Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
'a u? I B T■e M.£C 2 O1 /-001-7 ECEIVED MICRO CDDID APR 2 2 2011 STRUCTURAL ENGINEERS CITY OF TIGARD BUILDING DIVISION STRUCTURAL CALCULATIONS for Client: Kysor Panel Systems 4201 North Beach Street Fort Worth, Texas 76137 800-633-3426 Project: Costco #111 7850 SW Darmouth Street Tigard , Oregon The Sadler Group Structural Engineers 500 Main Street, Suite 700 Fort Worth, Texas 76102-3944 817-332-1074 (Voice) 817-338-0335 (Fax) • `49h/ PRO18_ G1 N 4 o .:f , 37� OREGON 17 1943c,‘ XMAS SPA EXPIRES: 06/30/2012 Engineer of Record Thomas R. Sadler, P.E. Oregon Registration Number : 18791 • Costco#111 , 7850 SW Darmouth St., Tigard , Oregon 1 OF §0 I, r m w r \r-' , . B R T I S H C O L U M B I A Cranbrook A., a' .7-:A. .BERT A r o O o 'w_ fen's.,Nelson e . --•rnceton Penticton Castlegar \ WatertoAa?rka ' L ■ r fro , ¢Trait CraVan t -.- o lNanalmo .- eM"`.. ti,d _ _a._�, ..�,_o. l.._,_._.�._.3_._. --- Glauer Ucluelet —' Oso oos Grand Forks Bonner CANADA +„ asayten y Ferry '• Eureka P. • Vancouver +'� i&mess s' Island , elhngharra o Colville 1 Pals r Saarnc •;Q' f} { unt VemOn Q epubhc 0 •t .p 1. Sandpoint ,,'' Ka t 'i PO[t , ;'• Okanogan 1395 o r L{�2 y_ `,.,: 1.w1► 1;i Vera$ rt 95 , �w `a * ° Coeur ` A1 fr. enatchee Davenport Spokane --L_. Moses o a . 4"',.• Superior Quin Lake 9t.Manes 1 r....• . 0 aroma Ritzville •1' Olympia EIIMs6ury Chehalis `'0 { ,.� . . . South .,A .. Pom®r• 7� �; Bend iW A S-`Hr-t,. a T O Damon`. \, Astoria. .. . $.o Lewi Seaside o o SITE LOCATION '�T'+�j'f Q1Aralla Walla ` 1 `ewi s ; '10 QGoldendale s Mlfton Freewater a.• • oodR c �a 6'1° • / i } Pendleton •'t Enterprise • ` '' Moro Heppner0 _. o " R i e Mc a Grande •S wa Whitr ian t?=•-•;••• ,',.... ,.., ••ndon Nabonal Forhst en Lincoln City¢� �Q slam I . or- ; d Dales f I Baker City 0 A. H 0 (,Ibany •22' +^ '' Cascade Newport C .{ Madras ¢ Challis4 a.. Florence X128 T — „r Idaho t) ,.: City eedsport „J 0 N Boise Haley •akndge 20 Riley • • _O Fairfield o 'w North Bend,,. Stltlterlin 95 Fa 6 Coqui-o Ir. U N I T E _D ;.:-, ...4 ountain Home• w i Roseburg Chemult G.odingQ i',..,„..x if Jeri• • m �:� t 4 r / ®, Twin Falls■ • Gold Beach �,,.„L,L, j' • .1111;" • hland l ,., .., F> Aermdt ..... ..... ...4fs11 .Ja .. Crescerd« 14 Jarbldge' 5 � � Mountain Cdy reka r -- yorovada• ,k4 Wee p, � '139 Mount Shaeta McKinley/the' �'t D Winnemucca) We s ,t,� Carlin /.Elko Eureka ,.' i � . r Imlay :ate "'•'� C A L I . - Mountain . Garbervill0e�� N Red Btu • r :,.,,., t N; E V D A 3 ■ (( 1, Lovelock Cherry Creek, 99: 0Oujncy ( n G •Se aPorto 6Diwe Valley• Fort: ..,. .' Id .0�` V a sbn 0Eureka mks,/ evada v. Ukiah #Colura Cltya son City M • 20� \ QV O Y Duckwatero b. Ci , ,r ake Tahoe,' Round Cle rlake8 �` �' f °Gabbs °Mountain c6J Citrus •lots 'kW-.. •• Placerville ~ 0 mi 50 100 150 200 250 Copyright 0 and(P)1988-2008 Microsoft Corporation and/or its suppliers.All rights reserved.http:/N.ww.microsoft.com/streets/ Certain mapping and direction data®2008 NAVTEQ.All rights reserved.The Data for areas of Canada includes information taken with permission from Canadian authorities,including:0 Her Majesty the Queen in Right of Canada,®Queen's Printer for Ontano.NAVTEQ and NAVTEQ ON BOARD are trademarks of NAVTEQ.®2008 Tele Atlas North America,Inc.All rights reserved.Tele Atlas and Tale Atlas North Amerca are trademarks of Tele Atlas,Inc.®2008 by Applied Geographic Systems.All rights reserved. . ,. 50t25 55=o4 i FIGURE 3.3-1 MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR /',l' 1 THE CONTERMINOUS UNITED STATES OF 0.2 SEC SPECTRAL RESPONSE '- y ACCELERATION(5%OF CRITICAL DAMPING),SITE CLASS B / . r' --. _ 110' 7 ` 105" �,• ! ,, ! �o� tOD° 95• sr b'r .. u J� 1Il — 1 ' —._S • 1 i s ,' . ti' 1•` p a ' /`� �•. ) r, f A ;sr_L' 10_'c t �7--vi-• t t• , _! ),. • i .�1•.,-. ..r ✓/ 3S�, '1O r 6 JA.. 1 4 j'1-.., t - ..._ I 'c__._ f• a1. t ,4 _ Vf v i �- -i i i / .. 3, '•yI 01_,k0114"*I. 1� `.�`` _' I t T' .; . '''..••••'"J + �+� { �� f S /,._ � t .1h1L ,rLi U 1b ' � + ''...'y ; -15-,79./ ,.(,,,iii :_-.... • i i . ---,_:,... .......! ! !. .,: , ,. : I 1� , �ii '�' • f 1 ' _ _fe �•.1\_ • • ` , � � 704'. t ' #. I / -,._. ' a � 11 I+ („.10570i_i, � I `� ....._ ....111 77 : r II i)' .• T t t_ 1-- ' +i r1 I r 7. ' i{ ` 1 Q` rR a ..../1 ";..Th itl......,.:,.. .1--,.., _1: 11 -7!.-0 i 4, .. e :1'1, 4,4 A. \ 41, 'cc': s i— - 4ii,. _ i.•..„ ,j• t P.. . .i.-.. j{, •• ., •4 , 4 T` i I 1 1 : t°.NarliNI itI !I - " i \r4', s ..,;_. lif'g r ; '' 'rd. iv ' iii- . .c..,.; .f.,..y, ----■ .!---'-ir-= I, .l.,_I‘,.,'..-.'..: L 1=-_-_,_1 1 10 1&�". ' • 30 o i , r i + ) i N:\ ' ._ �. A 30 i 1 J-+--..1 11,41■11„,....._ ) f....... I 7 DISCUSSION REFERENCE \ - . ,. The acceleration values contoured on this map are for Building Seismic Safety Coureil 20D4,NEHRP Recommended _.f t the random horizontal component of acceleration For Provisions for Seas nac Regulations for New Buildings and design purposes,the reference site cordit ion for the map other Sn ctur s,Part 1-Provision FEMA 450. -- I � {"� is b be taken as Site Class B. Building Seismic Safety Council 2001,NL?EBtP Recommended � � '- t _...! I ��--�� \ ` Selected camtours have been deleted for clarity. Provisions for Seismic Regulations for New Buildings and T i�" ♦ I j.::• ,- .... .._._. .. Regional maps should be teed when additional detail is other,A,Petersen,Strictures,Part 2,Mueller,C, ,FEMA,W �':, t. required Frankel,A,Pe M,Mueller,C,Hurler,K,Wleeler,R, �„1 - -- Leyerdecker,Fuatukel,and Rukstales(2001,2004)have Leyerdecker,a,Wesson R,Hant ee,S.,Cramer,C. ., ,-'�.. prepared a CD-ROM that contains software to allow Perking D.,and Ruksmle,K,2001,Documentation for the r i determination of site Clan B map values by 2(thR update of the National Seismic Harald Maps,U.S. ' ' latitude-loregituda The software on de CD contains site Geological Surrey Open.fik Repot 02-420 is,.._` coefficients that allow the user to adjust values for A,Petersen, ..�.- map FranJe4 rs, M.e,K,H rm en,S., ra Whaler,R. Index of regioml map(s)at larger j '''O�...'. . different Site Classes Additional snaps at ddfuaR ltyerdxker.E,Wcsoq R.Har>ffieq S..Grunter,C, '........: ', '�. ...._: scales am also included on the CD.The CD was prepared Perkins,II,and Rukstales,K,2004,Seismic-Hazard Maps _ using the sane data as that used to prepare the Maximum for the Conterminous United Shia,Sheet 4-Horizontal .. , Considered Earthquake Ground Motion naps. Spectral Response Acceleratiion for 112 Second Period with j its _. u'+- - `s __l. The National Seismic Harald Mapping Poject Web Site, 2%Potability of Emeedarece in 50 Years,U.S.Geological http//egleznapsusgsgov/,contains electronic Survey Geologic Investigation Series,scale I:7,000.004 r -1---1, ` j-' -�I. 1 v versions of this map and others Documentation, I P ten cyPmcker, , / - /,. ,i- f ., values,and Arc/INK)coverages used to make the maps Isyendeckcr,E.Frankel,A,and Rulatale,K,2001,Seismic `._'. j ..__`. are also available Design Parneters,U.S.Geological Survey Open-Fie 1 ? . ..... ! -._.).• The California portion of the map Was produced jointly Report 01-437. --.. .. with the California Geological Survey. Leyendecket;E,Frankel,A,and Rulstales,K,2004,Seismic .. i t.._. ,-. I ' Design Parameters,U.S.Geological Survey Open-File - �. .. -.r' A . Map prepared by U.S.Geological Survey. Report(in progress} ', i National Seismic Harare Mapping Project Web Site, :.`2..:1,;. „.1,,,',,,,74-,---,-;..,•••,. http//eghazap.uags goy,U S.Gmlogical Survey. ,k` i. , - �;,i -Region I is shown enlarged in figure 13-3 -Region 2 is shown enlarged in figure 3.3.5 100• -Region 3 is shown enlarged in figure 3.3-7 -Region 4 is shown enlarged in figure 13-9 . . 1B. iil"0, 11,_$, 4" SI? -, i FIGURE 3.3-2 MAXIMUM Uil M CONSIDERED EARTHQUAKE GROUND MOTION FOR F'43.4? THE CONTERMINOUS UNITED STATES OF 1.0 SEC SPECTRAL RESPONSE 120. ACCELERATION(5%OF CRITICAL DAMPING),SITE CLASS B 115. :..-) • ,- 8-:.-. -`..''.•-• - -. . , , . ; ,. , I, \ ,... ,... . 100° i'... l..' / t 9S. ..: -! 1 r, 1-.........ci 1„ ,_ .• ,,, .,,.• ,1:._ , 7 I 7 — I , -,. 4' -..-.,.. •'s 4i,.._. ....i --7.1..... ..,,_ i I . ..; --- i ), ) 1 r"---r — , .k...,. , ...,t•• ;1- r il L —4-7 I , , . 14-•-•:__,_ 2 i • 4 , .., . - --", r_j_', 45. -----74 - -',. --1.--. i (xi ''''-e IL 1 , a,- i' s[- •-r_ I__,..Ai -. '-‘i L'n, •''''''N1/ ;j r I, -1 -'C'5-2.---L.- - -''''-'Ilel 7 C----i-:i 7 i ./. r_,..14 t 1- -4------- i •-•r• i, r."- .1.. \. i 1 \ i •.Si-)/ - .1 hi I ., i -.1 I.-1 I •rs, ....- -- - r , ."--'. sek: 'I"---j---' •--./ liktie,4,144e, '''''elk 1 --- 1. f''... •r■-■■.- . . trr, .. -' / i ,i . r/'' 2..S k i 1,_. .x‘.. __.'_,E p74:2 7_• 1--..! ',/ /3'•, , *•1 .., ,tor 1,.. ..,% :ii' I kk7:.--i t• , „..... t' ---1-1-711 :,' 11-1-1---r-'-1-':1-1- I' 0 ./ . / - , . .4ailii'—__, ,, i , • i ...:-..... '' ) •::79%)' -. 1 --- • -1:1---- , ,.E).- L:1111111.1"-----/-----h MIL 1).:: e!,,I, ......._!:'; . .. 1.:') ,ii.:i.-,,' Nirtle,01 .7 afp it__ , . ,. --.... V--,, \.,:,,,,, - , - •...,,, -...,- 4110 ;,- - -44......_ , ,,„ '4,11 0/ ir ,,,, ,,i,,,,, , , .. .... ■ r---- ! i . . _ ."‘:!i•itt, 1 it.'..h 4. ..4.. ..- ....._,_ .: r i __ 4 `'''---I c..._ ,-, I /--• . t_. T i I . t- i •---..,_ / •\1.. • .:,,-......._, 'sr 1 r 4 , \ ••=',.'k \iliq '''1.-.:, ".04,,, \ii■rk i r--. ---'.--71-'"."7.---1- b` 1 i ,-.''' . i !....i_ 1 -1- --- ---t--1- _ .I__i_Trk• ''''-7. ..,: it•• i I I I I — --1___.- . '.... 'i ' J' _....,, .......„....„N„ . . r ) .--,1,,,,,vt. ''.:*;'..".P.116.,_. 1 • V i , --- ' .1.r'' '------ IL":Li i`- .-----, --:r• F.)I--i fl--ii--, , ,_-4,-,_ 1,_u_i___.--i..--,,, . i - ' C• I 1 f •• , .._. - -•:: -,, 1 1--c --i- 1...1-'---.-C• I. 17'- , ------ it,,.* -7,•,,7_,,,.., ... ,i . /..4:..\..L.._,: 011 . ' s■\ ''As, • •t y , __ A --.... ! L':1--- _._ i \.ar... '"-- - --:.1 1‘ /I r ..,---4'•- 1 ' -_,P r - 1-1---. , , : ---. - ,- .I.-:"--...i • . -.. Li .. _ J , _i__,_..L. _i_ 1 • I , _____._. A • - -- t •A , 1 DISCUSSION ' . 3.........REFERENCES ---/ ,./. I j p . - t '-.-11-.4 1.--•;" -\-- > ' 'Ari-_. I. r- 1 I 1 .. .-....1 % •. ,....---- -,_, --I. \ 1 ' _Li 1 I '-1.`-....)-(''';.. .'ss22r."..1--'s- The acceleration values contoured on this map are for Building Seismic Safety Council 2004,NEHRP Recorrunerakd ..„, .. .,_1 • -1.1_,..., .....11. ., ..• 1. •, r ). the random horizontal component of acceleration For Provisions for Seismic Regulatiom for New Buildings and I ' ---'.--‘ •;-'s '-_-_), design purposes,the reference site cordition for the map other Structures,Part I-Provisiorn,FEMA 450. ,, I I r % I, T tr. , is to be taken as Site Class B. Building Seismic Safety Council 2004,NEHRP Recommended . I ..----7-- T---i ..j --,:.--;<..2-.--, ...; !- Selected countoun have been deleted for clarity. Provisions for Seismic Regulations for New Buildings and Regional maps should be used when additional detail is other Sanctum,Part 2-Commentary,FEMA 450. required Frankel,A.Petersen,M,Mueller,C,Haller,K,Wheeler,R, ..-....r _fir --'\ - .__, ,.. .......•......e 0„...,... .,. Leyendecker,Frardrel,and Ru.kstales(2001,2004)have Leyendecker,E,Wesson,R,Harmsen,S.,Cramer,C. NI I I %.--j ; ,„(' rr.":-... prepared a CD-ROM that contains software to allow Perkim,D.,and Rulutaks,K,2002,DK Int.-dation for the ---- •- •*-.'' ‘)' ‘).. ---- • ,' •' ,• determination of Site Class B map values by 2002 Update of the National Seismic Hazard Maps,U.S. . 1 I x ,./ ' ' "--, r.). latitude-longitude The software on the CD contains site Geological Survey Open-File Report 02-4211 a • '---' I ''.•AI., .* coefficients that allow the user to adjust map values for Frankel,A,Petersen M.,Mueller,C.Haller,K.Wheeler,R, Index of Mailed zeinonal map(s)at larger scale(s) 1-------T '. • -s•-.- i•c:•'" 1 i '. ..‘','.f...'. different Site Classes Additional map at different Leyendecker,E,WeSSOII,R,Hamner;S.,Cramex C, scales are also included on the CD.The CD was prepared Perkins,D.,and Rukstaks.K,2004,Seismic-Hazard Map using the same data as that wed to prepare the Maximum for the Conterminous United States,Sheet 6-Horizontal ,,, Considered Earthquake Ground Motion maps Spectral Resporne Acceleratrion for 1.0 Second Period with • .f"--.-_I ----1-—r--_,A;;, ,<,.,. The National Sec Hazard Mapping Project Web Site, 2%Probability of Exceedance in 50 Yeam U.S.Geological .. L._1 -c.f.,-. T4 .ec httFire.qh.nmprongs.govr,contains electronic Survey Geologic Investigation Series,scale I,7,000,(X10 ' versions of this map said others.Documentatn,gridded (in progress). f -7- ,'-, — \ f. ..... N 1_1 I k` v.1.,and Arc Crowfages used to make the map Leyendeckec E,Frankel,A,and Rukstales,K,2001,Seismic 1 . ..1.-,'/'''• '"\ C:- '' are also available Design Parameters,US.Geological Survey Open-File . ---A i The California portion of the map was produced jointly Report 01-437. i • 1 .! ' '---' 4 with the California Geological Survey. Leyendecker,E,Frankel,A.and Rulatales,K,2004,Seismic i I t " -1/4‘.,•-: Design Parameters,U.S.Geological Survey Open-File ' ksq‘-‘-'-71 . i Iv,II Map prepared by U.S.Geological Survey. Report(in progress). o National Seismic Hazard Mapping Project Web Site, ., hap/*humans usgs gov,U.S.Geological Survey. x, .",,.., ' -Region)is shown enlarged in figure 3.3-4 I i -Region 2 is shown enlarged in figure 3.3-6 100. 