Loading...
Specifications RECEIVEP AUG 2 7 2015 CITY OF'T1GARD BUILDING DIVISION tructuraI Concepts Engineering 1615 Yeager Ave La Verne, Ca. 91750 Tel: 909-596-1351 Fax: 909-596-7186 ,cokEO PROPS �/ 4NG I N Etc s,70� 72544PE Project Name : UPS SUPPLY CHAIN SOLUTION IL 0R •N ,b4. $8OLHAS9 N. Project Number : P-081115-10LV EXPIRES: 12/31/2015 Date : 08/11/15 AUG 1 2 2015 Address: 14160 SW 72ND AVE BLDG E SUITE 150 City/State : TIGARD OR 97224 Scope of Work : SELECTIVE Structural Concepts Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 . Slab on Grade 13 Other Configurations 14 to 16 '/A<EH,_L51 TyPE A g So Pa e Z of � 8/12/2c31 5 Structural Concepts • Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P 081115 10LV Design Data 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 2013 CSC Section 2209A ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks '2012 RMI Rack Design Manual" ASCE 7-10,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength,Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield,Fy=55 ksi All other steel conforms to ASTM A36,Gr. 36 with minimum yield, Fy= 36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. P Y P 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop, with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria _ Definition of Components A ■-- I Column Beam i - Horizontal -Z m Brace Beam to Column Connector Diagonal Brace 1 _1 m t =� Frame Height Beam d g Base Plate and product Spacing I Anchors It -xi , 11 , — Panel v �— Beam _� Tight Length • `�T N �' '� — Frame, Depth Front View: Down Aisle Section A: Cross Aisle (Longitudinal) Frame (Transverse ) Frame ',vA,,c-". _°- =A Page -3 of k b e/1 2/20 1 5 Str ctural kroncepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Configuration&Summary:TYPE A SELECTIVE RACK - 1 **RACK COLUMN REACTIONS 32" ASD LOADS =f-- 61" 32" AXIAL DL= 300 lb -F- __ J AXIAL LL= 4,000 lb 32" / SEISMIC AXIAL Ps=+/- 4,192 lb -i1-- 61 / 32„ (� BASE MOMENT= 0 in-lb 240" 1.. - - 240" } 32" 'k - 52" \\ 32" -1. - 52" // I 96" -I, ,1'- 4.8„ 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.972, Fa=1.111 8 48 in 240.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi INTLK LU75/3x3x13ga P=3763 Ib, M=6995 in-lb 0.29-0K Column&Backer None None None N/A Beam Fy=55 ksi Intlk 40E 4Hx2.75Wx0.063"Thk Lu=96 in Capacity: 4688 lb/pr 0.21-0K Beam Connector Fy=55 ksi Lvl 1: 3 pin OK I Mconn=4991 in-lb Mcap=15230 in-lb 0.33-0K Brace-Horizontal Fy=55 ksi Intlk 1-1/2x1-1/4x3/8xl6ga 0.21-0K Brace-Diagonal Fy=55 ksi Intlk 1-1/2x1-1/4x3/8xl6ga 0.47-0K Base Plate Fy=36 ksi 7-3/4x5x3/8 I Fixity=0 in-lb 0.65-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1940 Ib) 0.5-0K Slab&Soil 5"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.47-0K Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. _ Axial Moment _ Moment Connector 1 1,000 lb 6.0 in 52.0 in 7 lb 6 lb 4,300 lb 1,320 "# 3,104 "# 3 pin OK 2 1,000 lb 32.0 in 52.0 in 43 lb 35 lb 3,763 lb 6,995 "# 4,991 "# 3 pin OK 3 1,000 lb 32.0 in 61.0 in 80 lb 65 lb 3,225 lb 6,712 "# 4,709 "# 3 pin OK 4 1,000 lb 32.0 in 61.0 in 116 lb 95 lb 2,688 lb 6,190 "# 4,260 "# 3 pin OK 5 1,000 lb 32.0 in 152 lb 125 lb 2,150 lb 5,429 "# 3,644 "# 3 pin OK 6 1,000 lb 32.0 in 189 lb 155 lb 1,613 lb 4,430 "# 2,861 "# 3 pin OK 7 1,000 lb 32.0 in 225 lb 185 lb 1,075 lb 3,192 "# 1,911 "# 3 pin OK 8 1,000 lb 32.0 in 261 lb 214 lb 538 lb 1,715 "# 794 "# 3 pin OK I kP Load defined