Loading...
Specifications la LL Sw RECEIVE!) M1 PWU ENGINEERING INC. Email: pwuengineering[acomcast.net OCT 7 71117 i Ph: (503) 810-8309 CITY 01, fftAKD Structural Calculations: W.JJL ?ING OXWISION Job # LEN15375 Date: 9/22/15 Project: Larwood A Master Reuse Garage Right Lot 6, Oak Crest, Tigard, OR Lennar Homes c��"p P R OFFS � GINFF `s% c 19421PE c ~EGON A y22 y/LIP ` Expires: 06/30/2016 The following calculations are for lateral wind and seismic engineering and gravity loading of the beams and columns. Non-prescriptive foundations are outside the scope of this design and require approval from a geotechnical engineer. If the project is located on a sloping lot, the foundation system needs to be approved by a geotechnical engineer prior to construction. Failure to do so invalidates this design. The need for retaining walls for the project is the sole responsibility of the builder and a design will be included only if information provided by the builder, such as sections and drawings, are provided indicating where they are needed. All retaining wall designs should be verified by the geotechnical engineer of record for the subdivision or lot prior to construction. Failure to do so invalidates their design. The design is based on information provided by the client who is solely responsible for its accuracy. The engineering represents the finished product. Discrepancies from information provided by the client invalidate this design. PWU Engineering shall have no liability (expressed, or implied), with respect to the means and methods of construction workmanship or the actual materials used in construction. PWU Engineering Inc. shall have no obligation of liability, whether arising in contract(including warranty), Tort(including active, passive, or imputed negligence) or otherwise, for loss or use, revenue or profit, or for any other incidental or consequential damage. -PWU ENGINEERING INC. Ph: 503 810-8309, Email: pwuengineering @comcast.net The following calculations are for the Larwood A Master plans for Plan approvals. Wind Loading: Per ASCE 7. Fig 6-2 See attached elevations for wind loading breakdown per level. 136mph Ultimate 3-sec gust Exposure B for Category I and II structure, Which is equal to 105mph ASD per the 2012 IBC and IRC with state amendments The mean roof height of the house h =28.0' approximately. 444, c tvNVFRS 1 Direction End Zones +` 01111111111 /4114 Direction 2a End Zones Note: End zone may occur at any corner of the building. a= .10X40' =4' or for h =28' a = .4(h) = .4(25') = 11.2' a=4' controls a must be larger than .04(40') = 1.6' and 3' Therefore: 2a= 8' see Fig 6-2 ASCE 7, and Figure above. Seismic Loading: Di seismic design category per the latest edition of the state adopted code based on the 2012 IBC and IRC SDS= .76, R= 6.5, W = weight of structure V= [1.2 SDS/(R x 1.4)] W V= .100 W Roof Dead load = 15 psf Floor Dead load= 15 psf Interior Wall Dead load= 6 psf Exterior Wall Dead load = 12 psf w Wind per ASCE 7 ` PWU ENGINEERING INC. Project Larwood A `v Direction Front to Back 3s Gust Roof Least Speed Exp. Angle A L(ft) hAvG(ft) 105mph B 26.6 1.00 40.0 28.0j 6:12 ~ a= 4.0 ft a,,nbn End zones *s A 21.3 psf ora= 11.2ft -�O B 6.8 psf Check 10psf min and a> 1.6 ft aredion C 15.8 psf load across all and a> 3.0 ft 2e' End Zones _ D _ 6.0 psf zones. 2a 8.0 ft td. Lone may occur at any Corner'"I''' WR L(ft) 8.0 24.0 8.0 hA(ft) - 8.0 4.0 hg(ft) 5.0 9.0 he(ft) 8.0 hp(ft) 5.0 -- W(pif) 0.0 204.0 156.5 146.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 I WR AVG 163.9 plf 200.0 - 10psf min load: 130.0 plf 1 00.0 - Governing value: 163.9 plf o.o W2 - L(ft) 8:0 24.0 8.0 hA(ft) 10.0 10.0 hg(ft) he(ft) 10.0 hp(ft) W(plf) 0.0 212.6 158.4 212.6 0.0 0.0 0.0 0.0 0.0 0.0 300.0 - W2 AVG 180.1 plf 200.0 ---•--I I 10psf min load: 100.0 plf 100.0 - Governing value: 180.1 plf 0.o W1 L(ft) hA(ft) hB(ft) he(ft)_ hp(ft). W(plf)__ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0i 0.0 1.0 W1 AVG #DIV/0! 10psf min load: #DIV/0! 0.5 - Governing value: #DIV/0! 0.0 - - • • 0 0 r1■'rllrluimmisi1:II.1111 uulll l■Illrl■1llr 1.lllr IE:w"II\Illrlulllrlul/1.lul/111.111.1u11111.1111111et11.11 1111A 1111 1C111n1 1:IINl1(181IIN11III1I11111111 r• •��1111111IIII11IUII11III11111111111►U11�►U1I111011 l 111111►!1111111:UII11G11111n111n1111111111V' 1 `1 111111111111n1111111n'::!111111111n ii.i .i1 11111111 111111■:1111111iQIJ111;11111111V'' .1111111, e111101111111I111IIIIIIl11111111111111111h11 11111111C!/11111 111111G1Na III' /11�11Limiii .. 4411;1!' '111111111/11111W1111i1111C . q�1►liliiiiui�D1;1111111iiL.i11 ''�minsislui 1r11hl,. 1j,\'1111111 il1iiliiill�niil 111 .._._....._..._,_. lmnn np t 1111111111�11111� •Rmnnlimia mi n:rt1m11m1►amn1 111111!1111UC1111!II\!11% .A111111. �1 •. 111111Iiimu!111P'• r1 -..im111111:l1111oul 11111!I'!1111:cm1 unluu simile � 1111.1.111.1111.. 1IM;111■IIIIIMID.. RlIIIIII nnIIIIIM1n'wnni51nl ummmn _ iiii111111�11111i11111t,._ " olimIIIQIIIIItk.. mini mluuclleu_g11muo1 nllnn- ."41�1111111111111fI11..-141`�llii 11" j i imiii -.Ti:-.P�,� .1111�IIIII�IIIII111111�IIIII�I1,.. _ — \i1111:11111;11111:: � 11711E— - 1111 11111 "" 1111 1 1 I I. , �� l IIII lit Ilia ispir' _____ _.. _____„_________ _. .1. i►innsuil_ lil�l�l�l it _ .