95. -Region 3 is shown enlarged in 61;1.3.3-8 -Region 4 is shown enlarged in figure 3.3-9 • .j 1 loads exceed the specified allowable stresses for the materials of OSHA �( construction. Occupational Safety and Health "f' Administration 1.7 LOAD TESTS 200 Constitution Avenue,NW A load test of any construction shall be conducted when required Washington,DC 20210 by the authority having jurisdiction whenever there is reason to 29 CFR 1910.1200 Appendix A with Amendments question its safety for the intended occupancy or use. as of February 1,2000. Section 1.2 1.8 CONSENSUS STANDARDS AND OTHER OSHA Standards for General Industry,29 CFR REFERENCED DOCUMENTS (Code of Federal Regulations)Pail 1910.1200 Appendix A,United States Department of Labor, This section lists the consensus standards and other documents Occupational Safety and Health Administration, which are adopted by reference within this chapter: Washington DC,2005. TABLE 1-1 OCCUPANCY CATEGORY OF BUILDINGS AND OTHER STRUCTURES FOR FLOOD,WIND,SNOW,EARTHQUAKE, AND ICE LOADS Nature of Occupancy Occupancy Category Buildings and other structures that represent a low hazard to human life in the event of failure,including,but not limited to: • Agricultural facilities • Certain temporary facilities • Minor storage facilities All buildings and other structures except those listed in Occupancy Categories I,III,and IV II Buildings and other structures that represent a substantial hazard to human life in the event of failure,including,but not limited to: III • Buildings and other structures where more than 300 people congregate in one area • Buildings and other structures with daycare facilities with a capacity greater than 150 • Buildings and other structures with elementary school or secondary school facilities with a capacity greater than 250 • Buildings and other structures with a capacity greater than 500 for colleges or adult education facilities • Health care facilities with a capacity of 50 or more resident patients,but not having surgery or emergency treatment facilities • Jails and detention facilities Buildings and other structures,not included in Occupancy Category IV,with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure,including,but not limited to: • Power generating stations° • Water treatment facilities • Sewage treatment facilities • Telecommunication centers Buildings and other structures not included in Occupancy Category IV(including,but not limited to,facilities that manufacture,process, handle,store,use,or dispose of such substances as hazardous fuels,hazardous chemicals,hazardous waste,or explosives)containing sufficient quantities of toxic or explosive substances to be dangerous to the public if released. Buildings and other structures containing toxic or explosive substances shall be eligible for classification as Occupancy Category II structures if it can be demonstrated to the satisfaction of the authority having jurisdiction by a hazard assessment as described in Section 1.5.2 that a release of the toxic or explosive substances does not pose a threat to the public. Buildings and other structures designated as essential facilities,including,but not limited to: IV • Hospitals and other health care facilities having surgery or emergency treatment facilities • Fire,rescue,ambulance,and police stations and emergency vehicle garages • Designated earthquake,hurricane,or other emergency shelters • Designated emergency preparedness,communication,and operation centers and other facilities required for emergency response • Power generating stations and other public utility facilities required in an emergency • Ancillary structures(including,but not limited to,communication towers,fuel storage tanks,cooling towers,electrical substation structures,fire water storage tanks or other structures housing or supporting water,or other fire-suppression material or equipment) required for operation of Occupancy Category IV structures during an emergency • Aviation control towers,air traffic control centers,and emergency aircraft hangars • Water storage facilities and pump structures required to maintain water pressure for fire suppression • Buildings and other structures having critical national defense functions Buildings and other structures(including,but not limited to,facilities that manufacture,process,handle,store,use,or dispose of such substances as hazardous fuels,hazardous chemicals,or hazardous waste)containing highly toxic substances where the quantity of the material exceeds a threshold quantity established by the authority having jurisdiction. Buildings and other structures containing highly toxic substances shall be eligible for classification as Occupancy Category II structures if it can be demonstrated to the satisfaction of the authority having jurisdiction by a hazard assessment as described in Section 1.5.2 that a release of the highly toxic substances does not pose a threat to the public.This reduced classification shall not be permitted if the buildings or other structures also function as essential facilities. °Cogeneration power plants that do not supply power on the national grid shall be designated Occupancy Category II. Minimum Design Loads for Buildings and Other Structures 3 u,r r 8,r =deflection of Level x at the center of the mass TABLE 11.4-2 SITE COEFFICIENT, F, 5 at and above Level x determined by an elastic Mapped Maximum Considered Earthquake Spectral analysis,Section 12.8-6 Response Aecekratlon Parameter at 1•6 Period Site Class Si <0.1 Si =0.2 S1 =0.3 Si=0.4 Si >0.5 8,,„, =modal deflection of Level x at the center of the A 0.8 0.8 0.8 0:8 0.8 1 mass at and above Level x as determined by B 1.0 1.0 _ 1.0 1.0 1.0 Section 19.3.2 _- C 1.7 _1.6 1.5 1.4 1.3 d,,as I =deflection of Level x at the center of the mass 2.4 2.0 1.8 1.6 1.5 i at and above Level x, Eqs. 19.2-13 and 19.3-3 E _3.5 3.2 _2.8_ 2.4 _ 2.4 (in.or mm) - F See Section 11.4.7 B = stability coefficient for P delta effects as deter- NOTE:Use straight-line interpolation for intermediate values of SI. mined in Section 12.8.7 p= a redundancy factor based on the extent of struc- - I tural redundancy present in a building as defined of Section 12.14 is used, the value of Fa shall be determined in in Section 12.3.4 accordance with Section 12.14.8.1, and the values for FL, SMS, ps =spiral reinforcement ratio for precast,prestressed and S,AI I need not be determined. piles in Sections 14.2.7.1.6 and 14.2.7.2.6 A=time effect factor 11.4.4 Design Spectral Acceleration Parameters. Design 120=overstrength factor as defined in Tables 12.2-1, earthquake spectral response acceleration parameter at short pe- 5.4-1,and 15.3-1 riod, SDs, and at 1 s period, SDI, shall be determined from Eqs. 11.4-3 and 11.4-4, respectively. Where the alternate simplified 11.4 SEISMIC GROUND MOTION VALUES design procedure of Section 12.14 is used,the value of SDS shall be determined in accordance with Section 12.14.8.1.and the value 11.4.1 Mapped Acceleration Parameters. The parameters Ss for Sol need not be determined. and S1 shall be determined from the 0.2 and 1.0 s spectral response accelerations shown on Figs. 22-1 through 22-14, respectively. 2 Where SI,is less than or equal to 0.04 and SS is less than or equal SDS = 3 SMS (11.4-3) to 0.15,the structure is permitted to be assigned to Seismic Design Category A and is only required to comply with Section 11.7. 2 - 11.4.2 Site Class. Based on the site soil properties,the site shall SDI = 3 SMI (11.4-4) be classified as Site Class A,B,C,D,E,or F in accordance with Chapter 20. Where the soil properties are not known in sufficient detail to determine the site class,Site Class D shall be used unless 11.4.5 Design Response Spectrum. Where a design response the authority having jurisdiction or geotechnical data determines spectrum is required by this standard and site-specific ground Site Class E or F soils are present at the site. motion procedures are not used, the design response spectrum curve shall be developed as indicated in Fig.11.4-1 and as follows: 11.4.3 Site Coefficients and Adjusted Maximum Considered Earthquake(MCE)Spectral Response Acceleration Param- 1. For periods less than To,the design spectral response accel- eters. The MCE spectral response acceleration for short periods eration,So,shall be taken as given by Eq. 11.4-5: (SINS) and at 1 s (Sidi), adjusted for Site Class effects, shall be determined by Eqs. 11.4-1 and 11.4-2,respectively. So = SDS (0.4+0.61' .6 To) (11.4-5) SMS = FOSS (11.4-1) SM1 = F„S1 (11.4-2) 2. For periods greater than or equal to To and less than or equal where to Ts,the design spectral response acceleration,So,shall be taken equal to Sips. Ss =the mapped MCE spectral response acceleration at short periods as determined in accordance with Section 11.4.1, and S1 = the mapped MCE spectral response acceleration at a period of 1 s as determined in accordance with Section 11.4.1 sp' • where site coefficients Fa and F„ are defined in Tables 11.4-1 3 and 11.4-2,respectively. Where the simplified design procedure j s. TABLE 11.4-1 SITE COEFFICIENT, F, Mapped Maximum Considered Earthquake Spectral So, S Response Acceleration Parameter et Short Period `Site Class Ss<0.25 As=0.5 Ss=0.75 _ Ss=1.0 $5>1.25 T' A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 • C 1.2 1.2 1.1 1.0 1.0 1.6 1.4 ` 1.2 1.1 1.0 E 2.5 1.7 1.2 0.9 0.9 1 A T` Period,Ti'..') F See Section 11.4.7 NOTE:Use straight-line interpolation for intermediate values of Ss. FIGURE 11.4-1 DESIGN RESPONSE SPECTRUM Minimum Design Loads for Buildings and Other Structures 115 b • 3. For periods greater than TS,and less than or equal to TL,the TABLE 11.6-1 SEISMIC DESIGN CATEGORY BASED ON SHORT design spectral response acceleration,Sa,shall be taken as PERIOD RESPONSE ACCELERATION PARAMETER given by Eq. 11.4-6: Occupancy Category Value of Sns I or II III IV SDI SDS <0.167 A A A Sa = T (11.4-6) 0.167<SDS <0.33 B B C 4. For periods greater than TL, Sa shall be taken as given by 0.33 <SDS <0.50 C C D Eq. 11.4-7: 0.50<SDS D I) D Sa = S I L (11.4-7) 11.6 SEISMIC DESIGN CATEGORY Structures shall be assigned a Seismic Design Category in accor- where dance with Section 11.6.1.1. • SDS =the design spectral response acceleration parameter at Occupancy Category I, II, or III structures located where the short periods mapped spectral response acceleration parameter at 1-s period, SDI =the design spectral response acceleration parameter at Si, is greater than or equal to 0.75 shall be assigned to Seismic 1-s period Design Category E. Occupancy Category IV structures located - T =the fundamental period of the structure,s where the mapped spectral response acceleration parameter at 1- s period, SI, is greater than or equal to 0.75 shall be assigned To=0.2 SDI- to Seismic Design Category F. All other structures shall be as- SDS signed to a Seismic Design Category based on their Occupancy _ SDI Category and the design spectral response acceleration parame- TS SOS and ters,SDS and SD],determined in accordance with Section 11.4.4. Each building and structure shall be assigned to the more se- TL =long-period transition period(s)shown in Fig.22-15(Con- vere Seismic Design Category in accordance with Table 11.6-1 or terminous United States),Fig.22-16(Region 1),Fig.22-17 11.6-2,irrespective of the fundamental period of vibration of the (Alaska), Fig. 22-18 (Hawaii), Fig. 22-19 (Puerto Rico, structure,T. Culebra, Vieques, St. Thomas, St. John, and St. Croix), and Fig. 22-20(Guam and Tutuila). Where S1 is less than 0.75, the Seismic Design Category is permitted to be determined from Table 11.6-1 alone where all of 11.4.6 MCE Response Spectrum. Where a MCE response the following apply: spectrum is required, it shall be determined by multiplying the I. In each of the two orthogonal directions, the approximate design response spectrum by 1.5. fundamental period of the structure, To, determined in ac- 11.4.7 Site-Specific Ground Motion Procedures. The site- cordance with Section 12.8.2.1 is less than 0.8T3, where Ts specific ground motion procedures set forth in Chapter 21 are is determined in accordance with Section 11.4.5. permitted to be used to determine ground motions for any struc- 2. In each of two orthogonal directions,the fundamental period ture. A site response analysis shall be performed in accordance of the structure used to calculate the story drift is less than with Section 21.1 for structures on Site Class F sites,unless the T, exception to Section 20.3.1 is applicable.For seismically isolated structures and for structures with damping systems on sites with 3 Eq. 12.8-2 is used to determine the seismic response coef S1 greater than or equal to 0.6, a ground motion hazard analysis ficient C . shall be performed in accordance with Section 21.2. 4. The diaphragms are rigid as defined in Section 12.3.1 or for diaphragms that are flexible,the distance between verti- cal IMPORTANCE FACTOR AND OCCUPANCY cal elements of the seismic force-resisting system does not CATEGORY exceed 40 ft. Where the alternate simplified design procedure of Section 12.14 11.5.1 Importance Factor. An importance factor,1,shall be as- is used,the Seismic Design Category is permitted to be determined signed to each structure in accordance with Table 11.5-1 based from Table 11.6-1 alone, using the value of SDS determined in on the Occupancy Category from Table 1-1. Section 12.14.8.1. 11.5.2 Protected Access for Occupancy Category IV. Where operational access to an Occupancy Category IV structure is re- 11.7 DESIGN REQUIREMENTS FOR SEISMIC quired through an adjacent structure,the adjacent structure shall DESIGN CATEGORY A conform to the requirements for Occupancy Category IV struc- 11.7.1 Applicability of Seismic Requirements for Seismic De- tures.Where operational access is less than 10 ft from an interior sign Category A Structures. Structures assigned to Seismic De- lot line or another structure on the same lot,protection from po sign Category A need only comply with the requirements of tential falling debris from adjacent structures shall be provided by the owner of the Occupancy Category IV structure. TABLE 11.6.2 SEISMIC DESIGN CATEGORY BASED ON 1-S PERIOD RESPONSE ACCELERATION PARAMETER OCCUPANCY CATEGORY TABLE 11.5-1 IMPORTANCE FACTORS Value of Soy I or II HI IV - Occupancy Category 1 SDI <0.067 A A A --)*I or II .. 1.0 0.067<SDI <0.133 B B - C J III 1.25 0.133<SDI <0.20 C C D IV 1.5 0.20< SDI D D D - • 116 ASCE 7-05 =" *N I TABLE 12.2-1 DESIGN COEFFICIENTS AND FACTORS FOR SEISMIC FORCE-RESISTING SYSTEMS Structural System Limitations Seismic Force-Resisting System and Building Height(U)Llmltc nD Y ASCE 7 Section where Response System Deflection Detailing Requirements Modification Overstrength Amplification • are Specified Coefficient,Ra Factor,flog Factor,Cab Seismic Design Category B C Dd Ed F. A. BEARING WALL SYSTEMS . 