts 2015018.00 4 e n g t v e e r s Subject: By: Date: Bldg 2 Header at Gridline 10-Item 38.1 CS 10/22/2015 Strength in bending-cl.3.3.1 Design bending stress Fb'= Fb x CD x Ct x min(CL,Cv)x Cc=2399 Wine Actual bending stress fb= M/S.= 1752 Wine fb/Fb=0.731 PASS-Design bending stress exceeds actual bending stress Strength in shear parallel to grain-cl.3.4.1 Design shear stress F,,'=F,x CD x Ct=265 Ib/int Actual shear stress-eq.3.4-2 f,=3 x F/(2 x A)= 119 Wine f„/F,'=0.450 PASS-Design shear stress exceeds actual shear stress Deflection-cl.3.5.1 Modulus of elasticity for deflection E'= Ex x CME x Ct= 1800000 Ib/int Design deflection Sad.=min(0.5 in,0.0041 x Ls,)=0.443 in Bending deflection 8b—sl =0.167 in Shear deflection S, s, =0.037 in Total deflection Sa=Sb—sl +Sv st =0.204 in Sa/Sad.=0.461 PASS-Design deflection is less than total deflection Item 38.2 Project: No.: Page: B-75 /catena ` Is''pts 2015018.00 1 Subject: By: Date: CS43 1 CS 11/4/2015 • Structural wood member designSTRUCTURAL WOOD BEAM DESIGN(NDS) In accordance with the ANSI/AF&PA NDS-2012 using the ASD method TEDDS calculation version 1.6.04 Analysis results Design axial compression P=34891 Ib in a; X Sawn lumber section details Nominal breadth of sections bnom=6 in Dressed breadth of sections b=5.5 in Nominal depth of sections dnom= 10 in Dressed depth of sections d = 9.5 in Number of sections in member N = 1 . Overall breadth of member bb= N x b=5.5 in Species, grade and size classification Douglas Fir-Larch,Select Structural grade, Beams and stringers Bending parallel to grain Fb= 1600 Ib/int Tension parallel to grain Ft= 950 Ib/int Compression parallel to grain Fc= 1100 Ib/int Compression perpendicular to grain Fcperp=625 Ib/int Shear parallel to grain F„= 170 Ib/inz Modulus of elasticity E= 1600000 Ib/int Modulus of elasticity,stability calculations Emin=580000 Ib/int Mean shear modulus Gdet=E/16= 100000 Ib/int Member details Service condition Dry Load duration Two months Unbraced length in x-axis L,,= 11 ft Effective length factor in x-axis Kx= 1 Effective length in x-axis Lex= Lx x Kx= 11 ft Unbraced length in y-axis Ly= 11 ft Effective length factor in y-axis Ky= 1 Effective length in y-axis Ley=Ly x Ky= 11 ft • Item 38.2 Project: No.: Page: B-76 Xa t e n a c o n s " g Ash Apts 2015018.00 2 e n g I n e e r s Subject: By: Date: CS43 1 CS 11/4/2015 Section properties Cross sectional area of member A= N x b x d =52.25 int Section modulus SX=N x b x d2/6=82.73 in3 Sy=d x(N x b)2/6=47.90 in3 Second moment of area IX=N x b x d3/ 12 =392.96 in4 ly=dx(Nxb)3/12= 131.71 in Adjustment factors Load duration factor-Table 2.3.2 CD= 1.15 