as product weight per pair of beams Total: 1,073 lb 880 lb Notes I '::A-A:;_-- -- A Page c-k- of / 212C Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Seismic Forces Configuration:TYPE A SELECTIVE RACK Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.972 Transverse(Cross Aisle)Seismic Load 104 S1= 0.421 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) ==== vt Fa= 1.111 Csl= Sds/R ;� Fv= 1.579 = 0.1800 Cs max*Ip= 0.1800 II Sds=2/3*Ss*Fa= 0.720 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*51*Fv= 0.443 = 0.0317 Eff Base Shear=Cs= 0.1800 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2880 Cs3= 0.5551/R Ws= (0.67*PLRFI *PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0526 = 5,960 lb Ip= 1.0 Cs-max= 0.1800 Vtransv=Vt= 0.18 * (600 lb+ 5360 Ib) PRF1= 1:0 Base Shear Coeff=Cs= 0.1800 Etransverse= 1,073 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hi Fi Fi*(hi+hp/2) 1 1,000 lb 670 lb 75 lb 6 in 4,470 6.8 lb 204-# 2 1,000 lb 670 lb 75 lb 38 in 28,310 43.2 lb 2,678-# 3 1,000 lb 670 lb 75 lb 70 in 52,150 79.6 lb 7,482-# 4 1,000 lb 670 lb 75 lb 102 in 75,990 115.9 lb 14,603-# 5 1,000 lb 670 lb 75 lb 134 in 99,830 152.3 lb 24,063-# 6 1,000 lb 670 lb 75 lb 166 in 123,670 188.7 lb 35,853-# 7 1,000 lb 670 lb 75 lb 198 in 147,510 225.1 lb 49,972-# 8 1,000 lb 670 lb 75 lb 230 in 171,350 261.4 lb 66,396-# I sum: P=8000 lb 5,360 lb 600 lb W=5960 lb 703,280 1,073 lb 2=201,252 Longitudinal (Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67*PLRF2* P) +DL PRm= 1.0 I '{ l ,„l i, Cs1=5d1/(T*R)= 0.1477 = 5,960 lb (Longitudinal,Unbraced Dir.)R= 6.0 �r - Cs2= 0.0317 Cs=Cs-max*Ip= 0.1477 T= 0.50 sec [ � �tn Cs3= 0.0351 Vlong= 0.1477* (600 lb+ 5360 Ib) :';'1 k .' L 1 i':::."..1 Cs-max= 0.1477 Elongitudinal= 880 lb Limit States Le.'eltengit seismic shearper upright Level PRODUC LOAD P P*0.67*PRm DL hi wi*hi Fi Front View 1 1,000 lb 670 lb 75 lb 6 in 4,470 5.6 lb I 2 1,000 lb 670 lb 75 lb 38 in 28,310 35.4 lb 3 1,000 lb 670 lb 75 lb 70 in 52,150 65.3 lb 4 1,000 lb 670 Ib 75 lb 102 in 75,990 95.1 lb 5 1,000 lb 670 lb 75 lb 134 in 99,830 124.9 lb 6 1,000 lb 670 lb 75 lb 166 in 123,670 154.7 lb ' 7 1,000 lb 670 lb 75 lb 198 in 147,510 184.6 lb 8 1,000 lb 670 lb 75 lb 230 in 171,350 214.4 lb sum: 5,360 lb 600 lb W=5960 lb 703,280 880 lb ,\-, „,,A;:f. J E-v=F A Page of 8/I 2/201 5 Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Downaisle Seismic Loads Configuration:TYPE A SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide no fixity. Seismic Story Forces Typical frame we Vlong= 880 lb Tr'nutary area or-two columns Vcol=Vlong/2= 440 lb or rack;rame - _ F1= 6 lb I_ I [ I�[� - I .{ i r Typical Frame made F2= 35 lb �"I N. 2 ohtwo columns F3= 65 lb 1 L Il 0 _ r 1 li / �� r / Top View Front View Side View Seismic Story Moments Conceptual System COL Mbase-max= 0 in-lb <===Default capacity hl-eff= hi-beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 3 in Vcol I= 660 in-lb <_==Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v h2 - = 0 in-lb PINNED BASE ASSUMED M 1-1= [Vcol *hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] * h2 = (440 lb*3 in)-0 in-lb = [440 lb- 17.7 Ib]*32 in/2 = 1,320 in-lb = 6,995 in-lb hi I h1eff II Mseis= (Mupper+Mlower)/2 Beam to Column Elevation Mseis(1-1)= (1320 in-lb+6995 in-lb)/2 Mseis(2-2)= (6995 in-lb+6712 in-lb)/2 = 4,158 in-lb = 6,854 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 6 in 4,300 lb 1,320 in-lb 