1. Special reinforced concrete shear walls 14.2 and 14.2.3.6 5 21/1 5 NL NL 160 160 100 2. Ordinary reinforced concrete shear 14.2 and 14.2.3.4 4 21/2 4 NL NL NP NP NP walls 3. Detailed plain concrete shear walls 14.2 and 14.2.3.2 2 21/2 2 NL NP NP NP NP 4. Ordinary plain concrete shear walls 14.2 and 14.2.3.1 11/2 21/2 11/1 NL NP NP NP NP 5. Intermediate precast shear walls 14.2 and 14.2.3.5 4 21/2 4 NL NL 40k 40k 40k 6. Ordinary precast shear walls 14.2 and 14.2.3.3 3 21/2 3 NL NP NP NP NP 7. Special reinforced masonry shear walls 14.4 and 14.4.3 5 21/2 31/2 NL NL 160 160 100 8. Intermediate reinforced masonry shear 14.4 and 14.4.3 31/2 21/2 21/4 NL NL NP NP NP walls 9. Ordinary reinforced masonry shear 14.4 t 13/4 walls 2 2 h 1•% NL 160 NP NP NP 10. Detailed plain masonry shear walls 14.4 2 21/2 13/4 NL NP NP NP NP 11. Ordinary plain masonry shear walls 14.4 11/2 21/2 11/4 NL NP NP NP NP 12. Prestressed masonry shear walls 14.4 11/2 21/2 13/4 NL NP NP NP NP 13. Light-framed walls sheathed with 14.1, 14.1.4.2, 61/2 3 4 NL NL 65 65 65 wood structural panels rated for shear and 14.5 resistance or steel sheets --� 14. Light-framed walls with shear panels 14.1, 14.1.4.2, r2"') 21h 2 NL NL 35 NP NP of all other materials and 14.5 �� 15. Light-framed wall systems using flat 14.1, 14.1.4.2, 4 2 31/2 NL NL 65 65 65 strap bracing and 14.5 B. BUILDING FRAME SYSTEMS 1. Steel eccentrically braced frames. 14.1 8 2 4 NL NL 160 160 100 moment resisting connections at columns away from links 2. Steel eccentrically braced frames, 14.1 7 2 4 NL NL 160 160 100 non-moment-resisting,connections at columns away from links 3. Special steel concentrically braced 14.1 6 t- 2 5 NL NL 160 160 100 frames 4. Ordinary steel concentrically braced 14.1 frames 31 /4 2 31/4 NL NL 3.51 35j NPR 5. Special reinforced concrete shear walls 14.2 and 14.2.3.6 6 21/2 5 NL NL 160 160 100 6. Ordinary reinforced concrete shear 14.2 and 14.2.3.4 5 21/2 41h NL NL NP NP NP • walls 7. Detailed plain concrete shear walls 14.2 and 14.2.3.2 2 _ - 21/2 2 NL NP NP NP NP - 8. Ordinary plain concrete shear walls 14.2 and 14.2.3.1 11/2 21h i 1h NL NP NP NP NP • _ 9. Intermediate precast shear walls _ 14.2 and 14.2.3.5 _ .5 21/2 41/2 NL NL 41k 40k 40k 10. Ordinary precast shear walls 14.2 and 14.2.3.3 - 4 21/2 4 NL NP NP NP NP 11. Composite steel and concrete 14.3 8 2 4 NL NL I� 160 100 • eccentrically braced frames • 12. Composite steel and concrete '14.3 5 2 41/2 NL NL 1 160 100 concentrically braced frames J 13. Ordinary composite steel and concrete 14.3 3 2 3 NL NL NPI NP NP braced frames 14. Composite steel plate shear walls 14.3 _ 61/2 21h 51/2 NL NL 160 160 100 15. Special composite reinforced concrete 14.3 6 21/2 5 NL NL 160 160 100 shear walls with steel elements 16. Ordinary composite reinforced J 14.3 5 21 41/2 NL NL NP NP NP concrete shear walls with steel elements 17. Special reinforced masonry shear walls 14.4 __ 51/2 _ - 21 _ 4 NL NL 160 160 100 18. Intermediate reinforced masonry shear 14.4 4 21/2 4 NL NL NP NP NP • walls - 19. Ordinary reinforced masonry shear 14.4 t A walls 2 2 h 2 NL 160 NP NP NP 20. Detailed plain masonry shear walls _ 14.4 _ 2 21/2 2 NL NP NP NP NP 21. Ordinary plain masonry shear walls 14.4 11/2 21/2 - 11/4 NL NP NP NP NP P 120 ASCE 7-05 STRUCTURAL DESIGN 8 SITE CLASS. A classification assigned to a site based on the D,E or Fin accordance with Table 1613.5.2.When the soil types of soils present and their engineering properties as properties-are not known in sufficient detail to determine the defined in Section 1613.5.2. site class,Site Class D shall be used unless the building offi- cial COEFFICIENTS.The values of F, and F.indicated in or geotechnica] data determines that Site Class E or F • Tables 1613.5.3(1)and 1613.5.3(2).respectively soil is likely to be present at the site. 1613.3 Existing buildings. Additions, alterations. modifica 1613.5.3 Site coefficients and adjusted maximum con tion, or change of occupancy of existing buildings shall he in sidered earthquake spectral response acceleration accordance with Sections 3403.2.3 and 3406.4. parameters.The maximum considered earthquake spectral response acceleration for short periods,S„c,and at 1-second 1613.4 Special inspections. Where required by Section period, S.,,. adjusted for site class effects shall be deter- • 1 705.3, the statement of special inspections shall include the mined by Equations 16-37 and 16-38. respectively: special inspections required by Section 1705.3.1. 1613.5 Seismic ground motion values. Seismic ground SMS=F S, (Equation 16-37) motion values shall he determined in accordance with this sec- tion. SM =F.S, (Equation 16-38) 1613.5.1 Mapped acceleration parameters.The parame- where: tern S,and.S,shall be determined from the 0.2 and 1-second F0 = Site coefficient defined in Table 1613.5.3(1). spectral response accelerations shown on Figures 1613.5(1) through 1613.5(14). Where S, is less than or equal to 0.04 F, = Site coefficient defined in Table 1613.5.3(2). and S,is less than or equal to 0.15,the structure is permitted Ss = The mapped spectral accelerations for short periods to be assigned to Seismic Design Category A. as determined in Section 1613.5.1. 1613.5.2 Site class definitions.Based on the site soil prop- S, = The mapped spectral accelerations for a 1-second erties,the site shall be classified as either Site Class A,B,C, period as determined in Section 1613.5.1. TABLE 1613.5.2 SITE CLASS DEFINITIONS AVERAGE PROPERTIES IN TOP 100 feet,SEE SECTION 1613.5.5 SITE SOIL PROFILE — CLASS NAME Soil shear wave velocity,v 5,(ft/s) Standard penetration resistance,N Soil undrained shear strength,s ,(psf) A Hard rock v, >5,000 N/A _ N/A B Rock I 2,500<v, <_5,000 N/A N/A Very dense soil and soft C rock 1,200<17, _<2,500 N>50 s„ >_2,000 D Stiff soil profile 600 517, _< 1,200 15<_N<_50 1,000 5 i„<_2,000 E Soft soil profile v, <600 N< 15 i < 1,000 Any profile with more than 10 feet of soil having the following characteristics: 1.Plasticity index P1>20, E 2.Moisture content w z 40%,and 3.Undrained shear strength i„<500 psf Any profile containing soils having one or more of the following characteristics: 1.Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils,quick and highly sensitive clays,collapsible weakly cemented soils. p — 2.Peals and/or highly organic clays(H > 10 feet of peat and/or highly organic clay where H=thickness of soil) 3.Very high plasticity clays(H>25 feet with plasticity index P1>75) 4.Very thick soft/medium stiff clays(H>120 feet) For SI: 1 foot=304.8 mm, I square foot=0.0929 m',1 pound per square foot=0.0479 kPa.N/A=Not applicable 2006 INTERNATIONAL BUILDING CODE® 303 T■B LRa)PrJ STRUCTURAL ENGINEERS - PROJECT: Costco#111, Tigard , Oregon NO: 11-016 DATE:April 13, 2011 PAGE OF RE : Desijin Data ENGR • TRATT L. CHK. • Building Code : International Building Code-2006 DEAD LOADS : INSUL. PANEL( WOOD-FRAME ;GALV. ) 3.5" THK. = 3.3 PSF 4.0" THK. = 3.7 PSF 5.0" THK. = 4.6 PSF LIVE LOADS Roof = 10 PSF WIND LOAD Wall = 5 PSF SEISMIC DESIGN : ASCE/SEI 7- 05 Seismic Design Data Seismic Design Category D Spectral response coefficient; SDS= 0.710 Spectral response coefficient; SDI = 0.390 Site class D Seismic Base Shear, V ( Section 12.8 ) V = CsW Cs = Seismic Response Coefficient W = Total Dead Load Cs = Sos [R/IE [ SDS = Design spectral response acceleration at short period ( Section 1613.5.4 : SDS=2/3 SMS ) IE = Importance Factor(Table 11.5-1)= 1.0 R = Response Modification Factor( Table 12.2-1 /A 14 ) S Ms = Fa S s , SMi = Fv Si Ss = Mapped spectral response acceleration for short period [Figure 1613.5 (1)] Si = Mapped spectral response acceleration for a 1-second period [Figure 1613.5 (2)] Fa = Site Coefficient : Table 11.4-1 Fv = Site Coefficient : Table 11.4-2 S Ms = Max. spectral response acceleration at short period S MI = Max. spectral response acceleration at 1 second period SDS = 2/3 SMS(= Fa S s) , SDI = 2/3 SMI (= Fv Si ) SDS = 2 x( 1.120)(0.951) SDI = 2 x( 1.720 )(0.340 ) 3 3 SDS = 0.710 SDI = 0.390 Cs = SDS [ R/IE] = 0.710 = 0.355 [2 / 1.0] So V = Cs W V = (0.355)W ***** • 45'-10" 16'-10 1/8" 10'-0"-- 18'-11 7/8" i - f 4f L LI > I > oh < A > m PRODUCE COOLER M 15'-2 1/2" 15'-3" 15'-4 1/2" WALL LAYOUT 45'-10" m{ m} f — V1 = (110 PLF)(31.5/2) O u = 1733 LBS PRODUCE LP - 0 COOLER � O - M W'"`= (5 PSF)(21.917/2) = 55 PLF Ws = (0.355)[(4.6PSF)(45.833+21.5)] = 110 PLF (GOVERN) 0 } ` } - V1 = (110 PLF)(31.5/2) = 1733 LBS V2 = (87 PLF)(45.833/2) = 1994 LBS V2 = 1994 LBS W WL = (5 PSF)(21.917/2) = 55 PLF Ws = (0.355)[(4.6PSF)(31.5+21.5)] = 87 PLF (GOVERN) . CHECK SHEAR WALL (1) P = (4.6 PSF)(21.917)(45.833/2) = 2310 LBS 31'-6" 1994 LBS 0 N 0 x N TNB TTY Structural Engineers PROJECT: T I GA'RD , 012. NO: DATE: 4-13- 11 PAGE OF RE: P9-0 DOCi COO t-E f2. ENGR:TRATT L• CHK. . .CHECV SHEAQ kA Q Q -) BREAM 4 M0ML3:--W-1 S O -)SHC-A1:- a 1PG4 r-w Clgc)4)(v.nii) S 43.- (b oo) z. r S (4.b P�f:)(21.5 t 1S.2O81?) (34.5) t (2310)(31.5) ( l 000) 2. ( oco) M©- ©w/ 4# NO U P t_ t t-T 4 TIM A9LERR 14 WITTY Structural Engineers PROJECT: NO: DATE: PAGE OF RE: ENGR: CHK. • 1-1/2"x 1-1/2" 18 GA. INSULATED CONTINUOUS AN WALL PANEL #14 x 1-1/2" HEX HD. TEK SCREWS @ 12"O.0 :UTYL SEALANT : 3/8 x 3"WEDGE BOLT 012"0.C. COOLER WALL TO FLOOR' � � _ # 14 IS HEX' H o..•Se.1 " 4/10. .0(.73Air t.E-. 5H-HEA 1 t 1_12e) /i7. w ( 31 _ ) : ( 41 _ igg4 OK Mt.. .40P6E LI N ; ' I I ,N4L0t-)A3Le SH A11 Co420;0930,, r. 251 lC �1 70. ) _1cIn4 Oki 1 ALLOW OLE -reNS1ON. Ca 2 )(41Q$o) '2 '7 1. SCQetr ( 1 ) i - - t1 - " irp I _ ; - , ! - I CHECK SHEAR WALL P = (4.6 PSF)(21.5+15.208/2)(31.5/2) P =[(4.6 PSF)(15.229)+(22](31.5/2) P =[(4.6 PSF)(15.313)+(22)](31.5/2) = 2108 LBS = 1450 LBS = 1456 LBS I 45'-10" 15'-2 1/2" 15'-3" I 15'-4 1/2" 1733 LBS 0 N 0 TUB eA111,131E lb IOD Structural Engineers PROJECT: T GA1 D ' O'R. NO: DATE: 4-13- 11 PAGE OF RE: VRODUCe" COOLER. ENGR:1RATT L. CHK. �w►�:�� tEA41 ALt 4133 M©ML--n11. S 0 1132-) . Mo-r q81-14. 1000) 2 . MY 5 CQ . bPSN)(2i.G'111) 45.cVb) -t(210g)(45.03)4(1450')(w.&2s) C 1000) Z (1000) CI00o) (144-5(0)(is.315) (1 coo) 2100. 41- 4- > MOT 04 it HO UPLI 1- T t4 TUB EAIILE1E 11 fRmwI Structural Engineers PROJECT: NO: DATE: PAGE OF RE: ENGR: CHK. 1-1/2"x 1-1/2" 18 GA. INSULATED CONTINUOUS AN WALL PANEL #14 x 1-1/2" HEX HD. TEK SCREWS @ 12" 0.C.\ :UTYL SEALANT 3/8"x 3"WEDGE BOLT + ZWI @ 12"O.C. ws:.:� COOLER WALL TO FLOOR P # i4 x Z HEx H SCtzew5 . ALLn JAr,L . SHEA 12 fa 42$ sc2-E C4J -"v7 60 ioKy 1 3its x 3 WEDGE 12200. PL 0 s ALLO - At3L St-ie.A11 (0.20 (1030) 2.51 .iScael„4_ (4 ) i11 '92 O A LLOCI A0LE. TEn)stoN Co.2 )Czopo) i I i • CHECK SHEAR WALL 3) P = (4.6 PSF)(21.5+15.208/2)(31.5/2) P =[(4.6 PSF)(15.229)+(22)'(31.5/2) P =[(4.6 PSF)(15.313)+(22(31.5/2) = 2108 LBS = 1450 LBS = 1456 LBS 1 1 15'-2 1/2" 15'-3" 15'-4 1/2" 45'-10" 16'-10 1/8" 10'-0" 18'-11 7/8" 1733 LBS Cl ;-1 CO 0 Tie • 1 DLER 110 WITTY • Structural Engineers PROJECT: T I GAP-E) OP.. NO: DATE: 4.13" 11 PAGE OF RE: PRO POC' COO LEI2. ENGR:YRATT L. CHK. CH E Cg SHE-AIL t%`�tL 1 lr 30 1133 MOM 0 0=D 5H 412VQT s (.411?)('14_Crri) s 20, hS C( 7) N�� S (4-.bPsF) d I.G1'1)(4-5. 1;)t(ZtO' ) .4y.s2)t(14 ')(w0.62qt( ')Ci • 9) (1000) 2 0000) ((voo CI000) S . 220. c c '-w M©T ©K9 UPLIFT 4i C1vi390(1,-84-4 s a� M©Mi�rr�TS ($1S)(21.g11) r 114:x1 ([000) SECTION) mO DOLv S GALS. 2(19 Cam. 2_ 5,411,1;,41 s Co.o2i1)(2 02. 425) s 141:r16 ✓w b C11.Gi)(i2) 0.13 KS ( < bs Ca b)C3b.K5() x14-i.-/b) 21. ( vS( vr.l MOTS C1`133)(21•Gi1) s 3�.giS'_�` 01000 2 z Mr s 220 t (4..b FYI©) k.1b,344=) C1s°r id 0000) L _ 21 401 OKI $� Nd UPL I P=T TOO al1LEIE 20 [RaDwP Structural Engineers PROJECT: NO: DATE: PAGE OF RE: ENGR: CHK. 1-1/2"x i-i/2" 18 GA. INSULATED CONTINUOUS AN WALL PANEL #14 x 1-1/2" HEX HD. TEK SCREWS @ 12"O.C.\ ;UTYL SEALANT 3/8 x 3"WEDGE BOLT+ @ 12"O.C. ...4 •: COOLER WALL TO FLOOR 4 is # 14 x 1 Hex H..Q, scpt-1.45 ALLnwM3'Ll�: SHEA f2 scf2-Ec-) C 1 /1 !:), OK / /6%LLotAt3Le sHe.At2 Coe )(1d3o) 2.51 scQ e ua (, tq-) A LL©t AOLE TL SIoN s (0.2 )C10$0) _a 2 v7 . 1 ScaE� 24 ) i TNB . aDLER 21 WITTY Structural Engineers • PROJECT: T! GAT2 D ) 01Z. NO: DATE: 4-13- 11 PAGE OF RE: SRODUCL COOLE12 ENGR:TRATT L. CHK. SV PPOV:1E bGAM w 14-x2'L WDL S C5 =)CI�.3125) ; v7-7 pLF Wut. 5 C Ro P5v)(1 .3925) ? 154 PL&2- DL s 1. (0'4 Pt.= I. Cot- LA. 2.V' CC 2.5" .TIE The Sadler Group Title: Job# • iffAIPLEIE Structural Engineers Dsgnr: ,\TJJ[fD 500 Main Street,Suite 700 Project Desc.: -2 STRUCTURAL rN61NFrRS Fort Worth,Texas 76102 600 Mai.Stmet.Stmt•700 Project Notes: Fort V.rth,Twee MAI 817-3321074 16U73.21014 Mt{81713311-V116 • won,thes"Fr"or'"'R°O^1 Printed:13 APR 2011.5:15PM Steel Beam Design ENERCALC,INC.1983-2010,Ver:6.1.51, N 49308 Lic.#:KW-06000031 License Owner:THE SADLER GROUP Description: Supported Beam Material Properties Calculations per IBC 2006,CBC 2007,13th AISC Analysis Method: Allowable Stress Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam bracing is defined Beam-by-Beam E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 20061BC&ASCE7-05 Unbraced Lengths Span# 1, Defined Brace Spacing, First Brace at 0.0 ft and spaced at 4.0 ft D(0.0770)L(0.1540) • ♦ • • + Span=31.50ft 2 W14X22 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Loads on all spans... Uniform Load on ALL spans: D=0.0770, L=0.1540 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY Desi•n OK Maximum Bending Stress Ratio = 0.380: 1 Maximum Shear Stress Ratio = 0.063 : 1 Section used for this span W14X22 Section used for this span W14X22 Mu:Applied 31.391 k-ft Vu :Applied 3.986 k Mn/Omega:Allowable 82.616 k-ft Vn/Omega :Allowable 63.020 k Load Combination +D+L Load Combination +D+L Location of maximum on span 15.750ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.596 in Ratio= 634 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <240 Max Downward Total Deflection 0.979 in Ratio= 385 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces&Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma-Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Overall MAXimum Envelope Dsgn.L= 3.94 ft 1 0.166 0.063 13.73 13.73 138.33 82.83 1.64 1.00 3.99 94.53 63.02 Dsgn.L= 3.94 ft 1 0.284 0.047 23.54 13.73 23.54 138.33 82.83 1.19 1.00 2.99 94.53 63.02 Dsgn.L= 4.10 ft 1 0.357 0.032 29.58 23.54 29.58 138.33 82.83 1.08 1.00 1.99 94.53 63.02 Dsgn.L= 3.94 ft 1 0.380 0.015 31.39 29.58 31.39 137.97 82.62 1.01 1.00 0.96 94.53 63.02 Dsgn.L= 3.94 ft 1 0.379 0.016 31.39 29.27 31.39 138.24 82.78 1.02 1.00 1.04 94.53 63.02 Dsgn.L= 4.10 ft 1 0.353 0.033 29.27 22.90 29.27 138.33 82.83 1.08 1.00 2.07 94.53 63.02 Dsgn.L= 3.94 ft 1 0.276 0.049 22.90 12.78 22.90 138.33 82.83 1.18 1.00 3.07 94.53 63.02 Dsgn.L= 3.62 ft 1 0.154 0.063 12.78 12.78 138.33 82.83 1.57 1.00 3.99 94.53 63.02 +D Dsgn.L= 3.94 ft 1 0.065 0.025 5.38 5.38 138.33 82.83 1.64 1.00 1.56 94.53 63.02 Dsgn.L= 3.94 ft 1 0.111 0.019 9.22 5.38 9.22 138.33 82.83 1.19 1.00 1.17 94.53 63.02 Dsgn.L= 4.10 ft 1 0.140 0.012 11.58 9.22 11.58 138.33 82.83 1.08 1.00 0.78 94.53 63.02 Dsgn.L= 3.94 ft 1 0.149 0.006 12.29 11.58 12.29 137.97 82.62 1.01 1.00 0.37 94.53 63.02 Dsgn.L= 3.94 ft 1 0.148 0.006 12.29 11.46 12.29 138.24 82.78 1.02 1.00 0.41 94.53 63.02 Dsgn.L= 4.10 ft 1 0.138 0.013 11.46 8.97 11.46 138.33 82.83 1.08 1.00 0.81 94,53 63.02 Dsgn.L= 3.94 ft 1 0.108 0.019 8.97 5.00 8.97 138.33 82.83 1.18 1.00 1.20 94.53 63.02 Dsgn.L= 3.62 ft 1 0.060 0.025 5.00 5.00 138.33 82.83 1.57 1.00 1.56 94.53 63.02 +D+L Dsgn.L= 3.94 ft 1 0.166 0.063 13.73 13.73 138.33 82.83 1.64 1.00 3.99 94.53 63.02 Dsgn.L= 3.94 ft 1 0.284 0.047 23.54 13.73 23.54 138.33 82.83 1.19 1.00 2.99 94.53 63.02 Dsgn.L= 4.10 ft 1 0.357 0.032 29.58 23.54 29.58 138.33 82.83 1.08 1.00 1.99 94.53 63.02 Dsgn.L= 3.94 ft 1 0.380 0.015 31.39 29.58 31.39 137.97 82.62 1.01 1.00 0.96 94.53 63.02 Dsgn.L= 3.94 ft 1 0.379 0.016 31.39 29.27 31.39 138.24 82.78 1.02 1.00 1.04 94.53 63.02 Dsgn.L= 4.10 ft 1 0.353 0.033 29.27 22.90 29.27 138.33 82.83 1.08 1.00 2.07 94.53 63.02 • THE The Sadler Group Title: Job# • • SAI)LE Structural Engineers Dsgnr: ITILD 500 Main Street,Suite 700 Project Desc.: STRUCTURAL ENGINEERS Fort Worth,Texas 76102 500Moin3trmt-cwe,m o Project Notes: Fort WorI late 76179 817-3321074 19171332.1074 FAX(017}134-09.15 ^ www.tbaaadhrymup.com Printed:13 APR 2011,5:15PM Steel Beam Design ENERCALC,INC.1983-2010,Ver.6.1.51, N.49308 Lic.