Temperature factor-Table 2.3.3 Ct= 1.00 Size factor for bending-Table 4D CFb= 1.00 Size factor for tension-Table 4D CR= 1.00 Size factor for compression-Table 4D CR= 1.00 Flat use factor-Table 4D CfU= 1.00 Incising factor for modulus of elasticity-Table 4.3.8 CiE= 1.00 Incising factor for bending,shear,tension&compression-Table 4.3.8 G= 1.00 Incising factor for perpendicular compression-Table 4.3.8 Cic_perp= 1.00 Repetitive member factor-cl.4.3.9 Cr= 1.00 Bearing area factor-cl.3.10.4 Cb= 1.00 Adjusted modulus of elasticity for column stability Emin'=Emin x CME x Ct x CiE=580000 Ib/int Reference compression design value Fc`= Fc X CD X CM.X Ct X CFc x Ci= 1265 Ib/int Critical buckling design value for compression FcE=0.822 x Emin'/(Ley/b)2=828 Ib/int c=0.80 Column stability factor-eq.3.7-1 CP=(1 +(FcE/Fc'))/(2 x c)-4[((1 +(FcE/Fc'))/(2 x C))2-(FcE/Fc")/c] =0.53 Depth-to-breadth ratio dnom/(N x bnom)= 1.67 -Beam is fully restrained Beam stability factor-cl.3.3.3 CL= 1.00 Strength in compression parallel to grain-cl.3.6.3 Design compressive stress Fc'= Fc x CD x Ct x CR x Ci x CP=674 Ib/int Applied compressive stress fc=P/A=668 Ib/int fo/Fc'=0.991 PASS-Design compressive stress exceeds applied compressive stress Z-7 R 1-t�0.1 1-7 -ir 28 /catena • e n p l n e e r a Project Number: 2015019.00 Page/of: Project: Ash Apts-Building 2 By: gh Subject Rigid Diaphragm Analysis Level 1-2 Date: 11/04/15 Walls on Level 1.2 INPUT DATA Center of Mass from Origin: Y `X Lx: Building overall plan dimension X-dir = . .220.00 feet Ly: Building overall plan dimension Y-dir = 70.00 feet Xcm: Center of mass Val = 87:80 feel Ycm: Center of mass Y-dir = 19.00 feet --+� Xc Consider accidental torsion?)Y)es or(N)o= y I ]Pl.�P2T1 Loads(Enter up to 2): Ly L1PI: First Load= .171.50 kipsThetal: Angle of fest load from X-axis= 0.00 degrees P2: Second load= ' 0.00 kips Y1 X1 Theto2: Angle of second load from X-axis= '.10.00 degrees X O Location of Walls: Are walls fixed at stones?)Y,N) y FF: Fixity Factor for Flexural Rigidity= 12 • If Known' Input if Stiffness is not Known Local Modulus of Angle from Center of Mass Stiffness Thickness Length Height Elasticity X-Dir from Origin K T L H E An X Y _Wall# k!n in. ft ft. ksi deg. ft. ft. 1 8.0 6.0 12A 13 ".0 OA 41.8 2 8.0 19.0 12A 1A 90.0 34.0 42A 3 0.0 19A. 12.0 1.0 90.0 44A 42.8 4 8.0 23-5 12A 1.0 901 54.5' 4.8 5 BA 19S 1 lA 11111010 154.5 0.4 6 BA 42.0 12.0 1.0 90.0 1645 16.7 A 8A 19A 12.0 1.0 010 9.5 OA 6 8A SS 12.0 14 0.0 161.5 88 C 8A 9.7 12.0 U 060 39.0 33.5 ,..01 8A 12.0 to 0.0 1 33.S E 6.0 5.5 12A 1.0 OA 36.7 52.5 IF &0 19.0 12A 1.0 OA 14.3 -S2S 7 8.0 20A 12.0 1.0 9410 97.5 43.6 D2 11111 16S 12A 1A 41111.0 1 M.2 33.S 9 8A 9.8 12.0 1.0 ".0 2095 .4.9 G 3.0 8.0 4 12.0 1 OA Y&O 52.5 s H 8A 42.0 12.0 lA 0.0 ISS.5 _10.0 D3 8.0 9.0 12A 1.0 0.0 133A 33S 'If wall is pierced or has other irregull enter the combined shear and flexural stiffness. a � • V7Q2. /catena e n g i n e s r f • Project Number. 