Loading...
Report • lau•PZOI LJ- OCOocj' West Coast Forensics, I l o w 5 S u p p bhp iS Engineering and Design, LLC . "`FC■rry • November 10, 2013 • RECEIVES Building Official ` City of Tigard, Oregon JAN 16 2014 13125 SW Hall Boulevard Tigard, Oregon 97223 CITY OF TIGARD BUILDING DIVISION Re: Circuit SW—ii— Seismic Requirements 16255 Upper Boones Ferry Road Tigard, Oregon 97223 To whom it may concern, I have reviewed the metal building system at the proposed bouldering gym location and found it to be in its original form, without modifications. Pre-manufactured, tapered main frames (moment frames) provide resistance to lateral loadings in northwest-southeast direction with the exception of the end walls where steel rod x-bracing provides the resistance. In the northeast-southwest direction resistance to lateral loadings is provided by steel rod x-bracing in the plane of the roof and also in the sidewalls. All of these components s. ` .* are typical of pre-manufactured metal buildings and have successfully resisted lateral loadings from both wind and seismic origins for many years. The 2010 Oregon Structural Specialty Code requires any building subject to an occupancy change that pushes the building into a higher occupancy category (in this case from II to III) to comply with the current requirements for resistance to seismic loadings. However, the code also requires detailing and design to be done considering the structure to be ordinary, or having ordinary moment frames which are expressly prohibited in Seismic Design Category D (which the structure is located in). I gather that this portion of the code will allow the building to meet the seismic requirements of the OSSC and AISC 341 by meeting the R=3 requirements for Seismic Design Categories A, B & C with the ground acceleration based on the actual building location (which,again, would place it in SDC D). A simple analysis of the building determines the base shear from wind loading to be approximately 50 kips. The base shear for R=3 is approximately 40 kips, or about 80% of the • wind base shear. Given this, if it is acceptable to the building department, I assert that the metal building system will not require any seismic retrofit prior to the occupancy change. . These buildings have performed very well in past earthquake events such as Northridge as • long as they do not have concrete exterior walls. The subject building has metal "R-panel" walls that are very light and no concrete walls are present. Retrofitting the mainframe Q connections at the eaves in this case would offer little improvement in seismic resistance and significantly impact the cost of the project. 3835 SW Kelly Avenue, Portland, Oregon 97239 ph: 503.232.5744 fax 503.232.5372 www.wcfore.com WC ® Circuit SW —ii—Seismic Requirements Page 2 of 2 Please do not hesitate to contact me at 503-756-1689 should you have any questions, comments or concerns. Respectfully Submitted, %NO/ q*kt.tEiZtl, PH? Jeffery C. Lewis G 1 N Structural Engineer and Principal ( v w West Coast Forensics, Engineering - 69194PE and Design, LLC 4 OREGON.‘ vsFp�TC 101.°°s" RY C. V 'EXPIRES: 12/31/ 9iI STEPHEN GERBER ARCHITECT Date Submitted: January 13, 2014 / Revised February 19, 2014 Appeal of: Occupant load factor for The Circuit SWii Bouldering Gym Building Address: 16255 SW Upper Boones Ferry Road Tigard, Oregon Applicant: Stephen J. Gerber 9340 SW Youngberg Hill Rd. McMinnville, Oregon 97128 sgerber @gerberarch.com Business Owner: Andy Coleman The Circuit, Inc. 6050C SW Macadam Ave. Portland, Oregon 97232 andy @thecircuitgym.com This Appeal Involves: Change of Occupancy from M/S-1 to A-3 Maximum Floor Area per Occupant Number of Stories: 1 Existing Building Occupancy Group: M &S-1 Construction Type: Type V-B Fire Sprinklers: Yes, building has full coverage A • 9340 SW YOUNGBERG HILL RD. MCMINNVILLE, OREGON 97128 PHONE: 503.459.7737 E-MAIL: SGERBER @GERBERARCH.COM STEPHEN GERBER ARCHITECT Code Section being appealed: Table 1004.1.1 Maximum Floor Area Per Occupant Regulation Requirement: To determine the occupancy for an A-3 Bouldering gym, a function of the space must be selected from Table 1004.1.1. The only applicable label for this unique gymnasium is the "Exercise Room,"which has an occupant load factor of 50 square feet for the gross square footage. Proposed Design: The Circuit Bouldering Gym is a specialized, unique exercise facility for a specific type of free climb rock climbing.Typical climbing gyms provide vertical faceted surfaces with hand holds requiring harnesses, ropes, and a bolle person at the base for fall protection. The Bouldering gym is different. It is comprised of 3 dimensional faceted forms with adjustable hand holds to be able to practice climbing boulder formations freely without fall protection except for the padded floor.This freestyle bouldering requires extra