4,158 in-lb 276 in-lb 3,104 in-lb 3 pin OK 2 32 in 3,763 lb 6,995 in-lb 6,854 in-lb 276 in-lb 4,991 in-lb 3 pin OK 3 32 in 3,225 lb 6,712 in-lb 6,451 in-lb 276 in-lb 4,709 in-lb 3 pin OK 4 32 in 2,688 lb 6,190 in-lb 5,809 in-lb 276 in-lb 4,260 in-lb 3 pin OK 5 32 in 2,150 lb 5,429 in-lb 4,929 in-lb 276 in-lb 3,644 in-lb 3 pin OK 6 32 in 1,613 lb 4,430 in-lb 3,811 in-lb 276 in-lb 2,861 in-lb 3 pin OK 7 32 in 1,075 lb 3,192 in-lb 2,454 in-lb 276 in-lb 1,911 in-lb 3 pin OK 8 32 in 538 lb 1,715 in-lb 858 in-lb 276 in-lb 794 in-lb 3 pin OK Mconn= (Mseismic+Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 15,230 in-lb **all moments based on limit states level loading Page (,o of L k0 el 1 2/20 1 5 • Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Column (Longitudinal Loads) Configuration:TYPE A SELECTIVE RACK Section Properties Section: INTLK LU75/3x3x13ga 3.000 in _L- f Aeff= 0.757 in^2 Iy= 0.871 inA4 Kx= 1.7 X Ix= 1.320 inA4 Sy= 0.574 inA3 Lx= 30.0 in 7 Sx= 0.879 inA3 ry= 1.080 in Ky= 1.0 ,_._ � _ �, 3.000 in rx = 1.320 in Fy= 55 ksi Ly= 52.0 in 10.090 in 2f= 1.67 Cmx= 0.85 Cb= 1.0 .. =1 • ___ E= 29,500 ksi X0.75 in Loads Considers loads at level 2 COLUMN DL= 262 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 3,500 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 6,995 in-lb axial loadcoeff.• 0.78791265*P seismic momentcoeff.• 0.5625*Mcol Sds= 0.7199 Load Case 6: (1+0.104*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0756 axial load coeff: 0.66555 seismic moment coeff.• 0.7*Mcol 1.4+0.14Sds= 1.5008 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1008 - 0.85+0.14*Sds= 0.9508 Axial Load=Pax= 1.100786*262 lb+0.950786*0.7*3500 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 2,618 lb = 0.7* 6995 in-lb rho= 1.0000 = 4,897 in-lb Axial Analysis KxLx/rx = 1.7*30"/1.3196" KyLy/ry= 1*52"/1.08" Fe > Fy/2 = 38.6 = 48.1 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*125.6 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 49.0 ksi = 125.6ksi Pa= Pn/S2c Pn= Aeff*Fn 4c= 1.92 = 37077 lb/1.92 = 37,077 lb = 19,311 lb P/Pa= 0.14 < 0.15 Bending Analysis Check: P/Pa + Mx/Max <_ 1.0 Pno= Ae*Fy Pao= Pno/4c Myield=My= Sx*Fy = 0.757 in^2*55000 psi = 416351b11.92 = 0.879 inA3* 55000 psi = 41,635 lb = 21,685 lb = 48,345 in-lb Max= My/4f Pcr= n^2EI/(KL)maxA2 = 48345 in-lb/1.67 = nA2*29500000 psi/(1*52 in)^2 = 28,949 in-lb = 93,785 lb px= {1/[1-(Oc*P/Pcr)]}^-1 = {1/[1-(1.92*2618 lb/93785 1b)]}^-1 = 0.95 Combined Stresses (2618 lb/19311 lb) +(4897 in-lb/28949 in-lb) = 0.29 < 1.0,OK (EQ C5-3) **For comparison, total column stress computed for load case 5 is: 270% 7q loads 3039.498724 lb Axial and M= 3672 in-lb rage -7 of ko 212:7,I ET Str tural . k..once is Mngineering 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV BEAM Configuration:TYPE A SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY 2.75 in ■ A)Check compression flange for local buckling(B2.1) t 1.75 in 4 w= c-2*t-2*r = 1.75 in- 2*0.063 in-2*0.063 in r = 1.498 in 1.625 in w/t= 23.78 I ' 1=lambda= [1.052/(k)A0.5] *(w/t)*(Fy/E)A0.5 Eq.B2.1-4 = [1.052/(4)^0.5] * 23.78* (55/29500)^0.5 4.000 in fS I = 0.54 < 0.673,Flange is fully effective Eq.B2.1-1 ' 0.065 in B)check web for local buckling per section b2.3 I I fl(comp)= Fy*(y3/y2)= 49.90 ksi � A f2(tension)= Fy*(y1/y2)= 101.67 ksi Y= f2/f1 Eq.B2.3-5 Beam= Intlk 40E 4Hx2.75Wx0.063"Thk = -2.037 Ix= 1.634 in^4 k= 4+2*(1-Y)^3+2*(1-Y) Eq.B2.3-4 Sx= 