2015018.00 Page/of: Project: Ash Apts-Building 2 By: gh Subject: Rigid Diaphragm Analysis Level 1-2 Date: 11/04/15 CALCULATIONS Compute RelaRve RlgWly of Wags Along Major tiuMng Axes Local R I G I D I T Y Area(All Shear Flexural Total Rigidity Moments Al Rvx RvY RfX RIY RtX RiY RtX'Y RtY'X Wall# Sf On On k/in k/in kCn k/in kips kips 1 4.0 0.0 1.3 0.0 1.0 0.00 0.57 0 0 2 12.7 0.0 4.2 0.0 31.8 0.00 3.73 0 1520 3 12.7 0.0 4.2 0.0 31.8 0.00 3.73 0 1968 4 15.7 0.0 5.2 0.0 60.1 0.00 4.80 0 3142 5 13.0 0.0 4.3 0.0 34.3 0.00 3.85 0 7134 6 28.0 OA 9.3 0.0 343.0 0.00 9.09 0 17936 A 12.7 4.2 0.0 31.8 0.0 3.73 0.00 0 0 8 3.7 1.2 0.0 0.8 0.0 0.47 0.00 50 0 C 6.4 2.1 0.0 4.2 0.0 1.42 0.00 571 0 D) 2.7 0.9 OA 0.3 0.0 0.22 0.00 89 0 E 3.7 1.2 0.0 0.8 0.0 0.47 0.00 298 0 F 12.7 4.2 0.0 31.8 0.0 3.73 0.00 2348 0 7 13.3 0.0 4A 0.0 37.0 0.0 4.0 0 4643 D2 11.0 3.7 0.0 20.8 0.0 3.1 0.0 1253 0 9 6.6 0 2 0 4 0.0 1.5 0 3669 G 28.7 10 0 368 0 9.3 0.0 5868 0 H 28.0 9 0 343 0 9.1 0.0 -1090 0 D3 6.0 2 0 3 0 1-3 0.0 505 0 33 31 9891 40012 • (A) (8) (C) (D)ID) Ay &Ax: Wall area tributary to X or Y direction= T(L)sin(An) or T(L)cos(An) Rvx &RvY: Wo➢shear rigidity= Ax(O.4E)/11.2H) or Ay(0.4E)/(1.2H) RfX &RfY: Wall flexural rigidity= (FF)E(I/HA3) I: Moment of Inertia= T(Ax/T)A3 or T(Ay/T)A3 RtX &RtY: Total wall rigidity,= K or.if unknown.(RvX)(RfX)/(RvX+Rf)) and (RvY)(RfY)/(RvY+RfY) RtX'Y &RtY•X: Wall rigidity'Moment arm= (Y)RfX or (X)RtY • /catena ° ° ° r�ttl Project Number: 2015018.00 Paye/of: Project: Ash Apts-Building 2 by: gh Subject: Rigid Diaphragm Analysis Level 1-2 Dole: 11/04/15 CALCULATIONS icon!) Compute Torsional Coefklents: Xcr: Center of Rigidity= (D/8) = 106.9 feet Ycr: (C/A) = 25.1 feet xt: Torsional Eccentricity= (Xcr-Xcm) = 19.1 feet YL (Yc*-Ycm) _ -3.9 feet XAi: Accidental Torsion= (0.05Lx) if considered = 11.0 feet YAt: (0.05Ly) if considered = -3.5 feet Px: Resultant Forces= (Licos(gl))+(L2cos(g2)) = 171.5 kips Py: (Llsin(gl))+(L2sin(g2)) = 0.0 kips Xme+: Maximum Eccentricity w/+Acc.Torsion= (Xt+XAt) = 30.1 feet Yme+: (Yt+YAt) _ -7.4 feet Xme-: Maximum Eccentricity W/-ACC.Torsion= (Xt-XAt) = 8.1 feet Yme-: (Yt-YAf) _ -0.4 feet +Mt: +Maximum Torsional Moment= Px(Yme+)-Py(Xme+) _ -1266 kip-feet -Mt: -Maximum Torsional Moment= Px(Yme-)-Py(Xme-) _ -65 kip-feet Compute Rigidity Distribution: Distance from