available space in, around, and below the area of climber/client.The climber needs the larger open space for the freedom to navigate and ascend the different formations.The amount of space required depends also on the experience level of the user and complexity of the hand hold layout configurations. Reason for Alternate: Per Table 1004.1.1, the "exercise room" function and its maximum floor area allowance per occupant (50sgft/occ.) is tailored for a typical exercise gymnasium, where the equipment is lined up in rows. (See attachment-K,L) The Circuit Bouldering Gym is a different type of exercise gym. It has custom built 2 &3 dimensional freestanding boulder formations that take up substantial floor space with its foot and overhang print (See attachment-C,D,E,F) in order to create similar natural climbing conditions; they support themselves. Due to the specialized nature of the Bouldering Gym and this type of free climbing exercise, the number of people who are interested in and able to participate is far less than your typical exercise gym.This fact, coupled with the amount of space the climbing equipment occupies and the understanding of how much free space is needed for a user to exercise/practice the skills to safely navigate the man-made boulder forms, (See attachment-G,H,I) tend to make the 50 square feet per person a denser allowance for calculating the occupancy.The climbing paths are not a direct vertical path.They require lots of open space in all directions for adjusting ones path per the ever changing hand hold configurations and boulder obstacles/formations.This in turn requires the additional floor space with fall protection in all directions at the base of the formations. The Circuit Bouldering Gym is a unique exercise gym and needs to either have the allowance per occupant modified for the gross square footage under consideration or have the foot and overhang print deducted from the gross square footage since the users are either occupying the floor space below the formations in preparation of assent or already on the formation with the floor space below cleared due to the free climb nature and fall protection located on the floor. • 9340 SW YOUNGBERG HILL RD. MCMINNVILLE, OREGON 97128 PHONE: 503.459.7737 E-MAIL: BGERBER @DERBERARCH.COM • ,, STEPHEN GERBER ARCHITECT Conclusion: The maximum floor area allowances per occupant for a typical exercise • room should be allowed to be modified to show compliance of the current local and state codes for this type use within the proposed building suite. (See attachment-A, B) We propose the occupant load to be reduced by deducting the bouldering formation foot and overhang print from the gross square footage and apply the 50 square feet per occupant to the net square footage,which can be approved by the building official per Section 1004.1.1, Exception 1. My client has proved to himself, through a survey within his existing Portland Bouldering Gym, (See attachment-J) that the 50 square feet per occupant allowance far surpasses the reality of the required square feet per user for this type of facility. Thank you for your time and consideration. 9340 BW YOUNGBERG HILL RD. MCMINNVILLE, OREGON/� 9712B PHONE: 503.459.7737 E-MAIL: SOERBER @OERBERARCH.COM 1 • 201+. 00009 L(e? 55 UefexTto Ferry RECEIVED JAN 16 2014 CITY OF TIGARD BUILDING DIVISION BOULDERING WALL DESIGN FOR: THE CIRCUIT "144<5"/".‘ 6050 SW MACADAM PORTLAND, OREGON elCZ PERMIT SUBMITTAL CT 114 90!11R9/4 014 ftk 69194PE a(); 1 EXPIRES: 1213106) 1 JULY 17, 2005 1/41h w •I TABLE OF CONTENTS NARRATIVE WALL KEY PLAN 2 SECONDARY MEMBER CALCULATIONS 3-16 WALL TYPE A 17-29 WALL TYPE B .30-36 WALL TYPE C .37-42 WALL TYPE D 43-44 • WALL TYPE E ....45-49 • • NARRATIVE The climbing walls for The Circuit Gym are constructed of a steel framework with plywood and fiberglass sheathing. All steel connections consist of fillet welds all around with a throat equal to the angle thickness. Connections to the existing 6" reinforced concrete slab are made with angles bolted to the slab with expansion anchors. Some of the walls are braced to the exterior walls of the structure. The structures are very light and the exterior walls are capable of supporting the new loadings, where applicable. The designs shown are typical of the actual framework used. Some of the actual framework is a variation of the designs shown. Maximum spans for typical secondary members were used for construction. The as-built framework was observed by the engineer throughout the construction. The plywood or fiberglass sheathing, connected to the steel framework with #12 screws, supports the structures along their lengths. No lateral analysis is performed in the long direction for that reason. An exemplary cross frame was chosen from each type of bouldering wall for analysis. This frame was the frame that appeared to be the worst case frame based on a preliminary analysis. The AISC Manual of Steel Construction was the code chosen for the design of the steel members. Calculations for the wall types follow. \-7.