0.767 in^3 = 66.10 Ycg= 2.640 in flat depth=w= yl+y3 t= 0.063 in = 3.748 in w/t= 59.49206349 OK Bend Radius=r= 0.063 in 1=lambda= [1.052/(k)A0.5] *(w/t)*(fl/E)A0.5 Fy=Fyv= 55.00 ksi = [1.052/(66.1)1'0.5] *3.748*(49.9/29500)1\0.5 Fu=Fuv= 65.00 ksi = 0.317 < 0.673 E= 29500 ksi be=w= 3.748 in b2= be/2 Eq 62.3-2 top flange=b= 1.750 in bl= be(3-Y) = 1.87 in bottom flange= 2.750 in = 0.744 Web depth= 4.V F v l^ bl+b2= 2.614 in > 1.234 in,Web is fully effective fl(comp) Determine effect of cold working on steel yield point(Fva)per section A7.2 Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2)*(r+t/2) 0.148 in C= 2*Lc/(Lf+2*Lc) 1:2 Lflange-top=Lf= 1.498 in = 0.165 in I y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 +I Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2- 1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1.2 Ycg y1 and r/t= 1 < 7 OK then Fyc= Bc * Fy/(R/trm (EQ A7.2-2) f2(tension) = 78.485 ksi Thus, Fya-top= 58.88 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 2.514 in = 114.29 ksi (tension stress at bottom) y2= depth-Ycg= 1.360 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.234 in Lflange-bot=Lfb= Lbottom-2*r*-2*t ' = 2.498 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.106 ' Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 57.49 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.62 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 21.58 in-k • StrAtural once is engineering 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-1oLv BEAM Configuration:TYPE A SELECTIVE RACK RMI Section 5.2, PT II Section Beam= Intlk 40E 4Hx2.75Wx0.063'Thk Ix=Ib= 1.634 inA4 2.75 in Sx= 0.767 inA3 t= 0.063 in E= 29500 ksi 1.75 in 1. Fy=Fyv= 55 ksi F= 75.0 / Fu=Fuv= 65 ksi L= 96 in f Fya= 58.9 ksi Beam Level= 1 1.625 in P=Product Load= 1,000 lb/pair D=Dead Load= 75 lb/pair 4.000 in 0.063 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 W=LRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.125)*P RMI 2.2,item 8 FOR DL=20/o of PL, W= 1.599 llllllllllllllllllllllllllllllllllllllllllllllllllllllll Rm= 1- [(2*F*L)/(6*E*Ib +3*F*L)] r= I. 11 1 - (2*75*96 in)/[(6*29500 ksi*1.634 inA3)+(3*75*96 in)] = 0.954 if F= 0.95 Then F*Mn=F*Fya*Sx= 42.90 in-k Thus, allowable load r- 1 -- ----- II per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Be 3171 = 42.9 in-k*8* 2/(96in *0.954* 1.599) Leriiit'' = 4,688 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 = (4688 lb/2)*96 in *(1-0.954)/8 = 1,294 in-lb ©4688 lb max allowable load = 0,276 in-lb @ 1000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1 -(4*75*96 in)/[(5*75*96 in)+(10*29500 ksi*1.634 inA4)] = 0.533 in = 0.944 in Deflection at imposed Load= 0.114 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*LA3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*LA2*Rd) = 384*1.634 inA4*2/[180*5*(96 in)A2*0.944) = 4,728 lb/pair allowable load based on deflection limits Thus, based on the least capacity of item 1 and 2 above: Allowable load= 4,688 lb/pair Imposed Product Load= 1,000 lb/pair (Beam Stress= 0.21 Beam at Level 1 .S+r+i.n+,I nnl • Ccjric1&i.ts nninoarinn 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 Hy: NANNY PI-11 Project: UPS SUPPLY CHAIN SOL. Project N: P-081 115- 3 Pin Beam to Column Connection TYPE A SELECTIVE RACK I he beam end moments shown herein show the result of the maximum induced fixed end monents form seismic+static loads and the code mandated