#:KW-06000031 License Owner:THE SADLER GROUP _ Description: Supported Beam Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma-Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Dsgn.L= 3.94 ft 1 0.276 0.049 22.90 12.78 22.90 138.33 82.83 1.18 1.00 3.07 94.53 63.02 Dsgn.L= 3.62 ft 1 0.154 0.063 12.78 12.78 138.33 82.83 1.57 1.00 3.99 94.53 63.02 Overall Maximum Deflections-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max.'4"Dell Location in Span D+L 1 0.9793 15.908 0.0000 0.000 Vertical Reactions-Unfactored Support notation Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAKunum 3.986 3.986 D Only 1.561 1.561 L Only 2.426 2.426 D+L 3.986 3.986 •T1118 �I The Sadler Group Title: Job# AI)LIT I Structural Engineers Dsgnr: ,LUTGt`, 500 Main Street,Suite 700 Project Desc.: 2�tf STRUCTURAL FNGINFFRS Fort Worth,Texas 76102 - 600 Main etrne!-9mle 700 Project Notes: Fart VbM,Tomo N O 79 817-3321074 le17i332 IOTA FAX(Ill TI.17F033 • www.uhaawhrynvup-Porn Printed:13 APR 2011,5: PM Wood Column ENERCALC,INC.1983-2010,Ver:6.1.51, N.49308 Lic.#: KW-06000031 License Owner:THE SADLER GROUP Description: (4)-2X6 POST General Information Code Ref: 2006 IBC,ANSI I AF&PA NDS-2005 Analysis Method: Allowable Stress Design Wood Section Name 4-2x6 End Fixities Top& Bottom Pinned Wood Grading/Manuf. Southern Pine Overall Column Height 21.50 ft Wood Member Type Sawn (Used for non-slender calculations) Exact Width 6.0 in Allowable Stress Modification Factors Wood Species Spruce- Pine-Fir(South) Exact Depth 5.50 in Cf or Cv for Bending 1.0 . Wood Grade No.2 ^ Cf or Cv for Compression 1.0 Fb-Tension 775 psi Fv 135 psi Area 33.0 in 2 P Ix 83.188 inA4 Cf or Cv for Tension 1.0 Fb-Compr 775 psi Ft 350 psi ly 99.0 in^4 Cm:Wet Use Factor 1.0 Fc-Prll 1000 psi Density 23.19 pcf Ct:Temperature Factor 1.0 Fc-Perp 335 psi Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NDS 15.3.2 Basic 1100 1100 1100 ksi Use Cr:Repetitive? No(non- lb only) Minimum 400 400 Brace condition for deflection(buckling)along columns: Load Combination 20061BC&ASCE7-05 X-X(width)axis:Unbraced Length for X-X Axis buckling=21.5ft,K=1.0 Y-Y(depth)axis:Unbraced Length for Y-Y Axis buckling=21.5 ft,K=1.0 Applied Loads Service loads entered. Load Factors will be applied for calculations. Column self weight included : 114.26 lbs*Dead Load Factor AXIAL LOADS. . . Axial Load at 21.50 ft, D= 1.60, L=2.50 k BENDING LOADS. . . , E=0.3890 DESIGN SUMMARY _- Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.8796 :1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+L Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k Governing NDS Formla Comp Only, fc/Fc' Top along X-X 0.0 k Bottom along X-X 0.0 k Location of max.above base 0.0 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are... Along Y-Y 0.0 in at 0.0 ft above base Applied Axial 4.214 k for load combination: n/a Applied Mx 0.0 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 145.18 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.0:1 Bending Compression Tension Load Combination +D+L Cf or Cv:Size based factors 1.000 1.000 Location of max.above base 21.50 ft Applied Design Shear 0.0 psi Allowable Shear 135.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D 0.3578 PASS 0.0 ft 0.0 PASS 21.50 ft +D+L 0.8796 PASS 0.0 ft 0.0 PASS 21.50 ft Maximum Reactions-Unfactored Note: Only non-zero reactions are listed. X-X Axis Reaction Y-Y Axis Reaction Load Combination @ Base @ Top ©Base @ Top D Only L Only E Only -E Only D+L D+E D-E Only TIE `' The Sadler Group Title: Job# • �1I)LE I Structural Engineers Dsgnr: ��(�� 500 Main Street,Suite 700 Project Desc.: 2 !STRUCTURAL ENaINFFRR Fort Worth,Texas 76102 30o Mein Strom-6uA0714 Project Notes: F^^w .Tao*76'3 817-3321074 . t617)331-1071 FAX AO 14131-0333 www.th .dhrproup-com Printed:13 APR 2011,5:19PM Wood Column ENERCALC,INC-1983-2010,Ver:6.1 51, N 49308 Lic.#:KW-06000031 License Owner:THE SADLER GROUP - Description: (4)-2X6 POST Maximum Reactions-Unfactored Note:Only non-zero reactions are listed. X-X Axis Reaction Y-Y Axis Reaction Load Combination @ Base @ Top @ Base @ Top D+L+E D+L-E Only Maximum Deflections for Load Combinations -Unfactored Loads Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance - D Only 0.0000 in 0.000 ft 0.000 in 0.000 ft L Only 0.0000 in 0.000 ft 0.000 in 0.000 ft E Only 0.0000 in 0.000 ft 0.000 in 0.000 ft -E Only 0.0000 in 0.000 ft 0.000 in 0.000 ft D+L 0.0000 in 0.000 ft 0.000 in 0.000 ft D+E 0.0000 in 0.000 ft 0.000 in 0.000 ft D-E Only 0.0000 in 0.000 ft 0.000 in 0.000 ft D+L+E 0.0000 in 0.000 ft 0.000 in 0.000 ft D+L-E Only 0.0000 in 0.000 ft 0.000 in 0.000 ft Sketches M-5f'toads $ n =milimis. ._ . . ., —.‘ L 0 1 N , II L F7Y! 1 to:, Loads are total entered value.Arrows do not reflect absolute direction. .•e AIILEIE ORaC Go 2 (9 Structural Engineers . PROJECT: NO: DATE: PAGE OF RE: ENGR:Tf2-ATT - CHK. 3/8" X 7" LAG BOLTS / (COUNTER SUNK)C0Z4'O.C. RECESS /` - SCREWS GASKET TO 4111- JOINTOSN & SILICONE ALL ACCOMMODATE / CLEAR MIA ALL EXTERIOR JOINTS. SILICONE M !I \#8 X 3/4" HEX HEAD SCREWS © 12" O.C. 1 1/2" X 1 1/2" WEG INSIDE CORNER TRIM I I U J I r ) D. UPI i I`_i :? TOP `E�-V .1E L 5 .._ :5 , ©0 p 51= it 5 INSUL. PANT L � \,-,31:::: i(-3C-(7 CDL) ! 4. b0 PSIS ! 1\4=2.7. uPLH T ©. 40 Ps . 1 UPL. q- ; @ ED 41- O F Top p,'At 1 C. i i I 2. k T1-t'RE A D LE/10TH t 25 - Pf_LLQC/lr\e?Lt UP L I -- " . ' (2)(19)(0 Lj/iM)( 3'z ) 50 -C-0ooDi I u5E C1(0) - 2,/.3 I .< 'i u�c-; 11)9.75 69o0 P 1 I AL LOcaik L SHFfa CU) P 4 f BOLT I 1 . . , AL LOtiuA( 67 .S(C-:/-`i c_ l) = 34O 4 LT (.06.11• :bc..s) 4 �� I i . AL.Ld[,J/g1...iL' 5b-.'(.::.A,1- - 340 ciE 4 1 5 5440 19.01A aK A v m 0 -. m _.. _ c) 0 TABLE 7.25 Withdrawal Design Values for Lag Screws in Softwood Glued Laminated Timber° N _k. Lag Bolt Diameter Ef n TO ° Growth +i t6 7 3 7 s x 1!l Species Rate° 0.250 0.3125 0.375 10.4375 0.500 0.5625 0.625 0.750 0,875 1.000 1.125 1.250 < s, 1, le, la, Southern n Dense 260 307 352 Pine Medium 395 437 477 516 592 664 734 802 868 • Grain 260 307 352 395 437 477 516 592 664 734 802 868 Coarse Grain 167 198 226 254 281 307 332 381 428 473 516 559 Douglas , Fir-Larch 225 266 305 342 ;� Hem_Fir 179 212 243 273 302 413 447 513 576 636 695 752 z °�° �'2–J Softwood 330 357 409 459 508 O W 554 600 Species 137 RI IIIVP 163 186 209 231 253 273 313 352 389 % Ei E" Ca i ornia Close 425 460 Redwood Grain 186 220 252 283 312 340 369 423 % pe m Douglas 475 525 574 621 Z Fir South 199 235 m 269 302 334 364 395 453 508 'Normal load duration, d 562 613 664 dry service conditions.Design values for load in withdrawal in lb/in. of penetration of threaded part into side grain of the laminations load receiving the point. to Table 3, AITC 117—Design(4)for species, rate of growth, and location of lumber used in various combinations. For others species Table 7.24 for withdrawal design values based on specific gravity obtained from Table 7.21. `D= shank diameter. pe s refer n 2 A 7C 0 m 0 N I • • . . • • - WESTERN WOODS USE BOOK 2a BLE 8.17 — LATERAL RESISTANCE OF LAG SCREWS IN SIDE FASTENERS ' / SIDE GRAIN / Diameter Wood Side Members stile L.agth of tag Total Lateral Load Per Lag Screw in Single Shear(Pounds) Member of Lag Screw • Thickness Screw Shank GROUP I riOUP II GROUP III GROUP ty • Parallel Perpendicular Para^•••••'.endicuiar Parallel Perpendicular Parag.l (inches) (inches) (inches) to Grain to Grain to Grain to Grain. to Grain to Grain to Grain Peto o Cr Grzind 1-1%2 4 1/4 200 190 Grain 5/16 280 230 210 180 150 130 120 100 3/8 320 240 240 180 170 130 140 100 7/16 350 250 270 190 190 140 150 110 1/2 390 250 290 190 210 140 5/8 470 280 360 210 260 150 200 1i0 5 1/4 230 220 200 190 180 170 160 150 5/16 330 280 290 250 230 200 190 160 3/8 430 330 370 280 260 200 210 160 7/16 540 380 400 290 290 210 230 1/2 580 380 440 280 310 200 250 160 6 1/4 710 420 530 320 380 230 310 180 270 260 230 220 200 200 180 1 5/16 380 320 33Q -�2$0 290 250 260 120 .A a .. X 20 220 7/16 590 420 510 360 ` -400 80 T .� 0 1/2 700 460 600 390 430 280 340 220 5/8 1/4 860 510 710 430 510 310 410 250 280, 270 240 230 210 210 190 180 5�7/16 5200 • 340 4.50 350 340Q0 310 270 280 230 6 640 460 560 390 500 350 420 270 1/2 760 500 660 430 560 360 450 290 5/8 910 550 790 470 640 380 510 .310 2-1/2 6 3/8 450 340 370 280 270 200 210 160 7/16 570 400 430 310 310 220 250 180 1/2 620 410 470 310 340 220 . 270 180 5/8 730 440 550 330 390 240 320 190 3/4 820 450 620 340 440 240 360 200 7/8 930 490 710 370 500 260 400 1 1040 520 790 390 560 280 450 230 • 7 3/8 500 380 430 330 370 280 300 220 7/16 660 470 570 410 420 300 340 240 1/2 830 540 650 420 460 300 370 240 5/8 1000 600 750 450 540 320 430 260 3/4 1110 610 840 460 600 330 480 270 7/8 1260 660 950 500 680 360 550 290 1 1420 710 1070 540 770 380 620 310 8 — 3/8 550 420 480 360 430 320 380 290 7/16 720 510 630 440 550 390 440 310 1/2 890 580 770 500 600 390 480 310 5/8 1230 740 970 580 700 420 560 340 3/4 1430 790 1080 600 780 430 620 340 7/8 1590 830 1200 630 860 450 -690 360 1 1800 900 1360 680 970 490 780 390 9 3/8 600 460 520 390 460 350 410 310 7/16 790 560 680 480 610 430 540 380 1/2 970 630 840 540 750 490 600 390 5/8 1310 790 1130 680 860 520 690 420 3/4 1670 920 1340 740 960 530 770 420 • 17/8 2 170 1090 1640 820 1180 590 940 470 3-1/2 8 3/8 450 340 390 300 350 270 280 210 7/16 620 440 530 380 410 290 330 230 1/2 800 520 640 410 460 300 370 240 5/8 1030 620 780 470 560 340 450 270 7/8 1300 680 980 510 700 370 560 290 s aaam.. TU8 EADLEIt URED[CP 2 C Structural Engineers PROJECT: NO: DATE: PAGE OF RE: ENGR: j tom.- t-k- F L CHK. iA M l�s = X `1 fLr 4 A s 5 wL 3$4 EI CW)(45. ")(1'1222) SHEAR- %� I q O 0133y WALL. 31 -1) / 2 45'- 10" 8� 2. F -;-()P PANEL S (8.`/)(4h.533) 46(2)1.9) s- 1q4 Q s PL -t- 1. 21L 3F= A G. s(ig 4)(zI.cn'11(1'72g)t (1.2)( 1c 4.(. `'ri)(,�) 21 '1 3(2-rix161)(2;A-6:) (001.5)(l2)( ,,zx17)) 01S'e, EL . SHEA`2. w D1A gAGM i) _F(... < 2 rlMEs 517PY i FT GI 0 0. 0133 < (2x ©.©1(38 O, Y51o ) 'RIGID 171m1-WA m TEE CA11LE1R • • IR OWED 30 Structural Engineers PROJECT: NO: DATE: PAGE OF • RE: ENGR: "WATT L CHK. MOM�oJ� OF TNE.fT(A . S. ft TOP 9ANf L C t 0.02'r/ r 1 y l S" 31—t N 12 3 C3`7B ) S (5)(3*g) - (4 '1)(31 i.G5r1) 12. 2k 5� 5 V2) 4-C62- a414 SIDE 'PANEL C, t 0.02V-711 ) y I - bO of 24 I f l —/(S 9`i //GG iY*••j {rte I,,, ] Vn} \J 12 5h -- - 22,4Wi 4 141-10 c TO9- Q - 2 - 24 Ap C31.5)(4-5. 1)) J_ Y ioxy 5 14.43•x, -H S 2 - 44A0v, 3 88 a d14-4 Tt5 044-/ ') SAY A 5 1. 0 TIE • CAIOLEIt flR T�D1 iri pD 1) : Structural Engineers PROJECT: NO: DATE: nn PAGE OF RE: ENGR:TRATT L. CHK. • • # 14:% 1zITRUss .HAl skrZ h `- 'S!-.I A 2..CA PAC_'_{-?Y _ 1 r . , I• • i r � r i i • Pas A Li.0 A_.5. 1, �N EAt e? 1 R ;5C(L Ec.9 1 �M 1 RJO`'RMA L 5H CAI ?REND i_ + 1' I._ 44 z FACTOR OF; SA FIE TY ; 3- . 3.© i ;• 1 • 1 ' r H .. .q7_F M McRI IN CTNT/ T. 'w/_ _q_,RE J I&tr i_3. tB A. I � _ i- tn-I . 4t -ME4E Ri, Nip I' c,�pN Ti t-4/ � E&tP s 2E GA. T� J � TUNS 1 LE• STfZE Thl, Qtk MENt Eft I'N Orr wl,S �..!:. HAD ' 56KsP -1)1_•_ . +ENS_I .E StR TKt.4F M.�"1 'L`11_NQ's' 1N ! 01 SERF 0. k.AD r X59 K15i- i ' i i I I i 1 . I PM 13 g 0.02 9 7 Y(O.I42) ?C5.29oo io) r; 8 ! i . . t , H a Ifs.c.irt-io I ; , ; ' i 1 '. • I -Powers Wedge-Bolt'+ PRODUCT INFORMATION FASTENERS g Wedge-Bolt+ Screw Anchor ` f1 PRODUCT DESCRIPTION SECTION CONTENTS Page No. > The Wedge-Bolt+anchor is a one piece, heavy duty screw anchor with a finished hex General Information 1 * Z head. It is simple to install,easy to identify and fully removable. The Wedge-Bolt+ has Material Specifications 1 • t1 features and benefits that make it well suited for many applications. The steel threads > along the anchor body tap into the hole during installation to provide keyed engagement. Installation Specifications 2 Suitable base materials include normal-weight concrete, structural sand-lightweight Installation Instructions 3 concrete, concrete over steel deck, concrete masonry and solid clay brick. The anchor is designed for consistent and reliable performance in cracked and uncracked concrete. SD Performance Data 4 SD Factored Design Strength 6 GENERAL APPLICATIONS AND USES ASD Performance Data 8 • Racking, shelving and material handling Masonry Performance Data 9 •Support ledgers and temporary attachments • Interior applications/low level corrosion environment Ordering Information 12 • Retrofits, repairs and maintenance •Fencing and railing •Seismic and wind loading aSSSIS'FEATURES AND BENEFITS --- �` +Consistent performance in high and low strength concrete Wedge-Bolt+ +Anchor can be installed through standard fixture holes +Wedge-bit size is matched to the nominal anchor diameter ANCHOR MATERIALS + Diameter, length and identifying marking stamped on head of each anchor +Fast installation with a powered impact wrench Zinc plated carbon steel body +One-piece, finished head design eliminates improper assembly or missing components and hex washer head APPROVALS AND LISTINGS ANCHOR SIZE RANGE(TYP.) International Code Council, Evaluation Service(ICC-ES), ESR-2526 for concrete. International Code Council, Evaluation Service(ICC-ES), ESR-1678 for concrete masonry. 