% r- 71._ va 1 . i* uA u. WO -4 -Z°I I!; IF I i z z z • (t. Pr AZ g Lot.' 6 01 1Ecndj 1-INIQ(A0 CDttirriA, la vr I on 4'14)'/%1 • 45.-141 tA frfr,, iSim To e4v. c) L. Li is*-t4. -, v" .... L.A./ivety 0 .. 1 ir; 0 AG4-• _ 1 4 \ii5s-vx . P �y 4 I j • AU--w rto '<<�oNr�r�l v c�c IN( 4d a; Cr r` 6,A 6A-r%A N Cs A (4 ) $j q c40 4r i.z4/'o.c 4q y 4 " -� LZ � 1r c 6 '-�� --� ( 2 %,4- 1 %Z,‘ 3 4c (4/ 4-6.; LigP0 grzi ii7o.") COY 0Gn (.o04,0 f t-i vioor, yt r•rz- SrrM cal-r- 44I rsc S te- 20e2i 3/, ,q-,' L'c,t,s 414 Pig "�,2 4),9/0lz5)2 I ` rl /-11 'Ad/ lu ` w� Hot4,S L3A3 4,04„ ' x,145 c0,,, ,0‘..4. 3s° �.. ID.y • 200i' I�� Z p if 3s I PLF 112 molt_ cool9 Nwo cgaz. Va,inOet. a0. �1 � � " M.a'ff 4 PAM 104 ° 69- °r: S7 P, -- 4, 21 fll� ji • i - r r,..... )7) 0 = 'Id _6. -5 :-. 01 /7:t/7 c / ' S ilivihh -::.- fl5i,v 14; qll , 2 2 i dS l I i+ V_5/ = M0Jn/ 7cg / 2 r-41/4t5 -fa c� � " 212 s ve 9 * °S 1 d1 - Vs ?( ti` / 0 e 1 iz,..$ c* 1 2 i1'itio4E lrf ....is 6 N) 00 h z�' ri � A r .T_____> , „ ( M L 1 M B/ -- 96-W . fj a.?)` 1a* '2 c a('iA 7d J aa.5 <- -- ova 7 -_ w S�v f 2 1 + i nw. ( . I . --- -----7 ' 0`) r 10' . /, ( \ e' 4 ti ,,o' �c ° �� \ btR moo• \'' 7 1 �o° o° `1v `''�` G -__...,„ v7 . kkb 0.0cfkat . (oli Vr- TAP,, r— Fo 5 Wel)6 SINGLE ANGLE IN COMPRESSION /4- 1 l4 CA., L./ '4A,Q-x L2x2x1/8 F D p✓IT'^14" ^)6 y= 38 ksi �r E = 29000 ksi ''c= 0.9 b= 2 inches (Full width of longest leg) t= 0.125 inches (Leg thickness) bit= 16.00 0.446•(E/Fy)^0.5 = 12.88 0.910•(EJFy)^0.5 = 25.83 (4-3a) Q = 1.00 (4-3b) Q= 0.91 (4-3c) Q = 1.88 Q = 0.91 L= 48 inches k= 1 r= 0.63 inches kUr= 76.19 = 0.85 (4-1) Fa= 24.83 ksi (4-2) Fa= 43.25 ksi c*(Q)"0.5= 0.815518 F,= 24.83 Ao= 0.484 inches` 'cPn= 10.81 kips COMBINED STRESSES Note: Valid only for equal length leg angles. I = 0.19in4 P„ = 0 kips M„w= 0.88 in-kips M,,= 1.8 in-kips Pet = 23.61 kips B1 = 1.00 B,'M,,.,= 0.88 in-kips Bi*M„w= 1.80 in-kips (6-1a) 0.45 (6-1b) 0.50 Pi 'Pn= 0.00 _ APPLICABLE STRESS RATIO = 0.50 Ci!) COMBINED STRESSES Cr Z 2 4 g +-1/ ' L- . Note: Valid only for =•ual len•th leg angles. I = 0.19 in4 Z�'" pT Pu= 0 kips L9,xy> Muw= 3.96 in-kips 9'6 et_r: Mu:= 0 in-kips P., = 23.61 kips if /Z5 (1 B, = 1.00 y 1 B,iMuw= 3.96 in-kips B1*M,,,,,,= 0.00 in-kips (6-1a) 0.66 (6-1b) 0.74 Pa-P.= 0.00 Lo i> w mitt!h I, 3 to - APPLICABLE STRESS RATIO = 0.74 c- Dl • SINGLE ANGLE IN COMPRESSION L2.5x2.5x3/16 FY= 36 ksi E= 29000 ksi 0.9 b= 2.5 inches (Full width of longest leg) t= 0.'875 inches (Leg thickness) b/t= 13.33 0.446*(E/Fr)"0.5= 12.66 0.910'(EJFr)^0.5= 25.83 (4-3a) (a= 1.00 (4-3b) Q= 0.98 (4-3c) Q= 2.42 Q= 0.98 = 72 inches k= r= 0.78 inches kL/r= 92.31 •c= 1.04 (4-1) Fa= 22.76 ksi (4-2) Fq= 29.46 ksi = 1.026072 Fa= 22.76 A9= 0.902 inches` °P^ 18.48 kips l " SINGLE ANGLE IN BENDING Note:Spreadsheet only valid for angle members with full lateral-torsional restraint Fy= 36 ksi E= 29000 ksi = 0.9 b= 2.5 inches (Full width of leg in compression) t= 0.1875 inches (Leg thickness) bft= 13.33 ANGLE TIP IN COMPRESSION 0.54`(E/Fy)^0.5= 12.66 0.910'(E/Fy)^0.5= 25.83 Sc 4 0.2931in' (5-1a) M„ = 15.82 in-kips (5-1b) Mn= 15.30 in-kips (5-1c) Mn= 34.20 in-kips Mn = 15.30 in-kips I'M„= 13.77 In-kips COMBINED STRESSES � Z �Z V')C 3//' Note: Valid only for equal length leg angles. C 1 = 31A.9 .n, .941 ,�l a Su !�T , Pu = 0 kips N+t,/ 5,a /0 M = 6.6 in-kips 4-3 v Mur=r 0 in-kips L Pei = 10.49 kips B1 1.00 B1*Mu,W= 6.60 in-kips B1•Muw= 0.00 in-kips (6-1a) 0.43 (6-1b) 0.48 Pul 4'n= 0.00 APPLICABLE STRESS RATIO= 0.48 &9/ SINGLE ANGLE IN COMPRESSION L3x3x3/16 Fy= 36 ksi E = 1r ' 9000'ksi 'c= 0.9 b= 3,inches (Full width of longest leg) t= 9.1875 inches (Leg thickness) bit= 16.00 0.446`(E/Fy)^0.5 = 12.66 0.910•(E/Fy)^0.5= 25.83 (4-3a) Q = 1.00 (4-3b) Q= 0.91 (4-3c) G1= 1.68 Q= 0.91 L = 96 inches k= 1 = 0.94 inches kL/r= 102.13 ' = 1.15 (4-1) Fa= 19.89 ksi (4-2) F«= 24.07 ksi c'(Q)^0.5 = 1.093141 F«= 19.89 Ag- 1.44 inches` .'cPn= 25.78 kips SINGLE ANGLE IN BENDING Note: Spreadsheet only valid for angle members with full lateral-torsional restraint. Fy= 36 ksi E = 29000 ksi = 0.9 b = 3 inches (Full width of leg in compression) t= 0.1875 inches (Leg thickness) bit= 16.00 ANGLE TIP iN COMPRESSION 0.54*(E/FY)^0.5 = 12.66 0.910*(E/Fy)^0.5 = 25.83 S,= 0.441 in3 (5-1a) Mn= 23.81 in-kips (5-1b) Mn = 19.92 in-kips (5-1c) Ma= 35.75 in-kips Mn = 19.92 in-kips 'Mn = 17.92 in-kips 25% 7-5<' 1G 3,6 COMBINED STRESSES ' Note:Valid only for equal length leg angles. 1= 0.92 in' Pu= 0 kips • M,,,,,,= 12.8 in-kips !r r�v. Mug— 0 in-kips Pei = 28.58 kips t7 3 ( t B1 — 1.00 P B,mow= 12.80 in-kips S(1J B1 iMuw= 0.00 in-kips (6-1a) 0.63 (6-1b) 0.71 Pu/"Pn= 0.00 - APPLICABLE STRESS RATIO= 0.71 1 ,:..1.