minimum value of 1.5"/o(DL+PL) Mconn max= (Mseismic+ Mend Fxity)*0.70*Rho 0 rho-- 1:0000 = 4,991 in-lb Load at level 2 o -- • o E'3 ti Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2* Pi/4 = 0.1507 in^2 Pshear= 0.4* Fy*Ashear = 0.4*55000 psi *0.1507in^2 • = 3,315 lb Bearing Capacity of Pin tcol= 0.090 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu*diam*tcol/Omega = 2.22*65000 psi *0.438 in*0.09 in/2.22 = 2,562 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 inA3 = P1+P1*(2.5"/4.5")+P1*(0.5"/4.5") = 1.667* P1 Mcap= Sclip* Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 in^3*0.66* Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(1.667*d) = 4610.1 in-lb/(1.667 *0.5 in) Thus,P1= 2,562 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.5"/4.5")*2.5"+P1*(0.5"/4.5")*0.51 = 2562 LB*[4.5"+(2.5"/4.5")*2.5"+ (0.5"/4.5")*0.51 = 15,230 in-lb > Mconn max, OK Yr E A Page of !. (p 8112120 1 5 • Structural Concepts • Engineering 1200 N. Jefferson Ste. Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714,632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Transverse Brace Configuration:TYPE A SELECTIVE RACK Section Properties Diagonal Member= Intlk 1-1/2x1-1/4x3/8x16ga Horizontal Member= Intlk 1-1/2x1-1/4x3/8x16ga Area= 0.258 in^2 1.500 in Area= 0.258 in^2 1.500 in r min= 0.460 in r min= 0.460 in Fy= 55,000 psi Fy= 55,000 psi -17- K= 1.0 11.250.n K= 1.0 + 1.250 in Qc= 1.92 4 I _c=1 k_ 0.25 in 0.25 in Frame Dimensions I Bottom Panel Height=H= 61.0 in Clear Depth=D-B*2= 42.0 in Frame Depth=D= 48.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6::(1-j- 85+0.14Sds)*B*P f[0.7*rho*EJ<=1.0,ASD Method I. D -. Vtransverse= 1,073 lb vb ' Vb=Vtransv*0.7*rho= 1073 lb * 0.7 * 1 (kl/r)= (k*Ldiag)/r min = 751 lb = (1 x 69.2 in/0.46 in) Ldiag= [(D-B*2)^2+(H-6")^2]^1/2 = 150.4 in Ldiag = 69.2 in Fe= pi^2*E/(1d/r)^2 n Pmax= V*(Ldiag/D) * 0.75 = 12,871 psi = 812 lb 11 axial load on diagonal brace member Since Fe<Fy/2, 3"tYP Pn= AREA*Fn Fn= Fe B H, = 0.258 in^2* 12871 psi = 12,871 psi Typical Panel = 3,319 lb Configuration Pallow= Pn/S2 Check End Weld = 3319 lb/1.92 Lweld= 2.5 in = 1,729 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.47 <= 1.0 OK Weld Capacity= 0.75 *tmin*L*Fu/2.5 = 2,925 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 751 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 48 in)/0.46 in = 26,764 psi = 104.3 in • Since Fe<Fy/2, Fn=Fe Pn= AREA*Fn Pallow= Pn/4c = 26,764 psi = 0.258in^2*26764 psi = 6902 lb/1.92 = 6,902 lb = 3,595 lb Pn/Pallow= 0.21 <= 1.0 OK • ...... =°A Page cb of ((o 1 2/23 5 Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714,632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Single Row Frame Overturning Configuration:TYPE A SELECTIVE RACK Loads Critical Load case(s): • 1) RMI Sec 2.2, item 7: (0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho hp • Sds= 0.7199 Vtrans=V=E=Qe= 1,073 lb (0.9-0.2Sds)= 0.7560 DEAD LOAD PER UPRIGHT=D= 600 lb (0.9-0.2Sds)= 0.7560 PRODUCT LOAD PER UPRIGHT=P= 8,000 lb B= 1.0000 H h Papp=P*0.67= 5,360 lb rho= 1.0000 Wst LC1=Wst1=(0.75602*D+0.75602*Papp*1)= 4,505 lb Frame Depth=Df= 48.0 in T Product Load Top Level,Ptop= 1,000 lb Htop-Iv1=H= 230.0 in DL/Lvl= 75 lb # Levels= 8 t Df Seismic Ovt based on E,:(Fi*hi)= 201,252 in-lb #Anchors/Base= 2 height/depth ratio= 4.8 in hp= 48.0 in SIDE ELEVATION A) Fully Loaded Rack h=H+hp/2= 254.0 in Load case 1: Movt= :(Fi*hi)*E*rho Mst= Wstl * Df/2 T= (Movt-Mst)/Df = 201,252 in-lb = 4505 lb*48 in/2 = (201252 in-lb- 108120 in-lb)/48 in = 108,120 in-lb = 1,940 lb Net Uplift per Column • Net Seismic Uplift= 1,940 lb Strength Level B)Top Level Loaded Only Load case 1: } V1=Vtcp= Cs *Ip*Ptop>= 350 lb for H/D>6.0 Movt= [V1*h +V2*H/2]*0.7*rho = 0.18* 1000 lb = 40,698 in-lb = 180 lb T= (Movt-Mst)/Df Vleff= 180 lb Critical Level= 8 = (40698 in-lb-29031 in-lb)/48 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1800 = 243 lb Net Uplift per Column = 108 lb Mst= (0.75602*D +0.75602*Ptop*1) *48 in/2 = 29,031 in-lb Net Seismic Uplift= 243 lb Strength Level Anchor Check (2)0.5"x 3.25"Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (970 lb/1961 Ib)^1 + (268 lb/2517 Ib)^1= 0.60 <= 1.2 OK Top Level Loaded: (121 lb/1961 1b)^1 + (45 lb/2517 Ib)^1= 0.08 <= 1.2 OK Page (( of <<G e/ 212C • Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-1OLV Base Plate Configuration:TYPE A SELECTIVE RACK P Section a -k Baseplate= 7-3/4x5x3/8 Eff Width=W= 7.75 in a= 2.88 in 11/1 Mb Eff Depth=D= 5.00 in Anchor c.c. =2*a=d= 5.75 in Column Width=b= 3.00 in N=#Anchor/Base= 2 Column Depth=dc= 3.00 in Fy= 36,000 psi 4 I b b r t L= 2.38 in Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.75*jf1.4+0.145ds)*B*P+0.75*f0.7*rho*EJ<=1.0,ASD Method COLUMN DL= 300 lb Axial=P= 1.0755895 * 300 lb+ 0.75 * (1.500786 * 0.7 * 4000 lb) COLUMN PL= 4,000 lb = 3,474 lb Base Moment= 0 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0756 = 0 in-lb * 0.75*0.7*rho 1.4+0.14Sds= 1.5008 = 0 in-lb Ella B= 0.7000 Axial Load P = 3,474 lb Mbase=Mb= 0 in-lb Effe Axial stress=fa = P/A =P/(D*W) M1= wL^2/2=fa*L^2/2 = 90 psi = 253 in-lb Moment Stress=fb = M/S=6*Mb/[(D*B^2] Moment Stress=fb2= 2*fb*L/W = 0.0 psi = 0.0 psi Moment Stress=fbl = fb-fb2 M2= fbl*L^2)/2 = 0.0 psi = 0 in-lb M3 = (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*L^2 Mtotal= M1+M2+M3 = 0 in-lb = 253 in-lb/in S-plate = (1)(t^2)/6 Fb= 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb = Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c 0.40 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*O.46)(a))/[(d)*N/2] Tallow= 1,9611b OK = -2,253 lb No Tension Cross Aisle Loads bca/load case RN!Sec 21,itam4:(1+O.llsd)OL+(1+0.145D5)PL'..75+ELm..75<-=1.0,ASOMethod Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 3,474 lb 'When the base plate configuration consists of two anchor bolts located on either side •f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 105,657 in-lb Pseismic= Movt/Frame Depth hall be determined based on a design bending moment in the plate equal Frame Depth= 48.0 in = 2,201 lb o the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 5,676 lb I he centerline of the anchor to the nearest edge of the rack column" b =Column Depth= 3.00 in I T c * L=Base Plate Depth Col Depth= 2.38 in Ta Mu Ta .,,nnlll fa = P/A= P/(D*W) M= wLA2/2=fa*LA2/2 I b = 146 psi = 413 in-lb/in Elevation Uplift per Column= 1,940 lb Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 inA3/in = 27,000 psi Net Tension per anchor=Ta= 970 lb c= 2.38 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.65 OK = 1,152 in-lb Splate= 0.117 inA3 fb Fb *0.75= 0.273 OK Page ( L of t. G° Q/!2/20.,5 Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel:714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Slab on Grade Configuration:TYPE A SELECTIVE RACK P slab Concrete - D a e a fcConc= 2,500 psi