C-R. Tota,Rigidity to C.M.of Wall Riaidity'Distance RigidityDistance Said. R1X Rty X" Y" Rlx'Y' Rty'X" Rix'Y"2 Rty'X"2 Wall 0 k/in, On. ft. ft. kips kips k ft. k ft. • i 0 1 106.9 19.7 0 733 0 78361 2 D 4 -72.9 17.6 0 -3260 0 237665 3 0 4 -62.9 17.6 0 -2813 0 176935 4 0 5 -52.4 23.6 0 -.3021 0 158310 5 0.0 3.8 47.6 -24.7 0 2198 0 104612 6 0.0 9.1 57.6 -8.4 0 6280 0 361741 A 3.7 0.0 -97.4 25.1 -1123 0 28218 0 B 0.5 0.0 54.6 -16.3 -92 0 1504 0 C 1.4 0.0 -67.9 8.4 143 0 1197 0 D 1 0.2 0.0 -4.9 8.4 22 0 187 0 E 0.5 0.0 -70.2 27.4 155 0 4251 0 F 3.7 0.0 -92.7 27.4 1224 0 33527 0 7 0.0 4.0 -9.4 18.4 0 -448 0 4208 D2 3.1 0.0 9.3 6.4 313 0 2627 0 9 0.0 1.5 102.6 -30.0 0 1797 0 184360 G 9.3 0.0 -30.9 27.4 3060 0 83791 0 H 9.1 0.0 78.6 35.1 -3829 0 134477 0 D3 1.3 0.0 26.5 8.4 126 0 1058 0 290838 1306192 (E) (F) j = Tosional Moment of Inertia = (E)+(F) = 1597030 kip-toot • /ca'tena Project Number. 2015018.00 Page/of: Protect Ash Apts-Building 2 by: gh Subject Rigid Diophrogm Analysis level l-2 Date: 11/04/15 Compute ResuBant Forces: WALLFORCES+ACCIDENTAL TORSION Maximum Force of Direct, Direct From Moment Total(Global Axes) From Moment,Total Wall Fpx Fpy Fmx Fmy Fix Fty Fx Fy Total Wall# Orientation kips kips kips kips kips kips kips kips kips 1 Principal 0.0 0.0 0.0 0.6 0.0 0.6 0.0 0.6 0.6 2 Principal 0.0 0.0 0.0 2.6 0.0 2.6 0.0 2.6 2.6 3 Principal 0.0 0.0 0.0 2.2 0.0 2.2 0.0 2.2 2.2 4 Principal 0.0 0.0 0.0 2.4 0.0 2.4 0.0 2.4 2.4 5 Pnncipol 0.0 0.0 0.0 -1.7 0.0 -1.7 0.0 1.7 1.7 6 Principal 0.0 0.0 0.0 -5.0 0.0 -5.0 0.0 5.0 5.0 A Principal 19.5 0.0 -0.9 0.0 18.6 0.0 19.5 0.0 19.5 B Principal 2.5 0.0 -0.1 0.0 2.4 0.0 2.5 0.0 2.5 C Principal 7.4 0.0 0.1 0.0 7.5 0.0 7.5 0.0 7.5 D1 Principal 1.2 0.0 0.0 0.0 1.2 OA 1.2 0.0 1.2 E Principal 2.5 0.0 0.1 0.0 2.6 0.0 2.6 0.0 2.6 F Principal 19.5 O.0 1.0 0.0 20.4 0.0 20.4 0.0 20.4 7 Principal 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.4 04 D2 Principal 16.3 0.0 0.2 0.0 16.5 0.0 16.5 0.0 16.5 9 Principal 0.0 0.0 0.0 -1,4 0.0 -14 0.0 1.4 14 G Principal 48.7 0.0 2.4 0.0 51.1 0.0 51.1 0.0 51.1 H Principal 47.5 0.0 -3.0 0.0 44.5 0.0 47.5 0.0 47.5 D3 Principal 6.6 OD 0.1 0.0 6.7 0.0 6.7 O.G 6.7 WALLFORCES•ACCIDENTAL TORSION Maximum Force of Direct, Direct From Moment Total(Global Axes) From Moment.Total Wall Fpx Fpy Fmx Fmy Fix Fly Fx Fy Total • Wall N Orientation kips kips kips kips kips kips kips kips kips I Principal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 Principal 0.0 0.0 0A 0.1 0.0 0.1 0.0 0.1 OJ 3 Principal 0.0 0.0 0.0 0.1 0.0 0.1 0.0 O.l 0.1 4 Principal 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 5 Principal 