-- .7.) • 36'-0' 324'-0' = 12'-0' 3e 4'-0' = 12'-0' 3 � 4'-0' = 12'-0' _ 1 -+---- _ - -I - r. r N Z. X �a L2x2x1/8 ' re) TYP. UNO 1 • - 0 0 0 • WALL FRAMING ELEVATION NTS ■..) II Y 0' 12`-0' • ' 10'_.1 1./4' -1 1 1 • ��jj u ‘, 57(2,5X3/16\ I °• rs -f--- L2, T0P' 1 1 --7 T_ , ,q-ricw 4 4. 44 I eAk- ite A c)_ cP_ ",y o_ 1 ► , 51a o I 1 1 1 0 11 1 11 in 0-... 11 f 11 r. 11-6" A 4 4 4 4 • A 35 DEG WALL SECTIIIIN NTS LU 12,_0' f f -I C.n 0 d r-i • 5'-0' Gl -vil 2 .9t/fit Z`'L 'XdW ---+= G M 1 1 j - — r rl _ + - — C ) - - - - - 1 � ' CIPT— 4.... 0 - . - -4 ■ A► O • • • s 5'-9 1/8' t 13'-3 3/16' 1 Ilb , 0 .9I/II 2-,2 • .9I/I 2-,S • •� ° M � D L �- L 5,-0 1/4' C) 3,-0 1/8` 7'-0 5/16' /W V J 15'-0 11/16' .0-,S --J • .o ,2 T` • W r z • 3-/16 I 1, 4x4x1/4 PL. AT C.L. L4x4x1/4 x 11--0" i C2>-1/2" DIA. x 4" EMBED. EXP, BOLT 9' GAGE TYP, BASE CONNECTION _ CO NTS 3/16 u � �l T 414 X 3xx1/4 PL. AT C.L. Lax3x1/4 x 1'-011 Wa w5 (2)-1/2' DIA. x 4" EMBED. /k�.r� oK EXP. BOLT 9' GAGE " 4r- q3101^ 0 TYP, CONNECTION AT WALL NTS _ _ 1 X31 (t16 , ,w x' r1 2 91Cs) Z Ic3( ) t/YGC, A - tA I ‘+- . *pi' A' /671 -I-- IPA1 tik/j)4 fir, to S ' coact/ 5,?- ' hut/ AA a"..,E.f 1— IZ4 � . Z•s 7 /53 64.31 ')6 54 A o o,0a3- /&r x Zt 000 Z G / r 464-21/4 r_ trt.,Xk � R 3,3)('3/►( 1 I 1 I 11 1 I I l2 3 Q(9'5;1) s� � lOagi o L Tz, <)4 Title czy V V Pr Lt.- .1-1 P�„ 4- Job c : Dsgnr: Date: 1 1 Description.... 3:11PM, 17 JUL 05 FastFrame 2-D Frame Analysis v5o.9- Page 11 - Nodes... • Node Node Coordinates Node • Label ft V X Restraint Y Restraint o Z Restraint Temp deg 1 10.500 0.000 Fixed Fixed 0 2 7.000 . 5.000 ; 0 3 10.500 7.000 Fixed Fixed 0 4 2.080 12.000 0 5 10.500 ' 14.000 Fixed Fixed 0 6 0.000 15.000 ' 0 Member... Member Endpoint Nodes Member I End Releases J End Releases Label Property Label I Node J Node Length X Y Z X Y Z 1-2 L3x3x3/16 1 2 6.103 2-3 L2.5x2.5x3/16 2 3 4.031 Free 2-4 L3x3x3/16 2 4 8.556 4-5 L2.5x2.5x3/16 4 5 8.654 Free 4-6 L3x3x3/16 4 6 3.651 1 Materials... Member Youngs Density Thermal Yield Label ksi kcf in/100d ksi Default 1.00 0.000 0.000000 1.00 Steel 29,000 00 0.490 0.000650 36.00 - Section Sections... Prop Label Area Depth Tf ixx Material Group Tag Width Tw • Iyy Default Default 1.000 in2 0.000 in 0.000 in 1.00 in4 0.000 In 0.000 In 0.00 in4 L2.5x2.5x3/16 Steel 0.902 in2 2.500 in 0.000 in 0.55 in4 • 2.500 in 0.188 in 0.55 in4 L3x3x3/16 Steel 1.090 in2 3.000 in 0.000 in 0.96 in4 3.000 in 0.188 in 0.96 in4 Member Point Loads.... • • Member Magnitude Distance from"1" Nods E Load I Load Case Factors Label Direction 1 /1 s 2 •3 *4 *5 • 1-2 0.200 k 4.250 ft I Global Y I 1.000 2-4 ' 0.200 k 4.250 ft Global Y , 1.000 'Member Distributed Loads.... ■ Member Load Magnitudes I Load Extents Load Load Case Factors i. Label ' Start Finish St Finish ft ft 1 Direction 1#1 *2 1 3 /4 s 5 1-2 0.063 0.063 ic/ft 0.000 6.103 I Global Y ' 1.000 2-4 0.063 0.063 k/ft • 0.000 8.556 1 Global Y ' 1.000 4-6 0.063 0.063 k/R 0.000 3.651 Global Y 1.000 Load Combinations... _ Load Combination Stress ' Gravity Load Factors Load Combination Factors Description increase 1 X Y i #1 *2 1 3 s 4 15 dead+live 1.000 1 . I -1.000 -1 000 dead load 1.000 1 i -1.000 live load 1.000 1 I -1.000 • (c) 1988-2001 ENERCALC C.\FastFramt35degreewald.FFW V 5.0.9 Title C09- Job# Dsgnr: Date: Description.... 3:11PM, 17 JUL 05 FastFrame 2-D Frame Analysis V50.9- Page 21 - Node Displacements& Reactions 1 Node Label Load Combination Node Displacements Node Reactions X Y Z 1 X Y Z in in Radians k k k-ft 1 dead+live 0 0 0.00094 -0.75873 1.23569 0 1 dead load 0 0 0.00076 -0.55952 0 93609 0 1 live load 0 0 • 0.00018' -0.19922 0.29960 0 2 live load 0.00008 -0.00082 0.00037 0 0 0 2 dead+live 0_00071 -0.00301 0.00065, 0 0 0 2 dead load 0.00063 -0.00219 0.00028 0 0 0 3 dead+live 0 0 0.000061 0.41213 0.23550 0 3 dead load 0 0 0.00005' 0.25315 0.14466 0 3 live load 0 0 0.00002i 0.15897 0.09084 0 4 dead load -0.00014 -0.00482 0.000091 0 0 0 4 live load 0.00011 -0.00118 -0.00153 0 0 0 4 . dead+five -0.00003 -0.00600 -0.001441 0 0 0 5 dead+live 0 0 0.000081 0.34661 0.08233 0 5 dead load 0 0 0.000041 D.30636 0.07277 0 5 live load 0 0 0.000011 0.04024 0.00956 0 6 dead load -0.04390 -0.03531 0.00159; 0 0 0 6 live load 0.05520 0.03701 -0.001531 0 0 0 6 dead+live 0.01131 0.00170 0.00006 0 0 0 Member End Forces... Member Node"1"End Forces i Node"J"End Forces Label Load Combination Axial Shear Moment i Axial Shear Moment k k ft-k k k ft-k 1-2 dead+live 1.44742 -0.08705 0 . -0.96858 -0.24815 0.35418 1-2 dead load 1.08774 -0.07844 0 -0.77274 -0.14206 0.19415 1-2 live load 0.35968 -0.00861 0 - 1 19 -0.10609 0.16003 2-3 dead+live -0.47467 0 0 ' 0.4 •• 0 0 2-3 dead load -0.29157 0 0 • I. •157 0 0 2-3 live load -0.18310 0 0 ' 0.18310 0 0 2-4 dead+live 0.92474 -0.22630 -0.35418 • -0.32011 -0.19867 0.23918 2-4 dead load 0.74579 0.14972 -0.19415 + -0.30479 -0.16024 0.23918 2-4 live load 0.17895 -0.07658 -0.16003 , -0.01532 -0.03842 0 4-5 dead+live -0.35625 0 0 0.35625 0 0 4-5 dead load -0.31489 0 0 : 0.31489 0 0 4-5 live load -0.04136 0 0 ; 0.04136 0 0 4-6 1 dead+live 0.18900 -0.13104 -0.23918 ; 0 0 0 4-6 dead load 0.18900 -0.13104 -0.23918 0 0 0 4-6 live bad 0 0 0 ' 0 0 0 p 5 ,J . cl' Kil % ,--V'I'S ,< z 11k L L., \r) �L• ic o r a f 1 • (c) 1988-2001 ENERCALC C:1FastFram135degreewail.FFW V 5.0.9 ui o>ocr SINGLE ANGLE IN COMPRESSION &4t.