1/4"diameter(uncacked concrete) Code compliant with the 2006 IBC, 2006 IRC, 2003 IBC, 2003 IRC and 1997 UBC 318"diameter through 3/4"diameter Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318(Strength Design method using Appendix D) SUITABLE BASE MATERIALS Evaluated and qualified by an accredited independent testing laboratory for recognition in Normal-weight concrete cracked and uncracked concrete including seismic and wind loading(Category 1 anchors) Structural sand lightweight concrete Evaluated and qualified by an accredited independent testing labortatory for reliability against brittle failure,e.g.hydrogen embrittlement Concrete over steel deck Grout-filled concrete masonry GUIDE SPECIFICATIONS Solid day brick CSI Divisions 03151-Concrete Anchoring, 04081 Masonry Anchoring and 05090-Metal Fastenings. Screw anchors shall be Wedge-Bolt+as supplied by Powers Fasteners,Inc.,Brewster; NY.Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction. �,f4NlG r t MATERIAL SPECIFICATIONS ' ,f _w= ICC Anchor component Specification 11-* 'rn,c Anchor body and hex washer head Case hardened low carbon steel Plating Zinc plating according to ASTM 8 633,SC 1,Type III(Fe/Zn 5) Minimum plating requirement for Mild Service Condition e • . _b2 -Powers FASTENERS PRODUCT INFORMATION Wedge-Bolt + INSTALLATION SPECIFICATIONS '( Installation Table for Wedge-Bolt+(Design Provisions of ACI 318 Appendix D) '2 Nominal Anchor Size 4 Anchor Property/Setting Information Notation Units T 1/4" 3/8" 1/2" 5/8" 3/4" U Nominal anchor diameter do in. 0.250 0.375 0300 0.625 0.750 ill (mm) (6.4) (9.5) (12.7) (15.9) (19.1) 2 in fixture diameter of hole clearance dh (mm) 5/16) (11,1) (14.3) (17.5) (20.6) Nominal drill bit diameter db in. 1/4 3/8 1/2 5/8 3/4 it Wedge-bit Wedge-bit Wedge-bit Wedge-bit Wedge-bit Wedge-bit tolerance range - in. O.to55 O.to85 0.t 90 0.600 to 0.t 20 o 0.259 0.389 0.495 0.605 0.725 Minimum in. 1-3/4 2-1/8 2-12 3-1/2 3-1/4 4-3/8 4-1/4 inimum nominal embedment depth h (mm) (44) (54) (64) (89) (83) (111) (108) Effective embedment h in. 1.100 1.426 1.652 2.502 2.146 3.102 2.909 (mm) (28) (36) (42) (64) (55) (79) (74) Minimum hole depths he in. 2 2-1/2 3 4 4 5 5 (mm) (51) (64) (76) (102) (102) (127) (127) Minimum concrete member thicknesst hmn in. 4 4 5 6 6 7 7 (mm) (102) (102) (127) (152) (152) (178) (178) in. 2-1/4 2-1/2 3 4 4 5 5 Minimum overall anchor length anon (mm) (57) (64) (76) (102) (102) (127) (127) Minimum edge distances Amin in. 2-3/4 2-1/4 3 3 4 4 5 {mm) (70) (57) (76) (76) (102) (102) (127) Minimum edge distance, _ in. 1-3/4 1-3/4 1-3/4 1-3/4 1-314 1-3/4 close edge condition corn (mm) - (44) (44) (44) (44) (44) (44) Minimum spacing distances smin in. 4 3 4 4 5 5 6 (mm) (102) (76) (102) (102) (127) (127) (152) Critical edge distances c c in- 2-3/4 3-1/4 3 4 4 5 6 (mm) (70) (83) (76) (102) (102) (127) (152) Maximum impact wrench power(torque) Tscrew ft. Ib. 115 245 300 350 400 (N-m) (156) (332) (407) (475) (542) Impact wrench socket size - in. 7/16 9116 3/4 15/16 1-1/8 Head height - in. 7/32 21/64 7/16 1/2 19/32 1.For installations through the soffit of steel deck into concrete,see the installation detail.Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute.In addition,anchors shall have an axial spacing along the flute equal to the greater of 3hef or 1.5 times the flute width. 2.for installations in concrete(excluding the soffit of steel deck)with the listed edge distance,the anchor spacing distance must be equal to or greater than 5hnom. Wedge-Bolt+ Anchor Detail Hex Head Marking ,w. ! Legend , Diameter and Length Identification Mark ////// '+' Symbol=.Strength Design Compliant Anchor dh ///////4 ■ A _ (see ordering information) a a r;)'- V Matched Tolerance System ♦ /1 1) , < Hex 7 o het Washer *—Blue Tip Qancn �1 hnom Head I Marking Serrated Dual Thread II , ho Underside Profile t ,........--', / __, aimmikimement Blue Wedge-bit . fa d bit Ili_ Designed and tested as a system for consistency and reliability NW' . e -?cowers Wedge-Bolt'+ PRODUCT INFORMATION FASTENERS ?,,,,, INSTALLATION INSTRUCTIONS •4 - = Installation Instructions for Wedge-Bolt+ D . z ICJ i J. _ , '.: _ i f / 4 :::,,,..- ,,„ , 4 : 100 • . . . ., . , , r 4 4 ....5. ,...( : . . . ,, , .. a + ' •• . fa. • a /447."-°' 4 * * . ♦ ♦• a 1,: , . *44,,,,e....•4 . - a 4 4 • • t.)Using the proper Wedge- 2.)Remove dust and 3.)Select a powered impact 4.)Drive the anchor through bit size, drill a hole into the debris from the hole. wrench that does not exceed the fixture and into the hole base material to the required the maximum torque,T„,,,,, until the head of the anchor depth. The tolerances of the for the selected anchor comes into contact with the carbide Wedge-bit used diameter Attach an fixture. The anchor should must meet the requirements appropriate sized hex socket to be snug after installation. Do of the published Wedge-bit the impact wrench. Mount the not spin the hex socket off range. screw anchor head into the the anchor to disengage. socket Installation Detail for Wedge-Bolt+ Installed Through Soffit of Steel Deck into Concrete STRUCTURAL SAND-LIGHTWEIGHT CONCRETE OR NORMAL WEIGHT CONCRETE OVER STEEL DECK(MINIMUM 3,000 PSI) t 3/4'art MIN. UPPER FLUTE (VALLEY) •�•f.•..,`I ••� ,4 :r• ♦ -j• - a•;• S•' 4 s . � • .. . .'S • 4x s- MIN.3-1/4 _! _ • i a l i .-. • 't;,•, •`1 r : I•. '•4.., •• : ,•• • ' • 4.4. e' • ' • Aa s • • - !- ti I kW.3` a i •� .. ,.• •i. a• • I - i WEDGE-BOLT+ • MIN.4-1/2" •.• :4• • (TYP) 4 (TiP) •VIII '� MIN.4-1/2 I _ MIN.12"(TYP) t (•IYP) fI—'"' 1..—MIN.1-1/4" LOWER FLUTE(RIDGE) -- NO.20 GAGE STEEL DECK MIN. -- • FLUTE EDGE — e . . -Powers FASTENERS PRODUCT INFORMATION Wedge-Bolt°+ SD PERFORMANCE DATA Tension Design Information (For use with load combinations taken from ACI 318 Section 9.2)1,23 Nominal Anchor Size Design Characteristic Notation Units 1/4' 3/8" 1/2" 518" 3/4" Anchor category 1,2 or 3 - 1 1 1 1 1 Nominal embedment depth ham, in. 1-3/4 2-1/8 i 2-112 3-1/2 3-1/4 4-318 4-1/4 STEEL STRENGTH IN TENSION4 Minimum specified ultimate strength f� ksi z 100.0 100.0 1 D0.0 t 00.0 100.0 (N/mm ) (990) (990) (990) (990) (990) Effective tensile stress area Ase in22 0.044 0.103 0.168 0.249 0.371 (mm 2) (1.10) (2.66) (4.28) (6.41) (9.53) Steel strength in tension Ng lb 4,400 10,300 16,800 24,900 37,100 (kN) (19.6) (45.8) (74.7) (110.7) (164.9) Reduction factor for steel strength3 ap - 0.65 CONCRETE BREAKOUT STRENGTH IN TENSIONS Effective embedment hef (mm) 1.100 1.426 1.652 2.502 2.146 3.102 2.909 (28) (36) (42) (64) (54) (79) Effectiveness factor for uncracked concrete k„r,cr - 24 24 24 24 24 Effectiveness factor for cracked concrete kv - 17 17 17 17 Modification factor for cracked and W 1.0 1.0 1.0 1.0 1.0 uncracked concretes 4N See note 5 See note 5 See note 5 See note 5 See note 5 Critical edge distance ca, in. 2-3/4 3-1/4 3 4 4 5 6 (mm) (70) (83) _ (76) (102) (102) (127) (152) Reduction facto for concrete breakout strength3 4 - 0.65(Condition B) PULLOUT STRENGTH IN TENSION(NON-SEISMIC APPLICATIONS)8 Characteristic pullout strength, lb See note 7 See note 7 See note 7 See note 7 See note 7 See note 7 See note 7 uncracked concrete(2,500 psi)6 NPuncr (kN) - Characteristic pullout strength, N lb No 2,965 3,085 4,290 See cracked concrete(2,500 psi)6 PQ (kN) Data See note 7 See note 7 (13 2) (13.7 ) (19.1) note 7 Reduction factor for pullout strength3 0 - 0.65(Condition B) PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS8 Characteristic pullout strength, N lb No 1,085 1,350 2,520 3,085 4,290 4,270 seismic6.(1500psi)9 R7 (kN) Data (4.8) (6.0) (11.2) (13.7) (19.1) (19.0) Reduction factor for pullout strength3 0 - 0.65(Condition B) PULLOUT STRENGTH IN TENSION FOR STRUCTUAL SAND-LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE OVER STEEL DECK Characteristic pullout strength, N lb No 2,010 2,480 2,215 Data � uncracked concrete over steel decklo Pder>Kuna- (kN) Data (8.9) (11.0) (9.8) Characteristic pullout strength, lb No 1,425 1,755 1,570 No No cracked concrete over steel deckto NA a- (kN) Data (6.3) (7.8) (7.0) Data Data Reduction factor for pullout strength3 +p - 0.65(Condition B) 1. The data at this table is intended to be used with the design provisions of ACI 318 Appendix D;fcr anchors resisting seismic load combinations the additional requmements of ACI 318 033 shall apply. 2. Installation must comply with published instructions and details. 3. All values of iwere determined horn the load combinations of AG 318 Section 9.2. If the load combinations of Appendix C are used,the appropriate value of tpmust be determined in accordance with ACI 318 D.4.5.For reinforcement that meets ACI 318 Appendix 0 requirements for Condition A,see ACI 318 D.4.4 for the appropriate rfi factor. _ 4. The Wedge-Bolt+is considered a brittle steel element as defined by ACI 318 D.1. 5. For all design cases use tp N= 1.0.Select appropriate effectiveness factor for cracked concrete(kc,)or untracked concrete(kunc,_). 6. For all design cases use = 1.0.For concrete compressive strength greater than 2,500 psi,Ni,,,=(pullout strength value from table)*(specified concrete compressive strength/2500)°.S. • 7. Pullout strength does not control design of indicated anchors. Do not cakulate pullout strength for indicated anchor size and embedment. 8. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2,Section 9.5. 9. Anchors are permitted to be used in structural sand-lightweight concrete provided that Nb and Np„are multiplied by a factor of 0.60(not required for steel deck). 10. Values for N,, are are for structural sand-lightweight concrete(f c;min=3,000 psi)and additional lightweight concrete reduction factors need not be applied. In addition,evaluation for the concrete breakout capacity in accordance with ACI 318 D.5.2 is not required for anchors installed in the flute(soffit). e ?)E-,-., ?owers Wedge-Bolt°+ PRODUCT INFORMATION FASTENERS n SD PERFORMANCE DATA m • • ri Shear Design Information (For use with load combinations taken from ACI 318 Section 9.2)1,2.3 ▪ Z Nominal Anchor Size Design Characteristic Notation Units • > 1/4' 3/8' 1/2" 5/8' 3/4' r- Anchor category 1,2 or 3 - 1 1 1 1 1 Nominal embedment depth h, r, in. 1-3/4 2-1/8 2-1/2 3-1/2 3-1/4 4-3/8 4-1/4 STEEL STRENGTH IN SHEAR"r° Steel strength in shears V, lb 2,475 4,825 7,980 11,990 19,350 (kN) (11.0) (21.5) (35.5) (53.3) (86.1) Reduction factor for steel strength 3 - 0.60 CONCRETE BREAKOUT STRENGTH IN SHEAR'" Load bearing length of anchor in. 1.100 1.426 1.652 2.502 2.146 3.102 2.909 (Nor 8d0,whichever is less) 4 (mm) (28) (36) (42) (64) (54) (79) (74) Nominal anchor diameter do in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) i (9.5) (12.7) (15.9) 1 (19.1) Reduction factor for ccncrete breakout strength3 0 - 0.70(Condition B) CONCRETE PRYOUT STRENGTH IN SHEAR' Coefficient for pryout strength (1.0 for hei<2.5 in.,2.0 for hi>_2.5 in.) kcP - 1.0 1.0 1.0 2.0 1.0 2.0 2.0 3.102 2.909 Effective embedment hef ( m) 1(2180)0 1(36.426 (36} 1.652 2.502 (6 4) (54) (79) (74) Reduction factor for pryout strength3 0 - 0.70(Condition B) STEEL STRENGTH IN SHEAR FOR SEISMIC APPLICATIONSr0 Steel strength in shear,seismic7 Veq Ib No 3,670 7,980 11,990 12,970 (kN) Data (16.3) (35.5) (53-3} (57.7) Reduction factor for steel strength 0.60 in shear for seismic3 STEEL STRENGTH IN SHEAR FOR STRUCTUAL SAND-LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE OVER STEEL DECKS Steel strength in shear, V� lb No 1,640) 3 0 0 No No concrete over steel deck8 (kN) Data Data Data Reduction factor for steel strength 0.60 in shear for steel deck3 1. The data in this table is intended to be used with the design provisions of ACI 318 Appendix D;for anchors resisting seismic load combinations the additional requirements of ACI 318 D.3.3 shall apply. 2. Installation must comply with published instructions and details. 3. All values of 0 were determined from the load combinations of AO 318 Section 9.2. If the load combinations of Appendix C are used,the appropriate value of 0 must be determined in accordance with ACI 318 045. For reinforcement that meets ACI 318 Appendix 0 requirements for Condition A,see ACI 318 D.4.4 for the appropriate 0 factor. 4. The Wedge-Bolt+is considered a brittle steel element as defined by ACI 318 D.1. 5. Reported values for steel strength in shear are based on test results per ACI 355.2,9.4 and shall be used for design.These reported values may be lower than calculated results using equation 0-20 in ACI 318-05 D.6.1.2 and D-18 in ACI 318-02,0.6.1.2. 6. Anchors are permitted to used in structural sand-lightweight concrete provided that Vb and Vcp are multiplied by a factor of 0.60(not required for steel deck). 7. Reported values for steel strength in shear for seismic applications are based on test results per ACI 355.2,9.6. 8. Values for Vsadeck are for structual sand-lightweight concrete(f(min=3,000 psi)and additional lightweight concrete reduction factors need not be applied. In addition,evaluation for the concrete breakout capacity in accordance with ACI 318 0.6.2 and the pryout capacity in accordance with ACI 318 0.6.3 are not required for anchors installed in the flute(soffit). - 9. Shear loads for anchors installed through steel deck into concrete may be applied in any direction. 10.For 2003 IBC code base replace Vg with Vs;and 4 with I with VE,,q with Va sets e . . ?owers FASTENERS PRODUCT INFORMATION Wedge-Bolt®+ Factored Design Strength (QN1t and 01/17) Calculated in Accordance with AC1 318 Appendix D: 1.Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete U . with minimum slab thickness,ha =h, ,,and with the following conditions: +j ' - cat is greater than or equal to the critical edge distance,core(table values based on car=tort). 4 - ca2 is greater than or equal to 1.5 cat. c,,--- . ----- , 2.Calculations were performed according to ACI 318-05 Appends D.The load level mrrespon i ng to the contrcifrig u /�f+ W • faikire mode is fisted.