� III,. — _1.111unr,-, '1 1 _ - --- — • illliiiii rii:iii iiiilii:�ilili iiiihiiliii iiliii iiiil�iiuiriliiliaiiil ►i• ,111111111. lisithm tO•'1r_L! q/►111;�n11111��u11111110IIII1111g1111111111111 1111un11tur1111111.1 - �r111111■III11 ir1111.1\11I�\--• --'— uuuwmninmismailiciplai mirls1lwommimi irlalirulr �� ,�`_O_ \� \J` — r - , L..1 1�1 III- i 11111 111111111111 111111 111111 1:11 1L_L�Jll �IhI.IIIIII,I llI 11111 111111111111111111111111 ;_ : .__ _:t;_ Tal11m 110/ 11111 11111 11111111111111111111111iI= =Av -'�euD-R.1. - _�-.I .0 0 u u ui � 111 a o_?� S .S ��_ ar�� — —sok WO v Oro OVEMJEAD DOOR / -rIR1 ENTRY DOOR- l /CLA081C-CRAFT Alevtic4N 0 ccurcYloll g,e'elD!4 12 1184/480'7 MOVE(3.DOLL R7 DOae-r1UI4eQ1*V urea) . FRONT ELEVATION v4•.,. • Wind per ASCE 7 PWU ENGINEERING INC. Project Larwood A `v Direction Side to Side 3s Gust Roof Least Speed Exp. Angle A W(ft) hAVG(ft) n 105mph B 26.6 1.00 40.0 28.0 �� .� 6:12 MW FRS \l a= 4.0 ft 'co' S� End Zones iiiio. A 21.3 psf ora ecto 11.2ft l B 6.8 psf Check 10psf min and a> 1.6 ft 0 / Drth C 15.8 psf load across all and a> 3.0 ft 2e End Zares D 6.0 psf zones. Note:End zone may occur at any Conner of the 2a 8.0 ft buidi . WR L(ft) _ 8.0 23.0 8.0 hA(ft) 4.0 8.5 _ hB(ft) 8.0 he(ft) 8.5 hp(ft) 3.5 W(plf) 0.0: 0.0 0.0 139.2 155.5 180.7 0.0 0.0 0.0 0.0 200.0 - WR AVG 157.3 plf t i 10psf min load: 112.8 plf 100.0 - Governing value: 157.3 plf W2 - L(ft) 8.0 2.5 8.0 23.0 8.0 hA(ft) 4.5 5.5 10.0 h (ft) 5.0 5.0 he(ft) 4.5 1.5 10.0 hp(ft) W(plf) 0.0 129.5 105.1 140.7 158.4 212.6 0.0 0.0 0.0 0.0 r 300.0 [ W2 AVG 156.9 plf 200.0 - 1 10psf min load: 94.1 plf 100.0 - t Governing value: 156.9 plf WI L(ft) _ hA(ft) hB(ft) [lc(ft) hp(ft) W(plf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 - W1 AVG #DIV/0! 10psf min load: #DIV/0! 0.5 - Governing value: #DIV/0! 0.0 omcirolisilismillw viumemillooldincip- ,....12...je 11011111111011111111,1111111111111111111110/11P- 111111110111111112VMMIlimummow Uffintliginal Mr'". 1116,PIMMTINIBM"' lill litiligiumnimmilul- gtalMA",."- M1111111111111111111N!,A1111111110111 TOP PLATE -""— — — — — — •IF i 4 I:illt S--..1G1 mom up ;,...!'. •■••11.111.1•■•■■ ' ..".....— . mil■•■•■■=■11■=1■1•1111 1■11M.WW=111=11111 r . 11111■1 IZ:: wi■Em ■ NEI ■111 =1■INI IN vo■•■•■•■ a m 1 1 lim 0 1 ■1 I mom I■••■•■•■10 ■ Nows■ A■111■■■•■=111 4:4 ill 'NEW MI 10■1 I= •■•=1.1 EMMEN. MIM■IMEMEIMMIll VIEN1011■■ ■III MIII■M ■EIIMMINI■11M■11■ 11■1 N■1.11 M■NIMIM 11=11M■1111EMI AU 111111■111111111111111111111 1111111111k 1E117 miliell.1 111111112111111111011111111111111110___ __ . , _ _ _ _ UMW — ----------- - -- ----' ----.------ -------- -- I M IMI■1 M I I I EEI I■N • 05 at a 1 a ilic Ai 1 is 1 n la mut 1 ILE mill a:u i I 1 i m on 1 1m au a 1 II to 1 m•in II I 1 u a 1 1 MililliliMilni...1111.1113"11M1.211".= aup.ftn 11110111111011111111;i1.1111110111111111111111111:1111111111011111111111111111111111111111111111111111111111.1111 low.■■■ MIL1■1111■1 . 11111-01111ii0111-intitilltiiii1111-1111111111111i11;11101161111iiilliiiilliiiillliiillliiillliiiillii 1=111111111■ww.■•■ — ....10"-ATE 111111110111111131111111iN111111111111111101111LIIMI11111111111111111111.111111111111111111011111111011111116.1 — . — i'll ■AtI•■■•• _ •imisousilicsinamil ii im V"Ii"m"""1,.......„;.........ma „...,,,.., 111111•0■1 lit.m■iiiIi= .• EN■boi■■■••■•■•■••• ■ I M1111■■■■• ■I•M 1■■■•■I I=I =II INII■■■■ 1 LI I I MIEII■.■■■■.■I I E I I=MEM=■ I M•I I■I --I I•1 I■-...M I■1 I■I I I I El I I NE I I I I M I.E I I I MI1.1 I IlE11■1 I M I• 11111■211. •■ IMIM111■101.1 II■11 1 E I II E 111■1 I■E■IEE■1111111 NI■1=■E I■ 43 1M IN in az ik. ,.....N .,...,.. „.k. _Jus-rot._ 1■SPIZIW 6MMUJIIN — — — ., , RIGHT SIDE ELEVATION i• r• A' A A A nomicsin omiu misiiimi imienIm11eimienisiiimeimisia1io1 lini11sIm1mOImmill1111 l 111111111111111111111111111111 1111111 1111 11111111 11111/11111111111/111IIIINII11111111111 111111111111/111111 1111111111111111111/1111111111IIII11IIIII11111111I1111111111111111111111111111111111111 1111111 1111111/111111/11{1111111 11111 111111 111111111{1 111111111111111111111111/11111/11111111111111111 1111111 1/11111 111111111111/11111111111111 111I11111I1111111111%I111111I11111I1111111111I111111111I11111I11111I11111111111I11111111111111111111111111I1111111111 w11�1111111111NIUn11111111mnn 11111111n1nllluu 111111111111 lunotnlfl/u11111111111ulunaull III 11111%1111111 1S 11%111111111111111111 1/11/11 11111111IIIIIHIIIIIII IIIIIIII1IIMI11111111111`11 111!111%11111 1111111111111111111111111111 111111111111 111111111111111111111111111 111111 1111111/111111111111111111111111111111111111111111111 ■IIU111ni 111111 1111111111►11IN11111111/IIU111111111/111{11111111111111111111111111111/111111111111111 1111111111111111111 11111111111111111 111111 11111111111 11111111111111111 111111111111/1/111/11111111111 1111111111111111/11111111111/1111111I111q/ top mare '1/11111111111111111111111111111111111111111111111111t{1111111111111111111111111111111111111111111111111111111/1111111111111111111: —11iii 91 3illi3liliiillli 31CiG111iiii1l/iii11Rii11/MLI.15 .1.1.i1.1iRI1 LRIPM.Ii0.1.51il/ICnIIMMili.11B -1P I I L1111 b . 811D-PI.R . . .. - .. - ... • TOP Hare lUD-RR REAR ELEVATION V4.•v ■••.-.. -Iniltutormintunisimmourimminlimi mow isictutsmirimismoinictun 612 ...iiiiillialih:IMIE9111111111111111111111111111111111111111111111111._ "11111111•11111111111111111111111111111111111111111 `111111111111111111111111111111111111111111111111111 '11111111111111111111111111111111111111111111 -4111114fillinMMINI "111111111111111111111111111111 "111111111111111111111111 -4"111111111111111111- TOPPLATE Iii... 1111141111111; , -"''..