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.1 0.1 6 Principal 0.0 0.0 0.0 -0.3 0.0 -0.3 0.0 0.3 0.3 A Principal 19.5 0.0 0.0 0.0 19.4 DD 19.5 0.0 19.5 8 Principal 2.5 0.0 0.0 0.0 2.5 0.0 2.5 0.0 2.5 C Principal 7.4 0.0 0.0 0.0 7.4 0.0 7.4 0.0 7.4 01 Principal 1.2 0.0 0.0 0.0 1.2 0.0 1.2 0.0 1.2 E Principal 2.5 0.0 0.0 0.0 2.5 0.0 2.5 0.0 2.5 F Principal 19.5 0.0 0.1 0.0 19.5 0.0 19.5 0.0 19.5 7 Principal 0.0 0.0 0.0 0.0 0.0 0.0 OA 0.0 0.0 D2 Principal 16.3 0.0 0.0 0.0 16.3 0.0 16.3 0.0 16.3 9 Principal 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.1 0.1 G Principal 48.7 0.0 0.1 0.0 48.8 0.0 48.8 0.0 48.8 H Principal 47.5 0.0 -0.2 0.0 47.3 0.0 47.5 0.0 47.5 03 Principal 6.6 0.0 0.0 0.0 6.6 0.0 6.6 0.0 6.6 Fpx 8 Fpy: Direct force from P only= (Px(RtX/Sum RtX))or(Py(RfY/Sum RfY) Fmx&Fmy: Force resultant from torsional moment= (Mt(Rx(Y)/J))or(Mi(Ry(X) Fix&F1y: Total actual force of direct and torsion= (Fp+Fm) Fx&Fy: Design force-Maximum of three forces above= (Max of(Fp.Fm.Ft)) Total: Resultant force along axis of wall(Walls Orientated to Principal Axes)_ ((FxA2+FyA2)A.5) Total: Resultant force along axis of wall(Walls Orientated to Skewed Axes)= Fx/Cos(q)+Fy/Sin(q) • 21 �Sr Catena ° °° r ° Irl • e n y l n • • s Project Number: 2015018.00 Page/of: Project: Ash Apts-Building 2 8y: gh Subject: Rigid Diaphragm Analysis Level 1-2 Date: 11/04/15 Wall Forces Summary O O +Accident. -Accident. Design O Torsion Torsion Maximum Wall Total Total Total X-DIR Y-DIR MAX MAX WALL Wall$1 Orientation kips kips kips R pill pR pill kips TYPE I Principal 1 0 1 97 97 919 919 5.51 2 2 Principal 3 0 3 136 136 1633 1633 31.0 5 3 Principal 2 0 2 117 117 1557 1557 29.6 5 4 Principal 2 0 2 102 102 1540 1540 36.2 5 5 Principal 2 0 2 89 89 1085 1085 21.2 1 6 Principal 5 0 5 119 119 1189 1189 S0.0 1 A Principar 19 19 19 1025 1025 191 1025 19.5 1 8 Principal 2 2 2 449 449 54 449 2.5 4 C Principal 8 7 8 779 779 48 779 7.5 2 DI Principal I I 1 29S 29S 18 295 1.2 E Principal 3 2 3 471 471 91 471 2.6 4 F Principal 20 20 20 1076 1076 208 1076 20.4 1 7 Principal 0 0 0 18 18 1163 1163 23.3 1 D2 Principal 17 16 17 1002 1002 61 1002 16.5 9 Principal 1 0 1 14S 145 816 816 8.0 2 G Principal 57 49 51 1188 1188 230 1188 S1.1 1 H Principal 47 47 47 1131 1131 295 1131 47.5 1 D3 Principal 7 7 7 740 740 45 740 6.7 L? Q ' /catena e n n s u l l l o g • engineer s Project Number: 2015018.00 Page/of: Project: Ash Apt$-Building 2 By: gh Subject: Rigid Diaphragm Analysis Date: 10/30/15 REVISED WALL FORCES AND WALL TYPES ORIGINAL WALL FORCES AND WALL TYPES COMPARISON Length REVISED wait shear WALL Length original wall shear WAIL NEW/ORIGINAL Wall ID (ft) (pit) (k) TYPE Wali ID (it) (pit) (k) TYPE pit kips 1 6 919 5.5 2 1 6 909 5.45 2 1.01 1.01 2 19 1633 31.0 5 2 19 1629 30.9 5 1.00 1.00 3 19 1557 29.6 5 3 19 1558 29.6 5 1.00 1.00 4 24 1540 36.2 5 4 24 1546 36.3 5 1.00 1.00 5 20 1085 21.2 1 5 20 1135 22.1 1 0.96 0.96 6 42 1189 50.0 1 6 42 1232 51.8 1 0.97 0.97 A 19 1025 19.5 1 A 19 961 18.3 1 1.066 1.07 B 6 449 2.5 4 B 6 421 2.3 4 1.066 1.07 C 10 779 7.5 2 C 10 734 7.1 2 1.062 1.06 D 1 4 295 1.2 4 D 28 1046 29.3 1 E 6 471 2.6 4 E 6 446 2.5 4 1.056 1.06 F 19 1076 20.4 1 F 19 1019 19.4 1 1.056 1.06 7 20 1163 23.3 1 7 20 1190 23.8 1 0.98 0.98 D2 17 1002 16.5 1 9 10 816 8.0 2 9 10 854 8.4 2 0.96 0.96 G 43 1188 51.1 1 G 43 1126 48.4 1 1.056 1.06 H 42 1131 47.5 1 H 46 1065 49.0 1 1.062 0.97 D3 9 740 6.7 2 • flp C�1Gr�CZ n Com` • GV t?-(��►�J P01112- "A44AL S cn neers atena consulting egi (-w AAA., Project Number: 2015018.00 Page/of: Project: Ash Apts-Building 2 By: aiam/gh Subject: Overturning Date: 09/25/15 SUMMARY Floor Wall ID 1 2 3 Wall ID Tension Comp. Tension Co Tension Comp. Sheet 5021 �n (kips) (kips) (kips) ips) (kips) (kips) 1 19 25 11 14 5 6 1 Nv.+vv 2 29 32 16 7 7 2 G 3 28 28 15 15 6 6 3 4 K46 14 14 6 6 4 _ 5 11 12 5 5 5 T - 6 12 12 5 5 6 Z� 7 N/A N/A N/A N/A 7 lVw T 9 N/A N/A N/A N/A 4: A 20 26 8 11 10 — 1 -O W So A t _2 `� 3.4 � �.2 Z * B 13 13 5 5 11 t .O6 b t3 X3.2 , ,�y' rk C 14 15 6 6 3 . 06 Z C- E 1` `�r D 26 27 12 12 l E 34 36 20 20 8 8 &A _ d` F 7 8 N/A N/A N/A N/A 15 _ �'�h d'` G 8 9 N/A N/A N/A N/A 17 ,- 0,fo� t H 7 8 N/A N/A N/A N/A 16 J G p 4r t j 1a t- l�tt t o VY tvcr1vG�� C,D lvs 2 v-An \j � 1 Uq� S Vv'c�2 Zovtvy � LA) \A/,q,-C CX4 V5 e c �L.trA S- L�� UJ\4O �2ren�- o�Ve is, \b OC- �o ZV L1 'S pc. -C �$ 2;L)0,0C Vo ,mss ,�t r�¢ 4 ~1 1 v f 7b Pro& Nc i 2 / P-15 /coatena a 9 s c e r s SU i��t: Date tt.t7►N6. r7 LS" G- w Aec,t:. C +31 t t� t✓ L z eJ4iirAE- POoM t.2A(AL c"C L .#44 - CA-->krta AL4-n i 00 � 2 �3 wA►t t_ Wl 1C r-- T mac Sic. AA> ►S /*->P t k.>-J ac s3-t G A--► q- (S ) Sr.�.49A''► *N eD L-ethic- Paz- o,,r vs otic, a�• �� s�e4 V3 r l t CA;:: t,.0 A-0 lXf un A.tr V.DCALU ? ,2�' v• 001 0.23` = ct 00-7 k ZSR g4v�.t c.� 0. 01(p Z � � i•2 e l, �\ ,. = 0. 0 0-1 eS V7t S'" t t-ti orz %4 Tt C- xO.-tS'xo•'y = 3LO* I�'Sh o:t. p•fv� - S�_�S�O �--�) a1 t..�a +�.xt'�'i v�ti 1.t��? D3 Tt C- t.3C.►Z)x air 0,-7 = dioma` o•roo - Zt` Project: No: Page: /catena o A64 2O�'Sat$�O� I&2iQl e n g �n e e i s Subject: By: Date: pru(j6 g,,,Art,(- -D% ,3 rt,(- i� CX34.