(e.g.For ter on:steel,concrete breakout and putout;For sheer steel,concrete breakout and f ! .Cal-a, ,-- 2 pryout).Futhermam the capacities for concrete breakout strength in tension and pryaxrt strength in shear are calculated -r, Cat r'ha ,• using the effective embedment values,h,for the selected anchors as noted in the design information tables. ►` Please also reference the installation specifications for more information. i' 3.Strength reduction factors(0)were based on AO 318 Section 9.2 for load combinations.Condition B is assumed. ------- 4.Tabular values are permitted for static loads only,seismic loading is not permitted with these tables. 5.For designs that indude combined tension and shear the interaction of tension and shear loads must be calculated in accordance with ACI 318 Appendix D. 6.Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 Appendix D. For other design conditions including seismic considerations please see ACI 318 Appendix D. Tension and Shear Design Strength for Wedge-Bolt+ in Cracked Concrete Nominal Minimum Concrete Compressive Strength, fc(psi) Nominal Embed. 2,500 3,000 4,000 I 6,000 8,000 Anthor h + Size ON, OVn ØN„ OVn ØN0 OV, ONn ovn ON,, tin fin. Tension Shear Tension Shear Tension Shear Tension Shear Tension hear (in.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) USED 1/4 1-3/4 - - - - - - - - - - •------> (318 2-1/8 940 940 1,030 1,030 1,190 1,190 1,460 1,460 1,685 1,685 \ 2-1/2 1,175 1,145 1,285 1,250 1,485 1,445 1,815 1,770 2,100 2,045 112 - 3-1/2 1,925 1,915 2,110 2,095 2,440 2,420 2,985 2,965 3,450 3,420 3-1/4 1,735 1,870 1,905 2,050 2,195 2,365 2,690 1,900 3,105 3,345 5/8 4-3/8 2,790 2,785 3,055 3,050 3,525 3,520 4,320 4,325 4,990 4,980 314 4-1/4 2,740 3,180 3,005 3,485 3,465 4,025 4,245 4,925 4,905 5,690 Tension and Shear Design Strength for Wedge-Bolt+ in Uncracked Concrete Nominal Nominal Minimum Concrete Compressive Strength, f'c(psi) Anchor Embed. 2,500 3,000 4,000 6,000 8,000 Size hnom ON, rV n ON, O V n ON, OV n ,N n Vn �N n IV n (in.) (in.) Tension Shear Tension Shear Tension Shear Tension ear Tension Shear (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) 1/4 1-3/4 900 970 985 1,060 1,140 1,225 1,395 1,435 1,610 1,485 3/8 2-1/8 1,330 1,320 1,455 1,445 1,680 1,670 2,060 2,045 2,375 2,360 2-1/2 1,655 1,600 1,815 1,755 2,095 2,025 2,565 2,480 2,965 2,865 1/2 3-112 3,085 2,680 3,380 2,935 3,905 3,385 4,780 4,150 5,520 4.780 3-114 2,450 2,640 2,685 2,895 3,100 3,340 3,800 4,090 4,385 4,725 5/8 _ 4-3/8 4,260 3,900 4,670 4,270 5,390 4,930 6,600 6,040 7,625 6.975 . 3/4 4-1/4 3,870 4,455 4,240 4,880 4,895 5,635 5,995 6,900 6,925 7,965 Legend - -Steel Strength Controls Concrete Breakout Strength Controls Anchor Pullout/Pryout Strength Controls e 3g x ?owers Wedge-Bolt + PRODUCT INFORMATION FASTENERS g° Factored Design Strength (oNn and cbVn) Calculated in Accordance with ACI 318 Appendix D: • - Z 1.Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete > with minimum slab thickness,ha =h„ail, and with the following conditions: z . Z - Cal is greater than or equal to the minimum edge distance,dose edge condition(-min(table values based on car=4th). - _ ((''�� - cat is greater than or equal to 1.5 car. ;1 '"'LL A 2.Catkins were performed according toACI 318-05 Appendix D.The load level corresponding to the contrclling j ; i faire mode is listed.(e.g.For tmsbn:steel,concrete breakout and pullout For shoat.steel,ccooete breakout and ,.. Cal -11 / pout).Furthermore the capacities for concrete breakout strength in tension and pryout strength in shear are calculated Cat ha r using the effective embedment values,ho for the selected anchors as noted in the design information tables. , Please also reference the installation specifications for more information. ' 3.Strength reduction factors(rp)were based on ACI 318 Section 9.2 for load combinations.Condition B is assumed. 4.Tabular values are permitted for static loads only,seismic loading is not permitted with these tables. 5.For designs that include combined tension and shear,the interaction of tension and shear loads must be calculated in accordance with ACI 318 Appendix D. 6.Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 Appendix D. For other design conditions including seismic considerations please see AC1 318 Appendix D. Tension and Shear Design Strength with 1-3/4" Edge Distance for Wedge-Bolt+ in Cracked Concrete Nominal Minimum Concrete Compressive Strength, f c(psi) Nominal Embed Anchor 2.500 3,000 4,000 6,000 8,000 Size him, �s � o �so r Tension �s(in.) (in.) Tension Shear Tension Shear Tension Shear Sh r Tension Shear (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) 1/4 1-314 - - - - - - - - - - 3/8 2-1/8 395 455 435 495 500 575 560 640 615 705 2-1/2 400 510 440 560 505 645 565 720 620 790 1/2 , 3-1/2 425 555 465 605 535 700 600 785 655 855 3-1/4 415 575 450 630 520 725 585 810 640 890 5/8 4-3/8 445 620 490 675 565 780 630 875 690 955 3/4 4-1/4 440 645 480 705 555 815 620 910 680 1,000 Tension and Shear Design Strength with 1-314" Edge Distance for Wedge-Bolt+ in Uncracked Concrete Minimum Concrete Compressive Strength, f'c(psi) Nominal Nominal Anchor Embed 2,500 3,000 4,000 6,000 8,000 Size h 0Nn gvn ON,, gvn ONn OVn �Nn Vn ON fVn (in.) (in.) Tension hear Tension hear Tension Shear Tension Shear Tension Shear (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) 1/4 1-3/4 350 535 385 585 445 675 500 755 545 545 3/8 2-1/8 370 635 405 695 465 805 520 900 570 985 2-1/2 465 715 510 780 590 900 660 1,010 725 1,105 1/2 3-1/2 560 775 615 850 710 980 795 1,095 870 1,200 3-1/4 580 805 640 880 735 1,015 825 1,135 900 1,245 5/8 - 4-3/8 585 865 640 945 740 1,095 825 1,225 905 1,340 3/4 4-1/4 450 900 495 990 570 1,140 825 1,275 695 1,395 - Legend mom Concrete Breakout Strength Controls e ?owers.. FASTENERS PRODUCT INFORMATION Wedge-Bolt'+ - ASD PERFORMANCE DATA -i Ultimate Load Capacities for Wedge-Bolt+ Installed into Normal-Weight Concrete at 12 " Diameters Spacing and Edge Distances1'2 ' 4 Minimum Concrete Compressive Strength (f'c) 3 Anchor Minimum W Embedment 2,000 M 13.8 si a) 4,000 psi(27.6 M 6,000 psi (41.4 Mpa) Diameter Depth p ( Mpa) Mpa) p ( p in. in Tension Shear Tension Shear Tension Shear (mm) (mm) lbs. lbs. lbs. lbs. lbs. lbs. (kN) (kN) (kN) (kN) (kN) (kN) 1 720 920 1,340 1,880 1,660 2,160 (25.4) (3.2) (4.0) (6.0) (8.3) (7.5) (9.6) 1-1/2 1,440 2,000 2,140 2,080 2,480 2,260 1/4 (38.1) (6.5) (8.8) (9.6) (9.2) (11.2) (10.0) (6.4) 2 2,400 2,000 3,940 2,080 4,980 2,680 (50.8) (10.8) (8.8) (17.7) (9.2) (22.4) (11.9) 2-1/2 3,520 2,000 4,660 2,080 5,260 2,680 (63.5) (15.8) (8.8) (21.0) (9.2) (23.7) (11.9) 1-1/2 1,900 2,760 2,520 3,440 3,040 5,600 (38.1) (8.6) (12.2) (11.3) (15.3) (13.7) (24.9) 2 3,000 3,100 3,920 3,440 5,200 5,600 (50.8) (13.5) (13.7) (17.6) (15.3) (23.4) (24.9) 3/8 2-1/2 4,100 3,440 5,320 3,440 7,340 5,600 (9.5) (63.5) (18.5) (15.3) (23.9) (15.3) (33.0) (24.9) 3 5,800 4,120 7,740 4,320 9,900 5,600 (76.2) (26.1) (18.3) (34.8) (19.2) (44.6) (24.9) 3-1/2 7,500 4,820 10,140 5,200 12,440 5,600 (88.9) (33.8) (21.4) (45.6) (23.1) (56.0) (24.9) 2 2,860 4,960 3,940 5,680 4,780 7,600 (50.8) (12.9) (22.0) (17.7) (25.2) (21.5) (33.8) 2-1/2 4,100 5,800 5,200 6,480 6,480 7,960 (63.5) (18.5) (25.8) (23.4) (28.8) (28.8) (35.4) 1/2 3 5,920 6,200 7,800 7,240 9,380 7,960 (12.7) (76.2) (26.6) (27.5) (35.1) (32.2) (42.2) (35.4) 3-1/2 6,060 8,020 8,480 8,160 11,900 8,600 (88.9) (27.3) (35.6) (38.2) (36.2) (53.6) (38.2) 4 7,560 8,660 12,620 9,080 12,620 9,600 (101.6) (34.0) (39.0) (56.8) (40.9) (56.8) (43.2) 2-112 3,420 7,200 4,720 10,240 6,900 10.180 (63.5) (15.4) (32.4) (21.2) (45.5) (31.1) (45.2) 3 4,560 1,920 7,380 10,240 8,960 11,400 (76.2) (20.5) (35.2) (33.2) (45.5) (40.3) (50.7) 3-1/2 5,720 8,640 10,040 10,240 11,040 11,400 5/8 (88.9) (25.7) (38.4) (45.2) (45.5) (493) (50.7) (15.9) 4 8,240 9,540 12,760 11,140 14,320 12,080 (101.6) (37.1) (42.4) (57.4) (49.5) (64.4) (53.7) 4-1/2 10,780 10,460 15,500 12,040 17,600 12,760 (114.3) (48.5) (46.5) (69.8) (53.5) (79.2) (56.7) 5 13,300 11,360 18,220 12,960 20,860 13,480 (127.0) (59.9) (50.5) (82.0) (57.6) (93.9) (59.9) 3 4,320 9,480 6,480 12,120 8,700 14,800 (76.2) (19.4) (42.1) (29.2) (53.9) (39.2) (65.8) 3-112 5,720 10,460 9,320 14,820 11,360 16,400 (88.9) (25.7) (46.5) (41.9) (65.9) (51.1) (72.9) 4 7,120 11,460 12,140 17,520 14,020 18,000 (101.6) (32.0) (50.9) (54.6) (77.9) (63.1) (80.0) 3/4 4-1/2 9,240 13,120 13,580 18,660 16,720 19,840 (19.1) (114.3) (41.6) (58.3) (61.1) (83.0) (75.2) (88.2) 5 11,340 14.780 15,020 19,740 19,400 21,200 (127.0) (51.0) (65.7) (67.6) (89.8) (87.3) (96.5) 5-1/2 13,440 16,640 16,460 20,840 22,080 23,560 • (139.7) (60.5) (74.0) (74.1) (92.7) (99.4) (104.8) 6 15,540 18,120 17,900 21,960 24,760 25,420 (152.4) (69.9) (80.6) (80.6) (97.6) (111.4) (113.0) 1.The values listed above are ultimate load capadties which should be reduced by a minimum safety factor of 4.0 or greater to determine the allowable working load. Consideration of safety factors of 10 or higher may be necessary depending on the application,such as life safety or overhead. 2.Linear interpolation may be used to determine ultimate loads for intermediate embedments and compressive strengths. e 40 ?owers Wedge-Bolt"+ PRODUCT INFORMATION FASTENERS g MASONRY PERFORMANCE DATA • n Allowable Load Capacities for Wedge-Bolt+ Anchors Installed into = the Face of Grout Filled Concrete Masonry1"2,3,4 ' Z Minimum Minimum Minimum • Anchor Diameter Embed. Edge End Tension Shear t, (in.) by Distance Distance lbs. lbs. (mm) (in.) (in.) (in.) (kN) (kN) (mm) (mm) (mm) 1 80 150 1/4 (25.4) 3-3/4 3-3/4 (0.4) (0.7) (6.4) 2 (95.3) (95.3) 340 340 (50.8) (1.5) (1.5) 1-1/2 3-3/4 210 400 (38.1) (95.3) (0.9) (1.8) 3/8 2-1/2 7-7/8 12 750 655 (9.5) (63.5) (200.0) (304.8) (3.4) (2.9) 3-1/2 12 1,290 910 WnimumEds. (88.9) (304.8) (5.8) (4.0) bow.ow ; - >i Dtsi4Ne iTror 2 3-3/4 335 720 I (50.8) (95.3) (1.5) (3.2) ....a• fl 1/2 3 7-7/8 12 930 900 • (12.7) (76.2) (200.0) (304.8) (4.2) (4.0) o"a .tiest raw tiro) 4 12 1,525 1,085 (101.6) (304.8) (6.9) (4.8) Fa 2-1/2 3-3/4 455 1,085 Face Shell Permissible Anchor Locations (63.5) (95.3) (2.0) (4.8) tUn•hatchad Area/Throu;l lace Shell) 3114 7-7/8 885 5/8 (200.0) 12 (4.0) 1,085 (15.9) 4 (304.8) 1,310 (4.8) (101.6) 12 (5.9) _ 5 (304.8) 1,940 1,255 (127.0) (8.7) (5.6) 3-3/4 615 750 3 (95.3) (2.8) (3.4) (76.2) 12 615 1,320 (304.8) (2.8) (5.9) 3/4 3-1/2 7-7/8 12 1,035 1,265 (19.1) (88.9) (200.0) (304.8) (4.7) (5.7) 4 1,455 1,320 (101.6) 12 (6.5) (5.9) 5 (304.8) 1,680 1,775 (127.0) (7.6) (7.9) 1.Tabulated load values are for anchors installed in minimum 6"wide,minimum Grade N,Type II,lightweight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate compressive strength at the time of installation(P,,, 1,500 psi).Mortar shall be type M,5 or N. 2.Allowable load capacities listed are calculated using an applied safety factor of 5.0.Consideration of safety factors of 10 or higher may be necessary depending on the application,such as life safety or overhead 3.Linear interpolation for allowable loads for anchors at intermediate embedment depths may be used. 4.Allowable shear loads for 114'and 3/8"diameter anchor installations into the face shell of a masonry wall may be applied in any direction.Allowable shear loads for anchor diameters 1/2"and greater installed into the face shell may be applied in any direction provided the location is a minimum of 12'from the edge of the wall.For anchor diameters 1/2"and greater installed with an edge distance less than 12'the allowable shear loads may be applied in any - direction except upward vertically. e • ?owers. FASTENERS PRODUCT INFORMATION Wedge-Bolt'+ MASONRY PERFORMANCE DATA Allowable Load Capacities for Wedge-Bolt+Anchors Installed ...._n t - nyi into the Top of Grout-Filled Concrete Masonry Wall1,2 (, ) d Z • Nominal Minimum Minimum W Anchor Embed. Edge Tension Shear / tttNatllmtE go Distant. ---4 Diameter Depth Distance lbs. lbs in. in. in. (kN) (kN) _ 1 r (mm) (mm) (mm) i -- .1 t 2-1/2 1-1/2 300 240 (63.5) (38.1) (1.6) (1.1) Ind Orstmat t1rF-. ;"."-. 3/8 1-1/2 350 (9.5) (38.1) 2 (1.6) Top et Wall 2-1/2 (50.8) 570 380 (63.5) (2.5) (1.7) 1.Tabulated load values are for Wedge-Bolt+anchors installed in minimum 6'wide,Grade N,Type R Lightweight concrete masonry snits conforming to ASTM C 90 that have reached minimum designated compressive strength at the time of installation(Pm>1,500 psi).Mortar shall be type M,S or N. 2.Allowable bad capacities fisted are calculated using an applied safety factor of 5.0.Consideration of safety factors of 10 or higher may be necessary deperrdng on the applcation,such as life safety or overhead. Allowable Load Capacities for Wedge-Bolt+Anchors Installed into the T Joint of Grout-Filled Concrete Masonry Wall1,2,3,4 Nominal Minimum Minimum Minimum Anchor Embed. Edge End Tension Shear Diameter Depth Distance Distance lbs. lbs. in. in. in. in. (kN) (kN) (mm) (mm) (mm) (mm) Minimum Edge �^ &sum f _i . 0,stance M O 1-1/2 . f_._ 73.- ,j? 3/8 (38.1) ' , r- n i .�. ....r'',i (9.5) 31/2 830 510 i y (88.9) (3.7) (2.3) ( �f LJ .^. a ~'.: Gra�FJle4 1/2 4 1,090 J.. __ .__ cMu rtviii (12.7) (101.6) 16 16 (4.9) - T-!Dina MartarJomt 5/8 4 (406.4) (406.4) 840 permissible Anchor Locations (15.9) (101.6) (3.8) (Un hatched Area/into Horizontal 2-1/2 1,225 Mortar Joint) 3/4 (63.5) - (5.5) (19.1) 4 890 (101.6) (4.0) 1.Tabulated load are wires for Wedge-Bolt+anchors iostaled in rroirintm 6'wide,minimum Grade N,Type II, Lightweight contrete masonry tarts mnftxming to ASTM C 90 that have reached minimum designated compressive strength at the time of installation(fm>1,500 ps).Mortar shal be type M 5 or N. 2.Allowable bad capacities listed are wed rising an applied safety factor of 5.0.Consideration of safety factors of 10 or higher maybe necessary deper g on the application,stilt as It safety or orediead 3.Alowable shear loads for anchor installation into the horizontal and vertical mortar joints may be applied in any direction provided the anchor location is a minimum of 16'from the edge and end of the wall.For andto[installations with an edge diatance less than 16'the allowable shear loads may be applied in any trecton except upward vertically. 