■•••-■7■1= . 1111 243 1111i111111111111111111111111111 ----- - - -- -- - -- ------- -•----- -------- -- _ _ _ 111111111111111111111111111111 -- ----- -- • • • • 11111111111011111111111111111111. ■ • . ... .. .. .. .. ...... . mai immulimulmothirii VININIMINUMUMMINIMNU WO.K.R - - - ' tlIttAttatglle - --- -11-11 Tcr TI .... --7:11.1mmumonumni L•■•11. WinZ W771 y,..■,..wwsp,M•11■ 11. li•riaiii-" .7711-Nlit.i .T W54.1.M NO — — — - — — — -....":■"""t' — - ...__. ..-..--. 1 4.0. I LEFT SIDE ELEVATION 04•• ... ;•■ , . . . .' .. Seismic & Governing Values �PWU ENGINEERING INC. Project Larwood A Seismic Loading per latest edition of state adopted code based on 2012 IBC and IRC Design V= [1.2 Sos/(R x 1.4)]W Category R Sos D1 6.5 0.76 Roof Dead Load: 15psf Floor Dead Load: 15psf Interior Wall Dead Load: 6psf V=] 0.100*W Exterior Wall Dead Load: 12psf Check Seismic Front to Back vs Wind Seismic Wind WR =_ [0.100 * (15+5+3) * 39 ft] = 89.9 plf < 163.9 plf Wind Governs W2 [0.100 * (15+54-3+4) * 42 ft] + 89.9 plf= 203.5 plf < 344.0 plf Wind Governs _ [0.100 * (15+5+3+4) * + 203.5 plf= 203.5 plf #DIV/0! #DIV/0! #DIV/0! Check Seismic Side to Side vs Wind Seismic Wind WR = [0.100 * (15+5+3) * 40 ft] = 92.2 plf < 157.3 plf Wind Governs W2 = [0.100 * (15+5+3+4) * 40 ft] .+ 92.2 plf= 200.4 plf < 314.3 plf Wind Governs = [0.100 * (15+5+3+4) * ,+ 200.4 plf= 200.4 plf #DIV/0! #DIV/0! #DIV/0! Redundancy factor= 1.0 per ASCE 7 section 12.3.4.2 } Line Loads PWU ENGINEERING INC. Project Larwood A High Roof Diaphragm -Upper Floor Walls Line A P = 3.28 k LTOTAL = 34.0 ft v = 3.28 k / 34.0 ft = 96 plf Type A Wall h = 8.0 ft LwoRsT = 13,5 ft MOT = 96 plf * 8.0 ft * 13.5 ft = 10.41 kft MR = (15 psf * 2.0 ft + 12 psf * 8.0 ft) * (13.5ft)2 / 2 0.6 = 6.89 kft + (0 lb * 0.0 ft) + (0 lb * 0.0 ft) = 0.00 kft + 6.89 kft = 6.89 kft T = (1.0.41 kft - 6.89kft) / 13.5 ft = 0.26 k + 0.00 k = 0.26 k No hd req'd Line B P = 3.28 k LTOTAL = 30.5 ft v = 3.28 k / 30.5 ft = 107 plf 'Type A Wall h = 8.0 ft _ LWoRsT = 4.0 ft _ MOT = 107 plf * 8.0 ft * 4.0 ft = 3.44 kft MR = (15 psf * 2.0 ft + 12 psf * 8.0 ft) * (4.0ft)2 / 2 * 0.6 = 0.60 kft + (01b * O.Oft) + (Olb * 0.0ft) = 0.00kft + 0.60kft = 0.60kft T = (3.44kft - 0.60kft) / 4.0 ft = 0.71 k + 0.00 k .= 0.71 k j No hd req'd Line 1 P = 3.07 k LTOTAL = 18.0 ft v = 3.07 k / 18.0 ft = 170 plf Type A Wall h = 8.0 ft LWoRsT = 5.5 ft MOT = 170 plf * 8.0 ft * 5.5 ft = 7.50 kft MR = (15 psf * 15.0 ft + 12 psf * 8.0 ft) * (5.5ft)2 / 2 * 0.6 = 2.91 kft + (Olb * 0.0ft) + (5001b , * 2.5ft) .= 1.25kft + 2.91 kft = 4.16kft T = (7.50kft - 4.16kft) / 5.5 ft = 0.61 k + 0.00 k = 0.61 k No hd req'd Line 3 P = 3.07 k ' LTOTAL = 18.0 ft ' I v = 3.07 k / 18.0 ft = 170 plf Type A Wall See FTAO Calc No hd req'd Low Roof/ Upper Floor Diaphragm -Main Floor Walls Line A P = 6.88 k LTOTAL = 41.0 ft v = 6.88 k / 41.0 ft = 168 pIf Type A Wall h = 9.0 ft LWoRsT = 41.0 ft MOT = 168 plf * 9.0 ft * 41.0 ft = 61.92 kft MR = (15 psf * 2.0 ft + 12 psf * 9.0 ft) * (41.Oft)2 / 2 * 0.6 = 69.59 kft + (O lb * 0.0 ft) + (O lb * 0.0 ft) = 0.00 kft + 69.59 kft = 69.59 kft T = (61.92kft - 69.59kft) / 41.0 ft = 0.00 k + 0.00 k ,= 0.00 k No hd req'd Line B P = 6.88 k LTOTAL = 38.5 ft v = 6.88 k / 38.5 ft = 179 plf (Type A Wall h = 9.0 ft LWoRsT = 16.0 ft MOT = 179 plf * 9.0 ft * 16.0 ft = 25.73 kft MR = (15 psf * 3.0 ft + 12 psf * 9.0 ft) * (16.0ft)2 / 2 * 0.6 = 11.75 kft + (O lb * 0.0 ft) + (500 1b * 13.0 ft) = 6.50 kft + 11.75 kft = 18.25 kft T = (25.73kft - 18.25kft) / 16.0 ft = 0.47 k +. 0.00 k = 0.47 k ' No hd req'd Line 1 P = 4.44 k I I LTOTAL = 16.5 ft I v = 4.44 k / 16.5 ft = 269 plf Type B Wall See FTAO Calc No hd req'd Line 2 P = 3.88 k LTOTAL = 19.5 ft v = 3.88 k / 19.5 ft = 199 plf Type A Wall h = 9.0 ft LWORST = 19.5 ft MOT = 199 plf * 9.0 ft * 19.5 ft = 34.96 kft MR = (15 psf * 5.0 ft + 12 psf * 9.0 ft) * (19.5ft)2 / 2 * 0.6 = 20.88 kft + (0 lb , * 0.0 ft,) + -(0 lb • * 0.0 ft) •= 0.00 kft + 20.88 kft = 20.88 kft T = (34.96kft - 20.88kft) / 19.5 ft = 0.72 k + 0.00 k = 0.72 k ' No hd req'd Line 3 P = 5.58 k LTOTAL = 12.0 ft v = 5.58 k / 12.0 ft = 465 plf 'Type C Wall h = 9.0 ft LWORST = 3.0 ft MOT = 465 plf * 9.0 ft * 3.0 ft = 12.55 kft MR = (15 psf * 2.0 ft + 12 psf * 9.0 ft) * (3.0ft)2 / 2 * 0.6 = 0.37 kft + (0 lb * 0.0 ft) + (500lb * 3.0 ft) = 1.50 kft + 0.37 kft = 1.87 kft T = (12.55kft - 1.87kft) / 3.0 ft = 3.56 k + 0.00 k = 3.56 k ' Use type 2 hd See FTAO Calc Force Transfer Around Opening (FTAO) - PWU ENGINEERING INC. Diekmann Technique @ Upper Floor Line 3 Li = 3.Oft Lo= 5.5ft L2=:3.Oft V= 1.02k_ vA= 52 plf vp= 129 plf vF= 52 plf hu =1.0 ft 4- 4- F1 = 0.35 k F2 = 0.35 k vB= 170 plf vG = 170 plf h0= 2.5 ft F1 = 0.35 k F2 = 0.35 k - - hi_= 4.5 ft vc= 52 plf vE= 129 plf vH = 52 plf J. T H = 0.71k H = 0.71k H=I ( 1.02k *8.0ft) / 11.5 ft = I 0.71 k H:W Ratios 2.5 ft : 3.O ft I= 0.8 : 1 vh = 1.02k/ 6.Oft= 170 plf 2.5ft : 3.Oft I= 0.8 : 1 v„= 0.71 k/ 5.5 ft= 129 plf Use: Type A Wall F = 129 plf* 5.50 ft= 1 0.71 k F1 = ( 0.71 k* 3.0 ft)/ 6.0 ft= 0.35 k F2 = ( 0.71 k* 3.O ft)/ 6.0 ft= 0.35 k Use: (2) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 2ft+ 12psf* 8.Oft) * (11.5 ft)^2 * 0.6/2] + ( 0.0ft *5001b) = 5.00 kft T= 0.71 kft- ( 5.00kft / 11.5 ft) I = 0.27 k +0.00k= 0.27 kI No HD req'd -�PWU ENGINEERING INC. Force Transfer Around Opening (FTAO) Diekmann Technique @ Main Floor Line 1 Li =,4.0 Lo=;5.0ft L2=4.0ft ---> =,2.15 vA= 36 plf vo= 372 plf vF= 36 plf hu = 1.0 ft F1 = 0.93k F2= 0.93k vB= 269 plf vG= 269 plf h0=.5.0 ft F� = 0.93k F2 = 0.93k h�='3.0ft VC = 36 plf vE= 372 plf vH = 36 plf T H= 1.49k H = 1.49k H=I (2.15k *9.Oft) / 13.0ft= I 1.49 k H:W Ratios 5.O ft : 4.O ft = 1.3 : 1 vh = 2.15 k/ 8.0 ft= 269 plf 5.0 ft : 4.0 ft (= 1.3 : 1 vv= 1.49 k/ 4.0 ft= 372 plf Use: Type B Wall F = 372 plf* 5.00 ft= J 1.86 k F1 = ( 1.86k* 4.Oft)/ 8.Oft= 0.93k F2 = ( 1.86 k* 4.0 ft)/ 8.0 ft= 0.93 k Use: (2) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 8ft+ 12psf* 9.Oft) * (13.0ft)^2 *0.6/2] +( 0.0ft' *5001b) = 11.56 kft T= 1.49 kft- ( 11.56 kft / 13.0 ft) = 0.60 k +0.00k= _ 0.60 k) No HD req'd Force Transfer Around Opening (FTAO) --- FWU ENGINEERING INC. Diekmann Technique @ Main Floor Line 3 Li = 3.0ft L0= 5.0ft =,3.0 ft V='2.79k vA= -11 plf vp= 571 plf vF= -11 plf hu =,1.0 ft 4- F1 = 1.43k F2 = 1.43k vB= 465 plf vG = 465 plf h0 = 5.0 ft F1 = 1.43k F2 = 1.43k — -f hL= 3.0 ft vc= -11 plf vE = 571 plf vH = -11 plf y T H = 2.28k H = 2.28k H=I (2.79k *9.0 ft) / 11.0 ft = I 2.28 k H:W Ratios 5.Oft : 3.O ft = 1.7 : 1 vh = 2.79 k/ 6.0 ft= 465 plf 5.0 ft : 3.0 ft I= 1.7 : 1 v„= 2.28 k/ 4.0 ft= 571 plf Use: Type C Wall F= 571 plf* 5.00 ft= I 2.85 k F1 = (2.85k* 3.0 ft)/ 6.0 ft= 1.43 k F2 = (2.85 k * 3.0 ft)/ 6.0 ft= 1.43 k Use: (2) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 2 ft+ 12psf* 9.0 ft) * (11.0ft)^2 * 0.6/2 ] + ( 0.Oft *5001b) = 5.01 kft T= 2.28 kft- ( 5.01 kft / 11.Oft) I = 1.83k _+0.00k= 1.83 k) Use: Type 2 HD O eQI, • O 12."10 6'•9' O Eili)' I,. =._._ ir , w-- i______.- 71, keA ji, J i, . - - sp 1EC. .. r A 3 � r-�f 2.t -3.-7- - 3'•T:_i, , =r_i I-1-4"i A'3y WERE WALL ELEV ' me WALL kry TO BE SW-AREA TTO ISE BIEA711EO USE CSC COIL STRAP I USE 0327_ CD BAYS rat WET 10,612 �— PT A° __ DET 10/637 ilbopTRAP HM CO PTAO P P UPPER FLOOR LATERAL PLAN • m© 4C-4Z ' .L-.91 .<1 I 170 , : , : :.i 4;4 C)L, C)Ilp T1111111IIII .' =. I 1 a 11 MI ■: : : : : : : : : : : : : : : : 1 4t4 0 .9-" <II. 11% ,q, cx atc i9 • : • • • : . : • : • . :i C5 0 8 -t:<D'. H : : Cam- 0 : :. •,,b. :. :. :. :. ••• : : .: : :. C. b. : :. : :. :..:. :; , 0 iNa.,_, 1 i1 : ..*'. • : : : : : : : : : : : : - : : : : :-: .1",:iiiirl>litil E ' 0 I 1 11/ .9-dr O O _. • L. O e e © B'-9' I d'-.1' „.___ __., tr T c. _ m e e I I 7 I ' WP 0 24 'Ng --r-ADEI----MEI TO RE elsanLD I ENTIRE B o SCATHED EV uee ceu COIL ernAr I TO BE IL OMR. (2)BATS PER DET 10o159.2 uee cam COIL eiw,r MR PIA?PERM— f7)DA78 PER DET IOi8S7 rage PT A0 rEn+ro UPPER FLOOR LATERAL PLAN ■ ... ENTIRE 1144.L ELEV TO ISE SCATHED USE can COL STRAP (2)PATE PER CET 10/882 44, 0 PM PTAO METHOD 0 0:4 IT- lir rirmwig =WIZ o __. • 77.1 CA At111Pr LTA /- -py-.1. ,1 . e . ii, . ...... 1 .... 0 "----, _, • . ni, 1 . . a k , . Aiik¶ _" I: r,:r..t, . . • 'S,A. 1 lr - ,I;I .1 . Vii' 0 ti (1., (itt pr O■ " .1 .4 .0, :e.. -1---t W r 1 Aek 2 at ki:e 0 ....m. I I Nr..■.; 1r POUR STEM MALL Ir 2-• SO ILIALL FEIENT DEMEEN TOP OP STEM WALL MP!BOTTOM CP ENTIRE WALL ELEY REAPER IS 1.-0.MAX TO ISE SNEATHEP PER DETAIL 11/891 ME CeQ2 COL 1317Lolb f)(1)PATS PER PET ICVSS2 MR PTA°mem= MAIN FLOOR LATERAL PLAN iv.r-o• " . . „ HOLDOWN SCHEDULE MARK Boundary Tension of DF Tension of HF Anchor Anchor Anchor Tension NUMBER HOLDOWN Studs Allowable Lbs Allowable Lbs Mono Pour Two Pour End Corner 1 HDU2-SDS2.5 (2)2x 3075 2215 SSTB16 SSTB20L S=2550, S=2550,w=3610 w=3610 2 HDU4-SDS2.5 (2)2x 4565 3285 SB%X24 SB 5/8X24 w 66705 w-66705, 3 HDUS-SDS2.5 (2)2x 5645 4065 SB%X24 SB5/8X24 w=66 0, w=6767o, 4 HDU8-SDS2.5 (3)2x 7870 5665 SSTB28 SSTB34 S=6395, S=7315,w-7615 w=8710 8 HDU1 1-SDS2.5 (1)6x 9535 6865 PAB8-36, 10"min PAB8-36, 10' min embed into 32"min embed into 32"min 9 HHDQ14-SDS2.5 (1)6x 14445 10350 width footing. If at width footing, If at retaining wall lap retaining wall lap anchor with vert reinf anchor with vert reinf bar hooked to Ftg. bar hooked to Ftg. 5 MSTC28 (2)2x 3000 2590 N/A N/A 6 IVSTC40 (2)2x 4335 3745 N/A N/A 7 MSTC66 (2)2x 5660 5660 N/A N/A Notes: 1 . Install all holdowns per manufactureer specificaiton per C-2011 Simpson Strong Tie catalog. 2. Match studs on schedule for walls below on all wall to wall holdowns. 3. (2)2x studs nailed together with (2) rows of 16d @ 3" o.c. staggered. Trimmer stud may be used as part of boundary member. 4. Refer to shearwall schedule and typical shearwall details for wall locations and configurations. 5. Refer to Simpson catalog for minimum embed of anchors into concrete. • SHEAR WA L L SCHEDULE (a-m) ONLY REQ'D ON INTERIOR SHEARWALLS. MARK REF NOTES: (a,i) Note: (b) EDGE NAILING FEILD NAILING SILL TO CONCRETE SILL TO WOOD SHEAR TRANSFER CAPACITY CAPACITY NUMBER SHEATHING NAIL SIZE SPACING SPACING CONNECTION. Note: (c) CONNECTION. Note (g) CLIPS (h) Lb/Ft (SEISMIC) Lb/Ft (WIND) A 16" OSB (1) SIDE 8d 6" 12" 2" Dia. A.B. @ 30" o/c 16d @ 4"o/c A35 @ 14" o/c 255 357 B 16" OSB (1) SIDE (f) 8d 4" 12" 2"Dia. A.B. @ 18"o/c (m) 16d @ "o/c A35 @ 10" o/c 395 553 C 16" OSB (1) SIDE (e,f) 8d 3" 12" in Dia. A.B. @ 12"o/c (m) 16d @ 2"o/c A35 @ 8" o/c 505 707 D 16" OSB (1) SIDE (e,f) 8d 2" 12" in Dia. A.B. @ 11"o/c (m) 16d @ 2"o/c A35 @ 6" o/c 670 938 E 16" OSB (2) SIDE (d,e,f) 8d 6" 12" 2"Dia. A.B. @ 12"o/c (m) 16d @ 2"o/c A35 @ 8" o/c 510 714 F 16" OSB (2) SIDE (d,e,f) 8d 4" Staggered 12" in Dia. A.B. @ 8"o/c (m) 16d @ 3"o/c(2) rows staggered A35 @ 5" o/c 790 1106 G 16" OSB (2) SIDE (d,e,f) 8d 3" Staggered 12" 2"Dia. A.B. @ 7"o/c (m) 16d @ 2"o/c(2)rows staggered HGA1 OKT @ 8" o/c 1010 1414 H 16" OSB (2) SIDE (d,e,f) 8d 2" Staggered 12" in Dia. A.B. @ 52" o/c (m) 16d @1i1" o/c(2)rows staggered HGA1OKT @ 6"o/c 1340 1876 Notes: a) All wall construction to conform to SDPWS Table 4.3A. b) Use Common Wire Nails for all wood sheathing and cooler nails for gypboard sheathing. c) A.B. minimum 7" embed into concrete. 