`7) fat ) e -CA:;NUE SoZt T 3a� oL tiO a4A\)LC- 4(,805 L-0*9 C I"O "7 O:- "JA til. - i CA.AA I wS61 p#-� -AA-,l TO a� r�s�Gw►��A L7 5 � rVt ' %t�LtrC�w.v�X r Govt9¢q,,O%Iv+--' A,-r soul N G = °l"' LP) } O.q" (q) _ %0 L2)Zr 4 -s-t VV C A-'A<A- <' Q &Q = t 1,t -c�v w MUL M4-m 1$-& � 5 %-5 1516 C-4 k N'1 - Z I CP - 34-.6) itl 110 914 t u cL.L-n->z5 (ZxAj o� �v VVI ip GAA W?,7 X 8A. .41 Xk r) ij� ry� w�niG�/1 e S aG�UIO►t .yam "]b'Ik h Ik i1111G 9.,5 �k •.VA it ,`' f jar �1 Ik7 IiJ11109.bk � lUk�1U lIL _ w k Ik 7JI IIG% IFJI 110 9.b1 It IJI,10 9.$ 14 ` �` 4 iP 7A 110 IIO SSL IA 1111 0°5 li �' 0LS S7 I.K1IQ 9.5 IIJI IIO 9.1k iS ^XB.�. '14 �k /1111095 It � _ 1{31110.9SY I I'. I1t 110 Af Ikil I10?IkIk Ti,110 11-8>5 I1. rut 110 41E F ,t 11!170 - tt iJr 11095 lk AA 110`i6 IQI Ito'+SY Ik. .1111011.87` ik 1: 11109r Ik k Ip 110 9,5 11 1 I/ lit 110 Rt Ii_II 110 9.Sk 1k ?JI 110 11.875Et I1 - Ik Ili 10°5 It 11. TJI 110 9.5 IA I[ /4 110 Vt It111109.Sk It. itl IIG 11$5 Ik Ik SJI V5 wr a ilk 1075 . %:'3FS r fjl 110 4.Sk ik Tll 110'1 B'S Ik IF ill I t0°. ik +. '.JI 110°.5 tY # y OI ^V IRA 1"_9.9Y. FS"k ✓ IIS-55%12FS 6. 51 55%1213 4k 2N W 1,4p 1y1-�1-�lyl-�Isr�r-� Ik IJi 110° Ik Lt L,IMITITITI TITITh:ImlTlIhhhlTlTrhITl-1-1=1-1�1�1 L It1-1=1y1-1=1=1=�y���=�y�y�=�y�Y�y�`�`�y�`�-►Y�`iy�y�`►Y�`�y►��y�Y�y�`�Y�y�y�-�s�y�`�y�¢��►y�=�y�Yly�YlYl�lYl��-�_�Y�Y�Yhl,ly ..,. . � 1: ry ry Iry v 1k Tp I10'° lk \ Ik iil 110 9,5 lk 1 Ilii t�A//' S `J ���� I� ��.1Q '� — t•� 3 ce. \ it 'JI 110°_ Ik IIS u -11,1045 Ik OL v- I Ik IJ1!109.5 Ik cG ZA e/'� I h' ik i !11'10°.c Il xILL J 4 X41� _ at 10:07 AM L 20150923 Ash Apts Bldg 2 Trans Break.rfl i Pi ecl: No Page: /catena a 9 Subject By: Date: z GC>n���c.�►�� �S1 S— Cco x.72' 1 r I. t t 92 fro B,Z" �n,�+w�fr an p t� t.�rt Lz� Zx Co , T Ic cv+u o�rx u,V �� _ 2 ' �. Q '�� = • vim►M �, i..•b a ' • �- I VA' -vat- o. -t ..,��u �► Qho"swd%0 00 .� 9.O LV 0 L 00 47 ItQ� Jx }•y •L 1 �-'a'�3 L'O Vlq -Z qo- x L• L Lt-'� L-Z� 21-Z) LZ �A-45 i ASN ApTs Lotso1Sr 00 c a e n a �� .. • 000FGANOPI t S Cs ANGLE D&SIG�N s�o DL ° 10 Pt f' M = ( S5�` x (t )/s s� SL = Zspsf S SLJ 2 req d J �y 3 b Ics� in S = z.spsf L 3 x z i y A 0 F-0 LA A,-r MAX , R fALT)OT! �pj z ' EQLA1V LAWMR" SNOW LOAD CHANNEL DES16iN ZS4�6 -,� => C-----� / r--u '-7f' • lu pz{ -- 3 L J 3 M , WL tlo+ 314)•1 ' (s.S1) Z )z , 7o .-1 ADEQUATE 5 _ 2� •5;� 8 TOPSION AT SL),PP iQT SL k . T = 8-7 „ 'T R Y rI S S r 2 2. gaay. 1 �'Z DEC V tS AL)EaLATE F AKYnt-E ANb�t _ _ rcr C/� ��. t. G� 6 7 = 16.S ( Z z PoLD(i Z CANOPY AT WES i L"NNEL CHANNEL x )`---10 --7f" +V • � I U -;co aK ZS'" . SNu•nt �.. ZS"PSr A6, ps� vta t = 1 ,sr 0 -t 25 Ps+r SN300J A-46) A s A A Pl i 0).5'0 1 k_OC)-- ------ CCttE'f1CS CA NO E S L S PROVIDE SECTION WFLD tiLc T = C. %y = 2$ ! SPK : 1.lq -L L) HSS 12xb • t�Z H b it s i W-4 i K) !c�• rcr d I 34 Z •S � D. b t y A.GAw= 2 k IO;n2 DE*L EGTIONS `/3bo AN6%LFS • 3t,yE1: 3" 2a000 Z3 :, LHANNE LS Vill 3 Z4000j i24;N" CONN Ec,TLON r,.t = 8� �•„ M � . � . tit = !3 9 N REQ'0 P� 1NtGIGNESS t (AS�1nMf k=!Z ) (� _ L3 z = + k/H = y li jL4 36t >/ 114++ t 1:5, .3b n` V 12 �� PL % Yz 9 L+41.