Loading...
Report 2 U PZ01 !—O003-7 SEIZMIC `7 3101 5 J Kab MATERIAL HANDLING ENGINEERING r EST. 1985 HOC) STORAGE RACKS STEEL SHELVING SEISMIC ANALYSIS ALASKA KENTUCKY NORTH CAROLINA DRIVE-IN RACKS MOVABLE SHELVING STRUCTURAL DESIGN ARIZONA MARYLAND OHIO CANTILEVER RACKS STORAGE RACKS CITY APPROVALS CALIFORNIA MASSACHUSETTS OKLAHOMA MEZZANINES MODULAR OFFICES STATE APPROVALS COLORADO MICHIGAN OREGON CONVEYORS GONDOLAS PRODUCT TESTING CONNECTICUT MINNESOTA PENNSYLVANIA CAROUSELS BOOKSTACKS FIELD INSPECTION FLORIDA MISSOURI TENNESSEE PUSHBACK RACKS FLOW RACKS SPECIAL FABRICATION GEORGIA MONTANA TEXAS RACKBUILDINGS FOOTINGS PERMITTING SERVICES IDAHO NEBRASKA UTAH J:q ILLINOIS NEVADA VIRGINIA INDIANA NEW JERSEY WASHINGTON KANSAS NEW MEXIREc ED FEB 1 3 2013 CITY OF TIGARD BUILDING DIVISION SEISMIC ANALYSIS OF STORAGE RACKS FOR QUALITY CUSTOM DIST 7319 SW KABLE LN, STE 500 PORTLAND,OR, - Job No. 13-0039 4(' 44t• 4 Ins ‹t7 a L AFE ETJ.M 05' 13 '103 12-I S • 161 ATLANTIC STREET * POMONA * CA 91768 * TEL: (909) 869-0989 * FAX:(909)869-0981 t,A 1 . f: `StIZMIC PROJ ECT QUALM CUSTOM DIS LR-IO,' FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 2 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 TABLE OF CONTENTS TABLE OF CONTENTS & SCOPE PARAMETERS COMPONENTS & SPECIFICATIONS 4 LOADS & DISTRIBUTION LONGITUDINAL ANALYSIS 8 COLUMN 9 BEAM I I BEAM TO COLUMN 13 BRACING 15 OVERTURNING 16 . BASE PLATE !7 SLAB & SOIL 18 .._. SCOPE: L. - THIS ANALYSIS OF THE STe '_,.GE SYSj 0 DETERMINE ITS COMPLIANCE WITH THE APP',II '' JCODES WITH RESPECT TO STATIC AND SEISMIC FORCES. 44..1 -*4' THE STORAGE RACKS ARE PREFARIBMITED AND ARE TO BE FIELD ASSEMBLED ONLY, WITHOUT ANY FIELD WELDING. - SEIZMIC PROJECT QUALITY CUSTOMDISTRIBG'RTION FOR HANNIBAL • MATERIAL HANDLING ENGINEERING SHEET NO. 3 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 THE STORAGE RACKS CONSIST OF SEVERAL BAYS, INTERCONNECTED IN ONE OR BOTH DIRECTIONS,WITH THE COLUMNS OF THE VERTICAL FRAMES BEING COMMON BETWEEN AND ADJACENT BAYS. THE ANALYSIS WILL FOCUS ON A TRIBUTARY BAY TO BE ANALYSED IN BOTH THE LONGITUDINAL AND TRANSVERSE DIRECTION. STABILITY IN THE LONGITUDINAL DIRECTION IS MAINTAINED BY THE BEAM TO COLUMN MOMENT RESISTING CONNECTIONS, WHILE BRACING ACTS IN THE TRANSVERSE DIRECTION. p i-y,, .., ,,,,.,..,,-- ,--:-: --. fill "\, .. ,... Nii...H------- --- 10i-----1 .,,,,,., _________;._:, ..- \\‘‘ \, it\\---------°41 11 0 \ -,s.t. \‘, 1,0 61 ,,,,,,,,„, CI el _ • ID... CONCEPTUAL DRAWING Some components may not be used or may vary. TRIBUTARY AREA LEGEND / _ _ _ _ I.COLUMN 2. BEAM L ..,.. . 3. BEAM TO COLUMN 4. BASE PLATE 5. HORIZONTAL BRACING I........ ..._. . ..... . ......'