3"x3"x q" plate washers req'd at all shear wall A.B. in seismic zone D, E, F. d) Panel joints shall be offset to fall on different framing members or framing shall be 3x or thicker and nails on each side shall be staggered. e) 3x or Dbl 2x framing at all panel edges and nails shall be staggered. f) All edges blocked. g) Common Wire Nails. h) Clip to be attached from continuous blocking to top of continuous top plates. Clips are not required at Gyp Bd walls but blocking is attached per the toenailing schedule. i) See attached typical shearwall details. j) Sheathing to be Structrual I Sheathing. k) Values are for framing of H-F. m) 3x, Dbl 2x, or 2x Flat at panel edges. Stagger nails. See note C for plate washers and details for plate washer edge distance. On sill plates of all walls use a single 2x sill and 2x blocking in between the studs for plywood edge nailing surface. PWU ENGINEERING INC Ph: 503 810-8309, Email: pwuengineering©comcast.net 2-Sp4 gtx...= 1 SpsP 6-Ti L-= 33' w. 7-110,1C R1 12.2/k HDR @ Master �PWU ENGINEERING INC. • Loads and criteria Total Span: 5.00 ft =60 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.40 1 -270 plf -450 plf -720 plf 0.00 ft 5.00 ft 5.00 ft 2 Oplf 0.00ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft I TL L/240 0.25 in 5 f 0 plf 0.00 ft LL L/480 _ 0.13 in Triangular Loads Max Load Extent DL LL TL Zero End Max End Total 1 O plf 0.00 ft 2 _ O plf 0.00 ft 3 0 plf 0.00 ft 4 0 plf 0.00 ft 5 O plf 0.00 ft -800 -600 - -400 - w -200 - a 0 / 0 5.00 ft 200 - 400 - 600 -'- - R1 R2 800 1.80 k 1.80 k— PWU Engineering Inc.02013,Software v1.02,3/06/14 HDR @ Master 4 PWU ENGINEERING INC. Results - -800 -600 - -400 - — -200 - 0 0 A 0 200 5.00 ft 400 600 R1 R2 800 — 1.80 k 1.80k - [Douglas Type: Reactions (k) Fir-Larch #2 DL LL TL TL R1 675 lb 1125 lb 1800 lb 1.80 k R2 675 lb 1125 lb 1800 lb 1.80 k Size: 2000 (1) 4x8 DF#2 I 1000 A 25.38 in2 - S 30.66 in3 � o - - 111.15 in4 F„' 180 psi -1000 Fb' 1260 psi E'x 106 1.60 -2000 VAllowable 3.05 k 2500 MAllowable 3.22 k-ft 2000 Design values are based off NDS 2005 Edition,published by American Wood Council. 4 1500 • 1000 Shear Moment • 500 VMAx 1.80 k MMAX 2.25 k-ft VAllowable .05 k M 3.22 k-ft 0 ` owable Allowable Ratio 0.59 Ratio 0.70 0.00 , OK OK -0.02 - Deflection 2 TL LL -0.04 Actual 0.06 in 0.04 in o Criteria 0.25 in 0.13 in Ratio 0.23 0.28 -0.06 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ GT --{ bPWU ENGINEERING INC. • Loads and criteria Total Span: 2.00 ft I = 24 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 -4579 lb -7631 lb -12210 lb 0.50 ft Repetitive Use? No 2 O lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 DL LL TL Start End Total CV 1.00 1 -255 plf -463.plf -718 plf 0.00 ft 2.00 ft 2.00 ft 2 Oplf 0.00ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.10 in 1 5 0 plf 0.00 ft LL L/480 0.05 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 Oplf 0.00ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft 4 O plf 0.00 ft 5 Oplf 0.00ft -800 -12.21 k -600 - -400 - 4-._ -200 - CL D 0 J 2.00 2.00 ft R2 200 3.77 k 400 - R1 600 —9.88 k 800 PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ GT -PWU ENGINEERING INC. Results - -800 -12.21 k -600 - -400 - �a -200 - a 0 0 200 2.00 ft I R2 3.77 k 400 R1 600 — 9.88 k 800 Type: Reactions (k) DL LL TL TL Boise Glulam 24F-V4 Ri 3689 lb 6186 lb 9875 lb 9.88 k R2 1400 lb 2370 lb 3770 lb 3.77 k Size: 15000 (1) 5'/2'x10'/2' GL 10000 — A 57.75 in2 S 101.06 in' „ 5000 - a) - 530.58 in4 N F„' 265 psi o Ft,' 2400 psi - ' . E'x 106 1.80 -5000 - VAllowable 10.20 k 6000 MAllowable 20.21 k-ft _ 5000 Design values are based off BOISE GLULAM Specifier Guide, 4000 published by Boise Cascade EWP dated 02/28/13. � -5 3000 Shear Moment 0 2000 m 1000 -� VMAX 9.88 k MMAX 4.85 k-ft VAllowable k M 20.21 k-ft o Allowable Allowable Ratio 0.97 Ratio 0.24 0.00 OK _ OK _ o.00 Deflection o TL LL 0.00 Actual 0.00 in 0.00 in o 0.00 Criteria 0.10 in _ 0.05 in Ratio 0.03 0.04 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #1 )PWU ENGINEERING INC. Loads and criteria Total Span: 13.00 ft I = 156 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 DL LL TL Start End Total CF 0.90 1 -135 plf -225 plf -360 plf 0.00 ft 13.00 ft 13.00 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.65 in 5 0 plf 0.00 ft LL L/480 0.33 in Triangular Loads Max Load Extent # DL _ LL TL Zero End Max End Total 1 Oplf 0.00ft _ 2 Oplf _ 0.00ft 3 O plf 0.00 ft 4 O plf 0.00 ft 5 0 plf 0.00 ft -400 -300 - -200 - 9- -100 - @ 0 A_ 0 13.00 ft 100 200 300 -1- R1 R2 2.34 k 2.34 k 400 PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #1 4 PWU ENGINEERING INC. Results - -400 -300 - -200 - L- -100 - D. o A 2 100 13.00 ft 200 300 R1 R2 2.34 k 2.34 k 400 Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R1 878 lb 1463 lb 2340 lb 2.34 k R2 878 lb 1463 lb 2340 lb 2.34 k Size: 3000 (3) 2x14 DF#2 I 2000 A 59.63 in2 a 1000 - - S 131.67 in3 c o I 872.33 in4 C -1000 F„' 540 psi -2000 Fb' 2430 psi E'x 106 1.60 3000 VAllowable 7.16 k 8000 MAllowable 8.89 k-ft Design values are based off NDS 2005 Edition,published by American .7 6000 Wood Council. $ NW . IIII c 4000 Shear Moment � 2000 iirW VMAx 2.34 k MMAx 7.61 k-ft r , VAllowable .16 k M 8.89 k-ft owable - Allowable Ratio 0.33 Ratio 0.86 0.00 ' OK OK c -0.05 `_ Deflection `2 -0.10 ti TL LL Actual 0.17 in 0.10 in ...