slab t I tslab=t= 5.0 in Cross teff= 5.0 in IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIbIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ----� ----1 Aisle '0.6 x i fr- c Soil ~- y B fsoil= 1,000 psf I. ► Down Aisle Movt= 140,876 in-lb SLAB ELEVATION Frame depth= 48.0 in Baseolate Plan View Sds= 0.720 Base Plate 0.2*Sds= 0.144 Effec.Baseplate width=B= 7.75 in width=a= 3.00 in hs 0.600 Effec.Easeplate Depth=D= 5.00 in depth=b= 3.00 in p=B/D= 1.550 midway dist face of column to edge of plate=c= 5.38 in F'cA0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 300 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactored ASD load = 1.34398*300 lb+ 1.34398*0.7*4000 lb + 1*2934 lb . PRODUCT LOAD=P= 4,000 lb per column = 7,100 lb unfactored ASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 2,680 lb per column = 0.75602*300 lb+0.75602*0.7*2680 lb+ 1 *2934 lb P-seismic=E= (Movt/Frame depth) = 4,579 lb = 2,934 lb per column Load Case 3) 1.2*D+1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*300 lb+ 1.4*4000 lb ........................................ B= 0.7000 = 5,9601b rho= 1.0000 Load Case 4) 1.2*D+ 1.0*P+ 1.0E AC1318-II Sec 9.2.1,Egth 9-5 Sds= 0.7199 = 7,294 lb 1.2+0.2*Sds= 1.3440 Effective Column Load=Pu= 7,294 lb per column 0. 9-0.20Sds= 0.7560 Puncture Apunct= [(c+t)+(e+t)]*2*t = 193.75 inA2 Fpunctl= [(4/3 +8/(3*p)] *n.*(F'cA0.5) fv/Fv= Pu/(Apunct*Fpunct) = 91.6 psi = 0.472 < 1 OK Fpunct2= 2.66 * *(F'cA0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 7,294 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)A0.5 y= (c*e)A0.5 + 2*t = 1,050 inA2 = 32.40 in = 14.6 in x= (L-y)/2 M= w*xA2/2 S-slab= 1*teffA2/6 = 8.9 in = (fsoil*xA2)/(144*2) = 4.17 inA3 Fb= 5*(phi)*(fc)A0.5 = 274.0 in-lb fb/Fb= M/(S-slab*Fb) = 150. psi = 0.438 < 1,OK A Page (3 of ( - ' '3/1 2/20! Str ctural lir oncepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714,632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Configuration&Summary:TYPE B SELECTIVE RACK I – - **RACK COLUMNREAC77ON5 32" T ASD LOADS H 61" AXIAL DL= 300/b 32" =1--- I{, AXIAL LL= 2,0001b 32° SEISMICAXIAL Ps=+/- 2,306/b t 61 BASE MOMENT= 0 in-lb 240" 33 240" N 32" _4— 52" 32" - \ 32" 52" 6" l -1 I 48" A- 48" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.972, Fa=1.111 8 48 in 240.0 in 4 48 in Single Row Component Description STRESS . Column Fy=55 ksi INTLK LU75/3x3x13ga P=2013 Ib,M=3847 in-lb 0.16-OK Column&Backer None None None N/A Beam Fy=55 ksi Intik 40E 4Hx2.75Wx0.063"Thk Lu=48 in Capacity: 9164 lb/pr 0.05-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK 1 Mconn=2664 in-lb Mcap=15230 in-lb 0.17-OK Brace-Horizontal Fy=55 ksi Intlk 1-1/2x1-1/4x3/8x16ga 0.11-OK Brace-Diagonal Fy=55 ksi Intik 1-1/2x1-1/4x3/8x16ga 0.26-OK Base Plate Fy=36 ksi 7-3/4x5x3/8 I Fixity=0 in-lb 0.36-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1066 Ib) 0.275-OK Slab&Soil 5"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.26-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level_ Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 500 lb 6.0 in 52.0 in 4 lb 3 lb 2,300 lb 726 "# 1,626 "# 3 pin OK 2 500 lb 32.0 in 52.0 in 24 lb 20 lb 2,013 lb 3,847 "# 2,664 "# 3 pin OK 3 500 lb 32.0 in 61.0 in 44 lb 36 lb 1,725 lb 3,691 "# 2,509 "# 3 pin OK 4 500 lb 32.0 in 61.0 in 64 lb 52 lb 1,438 lb 3,404 "# 2,262 "# 3 pin OK 5 500 lb 32.0 in 84 lb 69 lb 1,150 lb 2,986 "# 1,923 "# 3 pin OK 6 500 lb 32.0 in 104 