. ' 6. DIAGONAL BRACING i 7. BACK TO BACK CONNECTOR TRANSVERSE LONGITUDINAL NOTE: ACTUAL CONFIGURATION SHOWN ON COMPONENTS&SPECIFICATIONS SHEET SEIZMIC PROJECT QUALITY CUSTOMDISTRIBURTION - FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 4 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 COMPONENTS& SPECIFICATIONS : SELECTIVE SITE CLASS=D 111 =84 in. \ \ W 2 W 1=40001bs. — Y 1 =50 in LEVELS=2 I Y2=50 in H2=84 in. W2=4000 lbs. PANELS=3 Y3=50 in Y3 LIVE LOAD=4000 lbs. H2 FRAME HEIGIIT= 168 in. FRAME DEPTH=42 in. H N W 1 H Y2 BEAM LENGTH=96 in. SEISMIC CATEGORY=D H1 (Fa= 1.12, Ss=0.96) Y1 /) N N COLUMN BEAM ( Level 1 CONNECTOR @ Level I OK OK OK ' Struc C3x3.5 4 12"a 2 34"x 14 ga TWO BOLT CONNECTOR Steel =55000 psi Steel=55000 psi Stress=68% Stress=95% Max Static Capacity=6382 Ib Stress=633/4 COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK 4 12"x 2 3'4"x 14 ga TWO BOLT CONNECTOR None Max Static Capacity=6382 lb Stress=30% Stress= S rtes=63% BRACING SLAB&SOIL HORIZONTAL OK DIAGONAL OK Slab=5.5" X 3000 psi OK Soil Bearing Pressure=2000 psf Struc Ll-I/2 x L1-I/2 x 1/8 Struc L1-1/2 x L1-1/2 x 1/8 Slab Puncture Stress=36% Stress= 18% Stress—70% Slab Bending Stress=21% BASE PLATE ANCHORS OK Hilti Kwikbolt TZ 0.5 Dia. X 2 Min. Embd. OK 8 in X 5 in X 0.375 in Pullout Capacity=910 lbs. Steel=36000 psi Shear Capacity=980 lbs. MBase=0 in. lb. No.Of Anchors=2 per Base Plate Stress=37% Anchor Stress=35% NOTES: ANALYSIS PER THE 2010 OSSC - - SEIZMIC PROJECT QUALITY CLSTOMDISTRIBURTION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 5 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 COMPONENTS& SPECIFICATIONS : PUSH BACK(INT) SITE CLASS= D LEVELS=3 HI=16 in. W 9 WI 4000 1bs. — Y I=40 in H2=86 in. W2=8000 lbs. Y2=40 in PANELS=4 H3=86 in. W3=8000 lbs. Y4 \ Y3=48 in H3 \ Y4=48 in LIVE LOAD=Load Varies � \ W 2 i'} FRAME HEIGHT= 192 in. Y3 / 1., < FRAME DEPTH=54 in. H H2 H BEAM LENGTH=96 in. \ W 1 Y2 \ SEISMIC CATEGORY=1) t \ (Fa= 1.12, Ss=0.96) H1 vi i 't / COLUMN BEAM (a?Level 1 CONNECTOR(a), Level 1 • OK OK OK Struc C3x3.5 Struc C5x6.7 TWO BOLT CONNECTOR Steel=55000 psi Steel=55000 psi Stress—81% Stress=71% Max Static Capacity= 14649 lb. Stress=27% COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK OK Backer Up To Level=2 Struc C5x6.7 THREE BOLT CONNECTOR C3 X 5/C3 X 5 Max Static Capacity= 14649 lb. Stress=86% Stress=42% Stress=55% BRACING SLAB&SOIL HORIZONTAL OK DIAGONAL OK Slab=5.5" X 3000 psi OK Soil Bearing Pressure=2000 psf Struc LI 3/4 X 13/4 X 1/8 Struc LI 3/4 X 1 3/4 X 1/8 Slab Puncture Stress=73% Stress= 17% Stress=82% Slab Bending Stress=88% BASE PLATE ANCHORS OK Hilti Kwikbolt TZ 0.5 Dia.X 2 Min. Embd. OK 8 in X 8 in X 0.375 in Pullout Capacity=910 lbs. Steel=36000 psi Shear Capacity=980 lbs. MBase=0 in. lb. No. Of Anchors=2 per Base Plate Stress=58`% Anchor Stress—67% NOTES: LOADING BASED ON TRIBUTARY TO INTERIOR COLUMNS; ACTUAL LOAD 20004 PER PALLET SEIZMIC PROJECT - QUALITY CUSTOM