- L3x3x3/16 34_ 3-_ 3/(, Fy-' 36 ksi E= 29000 ksi 0.9 b= 3 inches (Full width of longest leg) t= 0.1875 inches (Leg thickness) b/t= 16.00 0.446`(E/Fy)^0.5= 12.66 0.910*(E/Fy)^0.5= 25.83 (4-3a) Q= 1.00 (4-3b) Q= 0.91 (4-3c) a = 1.68 Q= 0.91 L= 102 inches k= 0.8 r= 0.94 inches kUr= 86.81 ^c= 0.97 (4-1) F«= 22.85 ksi (4-2) Fc,= 33.31 ksi ',,*(Q)^0.5= 0.92917 F«= 22.85 A9= 1.09 inches` '''cPn= 22.42 kips SINGLE ANGLE IN COMPRESSION L3x3x3/16 Fr= 36 ksi E = 29000 ksi ;'c= 0.9 b= 3 inches (Full width of longest leg) t= 0.1875 inches (Leg thickness) bit= 16.00 0.446*(E/Fy)^0.5= 12.66 0.910*(E/Fy)^0.5= 25.83 (4-3a) Q= 1.00 (4-3b) Q= 0.91 (4-3c) Q= 1.68 Q= 0.91 L= inches k= 0.8 r= 0.94 inches kUr= 86.81 c= 0.97 (4-1) Fa= 22.85 ksi (4-2) Fa= 33.31 ksi '_c"(Qp`0.5= 0.92917 F«= 22.85 Aa= 1.09 inches` l'cPn= 22.42 kips SINGLE ANGLE IN BENDING Note: Spreadsheet only valid for angle members with full lateral-torsional restraint Fy= 36 ksi E = 29000 ksi 'b — 0.9 b= 3 inches (Full width of leg in compression) t= 0.1875 inches (Leg thickness) b/t= 16.00 ANGLE TIP IN COMPRESSION 0.54*(E/Fy)^0.5= 12.66 0.910*(E/Fy)^0.5= 25.83 S�= 0.441 in3 (5-1a) Mn= 23.81 in-kips (5-1b) M„= 19.92 in-kips (5-1c) Mn= 35.75 in-kips Mn = 19.92 in-kips 'Mn= 17.92 in-kips • COMBINED STRESSES Note: Valid only for equal length leg angles. Pu = 1.48 kips Muw= 4.2 in-kips Muz= 0 in-kips Pei c 39.55 kips B1 = 1.04 Bt*Muw= 4.36 in-kips B,*Muw = 0.00 in-kips (6-la) 0.28 (6-1b) 0.28 P„i''Pn= 0.07 APPLICABLE STRESS RATIO = 0.28 I r-t\ 5- t95 --- 1A6/1- -t- 0. tc, icmi virmiL te,,,,,460 3 1,892 Y.-- *;,0- Y /6 . gi /5',4, \li 1 u 2 �/0 x z >2% sic •.-K-- \ G ltAalt6' 'gam-C---_ PA ,eA ccc.zn -..57 ‘0,. , -- -k-c.., 1( --c i v oil,i . M 61 • (A wie4LL_ ------ 9 -roc -- , 1 r 3i �-,?- O. ----- (, wfw,v .-- 2500.00 .5-11, 0) 15, 02 / ° _ .. Title • / 0 4,, ` /f v6 Job* ,... Dsgnr: Date: Description . INcc p $ Si'sf 6,1-1-- -4/4-L, (,61 -CD 4:08PM, 17JUL05 FastFrame 2-D Frame Analysis V5.0.9- Page 11 Nodes... Node Node Coordinates Node Label x Y X Restraint Y Restraint Z Restraint Temp ft ft deg F 1 10.554 0.000 Fixed Fixed 0 2 15.020 0.000 Fixed Fixed 0 3 6.800 5.800 0 4 15.710 . 5.790 0 5 1.903 I 12.800 0 6 16.540 12.800 ' 0 7 0.250 : 15.140 0 8 16.800 15.000 0 Member... Member Endpoint Nodes Meemtier I End Releases J End Releases Label Property Label I Node J Node n X Y Z X Y Z 1-3 L3x3x3/16 1 3 6.909 2-3 L2.5x2.5x3/16 2 3 10.060 , Free Free 2-4 L3x3x3116 2 4 5.831 3-4 L2.5x2.5x3/16 3 4 , 8.910 l Free Free 3 5 L3x3x3/16 3 5 1 8.543 4-5 L2.5x2.5x3/16 4 5 15.485 : Free Free 4-6 L3x3x3/16 4 6 + 7.059 i 5-6 L2.5x2.5x3/16 5 6 14.637 ; Free Free 5-7 L3x3x3/16 5 7 2.865 6-8 L3x3x3/16 6 8 2.215 Materials... Member Youngs Density Thermal Yield . Label ' ksi kcf 1 in/100d ksi Default 1.00 0.000 , 0.000000 1.00 Steel 29,000 00 0.490 0.000650 36.00 Section Sections... Prop Label Area Depth Tf lxx Material Group Tag Width Tw lyy Default Default 1.000 in2 0.000 in 0.000 in 1.00 in4 0.000 in 0.000 in 0.00 in4 L2.5x2.5x3/16 l Steel 0.902 in2 2.500 In 0.000 in 0.55 in4 2.500 in 0.188 in 0.55 in4 L3x3x3/16 ' Steel 1.090 in2 3.000 in 0.000 in 0.96 in4 3.000 in 0.188 in 0.96 in4 Member Point Loads.... Member Magnitude Distance from 1"Node ! Load Load Case Factors Label Direction #1 •2 *3 14 111 5 ' 1-3 0.200 k 3.000 ft Global Y 1 1.000 2-4 0.200 k 2.750 ft f Global Y 1.000 3-5 0.200 k 4.000 ft Global Y 1.000 4.6 . 0.200 k 3.500 ft i Global Y ' 1.000 Member Distributed Loads.... Member Load Magnitudes Load Extents Load Load Case Factors Labe! Start Finish Start Finish ft ft Direction #1 #2 #3 *4 Si 5 1-3 0.036 0.036 k/ft 0.000 8.909 i Global Y 1.000 2-4 0.036 0.036 k/ft 0.000 5.831 i Global Y 1.000 2-4 0.020 0.020 k/ft 0.000 5.831 1 Global X 1.000 _ 3-5 0.036 0.036 k/ft 0.000 8.543 Global Y 1.000 4-6 0.036 0.036 k/ft 0.000 7.059 I Global Y 1.000 4-6 0.020 0.020 k/ft ' 0.000 7.059 i Global X 1.000 5-7 0.036 0.036 k/ft l 0.000 2.865 i Global Y 1.000 - 6-8 0.036 0.036 k/ft 0.000 2.215; Global Y 1 000 6-8 0.020 0.020 k/ft 0.000 2.215 I Global X 1.000 (c)1988-2001 ENERCALC C:\FASTFRAM\WALLTYPEB.FFW V 5.0.9 .C.F.V Title Job# : Dsgnr: Date: Description.... - 4:08PM, 17 JUL 05 FastFrame 2-D Frame Analysis V50.9- Page 21 - ' Load Combinations... - Load Combination • Stress , Gravity Load Factors I Load Combination Factors Description Increase ' X Y ; #1 #2 #3 #4 #5 dead+Ilve 1.000 I -1.000 -1.000 dead load 1.000 -1.000 live