lb 85 lb 863 lb 2,436 "# 1,492 "# 3 pin OK 7 500 lb 32.0 in 124 lb 102 lb 575 lb 1,755 "# 970 "# 3 pin OK 8 500 lb 32.0 in 144 lb 118 lb 288 lb 943 "# 355 "# 3 pin OK `"Load defined as product weight per pair of beams Total: 590 lb 484 lb Notes - A., a,A-Z_ . .: = Page ( (-{of CCo &l!2120 Str ctural kroncepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Configuration&Summary:TYPE C SELECTIVE RACK **RACK COLUMN REACTIONS 32" 61„ ASD LOADS l \ AXIAL DL= 188/b II `� >AXIAL LL= 2,500/6 32 I SEISMIC AXIAL Ps=+/- 2,854 lb 61" 1 BASE MOMENT= 8,000 in-lb 240" 32' 240" - 52" \ 37 \\ - 52" 104" L / 1 96 T 1,- 48" 4 Seismic Criteria # Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.972, Fa=1.111 5 48 in 240.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi INTLK LU75/3x3x13ga P=2688 Ib,M=19775 in-lb 0.85-OK Column&Backer None None None N/A Beam Fy=55 ksi Intlk 40E 4Hx2.75Wx0.063'Thk Lu=96 in Capacity: 4688 lb/pr 0.21-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK I Mconn=8464 in-lb Mcap=15230 in-lb 0.56-OK Brace-Horizontal Fy=55 ksi Intlk 1-1/2x1-1/4x3/8x16ga 0.13-OK Brace-Diagonal Fy=55 ksi Intik 1-1/2x1-1/4x3/8x16ga 0.29-OK Base Plate Fy=36 ksi 7-3/4x5x3/8 I Fixity=8000 in-lb 0.55-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1446 Ib) 0.367-OK Slab&Soil 5"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.31-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment _ Connector 1 1,000 lb 104.0 in 52.0 in 83 lb 68 lb 2,688 lb 19,775 "# 8,464 "# 3 pin OK 2 1,000 lb 32.0 in 52.0 in 109 lb 89 lb 2,150 lb 3,855 "# 2,643 "# 3 pin OK 3 1,000 lb 32.0 in 61.0 in 134 lb 110 lb 1,613 lb 3,143 "# 2,085 "# 3 pin OK 4 1,000 lb 32.0 in 61.0 in 160 lb 131 lb 1,075 lb 2,263 "# 1,411 "# 3 pin OK 5 1,000 lb 32.0 in 185 lb 152 lb 538 lb 1,215 "# 619 "# 3 pin OK ,,Load defined as product weight per pair of beams Total: 671 lb 550 lb Notes I a;° = Page C.S of I go 8/1 2/201 5 • , Str ctural oncepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: DANNY PHI Project: UPS SUPPLY CHAIN SOL. Project#: P-081115-10LV Configuration&Summary:TYPE D SELECTIVE RACK **RACK COLUMN REAC77ONS ASD LOADS 68" 61" \ AXIAL DL= 113/b 1- AXIAL LL= 3,000/b SEISMIC AXIAL Ps=+/- 3,432 lb 61 / BASE MOMENT= 0 in-lb 240" 240" � {' 68" \ 68" 52"I -I' 96" -I- 42" - Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.972, Fa=1.111 3 42 in 240.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi INTLK LU75/3x3x13ga P=3113 Ib, M=20378 in-lb 0.59-OK Column&Backer None None None N/A Beam Fy=55 ksi Intik 40E 41-1x2.75Wx0.0637hk Lu=96 in Capacity: 4688 lb/pr 0.43-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK I Mconn=10627 in-lb Mcap=15230 in-lb 0.7-OK Brace-Horizontal Fy=55 ksi Intik 1-1/2x1-1/4x3/8x16ga 0.12-0K Brace-Diagonal Fy=55 ksi Intik 1-1/2x1-1/4x3/8x16ga 0.33-OK Base Plate Fy=36 ksi 7-3/4x5x3/8 I Fixity=0 in-lb 0.49-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1828 lb) 0.45-OK Slab&Soil 5"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.36-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. _ Axial Moment Moment Connector 1 2,000 lb 68.0 in 52.0 in 127 lb 105 lb 3,113 lb 20,378 "# 10,627 "# 3 pin OK 2 2,000 lb 68.0 in 52.0 in 255 lb 209 lb 2,075 lb 8,883 "# 5,361 "# 3 pin OK 3 2,000 lb 68.0 in 61.0 in 382 lb 314 lb 1,038 lb 5,330 "# 2,252 "# 3 pin OK 61.0 in ' I ,*Load defined as product weight per pair of beams Total: 764 lb 627 lb Notes Page g to of 1.(4' a/12/201E