4.Linear intepolation for allowable loads for anchors at intermediate embedment depths maybe used. e 4'.. ?owers Wedge-Bolt'+ PRODUCT INFORMATION FASTENERS S' MASONRY PERFORMANCE DATA a -▪ n Allowable load capacities for Wedge-Bolt+ anchors installed into Multiple Wythe Solid Clay Brick AMasonry1.2 • a Nominal Minimum Minimum Minimum r^ Anchor Embed. Edge&End S acin Tension Shear Diameter Depth Distance p g lbs. lbs. in. in. in. Distance (kN) (kN) (mm) (mm) (mm) in. 1/4 2-1/2 4 4" 455 295 (6.4) (63.5) (101.6) Any Direction (2.0) (1.3) 3/8 3-1/2 6 6" 680 630 (9.5) (88.9) (152.4) Any Direction (3.1) (2.8) 1/2 4 8 8" 960 1,230 (12.7) (101.6) (203.2) Any Direction (4.3) (5.5) 5/8 4 10 12" 1,225 1,710 (15.9) (101.6) (254.0) Any Direction (5.5) (7.6) 3/4 4 12 16" 1,315 1,950 (19.1) (101.6) (304.8) Any Direction (5.9) (8.7) 1.Abatable load capacities listed are calculated using an applA safety factor of 5.0.Consideration of safety factors of 10 or higher maybe necessary depending on the app6ca6on,such as life safety or aerhead. 2.Tabulated values are for anchors nstaled in minimum Grade SW multiple wytfn sdid day brick masonry conforming to ASTM C 62.Mortar shall be type M 5 or N. ----Minimum End Distance l I tt UJ 2 e PANELS TOPS I WALLS w IN OUTSIDE INSIDE OUTSIDE in d SIDE Includes 2 PSF for Membrane or Standing Seam Roof,add 10 PSF for ballasted ASCE 7-98 EXP.B, <30'OAH 3sec Gusts w 2 z a J Design based on deflection criteria: 1/240 Design based on deflection criteria: L/180 z o o >LIVE LOADS-PSF LL LIVE LOADS-PSF °a 90 100 110 120 130 140 150 0 10 20 30 40 50 60 70 80 90 100 5 MPH MPH MPH MPH MPH MPH MPH SOFTNOSE 14 17 20 24 29 33 38 THERMA-CORE 2.2-POUND DENSITY Fc=l " ALUM 4" 1.73 32 13'-5" 10'-6" 9'-4" 8'-7" 8'-0" 7'-7" 7'-3" 6'-11" 6'-8" 6'-5" 21'-10" 13'-6" 12'-4" 111" 11'-3" 10'-6" 10'-2" 9'-6-6" GALV 4" 2.64 32 _ 15'-4" 12'-6" 11'-0" 10'-0" I 9'-0" 18'-10" I '-1 8'-6" 8'-2" 7'-10" 7'-6" ,_22'-10"- 16'-0" 14'-10" 14'-1" 13'-3" 12'-3" 11'-S" 10'-S" WOOD FRAME(TST) THERMA-STRUCTURE 2.2-POUND DENSITY Fc=l8psi ALUM 2' " 1.88 20 11'-0" 8'-6" 7'-6" 7'-0" 6'-6" 6'-2" 5'-10" 5'-8" 5'-6" 5'-3" 15'-6" 11'-0" 10'-4" 9'-11" 9'-4" 8'-7" 8'-0" 7'-4" 3 1/2" 2.34 28 15,-0" 11'-4" 10'-0" 9'-2" 8'-6" 8'-1" 7'-9" 7'-S" 7'-1" 6'-10" 19'-0" 14'-3" 13'-9" 13'-0" 12'-2" 11'-6" 11'-0" 10'-4" 4" 2.98 32 15'-6" 12'-0" 10'-6" 9'-6" 9'-0" 8'-6" 8'-1" 7'-9" 7'-6" 7'-2" 21'-6" 15'-2" 14'-6" 13'-7" 12'-10" 12'-0" 11'-4" 10'-8" 5" 3.73 40 21'-0" 15'-10" 14'-0" , 13'-0" 12'-O" 11'-4" 10'-10" 10'-5" 9,-11" 9'-8" 26'-0"* 20'-6" 19'-0" 18'-0" 17'-2" 16'-3" 15'-5" 14'-S" GALV 21/2" 2.32 20 12'-O" 9'-3" 8'-2" 7'-6" 7'-0" 6'-8" 6'-5" 6'-1" 5'-10" 5'-8" 15'-8" 12'-1" 11'-3" 10'-8" 10,-0" 9'-4" 8'-10" 8'-3" 3 1/2" 3.25 28 16'-0" 12'-4" 11'-0" 10'-0" 9'-3" 8'-9" 8'-4" 8'-0" 7'-8" 7'-5" 22'-0" 15'-8" 14'-10" 14'-l" 13'-3" 12'-4" 11'-7" 10'-9" 4" 3.71 32 16'-6" 13'-0" 11'-6" 10'-6" 9'-9" 9'-1" 8'-8" 8'-4" 8'-0" 7'-9" 23'-0" 16'-5" 15'-3" 14'-8" 13'-9" 12'-11" 12'-4" 11'-8" 5" 4.64 40 _ 22`-0" 17'-0" 15'-2" 14'-0" 13'-0" 12'-3" 11'-8" 11'-2" 10'-9" - 10'-5" _26'-0"* 22'-0" _ 20'-8" 19'-8" 18'-6" 17'-4" _ 16'-6" 15'-6" INSUL-FRAME(HDR) THERMA-STRUCTURE II_ 2.2-POUND DENSITY Fc=l8psi ALUM 3 1/2" 1.99 28 14'-1" 10'-10" 9'-8" 8'-10" 8'-5" 7'-9" 7'-5" 7'-1" 6'-10" 6'-8" 18'-10" 14'-0" 13'-0" 12'-5" 1l'-9" 11'-0" 10'-4" 9'-7" 4" 2.63 32 14'-11" 11'-4" 10'-0" 9'-2" 8'-7" 8'-0" 7'-8" 7'-5" 7'-1" 6'-10" 20'-6" 14'-8" 13'-9" 13'-0" 12'-3" 11'-6" 10'-11" 10'-3" 5" 3.34 40 , 20'-0" 15'-0" 13'-7" 12'-3" 11'-6" 10'-10" 10'-4" 9'-11" 9'-7" 9'-3" 26'-0"* 19'-6" 18'-4" 17'-7" 16'-6" 15'-4" 14'-6" 13'-6" GALV 3 1/2" 2.9 28 15'-6" 11'-8" 10'-4" 9'-6" 8'-10" 8'-4" 7'-11" 7'-8" 7'-4" 7'-1" 21'-0" 15'-0" 14'-0" 13'-4" 12'-8" 11'-10" 11'-2" 10'-6" 4" 3.36 32 16'-l" 12'-2" 10'-10" 9'-il" 9'-3" 8'-9" 8'-4" 7'-11" 7'-8" 7'-5" 22'-0" 15'-8" 14'-8" 14'-0" 13'-3" 12'-4" 11'-8" 11'-0" 5" 4.25 40 -_ 21'-0" 16'-3" 14'-7" 13'-4" 12'-S" 11'-9" 11'-2" 10'-9" _ 10'-4" 10'-0"_26'-0"* 21'-3" - 19'-10" 18'-10" 17'-9" 16'-7" 15'-8" 14'-7" LAMINATED EXPANDED POLYSTYRENE(EPS) THERMA-SEAL 1-POUND DENSITY Fc=l2psi ALUM 2" 1.11 9 10'-6" 8'-0" 7'-O" 6'-6" 6'-0" 5'-9" 5'-6" 5'-3" 5'-0" 4'-10" 14'-4" 10'-1" 9'-6" 9'-1" 8'-7" 8'-0" - 7'-7" 74" 4" 1.33 17 15'-0" 12'-0" 10'-8" 9'-8" 9'-0" 8'-7" 8'-1" 7'-10" 7'-7" 7'-3" 20'-6" 15'-2" 14'-3" 13'-6" 12'-7" 11'-11" 11'-6" 11'-0" 6" 1.45 25 18'-6" 14'-7" 13'-0" 11'-10" 11'-0" 10'-5" 9'-11" 9'-6" 9'-2" 8'-10" 26'-O" 18'-7" 17'-6" 16'-6" 15'-7" 14'-9" 14'-2" 13'-6" 8" 1.57 34 21'-0" 17'-3" 15'-0" 14'-0" 13'-0" 12'-4" 11'-9" 11'-3" 10'-10" 10'-7" 30'-0"* 22'-1" 19'11" 19'-5" 18'-6" 17'-4" 16'-6" 15'-6" 10" 1.69 42 23'-6" 19'-8" 17'-6" 16'-0" 15'-0" 14'-2" 13'-6" 12'-11" 12'-5" 12'-0" 30'-0"* 25'-9" 24'-0" 22'-9" 21'-6" 20'-3" 29'-4" 18'-2" GALV 2" 2.12 9 11'-0" 8'-6" 7'-6" 7'-0" 6'-6" 6'-2" 5'-10" 5'-8" 5'-6" 5'-3" 15'-6" 11'-10" 10'-4" 9'-11" 9'-4" 8'-7" 8'-0" 7'-4" 4" 2.24 17 16'-0" 13'-0" 11'-4" 10'-6" 9'-6" 9'-2" 8'-9" 8'-5" 8'-1" 7'-10" 22'-10" 16'-6" 15'-9" 14'-9" 13'-10" 13'-1" 12'-6" 11'-10" 6" 2.36 25 20'-0" 15'-10" 13'-10" 12'-8" 11'-10" 11'-3" 10'-8" 10'-3" 9,-10" 9'-7" 28'-10" 20'-4" 19'-0" 18'-O" 17'-1" 16'-0" 15'-3" 14'-3" 8" 2.48 34 22'-6" 18'-3" 16'-6" 15'-0" 14'-0" 13'-3" 12'-8" 12'-l" 11'-8" 11'-3" 30'-0"* 24'-0" 22'-6" 21'-4" 20'-1" 18'-9" 17'-10" 16'-8" 10" 2.6 - 42 _ 25'-0" 21'-0" _ 18'-10"- 17'-4" 16'-0" 15'-3" 14'-6" 13'-10" 13'-4" 12'-11" 30'-0"*- 27'-5" 25'-9" 24'-5" _ 23'-0" 21'-6" 20'-5" 19'-1" LAMINATED URETHANE THERMA-SEAL 2-POUND DENSITY Fc=24ps1 ALUM 4" 1.66 32 14'-0" ' 10,-0" 9'-0" 8'-0" 7'-0" 6'-6" 6'-O" 5'-8" 5'-4" 5'-0' 17'-7" 12'-5" 11'-6" 11,-0" 10'-4" 9'-8" 9'-3" 8'-6" 6" 2 48 14'-0" 10'-0" 9'-0" 8'-0" 7'-0" 6'-6" 6'-0" 5'-8" 5'-4" 5'-0" 17'-7" 12'-5" 11'-6" 11'-0" 10'-4" 9'-8" 9'-3" 8'-6" 8" 2.33 66 14'-0" 10'-0" 9,-0" 8'-0" 7'-0" 6'-6" 6'-0" 5'-8" 5'-4" 5,-0" 17'-7" 12'-5" 11'-6" 11'-0" 10'-4" 9'-8" 9'-3" 8'-6" 10" 2.66 , 83 14'-0" 10'-0" 9'-0" 8'-0" 7'-0" 6'-6" 6'-0" 5'-8" 5'-4" 5'-0" 17'-7" 12'-5" 11'-6" 11'-0" 10'-4" 9'-8" 9'-3" 8'-6" GALV 4" 2.57 32 14'-0" 11'-6" 10,-0" 9,-0" 8'-0" 7'-6" 7'-0" 6'-8" 6'-4" 6'-0" 18'-6" 13'-4" 12'-6" 12'-0" 11'-3" 10'-4" 9'-7" 8'-8" 6" 2.91 48 14'-0" 11'-6" 10'-0" 9,-0" 8'-0" 7'-6" 7'-0" 6'-8" 6'-4" 6'-0" 18'-6" 13'-4" 12'-6" 12'-0" 11'-3" 10'-4" 9'-7" 8'-8" 8" 3.24 66 14'-O" 11'-6" 10'-0" 9'-0" 8'-0" 7'-6" 7'-0" 6'-8" 6'-4" 6'-0" 18'-6" 13'-4" 12'-6" 12'-0" 11'-3" 10'-4" 9'-7" 8'-8" 10" 3.57 83 14'-0" 11'-6" 10,-0" 9,-0" 8'-0" 7'-6" 7'-0" 6'-8" 6'-4" 6'41" 18'-6" 13'-4" 12'-6" 12'-0" 11'-3" 10'-4" 9'-7" 8'-8" *MAX SPAN IS BASED ON MANUFACTURING LIMITATION. FOR TOP PANELS SPANING 20 FEET AND LONGER,A STABILIZER(HANGER)IS RECOMMENDED. KYSO R PANEL SYSTEMS ' RECOMMENDED FLOOR FOOT TRAFFIC: METAL OVER FOAM-UNIFORM LOAD= 600 PSF DESIGN HAND TRUCK: 1/2"PLYWOOD UNDER METAL-UNIFORM LOAD= 900 PSF PALLET JACK: 1/2"PLYWOOD UNDER METAL WITH FIELD APPLIED 3/16"ADT ENGINEERING BULLETIN NO.: 900 -UNIFORM LOAD= 2500 PSF DATE: August 2, 1994 FOR SEISMIC ZONE 4:CHECK WITH ENGINEERING WHEN HEAVY ROOF LOADS EXIST. PANEL SPAN CHART REV.: December 9"2001 1,_I- .Al• HEADQUARTERS: 2402 Daniels Street, Madison, WI 53704 • Ph: 608/221-3361 • Fax: 608/221-2084 a Quality Assurance Council: PFS TEST REPORT #94-27 Bernard E.Cabelus R & D SHEAR TESTS OF PANEL CONNECTORS Past President NCSBCS William L.Kralj,P.E. FOR Past President BOCA Gerald P.Marx,P.E. KYSOR/NEEDHAM Safety and Buildings Division FORT WORTH, TEXAS WI Dept.of Industry,Labor and Human Relations Vird Morrison Vice President Wausau Insurance Ed Starostovic,P.E,Ex Officio President,PFS&TECO 2egional Offices: 3loomsburg,PA. '17/784-8396 )alias,TX. :14/620-7012 iugene,OR. 03/746-8271 .os Angeles,CA. 10/559-7287 • fadison,WI. 18/221-3361 aleigh,NC. (9/981-0532 u-eveport,LA. 8/686-2989 BY: PFS CORPORATION 2402 DANIELS STREET ,ter-s Quality Control, MADISON, WISCONSIN • sting, Inspection and rtification Services to Building Industry HEADQUARTERS: 2402 Daniels Street, Madison, WI 53704 • Ph: 608/221-3361 • Fax: 608/221-2084 ElrECID:1 PFS Test 4- Report:p �'9 27 Test Dates: 07/26-27/94 Report Date: 07/29/94 Page 1 of 3 Quality Assurance Council: Bernard E.Cabelus PFS TEST REPORT #94-27 Past President NCSBCS R & D SHEAR TESTS OF PANEL CONNECTORS William L.Kralj,P.E. FOR Past President BOCA Gerald P.Marx,P.E. KYSOR/NEEDHAM Safety and Buildings Division FORT WORTH, TEXAS WI Dept.of Industry,Labor and Human Relations Vird Morrison GENERAL Vice President Wausau Insurance • Ed Starostovic,P.E,Ex Officio Research & Development shear tests of panel connectors were conducted on July 26-27, President,PFS&TECO 1994, at PFS Corporation of Madison, Wisconsin. A PFS Corporation representative was present during the manufacturing of the panel test specimens. The testing was performed according to the client instructions. The purpose of the testing was to determine the weaker Regional Offices: of two different orientations of the test panel connector and to perform additional test trials with the panel connector in the weaker mode. Bloomsburg,PA. 717/784-8396 DESCRIPTION Dallas,TX. 114/620-7012 The client submitted ten pairs of 2-ft.-by-I-ft. metal skin, foam core panels with a pin and iugene,OR. hook interlocking panel connector. Five pairs were constructed with urethane foam framing 03/746-8271 and the other five pairs were constructed with a wood perimeter framing. Each pair .osAngeles,CA. consisted of one panel with the hook component installed and the other panel had the pin 10/559-7287 component installed. 4adison,WI. 08/221-3361 TEST PROCEDURES sleigh,NC. 19/981-0552 Each pair of panels were connected together by the secure engagement of the pin and hook interlocking mechanism. The connected panels were tested in a compression shear mode lreveport,LA. utilizing the Baldwin Universal Test Machine. With the panel's interface vertical, the pin 8/686-2989 panel was held in a fixed position while the hook panel was subjected to a gradually increasing load applied in a direction parallel to the interface. The shear loading continued until the connector failed. The test machine crosshead speed was approximately 0.500 in. per minute. Quality Control, ting, Inspection and rtification Services to Building Industry PFS Test Report: #94-27 Test Dates: 07/26-27/94 Report Date: 07/29/94 Page 2 of 3 TEST RESULTS The first two pairs of panels, of each type construction, were subjected to the test with the pin and hook interlock positioned in two different orientations. These initial tests indicated the panel's relative displacements to either move the hook further toward the pin or move the hook off the pin. The maximum force measurement indicated the.weaker mode was to move the hook off the pin. The remaining three pairs of panel samples were tested in the weaker mode. See enclosed photos of typical test set-up and failures. [ URETHANE FOAM FRAMED PANELS I Test No. Load (lb.) Failure 1 520 Pin assembly separated. 2 625 Pin assembly compressed in foam. 3 645 Pin assembly compressed in foam. 4 945 Pin assembly compressed in foam. 5 680 Pin assembly compressed in foam. 34-/s/5 = 608 • ��Lp�clA�t GApNcl-7--r FA C-7-0 a of S"FE 2 E;. Y2 = 2 7 5 ` -- A-7 PFS Test Report: #94-27 , Test Dates: 07/26-27/94 Report Date: 07/29/94 Page 3 of 3 IWOOD FRAMED PANELS Test No. Load (lb.) I � ) Failure . 1 2125 Hook partial sheared. 2 2145 Hook partial sheared. 3 2045 Hook partial sheared. 4 2760 Hook partial sheared. 5 2180 Hook partial sheared. //25S / S = 22S / Tests Conducted and Tests Witnessed and Report Prepared By: Report Reviewed By: Re.: - •eviewed : • ,e ,f_--__,... S� c..V. ,<�f / ' Allan Adams J mes Van Schoyck Ronald H. Lab Technician Reindl, A.I.A. L b Manager Vice President-Lab *09/14/94* 94-27/pb it.LL0v1),,,p ,t-E GP\PAc1 T'-l' fA cTo 2 a F' s•ti7E7-' = 2 2-2 5 / 2. S _9-vo--- F_ __ Go c/Ale -r02- - Ilr .....,. ■ , . • • - - •- if: ri . 4 ,... i . .- ': I i,• I ; I . I . .T i.7•* , • ...,.- ..—.. ' . . . •i• ,':,.-,:-..'r-1.%:::f ' I • Z . . . • : -• ....,•-__. •••• 1 . • ,•-..:-..-:-.%••,•1.- i;:. •• ..-.••••••.:-.:.-.:. ...: 1 -.. .. . __ • - 1 - PS TEST REPORT #94-27 I - ------- , KYSOR/NEEDHAM • --..-- --:....11. : 1. Typical compression shear setup. : 11, :: • • • -- • NOTE: The weaker orienta- tion is shown. The "hook •• panel" (on right) moves :.......: r . .... , . . :i upward as "pin panel" is stationary. ..-- i - , -- . . - • - • , ..._,..z.iv...,„.„..4,4... • , ,.?t';5•,/ir- ',.,:t;,_ 4,4- 4, "0".;47/4":15: -: '...•1 •!!'• iC-r .;•-7'.."!',::-•:.; . . • - .' ' : • -."-■..-\ -- 7` - ..,..-7.-.1 :i 1: . : . ": ,_. .ki: -Z':A -\ .‘? . • . 'i r...- ' ""*"..-,..t._%. . • . , .•77 * - ••■ • ' -1.,-,,,k--..-- --1.-7, . :; A ,-, •.-i---'-, •-i--• - sze.e4e ›--F-1,---",,p- -- -- :.. , -.0..4: i .,.. -- ' moi0Wo.ala■ - - : • •••• - ' .. . t ;:• .40' i -;' . : ''*• ;:-.41e......11" --"*- '-i;."`"14.41*. ZN,■:,-sgArt- , WqiiKaN 741111"Agflil" ■... .-tt.e.t.eir .Re .. - ' „A...L.._.,.......1„,... ".,-,.........._-,; . •-:..... si-11.0-;•.....:...mel.47.,,.••:-,,z,--.7.... ,.t. . ...i...,. 1., _- .. ..7 ,-. AZ..k.,..._-`ku-•- .,•1;wr.__1•••■•■ty-,•".;:. 7,-; . „.11,i,e,0,- ..:-..-...%ill..1:-lir.:--2•''.■Po.-•••:: ?•All. ,_ '".A 4,14".%... .3%•• 1'::,.• , P612. 1.';t."4"'4•7'.7.-44:17:- !.,..- i7,::'''.., ''',...:,44M,'"-.■.,:i., PFS TEST REPORT #94-27 • _ .. le14.- --...•-%-- -tqc...;-•::---,- • y ..3%7:71••,ic...:N;::.: "... ,•.*.r...••• 2( SOR/NEEDHAM ',.. -. 177-4:r•-:"....P..c....-....C.,-.%-"`-,.....1, 2. Typical failure wood -•-• -- 7.- ... „..7:-...,f- .. framed panel. . .- .... _:• t'•Z. .1. NOTE: Partial shear indicated 4 by crack in metal at bottom 1...: !..: l's. edge of hook. :4.. _ . ,7'..• . ' rt - --. 1.,.! .-...: ..• .- -- ..: ....- .:14 '4. " -•.c. ..;"". 's._ , V' . .11 .,Ara•• •s • 1 II' -b • 1 '4-. ., 15c..4.0...; )1, IS ' • - it I 1 .0• . • 11 %Ito :- sa. _se , : • s- s• ‘11 411' gl■ 4.- ..- • 41141:4 ,.. • ., .. • 'lb ,S. •":- : . • -•- le ..., :- , -t -• " - • • •.`r ..., Itov, : 6. • .6 ."7/1 4 0 • •• - et-- • • -‘l • " -* • • — • --ifl'• !. . • • • -ri. ... • --. V:46. a 4 • .•- . . . • , ek•?...'. • • • • * 6%. .. -'. • - . -- 5; t • - . _. 5 • 4 • ' •,.. .. • -.• .N% •• • . qb • • A.. 4., • * 116.- •••,,.... •• • .qk ..111i . •-• . ; • . I.:.. ...r . Niari ,, . .... . .. . ... .. -- . • , :•.- 4, - .-Z.• s ..' S .-. - .