load 1.000 -1.000 Node Displacements & Reactions Node Label Load Combination Node Displacements Node Reactions , X Y 2 X Y Z in in Radians k k k-ft 1 dead+ live 1,507,E-014 0 0.00189' -1,50749 2 48860 0 1 dead load 0 0 0.00085 -0.78456 1.30138 0 1 live load 0 0 0.00104! -0.72293 1.18722 0 2 live load -1,025.E-014 0 0.00054 1.02504 -0.38722 0 2 dead load 0 0 0.00015 0.78456 -0.09819 0 2 dead+live -1,810.E-014 0 0.000701 1.80959 -0.48541 0 3 dead+live -0.03260 -0.02956 0.001051 0 0 0 3 dead load -0 01519 -0.01425 0.00043; 0 0 0 3 live load -0.01741 -0.01531 0.00062 0 0 0 4 live load -0.01884 0.00184 0.000301 0 0 0 4 dead load -0.01605 0.00119 0.000201 0 0 0 4 dead+live -0.03489 0.00303 0.00050' 0 0 0 5 dead+live -0.07029 -0.05867 -0.001531 0 0 0 5 live load -0.03697 -0.02995 -0.001211 0 0 0 5 dead load -0.03331 -0.02873 -0.000321 0 0 0 - 6 dead load -0.03316 0.00266 0.000271 0 0 0 6 live load -0.03766 0.00380 0.000071 0 0 0 6 dead+live -0.07082 0.00645 0.000341 0 0 0 7 dead+live -0.03617 -0.03463 -0.00111; 0 0 0 - 7 live load -0.00299 -0.00594 -0.00121' 0 0 0 7 dead load -0.03318 -0.02869 0.000101 0 0 0 8 dead load -0.03949 0.00337 0.00023 0 0 0 8 live load -0.04307 0.00444 0.000251 0 0 0 8 dead+live -0.08256 0.00781 0.000481 0 0 0 • (c) 1988-2001 ENERCALC C:Y=ABTFRANIWALLTYPEB.FFW V 5.0.9 Title 1 \w/ Job# : Dsgnr: Date: Description.... 4:08PM. 17 JUL 05 FastFrame 2-D Frame Analysis v509- Page 3 ' Member End Forces... Member Node"I"End Forces Node"J"End Forces Label Load Combination Axial Shear Moment Axial Shear Moment k k ft-k k k ft-k 1-3 dead+live 2.90829 0 08667 0 i -2 53159 -0.15715 0.29285 1-3 dead load 1.51880 -0.04848 0 • -1.31000 -0.08666 0.13190 1-3 live load 1.38949 -0.03819 0 -1.22159 -0.07048 0.16095 2-3 dead+live -2.07872 0 • 0 2.07872 0 0 2-3 dead load . -0.90895 0 0 . 0.90895 0 0 2-3 live load -1.16977 0 0 ' 1 16977 0 0 2-4 dead+live 0.72117 -0.02596 0 -0.30033 -0.04133 0.04090 2-4 dead load 0.42781 0.00882 0 -0.21937 0 01602 -0.02101 2-4 live load 0.29336 -0.03478 0 -0.08096 -0.05736 0.06191 3-4 dead+live 0.56845 0 0 ; -0.56845 0 0 3-4 dead load 0.21387 0 0 • -0.21387 0 0 3-4 live load 0 35458 0 0 ' -0.35458 0 0 3-5 dead+live 0 90637 -0.17341 -0.29285 -0.49049 -0 11752 0.08524 3-5 dead load 0.57994 -0.09361 -0.13190 i -0.32794 -0.08268 0.08524 3-5 live load 0.32643 -0.07981 -0.16095 1 -0.16255 -0.03484 0 4-5 dead+live , -0.51114 0 0 i 0.51114 0 0 4-5 dead load -0.26105 0 0 ■ 0.26105 0 0 4-5 live load -0.25009 0 0 • 0 25009 0 0 4-6 dead+live 0.54277 -0.04366 -0.04090 i -0.07520 -0.04314 0.03837 4-6 dead load 0.33426 0.01645 0.02101 -0.08190 0.01343 -0.01037 4-6 live load 0.20851 -0.06011 -0.06191 l 0.00670 -0.05657 0.04874 5-6 dead+live 0.07831 0 0 ! -0.07831 0 0 5-6 dead load -0.02297 0 0 : 0.02297 0 0 5-6 live load 0.10127 0 0 1 -0.10127 0 0 5-7 dead+ live 0.08424 -0.05951 -0.08524 • 0 0 0 5-7 dead load 0.08424 -0.05951 -0.08524 • 0 0 0 5-7 live load 0 0 0 0 0 0 6-8 dead+live 0.08440 -0.03464 -0.03837 i 0 0 0 6-8 dead load 0.07920 0.00936 0.01037 I 0 0 0 6-8 live load 0.00520 -0.04400 -0.04874 . 0 0 0 (c)1988-2001 ENERCALC C:IFASTFRAMIWALLTYPEB.FFW V 5.0.9 .0) V rie r frd P12-* SINGLE ANGLE IN COMPRESSION L3x3x3/16 Fy° 36 ksi E= 29000 ksi c= 0.9 b= 3 inches (Full width of longest leg) t= 0.1875 inches (Leg thickness) b/t= 16.00 0.446*(E/Fy)^0.5= 12.66 0.910•(E/Fy)40.5= 25.83 (4-3a) Q= 1.00 (4-3b) Q= 0.91 (4-3c) Q = 1.68 Q= 0.91 L= 102'inches k= 0.8 • r= 0.94 inches kUr= 86.81 0.97 (4-1) For= 22.85 ksi (4-2) F«= 33.31 ksi 'c*(Q)^0.5= 0.92917 Fcr= 22.85 Ag= 1.09 inches` ''cPn= 22.42 kips SS SINGLE ANGLE IN BENDING Note: Spreadsheet only valid for angle members with full lateral-torsional restraint. Fy= 36 ksi E= 29000 ksi = 0.9 b= 3 inches (Full width of leg in compression) t= 0.1875 inches (Leg thickness) bit= 16.00 ANGLE TIP IN COMPRESSION 0.54*(EIFy)^0.5= 12.66 0.910*(E/Fy)^0.5= 25.83 Se= 0.441 ►n9 (5-1a) Mn= 23.81 in-kips (5-1b) Mn= 19.92 in-kips (5-1c) Mn = 35.75 in-kips Mn= 19.92 in-kips ''Mn= 17.92 in-kips COMBINED STRESSES Note:Valid only for equal len. leg angles. I = 0.92 in` Pu= 2.5 kips Mu,= 3.5 in-kips Mu:= 0 in-kips Pet = 39.55 kips B1 = 1.07 B,"M,,,,,,= 3.74 in-kips Bi*M,,,,,,= 0.00 in-kips (6-1a) 0.30 (6-1 b) 0.26 Pti'P„= 0.11 APPLICABLE STRESS RATIO= 0.26 I (\q, ■ 'lk f 1 f`as� � 4 F dA r c.' 6 J r , M 0 i 50°Yak A / . .---.=:". I 0 2 o .11C ell AX, �1. Title (.y 1,1 0 kifk k--- J e:v �irt- Job# : Dsgnr: Date: Description.... --rite 6:- 4:46PM, 17 JUL 05 FastFrame 2-D Frame Analysis v509- Page 1 I - Nodes... - Node Node Coordinates Node ' Label • X Y X Restraint Y Restraint Z Restraint Temp ft ft deg F 1 4.260 ■ 0.000 Fixed Fixed 0 2 8.230 0.000 Fixed Fixed 0 3 1.000 10.250 0 4 11.340 10 250 0 5 0.000 13.400 0 6 12.300 1 13.400 0 Member... Member Endpoint Nodes Member I End Releases .1 End Releases Label Property Label I Node J Node ` Leri X Y Z X Y Z 1-3 L3x3x3/16 1 3 } 10.756 1-4 L2.5x2.5x3/16 • 1 4 ! 