= -0.15 Criteria 0.65 in 0.33 in Ratio 0.26 0.32 -0.20 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #2 ---.PWU ENGINEERING INC. Loads and criteria Total Span: 7.00 ft I = 84 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # _ DL LL TL 1 _ 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 DL LL TL Start End Total CF 0.90 1 -30 plf -50 plf -80 plf 0.00 ft 7.00 ft 7.00 ft 2 Oplf 0.00ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.35 in 5 0 plf 0.00 ft LL L/480 0.18 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 O plf 0.00 ft 2 0 plf 0.00 ft 3 Oplf 0.00ft 4 O plf 0.00 ft 5 Oplf 0.00ft -100 -80 -60 - -40 - -20 - a o 20 7.00 ft 40 60 -- R1 R2 80 — 0.28k 0.28k _ 100 PVVU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #2 -- � PWU ENGINEERING INC. Results -100 -80 -60 - -40 - . -20 - D. oA A a 20 7.00 ft 40 60 — R1 R2 - 80 —0.28k 0.28k - 100 Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R1 105 lb 175 lb 280 lb 0.28 k R2 105 lb 175 lb 280 lb 0.28 k Size: 400 (1) 2x14 DF#2 I 200 200 A 19.88 in2 a 100 - S 43.89 in' 0 - , , - 290.78 in4 n -100 F„' 180 psi -200 Fb' 810 psi -300 E'x 106 1.60 400 VAllowable 2.39 k 600 'knowable 2.96 k-ft _ 500 Design values are based off NDS 2005 Edition,published by American 400 Wood Council. 4 _ � 300 0 Shear Mom_ ent 200 VMAX 0.28 k MMAX 0.49 k-ft 100 , VAllowable 2.39 k MAllowable k-ft o owable Allowable Ratio 0.12 Ratio 0.17 0.00 - „ . OK OK 0.00 -- Deflection o o .00 TL LL u -0.01 Actual 0.01 in 0.01 in o O.01 Criteria 0.35 in 0.18 in Ratio 0.03 0.03 -0.01 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 'Beam #3 EPWU ENGINEERING INC. Loads and criteria Total Span: 21.50 ft =258 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 • Olb 5 - 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent Cp 1.00 DL LL TL Start End Total CV 0.98 1 -171 plf -140 plf -311 plf 0.00 ft 21.50 ft 21.50 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 1.08 in 5 0 plf 0.00 ft LL L/480 0.54 in Triangular Loads Max Load Extent DL LL TL Zero End Max End Total 1 O plf 0.00 ft 2 Oplf 0.00ft 3 O plf 0.00 ft 4 O plf 0.00 ft 5 O plf 0.00 ft -400 -300 -1 -200 - w -100 - a 0 21.50 ft 100 200 300 — R1 R2 3.34 k 3.34 k 400 — PWU Engineering Inc.©2013,Software v1.02,3/06/14 J • Beam #3 --- PWU ENGINEERING INC. Results -400 -300 - -200 - � a -100 - A oo 100 21.50 ft 200 300 R1 R2 - 400 3.34 k 3.34 k Type: Reactions (k) Boise Glulam 24F-V4 _ DL LL TL TL R, 1838 lb 1505 lb 3343 lb 3.34 k R2 1838 lb 1505 lb 3343 lb 3.34 k Size: 4000 (1) 51/2"x13'/2' GL I 2000 - A 74.25 in2 a ' S 167.06 in3 'i 0 _ d I 1127.67 in4 - F„' 265 psi -2000 — Fb' 2350 psi E'x 106 1.80 4000 VAllowable 13.12 k 20000 MAllowable 32.71 k-ft Design values are based off BOISE GLULAM Specifier Guide, JD 15000 published by Boise Cascade EWP dated 02/28/13. = c 10000 Shear Moment 2 5000 VMAX 3.34 k MMAX _ 17.97 k-ft , VAllowable 13.12 k M 32.71 k-ft o I ' owable Allowable Ratio 0.25 Ratio 0.55 0.00 OK OK -0.20 , Deflection `s -0.40 !IL TL LL Actual . 0.74 in 0.33 in o -0.60 Criteria _ 1.08 in _ 0.54 in Ratio 0.69 _ 0.62 0.80 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #4 PWU ENGINEERING INC. Loads and criteria Total Span: 6.00 ft I =72 in Fully Braced? Yes Point Loads Load Location Pressure Treated? Yes # DL LL T_ L_ 1 0 lb Repetitive Use? No 2 O lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.40 1 -60 plf -100 plf -160 plf 0.00 ft 6.00 ft 6.00 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TLI L/240 0.30 in 5 0 plf 0.00 ft LL L/480 0.15 in Triangular Loads Max Load Extent # DL LL TL Zero End Ma x E nd Total 1 Oplf 0.00ft 2 Oplf O.00ft 3 O plf 0.00 ft 4 O plf 0.00 ft 5 O plf 0.00 ft -200 -150 - -100 - w -50 - • a .0 O 0 50 6.00 ft 100 150 — R1 R2 - 0.48 k 0.48 k 200 PVvU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #4 • PWU ENGINEERING INC. Results -200 -150 -j - " -100 - w a -50 - 50 A o 6.00 ft 100 150 -- R1 R2 _ 0.48 k 0.48 k 200 - Type: Reactions (k) Hem-Fir#2. - DL LL TL TL Ri 180 lb 300 lb 480 lb 0.48 k RZ 180 lb 300 lb 480 lb _ 0.48 k Size: 600 (1) 4x8 HF#2 I 400 A 25.38 in2 a 200 - - S 30.66 in' „ 0 - 0 - I 111.15 in4 -200 F„' 120 psi -400 Fb' 952 psi E.x 106 1.04 -600 VAllowable 2.03 k 800 . MAllowable 2.43 k-ft Design values are based off NDS 2005 Edition,published by Amencan 600 Wood Council. = .NM c 400 Shear Moment m° 00 w VMAx 0.48 k MMAx 0.72 k-ft o V , VAllowable 2.03 k MAllowable 2.43 k-ft ' Ratio 0.24 Ratio 0.30 0.00 , , , , OK _ OK -0.01 Deflection c 0 .02 TL LL d -0.03 Actual 0.04 in . 