- - • s .1'. ...., ... , .. .. , ,....!..., . •- • '. ..• . . . . . "e•-•,. • • .. ... • . - . • "Ai . . • .....• i . . . .. 1 PFS TEST REPORT #94-27 KYSOR/NEEDHAM 3. Typical failure urethane foam framed panels. • . .- . .... I. • - - - '.- . . •......; ... . .7. -- ..- - .. - ,r. .,., • • . . • • a . . • . . ..■••• • '..o.._ . I p.m: • . 7 Zit i .7 .*op P !o ..... • P.ar • . .- ......: -. . . . .-., • . e.... PPS TEST REPORT #94-27 •. ,.•.•.;-:1 KY SOR/NEEDF.A14 11111. . ' • -, 4. Unusual failure cam •••lrei. split rethane foam 4,4 --.... , • , framed panel. --. ...., . . -:-...-_:.. 1 - .. . V 81, . :.., .. . .., * 4, •,...., fe ----. 7-- .."' . • a i IT -:- *.- - ,. , -. -. . . •-.. i... .. ..-4-. ;• • • . . -... .A.....1- air0' . TOO SAIDLER 1GDODY 50 Structural Engineers PROJECT: KYSO R NO: DATE: PAGE OF RE: PAt`is=: L . DP5.• ENGR: fi.A`,�'� CHK. t ; ' i '1 } I.,_. I r i _ _ I j I I I Yp SAM: Lac v< C�NNEc;o `-o 0,,e. ( Mak.) o(L "Oti ��2__. lie�v', CWOOo_1 vawif1ev �1 • i ? S 1 1.33 C3)t900i i a I + r 3591 !• C ONNeCTQ2S) ■ r. niloc. 61-bl e' Shear : Cis Ire-awe) i svp wi i- 000 8 ( • mfaZorn- OD '77 WSTRUCTURAL ENGINEERS Engineers Northwest Inc.,P.S. RECE1VED APR 2 2 2011 CITY OF COSTCO BUILDING DTIGOD IVISION Tigard , Oregon STRUCTURAL CALCULATIONS Produce Cooler T. I . . �. ^ ;I 16,,, . \ ':'-' w \ i. : , 1 ik ,,,,,ORE _."r 17 c (l xPIRES 8-3D-0 I CODE: 2007 Oregon Structural Specialty Code WIND: 95 mph (3 Second Gust), Exposure B Seismic: SS = 0.949, Si = 0.34, April 11, 2011 ENW Project No. 93-085015 6869 Woodlawn Avenue NE.Seattle,WA 98115 206.525 7560.fax 206.522.6698 www.enwseattle.com ENWENGINEERS NORTHWEST, INC., P.S. — STRUCTURAL ENGINEERS 6869 WOODLAWN AVE.N.E.,#205,SEATTLE,WA 98115(206)5257560 FAX (206)522-6698 PROJECT# /IS 0 f2S a IS PROJECT CO$•TGo '!"/!a/QF2l, DATE SUBJECT /7g-opt/ea Cof7Lel(. SHEET / OF BY Co De-: 2.007 (DRAW o,✓ STY ucT Ct.41 7•K 4.2 DC (V03) is-2439 W,N0. S ,,n9a gN X72 M421c. V/I fDoMELID.1 %GTE( PvgNS ex/1m NEB �C.I�FUC: IIein MD/vE czo..pf. Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.43492 Longitude = -122.75861999999998 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.949 (Ss, Site Class B) 1.0 0.340 (S1, Site Class B) TL= I ca Sos' Spi 0. 390 St;.1SM lc S U -/ CATC-. oR-s? Z ' COPY CO p) V 0214 VwGs 5 Li NOTE: SEE SECT. C-7 FOR TOP OF C.M.U. / r-- 8" C.M.U. (TO EL. 8'-0") 1 I w/#5 @ 24"o/c V. @ q. & !? - / 2 #5 @ 48"o/c H. IN 8" BOND VARI ptt-1 -' ) BMS. SEE DOOR ELEVS. ON #4 x 4'-0" 1`i fSHT. S7 FOR JAMB REINF. & TYP. @ 18"o/c T. CONT. RE C.M.U. DETAILS. SOLID GROUT SLAB DOWEL --N. PER SEC 1- 5V, ONLY CELLS w/REINF. ABOVE EL. CORNER c HOLD / ;- --''= O'-O". FILL ALL OTHER CELLS , g EQ.�' w/INSULATION PER ARCH. #4 @ 18"o/c SE z Q �I NOTE: TOP E m __ _r 2'-0" E.W. TYP. F OF EXTERIOR - .4- 3 5 9 .1 - - #4 I— @ 16"o/c T. f SLAB ON , CONT. is ` SLAB DWLS. -111=11 II I " IN BOND d z GRADE MAY N BM. 4-- -' ��_ Q OCCUR HERE ; , I' I;. ° J1 -III # - 1- , , 1� I I = 7, D_ j , _iii—iii_ HOLD H. cD w g Q 111=111=11 I- '/2" CLR t_ •_ �� -.:. r,., f=l I I- Q 0 z c ?:' 'j ;„ Z°8�$ 01 3 #4 CONT. ' 111=1 o w w is •ti: ': MIN. 8" N m �•__,: � NOTE: REMOVE CMU FACE SHELL 2'-Q" g � , 5 1 8" MIN. LONG CTR'D. ON DWL. #4 L © 18"o c - ' "} / • o_ I..Pf -. FDN. REINF. TO MATCH REINF. ABOVE l� v d F-x '��-: - . Cj Z. i- L w j - DWLS. TO MATCH REINF. ABOVE (ALT. HOOKS) o u_. > ,�5t-'e. _ --- NOTE: SOLID GROUT WALL BELOW EL. 0'-0" n- I•;•:',L.,, ; 3 #5 CONT. BOT.° . (EXTEND THRU COL. FIGS. (PER ►- f: :. \ (E/ ) C PLAN) 1--,4. ;ago . v '- / p • p I NOTE:- SECT. B-4A SAME AS SHOWN EXCEPT:- 0,��p - - `, 1.) SLAB ON GRADE IS NOT AT ELEV. O'-0". 95-, 7, �-' • 4 A • 4 FTG. DRAIN 171-1T±.'i NOTE:- SECT. B-4B SAME AS SHOWN EXCEPT:- PER SOILS -i 1.) CONC. SLAB OCCURS w/ TOP @ EL. 0'-O" E.S. ENGR. TYP. o ° EQ. 8" EQ. OF CMU WALL. = CMU 2.) DWL. THRU WALL w/#4 x 4'-8" @ 16"o/c CTR'D. ALT. HOOKS TYP. PER PLAN ■ ON WALL @ SLAB CENTERLINE. SLCTIO \ B - 4 , B - 4A & B — / B 3/4" = 1'-0" ■ COPy - - -: i- ADD 2 #5 T. (1 E.F.) ----ADD 2 #4 T. (1 E.F.) 8'-0" EXTEND 2'-O" PAST OPNG. C-7 ' EXTEND 2'-0" PAST OPNG. TYP. - ill --2 #5 CONT. BOT. IN 5 III I Nr, 1. BOND BM. (1 E.F. X11 - - I 1 11 II 1 ___ INSIDE V.E.F. REINF.) -- -` '��1 I F-7 ;; f, �IIII F 1 MI 111111 _ Mil 4'-0" 1. I I 11 'I : --BOND BM. fS l�• _ REINF. PER BOND BM. REINF. - '-� I I�` SECT. B-4 PER SECT. B-4 -- --- 111 1 - - ------- ----- -1 - .. - �li 1111111 ' MI lid. ' (2x) 6 #5 V. (3 E.F.) -(2x) 4 #5 V. (2 1 1 2 BARS PER CELL 1 1 n I I I 1 E.F.) 2 BARS 1 1 11111 11 11 II 11 I PER CELL 11111 1 1 1 1 1 ' ' II 1 I . r� 1. .1 J_ .1. 24" JAMB I 4'-5" TO 8'-8" R.O. 24" JAMB 16" JAMB [4'-4" MAX. 16" JAMB GROUTED GROUTED GROUTED OPNG. GROUTED SOLID SOLID SOLID SOLID yL --NOTE; BELOW OPENINGS PROVIDE #5 © 24"o/c V. Q DOWELLED UP FROM FOOTING. ELEVATIO \ OF 8 " CMU WALL OPE \ I \ GS NOTE: FOR WALL OPENINGS LARGER THAN 8'-8" WIDE THE OPENING HEIGHT IS GREATER THAN THE a 8'-O" C.M.U. HEIGHT, PROVIDE M.B.S. METAL JAMBS DESIGNED TO CARRY ALL IMPOSED VERTICAL & LATERAL LOADS w/o DEPENDING ON THE C.M.U. FOR THESE CASES PROVIDE, END S OF WALL REINF. THE SAME AS THE 4'-4" MAX. R.O. JAMBS. d E A I. CA W f ' w"� '' ' r r1 EXIST. BAKERY 2A.28 `• ■%t I / A-2.01 7 40' 16' 28 -)kDBL.CURBS • I ♦ " ' / • (U.N.O.) I \ —". _ _A-2.01 - 15' \ 4. — — �i( y 05'-0" EN CURB W/ i I‘Allik TURN FLOORING FINISH NEW '4 W o, ® SHOP-IN IS- 7A� p ' "I AIR DOOR PRODUCE A-2.0y v I ABOVE I 107 I A-01 ' I CORNER SINGLE I A-2.01 GUARD CURB y CLOSURE FACE OF BAKERY 45'-10" kiA4IN-:1 47'-8" HEAD WALL ABOVE ---/ COOLER '( 'r .( OPN'G. CMU INFILL TO MATCH EXIS . (12)15'TALL STEEL 9'-86X8'-0"LEVEL WALL SHADED(PAINT) RACK BY OWNER LANDING W/2%SLOPE INSIDE COOLER(S.O.I.C.) MAX.SLOPE EDGES TO oiP/v4 MEET EXIST.GRADE 4 A-2.01 SIM. ci >9+ U - - • IEN'\ / ENGINEERS NORTHWEST, INC., P.S. ^ STRUCTURAL ENGINEERS - 6869 WOODLAWN AvE.'N.E.,#205,SEATTLE,WA 98115(206)5257560 Fax (206)522-6698 PROJECT# '93 0$5 15 PROJECT Cost o [ 7/G,42J) DATE SUBJECT SHEET S OF BY /klsr. k./Al.c 15•G-re-/ T a. h1.11-4. e%) 24' V oK44,. TJKitw/i 's GA o aT CELLS 1,1 f' Q yr a/xi L Y ?"--(Z±2L-4)(3.75)-- 0.003 4 `) = (/y) 1-1,041,1-1,041, 10)31- C� y Fox rye � 0.0025a k� r/GI V % - 0.00Zc (0.3.0) / (o.35) else- ',)= 13-7-4q- r= 9 LGCp "1" p - 131`a(f•Pc r 0.l°e' = IS.z/53cs-r frJ 77 f43. wrOTlr- x-rzy Z[ .(. - (C: A-/0"1 /3c-,o c, ST2,cruRz c5 7(.5 v o f2. 5-2) = Sos r v.7O1 (,) 2= 3 (-rAni_z C s Iu�T•- 0.23103 C� IA)o' 0.7(0.236C llnS�/ SE151,11C = 0.1<sq (5'6") r CI-,u I" -5j/JC...a i Ira//v O FJ ov glkit)' 61eis r 9l )v)N4 "Does AA: - GV.GNGC-1 Q■24. TS(C*M •o. of- By /me. /,+ 7tiI/F- 8�err Ro,. 4,1-*rr g,o. • • ENGINEERS NORTHWEST, INC.P.S. SHEET 6 OF 6869 WOODLAWN AVE.N.E. (SUITE 205) SEATTLE,WA. 98115 *"*** Property of Engineers Northwest, Inc., Seattle- Use by others unlawful * **** IS MASONRY SPECIAL INSPECTED? CODE : - ACI 530-05 (ASD) INPUT (YES OR NO) : YES 1900 psi UNITS & fm = 1500 psi TYPE "S" MORTAR fs = 24000 psi Es = 29000000 psi fm =I 500 'psi Em = 900 x fm = 1350000 psi K = 12M/bd2 (M = #-ft.) n= 21.481 As = pbd (b & d in inches) p bal = 0.0032205 j = 1-k/3 fm (psi) fs (psi) K (psi) p k 2/(j*k) 1.33*K (psi) j 10 24000 0.044 0.00000 0.00887 226.1169 0.059 0.9970 20 24000 0.175 0.00001 0.01759 114.3947 0.233 0.9941 30 24000 0.389 0.00002 0.02615 77.1553 0.518 0.9913 40 24000 0.683 0.00003 0.03456 58.5365 0.911 0.9885 50 24000 1.056 0.00004 0.04284 47.3660 1.407 0.9857 60 24000 1.503 0.00006 0.05097 39.9196 2.004 0.9830 70 24000 2.023 0.00009 0.05896 34.6012 2.697 0.9803 80 24000 2.613 0.00011 0.06682 30.6129 3.484 0.9777 90 24000 3.271 0.00014 0.07455 27.5112 4.362 0.9751 100 24000 3.995 0.00017 0.08215 25.0303 5.327 0.9726 110 24000 4.782 0.00021 0.08963 23.0007 6.377 0.9701 120 24000 5.631 0.00024 0.09699 21.3096 7.508 0.9677 130 24000 6.540 0.00028 0.10423 19.8790 8.719 0.9653 140 24000 7.506 0.00032 0.11135 18.6530 10.007 0.9629 150 24000 8.527 0.00037 0.11837 17.5906 11.370 0.9605 160 24000 9.603 0.00042 0.12527 16.6612 12.804 0.9582 170 24000 10.731 0.00047 0.13207 15.8414 14.309 0.9560 180 24000 11.910 0.00052 0.13876 15.1128 15.881 0.9537 190 24000 13.139 0.00058 0.14534 14.4610 17.518 0.9516 200 24000 14.415 0.00063 0.15183 13.8746 19.220 0.9494 210 24000 15.737 0.00069 0.15822 13.3442 20.983 0.9473 220 24000 17.105 0.00075 0.16452 12.8621 22.806 0.9452 230 24000 18.515 0.00082 0.17072 12.4220 24.687 0.9431 240 24000 19.969 0.00088 0.17683 12.0188 26.625 0.9411 250 24000 21.463 0.00095 0.18285 11.6479 28.618 0.9391 260 24000 22.997 0.00102 0.18878 11.3056 30.663 0.9371 270 24000 24.571 0.00109 0.19463 10.9888 32.761 0.9351 280 24000 26.181 0.00117 0.20039 10.6947 34.908 0.9332 290 24000 27.829 0.00125 0.20608 10.4210 37.105 0.9313 300 24000 29.511 0.00132 0.21168 10.1656 39.349 0.9294 310 24000 31.229 0.00140 0.21720 9.9267 41.639 0.9276 320 24000 32.980 0.00148 0.22265 9.7029 43.973 0.9258 330 24000 34.764 0.00157 0.22802 9.4927 46.352 0.9240 340 24000 36.579 0.00165 0.23332 9.2949 48.772 0.9222 350 _ 24000 38.426 _ 0.00174 0.23854 9.1085 51.234 0.9205 ACI 530-05 4/8/2011 Page 1 OF 2 CMUSTRESS ENGINEERS NORTHWEST, INC.P.S. SHEET 7 OF 6869 WOODLAWN AVE.N.E. (SUITE 205) SEATTLE,WA. 98115 fm (psi) fs (psi) K (psi) p k 2/(j*k) 1.33*K (psi) j 360 24000 40.302 0.00183 0.24370 8.9325 53.736 0.9188 370 24000 42.208 0.00192 0.24878 8.7661 56.277 0.9171 380 24000 44.142 0.00201 0.25380 8.6085 58.857 0.9154 390 24000 46.105 0.00210 0.25875 8.4590 61.473 0.9137 400 24000 48.094 0.00220 0.26364 8.3171 64.125 0.9121 410 24000 50.109 0.00229 0.26846 8.1821 66.812 0.9105 420 24000 52.150 0.00239 0.27322 8.0537 69.534 0.9089 430 24000 54.216 0.00249 0.27791 7.9312 72.288 0.9074 440 24000 56.307 0.00259 0.28255 7.8144 75.076 0.9058 450 24000 58.421 0.00269 _ 0.28713 7.7027 77.894 0.9043 460 24000 60.558 0.00279 0.29165 7.5960 80.744 0.9028 470 24000 62.718 0.00290 0.29611 7.4939 83.624 0.9013 480 24000 64.899 0.00301 0.30052 7.3961 86.533 0.8998 490 24000 67.103 0.00311 0.30487 7.3022 89.470 0.8984 _ 500 24000 69.327 0.00322 0.30917 7.2122 92.436 0.8969 500 23000 71.138 0.00346 0.31833 7.0286 94.851 0.8939 500 22000 73.045 0.00373 0.32805 6.8451 97.394 0.8906 500 21000 75.055 0.00403 0.33839 6.6618 100.074 0.8872 500 20000 77.176 0.00437 0.34940 6.4787 102.902 0.8835 500 19000 79.418 0.00475 0.36115 6.2958 105.890 0.8796 500 18000 81.789 0.00519 0.37371 6.1133 109.053 0.8754 500 17000 84.303 0.00569 0.38718 5.9310 112.404 0.8709 500 16000 86.971 0.00628 0.40166 5.7490 115.962 0.8661 500 15000 89.807 0.00695 0.41727 5.5675 119.743 0.8609 500 14000 92.827 0.00775 0.43413 5.3864 123.769 0.8553 500 13000 96.048 0.00870 0.45242 5.2057 128.064 0.8492 500 12000 99.488 0.00984 0.47231 5.0257 132.651 0.8426 500 11000 103.170 0.01123 0.49404 4.8464 137.560 0.8353 500 10000 107.116 0.01295 0.51786 4.6678 142.822 0.8274 500 9000 111.353 0.01511 0.54409 4.4902 148.471 0.8186 500 8000 115.908 0.01791 0.57312 4.3138 154.544 0.8090 500 7000 120.812 0.02162 0.60543 4.1387 161.082 0.7982 500 6000 126.095 0.02673 0.64159 3.9653 168.126 0.7861 500 5000 131.788 0.03412 0.68235 3.7940 175.717 0.7725 500 4000 137.917 0.04554 0.72864 3.6254 183.890 0.7571 500 3000 144.500 0.06514 0.78167 3.4602 192.667 0.7394 500 2000 151.532 0.10538 0.84302 3.2996 202.042 0.7190 500 1000 158.964 0.22871 0.91483 3.1454 211.952 0.6951 500 0 0.000 0.00000 0.00000 0.0000 0.000 0.0000 500 0 0.000 0.00000 0.00000 0.0000 0.000 0.0000 500 0 0.000 0.00000 0.00000 0.0000 0.000 0.0000 500 0 0.000 0.00000 0.00000 0.0000 0.000 0.0000 500 0 0.000 0.00000 0.00000 0.0000 0.000 0.0000 500 0 0.000 0.00000 _ 0.00000 0.0000 0.000 0.0000 ACI 530-05 4/8/2011 Page 2 OF 2 CMUSTRESS ENWENGINEERS NORTHWEST, INC., P.S. — STRUCTURAL ENGINEERS 6869 WOODLAWN AVE.N.E.,4205,SEATTLE, WA 98115(206)5257560 FAX (206)522-6698 PROJECT# C51055o1S PROJECT d'oSTCc,; TIG,A,vD DATE r SUBJECT SHEET v OF BY Aral: M N ,//// \r 2 67 z 3 H" `` if) 3 ' H P fl2&G w rprN = 4.3442 -- eZ p /LT= //G (a•S)L /0.sc,3f(�I.rJ�>� //� -ef I /0 4S 4= O.Q(o" o% -77-11s oPfia►-r Tho EcP,./srvz C. a onria./ To v5.?- E)eor 6/01 T3 . Use A/5S /1-->c-5 ‹ r .4'',v?. 4+/ 11 6I/e,TS cc) S dw= Ie �Cs')= Sr.srt•t- C'„2 rn ,L=Z c' -a r--i= 12 5 0-44 01 Ql/2? 4130,/ oIM4 , Olic-y /JAs �z rkie gr27A. W= 1.6.s(z.$)•w46ref a.•eL Re/ c 'Jsez ! L a \ O.Gb 17, /"1 4-6(2s� 493(Z .5) •w 46/4.--/�. J' 71-=-� - f" q93" 433q tt = 359°f 30014 f`zs S c,7s < 71250-1 ,5)asT �iwT £C ST• ri I/2•T CAN $t!/Poa r 1-4/31-t_ 2 /S o k PQE 5511(-ES, o A77'Aea4 W/ 'i '� S/hPSa►.� Tire./ No 14.oft R o s� tI�'HOK� E I SZ. - TA�I.>r 4A St�rt.T/JN l3') I r . . 0.4 • . • 0 _ REMOTE TRIP UNIT'52 -- AREA Of WORK - B' REMOTE TRIP ANTI-SWEAT PANELS UNIT '52k I NEW SINGLE STACK UNIT '53k 42" x 32"x 42"H I • MUM 500LB5 I I. I 1 L_ _ J 1 L_ _ _.I 1 J THERMA-STOR TANKS 0 I- — -I I- — -7 "<-3 • GAS H2O HEATERS Q m m MT KVM TERMINAL a !___ AIR COMPRESSOR -\ i= ce • L J MT INPUT AND REMOTE SAT PROTOCOL UNIT'C' ALARM PANEL UNIT 'SIB' I REFRIGERATI'N NEZZ• • • I • 11 z) 500 300/5.;K Z-4 . , Z7 ') 8 4, p.5 4 (2-5- i251 VI G-6A OPP. A-6 �� G\, G n W18X35 NOTE; B-6 ,. B-6 DURABLE METAL SIGN TO BE POSTE J OPP. STATING THE FOLLOWING: _ "MAXIMUM MECHANICAL UNIT WEIGHT NOT TO EXCEED 125 P.S.F. OR 18, 13'-0" 1 —� LBS. TOTAL, WHICHEVER IS LESS." C-6 r "MECH. EQUIP." MAX. TOP OF WT. 7000# CONC. "MECH. EQUIP." MAX. C12 x 25 N In WT. 7000# ® 3'-67/8 co Qo co 26GA. (15/16 } MIN. x x n NOTE: GALV1 FLOOR FORM-DECK 3 I I THE MECHANICAL EQUIPMENT SUPPLIE w/2 /2 NORMAL-WT. ' p cv cv MECHANICAL EQUIPMENT TO THE MEZ CONC. SLAB w/6 x 6 IVk I I I SLIDING AND OVERTURNING. ALSO THE W1.4 x W1.4 W.W.M. ® EQUIPMENT SUPPLIER IS TO PROVIDE CTR. OF SLAB II � r,-�., I VERIFY THAT THE ABOVE-MENTIONED c.--1-104 /� 5 THE LATERAL REQUIREMENTS OF THE II n 6 DEPT. FOR REVIEW PRIOR TO INSTALL a ti ax P o CO -6 7-7 r---� OPP. ] L_ J W18X351O WI B� — c N \. A-61 1450# MAX. G-6A A-6 - WT. TANKS I OPP, INSTALL (D COMPRESSOR ° - GUARDRAILS 500# MAX. WT. PER SECTIONS O INDICATED V D __ EAT COOLER vEZZ . FRAY \ G PLA\ NOTES: 1/8" = 1'-0" 1.) TOP OF FRAMING IS c. EL.-12' 91/2". 2. VERTICAL DESIGN L0'1=125 PS' FOR EQUIPMENT. (18,000 LBS. MAXIMUM) 3. MEZZ. SEISMIC LATERAL LOAD :ASED ON MEZZ. SELF WT. PLUS 18,000# EQUIPMENT D.L. ON THE FLOOR. 4. LATERAL SHEAR, V=. 5.) MEZZ. MUST BE REDESIGNED IF EQUIPMENT EXC" `S THE LOADS IN NOTE #2 ABOVE.