12.457 Free Free 2-4 L3x3x3116 2 4 10.711 3-4 L3x3x1/4 3 4 10.340 Free Free 3-5 L3x3x3/16 3 5 ! • 3.305 4-6 L3x3x3/16 4 6 3.293 I Materials... Member Youngs Density T ennel Yield Label ksi kd in/100d ksi Default 1 00 0.000 0.000000 1.00 Steel 29,000.00 0.490 0.000650 36.00 Section Sections... Prop Label Area Depth Tf lax Material Group Tag Width Tw lyy Default Defauk 1.000 in2 0.000 in 0.000 in 1.00 in4 0.000 in 0.000 in 0.00 in4 L2.5x2.5x3/16 Steel 0.902 in2 2.500 in 0.000 in 0.55 in4 2.500 in 0,188 in 0.55 in4 L3x3x1/4 Steel 1.440 in2 3.000 in 0.000 in 1.24 in4 3.000 in 0.250 in 1.24 in4 L3x3x3/16 Steel 1.090 in2 3.000 in 0.000 in 096 in4 3.000 in 0.188 in 0.95 in4 Member Point Loads.... Member Magnitude Distance from"I"Node I Load Load Case Factors Label Direction 1 #1 #2 #3 #4 *5 1 1-3 . 0.200 k 5.000 ft Global Y I 1.000 2 4 0.200 k 5.000 ft Global Y i 1.000 3-5 0.200 k 1.500 ft 4 Global Y 1.000 4-6 0.200 k 1.500 ft j Global Y 1 1.000 , Member Distributed Loads.... Load Magnitudes ! Load Externs Member 9 itudes Load Load Case Factors Label start Finish • Start Fin ft is h i Direction #1 #2 #3 *4 #5 . 1-3 ' 0.036 0.036 k/ft 0.000 10.756 i Global Y 1.000 2-4 0.036 0.036 k/ft 0.000 10 711 ! Global Y 1.000 . 2-4 0.020 0.020 k/ft ; 0.000 10.711 I Global X -1.000 3-4 0.160 0.160 k/ft , 2.500 7.500 i Global Y 1.000 f 3-4 0.036 0.036 k/ft ■ 0.000 10.340.! Global Y 1.000 • 3-5 0.036 0.036 k/ft i 0.000 3.3051 Global Y 1.000 4-6 0.036 0.036 k/ft 0.000 3.2931 Global Y 1.000 r+'' 4-6 0.020 0.020 k/ft 0.000 3.293 i Global X -1.000 (c)1988-2001 ENERCALC C:1FastFram walltyypec.FFW V 5.0.9 _ „ --f-10 -n Title / 0\4�/(it Job# . Dsgnr Date: uL Description.... 4.46PM, 17JUL05 e 2-D Frame Analysis v509. Page 21 Load Combinations... 1 Load Combination Stress Gravity Load Factors Load Combination Factors Description increase X Y #1 #2 #3 #4 #6 di 1.000 -1.000 dl+ll 1.000 -1.000 -1.000 Ii 1.000 -1.000 Node Displacements & Reactions Node Label Load Combination Node Displacements Node Reactions X Y Z X Y Z in in Radians • k k k-ft 1 d1 0 0 0.00234 0.15029 0.71277 0 1 d1+11 0 0 0.00364, -0.67722 1.10101 0 1 11 0 0 0.00130 -0.52693 0.38825 0 2 II 0 0 -0.00567, 0.24685 1.21175 0 2 dl 0 0 -0.00228 0.15029 0.66982 0 2 d1+11 0 0 -0.00796+ 0.39713 1.88158 0 3 dl 0.00455 -0.00080 -0.00185i 0 0 0 3 d1+11 0.02585 0.00279 -0.00254! 0 0 0 3 II 0.02130 0.00359 -0.000681 0 0 0 4 d1+11 0.02703 -0.01526 0.00511i 0 0 0 4 II • 0.02199 -0.01160 0.00344+ 0 0 0 4 di 0.00504 -0.00365 0.001671 0 0 0 5 dl 0.06495 0.01830 -0.00151: 0 0 0 5 d1+11 0.10087 0.02641 -0.00185! 0 0 0 5 II 0.03592 0.00812 -0.000331 0 0 0 - 6 d1+11 -0.12936 0.03223 0.00386! 0 0 0 • 6 II -0.08046 0.01952 0.002511 0 0 0 6 dl • -0.04890 0.01271 0.00135j 0 0 . 0 . Member End Forces... Member Load Combination Node"1"End Forces Node"J"End Forces ' Label Axial Shear Moment Axial Shear Moment k k ft-k k k ft-k 1-3 dl 0.70958 -0.05315 0 -0.34058 -0.06421 0.05949 1-3 dI+11 • 1.55524 -0.07715 0 -0.99564 -0.10083 0.15026 1-3 II 0.84566 -0.02400 0 -0.65506 -0.03662 0.09077 1-4 di 0.02486 0 • 0 ' -0.02486 0 0 1-4 , di+11 • -0.49155 0 0 ' 0.49155 0 0 1-4 II -0.51642 0 0 L 0.51642 0 0 2-4 dl 0.68480 0.05067 0 • -0.31560 0.06129 -0.05690 2-4 d1+11 1.91583 0.16828 0 -1.41764 0.20875 -0.24809 2-4 II 1.23122 0.11581 0 -1.10204 0.14746 -0.19119 3-4 di -0.16442 0.18612 0 0.16442 0.18612 0 3-4 d1+11 -0.39785 0.59927 0 I 0.39785 0.57297 0 3-4 II -0.23344 0.41315 0 0.23344 0.38685 0 3-5 dl 0.11340 -0.03600 -0.05949 . 0 0 0 3-5 d1+11 0.30402 -0.09652 -0.15026 0 0 0 3-5 Ii 0.19062 -0.06052 -0.09077 ' 0 0 0 4-6 di 0.11340 0.03456 0.05690 0' 0 0 4-6 d1+11 0.28551 0.15586 0.24809 0 0 0 4-6 II 0.17211 0.12130 0.19119 . 0 0 0 (c) 1988-2001 ENFRCALC C:\FastFramlwalltypec.FFW V 5.0.9 _ _ FLoort, 4. 4-r- SINGLE ANGLE IN COMPRESSION 6ok `0,_ns L3x3x1/4 Fy= 36 ksi T E= 29000 ksi ''c= 0.9 b= 3 inches (Full width of longest leg) t=y 0.25 inches (Leg thickness) bit= 12.00 0.446*(E/Fy)^0.5= 12.66 0.910`(E/Fy)^0.5= 25.83 (4-3a) Q= 1.00 (4-3b) Q= 1.02 (4-3c) Q= 2.99 Q= 1.00 L= 120 inches k= 0.8 r= 0.93 inches kUr= 103.23 'c= 1.16 (4-1) Fcr= 20.55 ksi (4-2) Fcr= 23.56 ksi c*(Q)^0.5= 1.157609 Fa= 20.55 A4= 144 inches` "cPri 26.63 kips • COMBINED STRESSES - Note: Valid only for equal length leg angles. I = 1.24 in° Pu ' 0.53 kips Muw= 24.4 in-kips M„Z= 0 in-kips Pet = 38.52 kips B1 = 1.01 B�*Muw = 24.74 in-kips Bl*Muw= 0.00 in-kips (6-1a) 0.81 (6-1b) 0.90 P„J 'Pn= 0.02 APPLICABLE STRESS RATIO - 0.90 • :2101"1704- 0�'7I � r1 f�"l � �u� M ® — cam 9 )'� ' " I` lir 0-0 Pre) pr 7v► ,.frji or (X /;,J) ,� , /7,„ 1. 4d- 5- -0'75 -.7/ 1.y 9 Uo 1r 0 `4,-1/ 1 GI'qe"A 7c, 1 h4____.> ii.212-7 4 w -7/9d L'3'--6 L4 pIs hh Y �'Z f# ` - So f i' 9,� IA wit r �'c414?, d�l-- tY/7 l'il--7 > ''4-ifiip ? ,..1 CI ire , ./ Ar,* 117 4 6 0 a) hi4 " )')+1 ril a • ti e 1.12 y� 8 / ' °.'T 4 , 4 -4 / -7)I t--51 s5, Li. �,,.