�(����Ci� l aeMh - ZSY it k- wl" G 1 Z,cp 0% /c'atena Prciect: No: Page _c c n s u l l g e n g l n e e n s S, b�ect By: pate: • � A, 2 r C 4 0 Oct G�ZxLJ�7 r �v N �,\1 N � 45 ; _ N t�M�t Go IJN��•t�Cw� � H AM SG C,MY-Z4D. 40 all �- ra ate+ it * 5cp as���rrpposed P L w11 I 5�rr�11 d. • r��e,s „� Mo Det- C�hX'ti5 C-4 vAo".102AP k-a�s TABLE:Beam Forces Besm Unique Name toad Case/Combo SUMm P V2 V3 T NU U3 In k,p • 832 3 Comb1 79 -0 1.357 0 0.071 0 -37.907 B47 2 Combi 79 0 2.877 0 0.078 0 -184.108 850 4 Combi 79 0 1.369 0 00 -70.804 B42 6 Combi 0 0 -1.447 0 -0.078 0 -75.687 B43 5 Combi 0 0 -1.37 0 -0.065 0 -36.378 B44 1 Combi 0 0 -3.348 0 -0.07 0 -187.854 Plate 0.5x10 BS 21 Combi 150 0 0.86 0 18.954 0 -29.992 B2 22 Combi 0 0 -0.874 0 18.169 0 31.639 HSS 12x4x1/4 �� CA-OCA Load Case/Combo Deflection Inch Combi= 1.2DL+1.6SN Dead -0.147 Comb2= 1ADL Snow -0.153 _ Use SN=25psf 0.2 x4S ,S ---- 9 - _ * --_ -- 0,4 6 �> 13 UIL it •I. 'I. 1+ a 4 Cn W— Gcj'+c�� tNG 5 MOtQs.QCc� Mc�',�lt� 50,4-r- d2tCct�� l no d2o�h� -cr✓, h1�,c,4— ti1P . 0 L �Z-2 = ,� .-Ar,2 � � -5t7• z • �J 71£ ' 5t- ( zUl 47 b'4r �s�� 947 ?1� Md '�;A JVA l t 1 S-)0 37 � iA Vi 1- dl?k z'b6t t 5 -d O� 19 -- -AL n S��ovrsw "'�'�.� • DUi9lD:) �� 4� ��p IoZ• l � ►�5 ^� a6od ori 1 {�a(od • CYZI) 3'0 a- (2xeon.) �•1 �2L2 4 Z�S�t) 2• = "'.M (Jicl JV tis -) I`O ) y ►1 nn'%cy'-" 4:;454A nr SGrb Q'1 �b n���+2 ►�- ��-�n o = . of _ N • Sr a I hu�'S tAOJ U1b' ••. wo+d v q M lS D11���"1IJJ1^� 6 i s n s o i�✓ +---)abDd � Pw;ect: Nc: Page:��� Catena " ° u " " � e " 9�� e e ` ' Subject: Ey: Date • CALvft c `I z non& 0.5 •n 10 --p 36 J mow, E1 R6s V�„�, = 3. 4 f f VIV S • 1Gly IF, 7c 1. 1 �5 C2�uou�3tG ViA, t • . , GJ- o V Vi=�G_.6 F!q ()w GV =op,•O. b x 3 6-,- G v(C MIA -� 0 .0%V/r- `bd c �� x 10 1-C4 r/F) 7 1!5 31 • (by7.4 0'5-A\Ul' P C Q to n Q e 9 "�e�e Sub;ec 1: gv: Date: F-C,r L T(3 Fcr 9 F C,6 I.Cl 29ouo x 1 . 625 k z Z C`rG L = 0.� 1 12.5M�,�,X + v 2,CMMoj�, -�rbmpf 4Me, �, S CLS4 7 t 3 C. t 41or-►7� 1. 62, • • c Pr ar'; - NO' Fagg: Catena e 9', e'F S.�b;ect: By: Dote: 6A-f,,)opr �- vt 5 3 NSS wx A � M- to ttSS t t,x 4 drv� (ex+ �, ILMaw to — � Yt C>- Y, G " o .32R 30 0 ,321 (4)(to) k 3" > 1 , 3� Qer �cc e�M ca.(,(.c� t•occQ,�P VLJz- S1v►� l �� a�' we.Q.d► CO A L-A00.1 -bl:c2e.S /'_ C,. �6VS66 x4�,Aqulr 4x4 tom Ct6 we" Q = ��4 - =' �� "��e� 4 �� - ��y x ,�2 .- �3 �► 3 b" Go wCO*,r-_- D�-