0.03 in o -0.04 Criteria 0.30 in 0.15 in Ratio 0.13 0.17 -0.05 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Garage —*PWU ENGINEERING INC. Loads and criteria Total Span: 16.00 ft I = 192 in Fully Braced? No Unbraced Length: 16.00 ft I Point Loads Load Location Pressure Treated? No DL LL TL 1 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T 5 100T Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CV 1.00 1 -125 plf -75 plf -200 plf 0.00 ft 16.00 ft 16.00 ft - 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.80 in 5 0 plf 0.00 ft LL L/480 0.40 in Triangular Loads Max Load_ _ Extent DL LL TL Zero End Max End Total 1 0 plf 0.00 ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft 4 O plf 0.00 ft 5 0 plf 0.00 ft -250 -200 -150 - • -100 - w -50 - a. ° 50 16.00 ft 100 150 200 I R1 R2 1.60 k 1.60 k 250 PVVU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Garage —,PWU ENGINEERING INC. Results -250 -200 -150 - -100 - -50 -0. A 0 50 16.00 ft 100 150 200 R1 R2 1.60 k 1.60 k 250 Type: Reactions (k) DL LL TL TL Boise Glulam 24F-V4 R1 1000 lb 600 lb 1600 lb 1.60 k R2 1000 lb 600 lb 1600 lb 1.60 k Size: 2000 (1) 3'/2'x1 OW GL I 1000 - A 36.75 in' S 64.31 in' „ o , 337.64 in4 _ F„' 265 psi -1000 - Fb' 2032 psi E.x 106 1.80 -2000 VAllowable 6.49 k 8000 MAllowable 10.89 k-ft Design values are based off BOISE GLULAM Specifier Guide, 9 6000 - published by Boise Cascade EWP dated 02/28/13. c 4000 d Shear Moment 2000 VMAX 1.60 k MMAX 6.40 k-ft , VAllowable 6.49 k M 10.89 k-ft owable - Allowable Ratio 0.25 Ratio 0.59 0.00 OK OK ;- -0.20 Deflection 2 TL LL -0.40 Actual 0.49 in 0.18 in Criteria _ 0.80 in 0.40 in Ratio 0.61 0.45 -0.60 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 •HDR @ Greatroom ---,PWU ENGINEERING INC. Loads and criteria Total Span: 5.00 ft I =60 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 0 lb Repetitive Use? No • 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb _ Sustained Temperature?[ T 5 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.20 1 -501 plf -810 plf -1311 plf 0.00 ft 5.00 ft 5.00 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.25 in 5 0 plf - 0.00 ft LL L/480 0.13 in Triangular Loads Max Load Extent _ # DL LL TL Zero End Max End Total 1 0 plf 0.00 ft 2 Oplf 0.00ft 3 O plf 0.00 ft 4 0 plf 0.00 ft 5 Oplf 0.00ft -1500 -1000 - -500 - a 0 5.00 ft 500 - 1000 -- R1 R2 3.28 k 3.28 k 1500 PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Greatroom •PWU ENGINEERING INC. Results -1500 -1000 - -500 - a m 0 , o 5. 00 ft 500 1000 R1 R2 3.28 k 3.28 k 1500 Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R, 1253 lb 2025 lb 3278 lb 3.28 k R2 1253 lb 2025 lb 3278 lb 3.28 k Size: 4000 (1) 4x10 DF#2 I 2000 A 32.38 in2 a - S 49.91 in' '- 0 , - d . I 230.84 in4 N _ F„' 180 psi -2000 \ Fb' 1080 psi I E' x 106 1.60 4000 - 1/Allowable 3.89 k 5000 MAllowable 4.49 k-ft 4000 Design values are based off NDS 2005 Edition,published by American a Wood Council. 4 3000 'E' IIIII E 2000 _ Shear Moment • 1000 ,wWr VmAx 3.28 k MMAX 4.10 k-ft VAllowable 3.89 k M 4.49 k-ft o ' owable Allowable Ratio 0.84 Ratio 0.91 0.00 . _ . , . , OK _ OK _ • -0.02 - Deflection `2 TL LL d -0.04 - Actual 0.05 in 0.03 in o Criteria _ 0.25 in 0.13 in Ratio _ 0.20 0.25 -0.06 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR.@ Patio PWU ENGINEERING INC. • Loads and criteria Total Span: 8.00 ft = 96 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL _1 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CV 1 -501 plf -810 plf -1311 plf 0.00 ft 8.00 ft 8.00 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.40 in 5 0 plf 0.00 ft LL L/480 0.20 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 O plf 0.00 ft 2 0 plf 1 0.00 ft 3 O plf 0.00 ft 4 O plf 0.00 ft 5 0 plf 0.00 ft -1500 -1000 - -500 - w m 0 • . - • 0 8.00 ft 500 1000 R1 R2 1500 —,5.24k 5.24k _ PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Patio --_?-- PWU ENGINEERING INC. Results - -1500 -1000 - -500 - ' o. 0 -1 . • A o 8.00 ft 500 1000 R1 R2 1500 — 5.24 k 5.24 k _ Type: • Reactions (k) DL LL TL TL Boise Glulam 24F-V4 R1 2004 lb 3240 lb 5244 lb 5.24 k R2 2004 lb 3240 lb 5244 lb 5.24 k Size: 6000 (1) 31/2"x101/2" GL I 4000 - A 36.75 in2 l 2000 - - S 64.31 in3 „ 0 - , , , , a) 337.64 in4 v, -2000 F„' 265 psi -4000 Fb' 2400 psi E x 106 1.80 -6000 VAllowable 6.49 k 12000 MAllowable 12.86 k-ft _ 10000 Design values are based off BOISE GLULAM Specifier Guide, $000 published by Boise Cascade EWP dated 02/28/13. c 6000 m Shear Moment 0 4000 n 2000 VMAX 5.24 k MMAX 10.49 k-ft V 6.49 k M 12.86 k-ft Allowable Allowable Ratio 0.81 Ratio 0.82 0.00 , OK OK -0.05 , , C Deflection c -0.10 Ad TL LL ' -0.15 IIII Actual 0.20 in _ 0.12 in o -0.20 Criteria _ 0.40 in 0.20 in Ratio _ 0.50 0.61 -0.25 _ OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Stair -�PWU ENGINEERING INC. _ • Loads and criteria Total Span: 2.50 ft I = 30 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 -3689 lb -6186 lb -9875 lb 1.00 ft Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T s 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CV 1.00 1 -171 plf -125 plf -296 plf 0.00 ft 1.00 ft 1.00 ft 2 -141 plf -75 plf -216 plf 1.00 ft 2.50 ft 1.50 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.13 in 5 j 0 plf _ 0.00 ft LL L/480 0.06 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 0 plf 0.00 ft 2 0 plf 0.00 ft • 3 0 plf 0.00 ft 4 0 plf 0.00 ft 5 0 plf 0.00 ft -600 -9.88 k -400 I -200 - w 0 • V • / 2.50 ft R2 200 — R1 4.24 k 6.26 k 400 600 PWU Engineering Inc.02013,Software v1.02,3/06/14 r, HDR @ Stair ----.PWU ENGINEERING INC. _ Results -600 -9.88 k -400 -200 - w = V 0 0 l 2.50 ft R2 J 200 — R1 4.24 k - 6.26 k 400 600 Type: Reactions (k) Boise Glulam 24F-V4 _ DL LL TL TL R1 2414 lb 3845 lb 6259 lb 6.26 k R2 1658 lb 2578 lb 4236 lb 4.24 k Size: 8000 (1) 51/2"x101/2" GL I 6000 - A 57.75 in2 - _ a000 a V 2000 - S 101.06 in3 I 530.58 in4 N -2000 _ F„' 265 psi Fb' 2400 psi a000 — -6000 E. x 106 1.80 VAllowable 10.20 k 8000 MAllowable 20.21 k-ft 6000 Design values are based off BOISE GLULAM Specifier Guide, a published by Boise Cascade EWP dated 02/28/13. , 4000 47• 2000 Shear Moment o• o VMAX 6.26 k MMAX 6.11 k-ft V Allowable Allowable 10.20 k MAllowable k-ft -2000 _ Ratio 0.61 Ratio _ 0.30 0.00 OK OK c 0.00 , • Deflection `s 0.00 TL LL Actual 0.01 in 0.00 in o -0.01 Criteria 0.13 in 0.06 in Ratio 0.05 0.06 -0.01 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 Truss Nailer -�PWU ENGINEERING INC. Loads and criteria Total Span: 1.33 ft I = 16 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 `-90 lb -150 lb -240 lb 0.67 ft Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.10 1 -30 plf -50 plf -80 plf 0.00 ft 1.33 ft 1.33 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.07 in 5 0 plf 0.00 ft LL L/480 0.03 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 O plf 0.00 ft 2 Oplf 0.00ft • 3 0 plf 0.00 ft 4 O plf 0.00 ft 5 0 plf 0.00 ft -100 -0.24 k -80 -60 - -40 - .� -20 - a 0 A 20 1.33 ft 40 R1 R2 60 0.17 k 0.17 k 80 100 PWU Engineering Inc.©2013,Software v1.02,3/06/14 Truss Nailer -KPWU ENGINEERING INC. , Results - -100 -0.24 k -80 -60 - -40 - -20 - -a. V 20 1. 33 ft A 40 R1 R2 60 — - 0.17k 0.17k 80 100 Type: Reactions (k) ` DL LL TL TL Douglas Fir-Larch #2 R1 65 lb 108 lb 173 lb 0.17 k R2 65 lb 108 lb 173 lb 0.17 k Size: 200 (1) 2x10 DF#2 I 100 - A 13.88 in' .a S 21.39 in' „ 0 Illi IIII _ CD I _ 98.93 in4 N F„' 180 psi -100 - Fb' 990 psi -200 E.x 106 1.60 VAllowable 1.67 k 120 MAllowable 1.76 k-ft - 100 Design values are based off NOS 2005 Edition,published by American a 80 Wood Council. c 60 0 20 Shear Moment m VMAx 0.17 k MMAx 0.10 k-ft 20 , V 1.67 k M 1.76 k-ft ° ` Allowable _ Allowable , Ratio 0.10 Ratio 0.06 0.00 ,' OK OK 0.00 All Deflection s 0.00 _ TL LL Actual 0.00 in 0.00 in o 0.00 Criteria 0.07 in 0.03 in Ratio 0.00 0.00 0.00 OK OK PVVU Engineering Inc.©2013,Software v1.02,3/06/14 .r, Beam #5 -. PWU ENGINEERING INC. - Loads and criteria Total Span: 8.00 ft I = 96 in Fully Braced? Yes __ Point Loads Load Location Pressure Treated? No . # DL LL TL 1 _ 0 lb Repetitive Use? No 2 O lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total 1 CF 1.20 1 -186 plf .-240 plf -426 plf 0.00 ft 8.00 ft 8.00 ft 2 Oplf 0.00ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.40 in 5 0 plf 0.00 ft LL L/480 0.20 in - Triangular Loads Max Load Extent _ # DL LL _ TL Zero End Max End Total 1 0 plf 0.00 ft 2 _ O plf _ 0.00 ft 3 O plf 0.00 ft 4 Oplf 0.00ft 5 O plf 0.00 ft -500 -400 - , ` -300 - .. -200 - w -100 - a 0 .. ,_ 100 8.00 ft 200 300 400 -I- R1 R2 - 500 — 1.70 k 1.70 k PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #5 —,PWU ENGINEERING INC. Results - -500 -400 - -300 - -200 - -100 - a. o � A 2 100 8.00 ft 200 300 400 R1 R2 - _1.70 k 1.70 k _ 500 - Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R, 744 lb 960 lb 1704 lb 1.70 k R2 744 lb 960 lb 1704 lb 1.70 k Size: 2000 (1) 4x10 DF#2 I 1000 - A 32.38 in2 S 49.91 in' iF, 0 . , a, 230.84 in4 N F„' 180 psi -1000 \ Fla' 1080 psi -2000 E'x 106 1.60 VAllowable 3.89 k 4000 MAllowable 4.49 k-ft Design values are based off NDS 2005 Edition,published by Amencan a 3000 Wood Council. V 111 2000 a, Shear Moment I -woo VMAX 1.70 k MMAX 3.41 k-ft , VAllowable 3.89 k MAllowable k-ft o , owable Allowable Ratio 0.44 Ratio 0.76 0.00 OK OK -0.05 Deflection `o ' TL - LL o T -0.10 • Actual 0.11 in 0.06 in o Criteria 0.40 in 0.20 in Ratio 0.27 0.30 -0.15 OK OK PWU Engineenng Inc.02013,Software v1.02,3/06/14 Beam #6 -PWU ENGINEERING INC. Loads and criteria Total Span: 5.00 ft I = 60 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 _ 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 DL LL TL Start End Total CF _ 1.20 1 -312 plf -230 plf -542 plf 0.00 ft 5.00 ft 5.00 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf _ 0.00 ft TL U240 0.25 in 5 0 plf 0.00 ft LL L/480 0.13 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 O plf 0.00 ft 2 O plf 0.00 ft 3 _ Oplf 0.00ft 4 Oplf 0.00ft 5 0 plf 0.00 ft -600 -400 - -200 - w • m 0 1 0 5.00 ft 200 400 R1 R2 600 — 1.36 k 1.36k- PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #6 --- ` 4 >PWU ENGINEERING INC. _ Results ' -600 -400 -, - -200 - ' . ,. w . 0. - . 0 5.00 ft 200 400 R1 R2 600 — 1.36 k 1.36k - Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R1 780 lb 575 lb 1355 lb 1.36 k R2 780 lb 575 lb 1355 lb 1.36 k Size: 1500 - .(1) 4210 DF#2 1000 A 32.38 in2 a 500 , S 1 49.91 in' o ; d 230.84 in4 u -500 F„' 180 psi loco . Ft; 1080 psi -1500 - E'x106 1.60 ' VAllowable 3.89 k 2000 MAllowable 4.49 k-ft , , Design values are based off NDS 2005 Edition,published by American 9 1500 - Wood Council. = •5 1000 - d Shear Moment ° 500 VMAX 1.36 k Km( 1.69 k-ft ,; ' .. VAllowable 3.89 k MAllowable 4.49 k-ft Ratio 0.35 Ratio 0.38 0.00 OK OK 0.01 , • . . ' A Deflection o- a.o1 _ TL LL -0-02 "- AIM Actual 0.02 in 0.01 in o -0.02 Criteria _ 0.25 in 0.13 in Ratio 0.08 0.07 -0.03 OK OK PVVU Engineering Inc.©2013,Software v1.02,3/06/14