� I z E ` I ) 1 1 f sz y / , b ' 0 *S, ! (1 . ' ' . 56: #-A4f.,( P'm ., ` rtie" .,::_k:.. toir. ‘,/ WU 46_101. 14%•11111 ,5: NV 4 00 eivi4c(7--- S 1:1 T" !2 To GZvi-(,4-1-, . - - - - Al - _. -4 - - -- Ojot/'E, CFIN'riA ' / i CO tA.4,'1 ✓1. ` 1' cif air n. to Pro1/06 \ tooe;* N . Plir Cyr (-writ sr/5"c /- ooh 1 %4 . 1 N, 'n Nit-- -y14,.11 itfr 401 ,, Aril TiN1 /Vr (3x3>`/rr// y- ih r Litrix2fr 4 1 11‘ 4% .._ 1 , / PT- L L6✓,S ru44 , W4 f4, ______________ __________ _____ 9 s oul co- / IV Old -= 0.49(21j42 9g-1 1.3 2 z "##‘401v9 44,01- 1119 Zj 'Wig es i( 10 94„go ' h 5 > » 5 / 0-41'x 7 Ci 3W 1. ) -rytd /Q mot”" %-ced rem�©Sevi 1-v � Q 69 V50/1 --------— •,. 1." L • t•it•-C. -'- -.%.7-'•.• ,- %...•-•s,...i.4,2./•re, ' •• .. , N. , ' I' e 4 ';"•'•-•N;s'6'..,:''... ''':if w t--*'. .- ^,f ••. • ••.•f'•4,$.44 r''0 .'• ••,, w 3.-/rT --s- . -A..• !trilltilgifit . I i t ± - .f.•.r \ 1, !.1, ;,- ,"-7% : ..': I.-.:r ' i.*. .-." --::.-•*:'C'', . -. '---- -4-1.3• ••1 :::• Lk?' , ..1 ' ig. ' -.. ." tr;•• :.2-Z-... t y :.-: • .13`' 43 •Y "60 re,. •-1,. -.4,,•- -4-.-0-A- - 4- .......,..,41 ell: ....r._ : 9,___,,. , e, . • . '...:.1-t3:e.■.. '- ... - 4: ....-' :.....f.:.ffagi .4_ ......6 r...,..., . ' :• . .' r - .f..- 'IV.. . • /. .. firiX : ... ,a....."C' I't 41'r Sr .2 r-• •• • •''" 4ist ... ..._ • .f'. %.7- A •■-•• _ _........... , .. . ..... •-Nit it- • . , - c ssimb,.,., „olio". ‘1!#*.*•c•c 7-4iWil. ttr, I i i.94-^ 4A4,••■:, .- .!.." ... . ..".• .. .- 'Tax h$4,4 y"`!..•.,..••,-...•.''• . : . . E. '•4.1. '''.V.31...• A. • :,. .• ••:_- . • ' • I c.17.* 4_4k41.';':::..,-...-• -• •-.• • ., : . ' .-4".ciTr•.-..c*.'-''''..-1:: •• -.. ' -. :: . T•1 . . A' • • ••ir-4 f-•%11$4.• ' - - - ;;•• .• a , •.1,e.,-6,..ki .. . ...-: -• • - . . ,i.W.•.if.rt..;'°' '.-i'.i•:-:.•T. . - - - " 4 . .. .1..,....i.;40:.... ..-. ...e.: • '. _.12,-.2....:„... : • 4••••fr•' • 1. -• - -77.6777=0/5 .; •' 4::* --rt< . • , -K.:-.:',•ty .. _ . • - 4-___. ....._:. : i- _ _,. -.- i i•••4,,:,IV? • ..!•.• ' i . ekli.0::•.• ' • • ' ...........--74_4-71.1 • -- ,w-.7-f••1?"?•-•• i• 1----- -------' -.. M= 14: 1 .1 t:*:: ... .•:-.4 • 1111111111111101 1 •: illE7_11111 •... •• .. — .- 1 1 • -.;IMIHIMIN • . • ':MAINE . .; • ., i --',2 7, ': • • - . : .. ..-,-. • • ' I) ----1-1------ _ • • ,' • , .. • ' • . 1 ;.. • •. . ..• .:•te.: • .. • • ' • .. . - . . . .. • . ' . rte.""•:.2 .-. •• ' ; •. - ' ... . 4- TA-- -- : --:,....-.-. -e-.,;Lt."„,.-.• __:-Joreate..;agetakezirsc- - MIIIMalr.a WINN I Pi.---•''''''''.7• ...MI5/flu—Jo-awl® , i ,L.).1.-; • .-• • -' ' ''--awiL= IIIIIIIff: I — •• N -VW! -731911 ..1.53.1N....79 i . ..:,:lii•It:....:'. . ..;4.....47 '.•ft-. • °.-- --- - - -"''' .1 .7 APApLtifiC , i''J't.4:!•$:-.k"5....• • •• .. , .. .r.t • '•' 1. "77.:Z.23X311C. ••'I :•'Cir• . •••• ..G. . . .1 .4..z....g.... . ‘'. . 1 ".!.• ••••••••.-••••"---.'- ...e .,Z, • . - , . . '.'"s•10;-• • . . ' ' - • _ •'•''..=74... • - '="1111013.L161U•Sle ' .4;41.4.` -1-,, 2..Pf•A ''... . 1 if. .,. ...• .;•.-. • • • '..`-'::444,v-••- .•-•- . ../,mumarico • •, i* :•---.•,.:04--I..'r: -. .....v...0,1„,s4 E.;•• -......... - -4.4.,,,.." • k44:::.W.:':;-::—.• .. ...' - -- •• • .. •.• .. • it -..,.F.,..-. t•- • . _ .E- .4-. ..... ••••••-mpl7 • '.4•iL : • 11:41,CE -yeire • li=nier;i 31-1.111.03.1 ■......:4 . .I, ..: -1...."kit . . '--,1 - *-% . .,.,:. '.-. ' 6,-.11111: • • 1 . , h.,• 11,1 . sta.I t •.1.711- ' " • •' • ...et ••"...;.:'' • ' 1 • . . • IV 44/ WS, ••• • - _ 1 3.7,1 anzunricst i, ,,, --rrarraiergi I li .0*'. ?-I I . i wig! . 1 ,..... _..,.. Ai' •• A•••■•..,,,,,,i/ GAILt • it- .: ' ' • 3 loyi!:it Tit sopa . a ., 1 I. I . ,,,,,,,'I• 1111116,7::,/,77:r/747474.71.1111"18Wef,,,,,,,,1;ita4.421 ill; :1#811111371.7..2.71:21:" ...t.. I — 901/...V 2.7t1 Oil -124ht...riC"--' i• .1 i' 78/2#44.1 SAM --•• 4 , _ _ now/wry.,•rs or.; -1---- — - - -- - *-ri-i- frice,ci .15;od . 1., 1 9 i% • . . . 5 0 /i xc 0-L3 i ly e.7� /ji, _.„., ---r,s -V 2j IV 5? 1 [ "-r. \PI\ :1/. ,,,91 ,, cii,„)._____,/„. ., ,zi ., . ,,, ,21 4),,-Pi/i e 7 aJ h �� . %6'SNI N0 1 k "s GNI�9 M� ` �i . I 4,40.1 . , fr r ,„;•,/,44,.//roi;Ii _ 7/# of • MZ�e.$I O 0 pa/ ..$ , . - ..- 7?' --,-. . r c vo Yzit4i4 _ d ► - -___.2--III___-74- F. l,� 2 �l 1 b w`---3 li i . 1), ...k, 1 . :)r_z Gp. 43. low wykri'.17.-J 14?f ct. (!`j, ._._.________. r,t ail 171 1 . ..,.. . 0 ti-- Iii ... 0 ,....... 1 1111 _,_ ii IP idLPI,- 1 , L.L. u \/ it,liTt L ., u, , z . a (n 14-I 11, r W L li r-- E. < Z . t? 1 i '11 L..1 ' Ilijiii 0 (3\c„ N . _ I 0 ' CZ-le) , • . 1 :. ,,, ..... 0 I .......5),_ . ., ___ „ ....„....„.„...„ _.._ .._ 1 11 - 0) 41- $ + A II II II rI r .1 S�p�A l s, 19 mw '�°a cc d 1 C 6 0 v .°; >- ., '�� Bpi �-a. 4,- __{{T . '2�„ ;,„ • A... di,. ,..„Ad 1t07 'Ylrl ti:K.!,_ .,,,„...,•,... �b, vO 4 MAO 'd ceived Time3EJun __I, 2.:4.1PM 8113MS180dS VIONfl100 Nd 6E:10 03M S006-10-Nff