DISTRIBURTION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 6 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA.CA 91768 DATE 1/22/2013 COMPONENTS& SPECIFICATIONS : PUSH BACK(EXT) SITE CLASS=D LEVELS=3 HI =16 in. r W 3 W I -4000 lbs. — Y I =40 in 112=86 in. I W2=4000 lbs. Y2=40 in PANELS=4 H3=86 in. W3=4000 lbs. Y4 Y3=48 in H3 Y4=48 in LIVE LOAD—4000 lbs. W2 FRAME HEIGHT=192 in. Y3 H H2 H dc-- K\ FRAME DEPTH=54 in. BEAM LENGTH=96 in. \ W 1 Y2 i, SEISMIC CATEGORY=D (F's =1.12, Ss=0.96) H1 Y1 I F 'f L 'f +-- D --71' - COLUMN BEAM @ Level 1 CONNECTOR(a), Level 1 OK OK OK Struc C3x3.5 Struc C4x4.5 TWO BOLT CONNECTOR Steel=55000 psi Steel=55000 psi Stress=55% Stress=68% Max Static Capacity=4259 lb. Stress=94% COLUMN BACKER BEAM (a Level 2+ CONNECTOR @ Level 2+ OK OK Struc C4x4.5 TWO BOLT CONNECTOR None Max Static Capacity=4259 lb. Stress=64% Stress= Stress=94% BRACING SLAB&SOIL HORIZONTAL OK DIAGONAL OK Slab=5.5" X 3000 psi OK Soil Bearing Pressure=2000 psf Struc LI 3/4 X 13/4 X 1/8 Struc LI 3/4 X 1 3/4 X 1/8 Slab Puncture Stress=51% Stress= 12% - Stress=53% Slab Bending Stress=43% BASE PLATE ANCHORS OK Hilti Kwikbolt TZ 0.5 Dia. X 2 Min. Embd. OK 8 in X 5 in X 0.375 in Pullout Capacity=910 lbs. Steel=36000 psi Shear Capacity=980 lbs. MBase=0 in. lb. No.Of Anchors=2 per Base Plate • Stress=56% Anchor Stress=41% NOTES: LOADING BASED ON TRIBUTARY TO EXTERIOR COLUMNS;ACTUAL LOAD 2000# PER PALLET - SEIZMIC PROJECT QUALITY CUSTOMDISTRIBURTION FOR HANNIBAL • MATERIAL HANDLING ENGINEERING SHEET NO. 7 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET.POMONO,CA 91768 DATE 1122/2013 ELn I 1 fn LOADS AND DISTRIBUTION: ..----,-- e s F6• EL F4 Fa: 1.12 EL F3 Number Of Levels: 3 Ss: 0.96 EL2 _� wLL(Sum of live loads): 20000 lbs le: 1.00 fz El 1 F wDL(Sum of dead loads): 300 lbs Rw(Longitudinal): 6.00 TOTAL FRAME LOAD: 20300 lbs Rw(Transverse): 4.00 I•-- LONGTUDINAL DIRECTION TRANSVERSE DIRECTION V _ 2/3.Fa •Ss.•I,.(((2/3)-Wi.,.)+Wi,,.� _ 2/3•Fa •S., •I, '�((2/3).Wia.)+W,,.) ,.�,ax — Rw•1.4 V,;L�E. — R,, •1.4 (2/3)X 1.12 X 0.96 X 1 X(((2/3)20000)+300)/(6 X 1.4) (2/3)X 1.12 X 0.96 X 1 X(((2/3)20000)+300)/(4 X 1.4) • V/,)fl; : 1163 lbs V,;a,�s • 1745 lbs F = V �, , L H W,H, Levels /? LONGITUDINAL TRANSVERSE x xwh f wx w, wxhx .f I 16 4,100 65,600 32 4,100 65,600 47 2 102 8,100 826,200 398 8,100 826,200 597 3 188 8,100 1,522,800 734 8,100 1,522,800 1,101 2,414,600 1 163 lbs 2,414,600 1745 lbs - SEIZMIC PROJECT QUALITY CUSTOMDISTRIBURTION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 8 - TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 LONGITUDINAL ANALYSIS: THE ANALYSIS IS BASED ON THE PORTAL METHOD, WITH THE POINT OF CONTRA FLEXURE OF THE COLUMNS ASSUMED AT MID-HEIGHT BETWEEN BEAMS, EXCEPT FOR THE LOWEST PORTION,WHERE THE BASE PLATE PROVIDES ONLY PARTIAL FIXITY,THE CONTRA FLEXURE IS ASSUMED TO OCCUR CLOSER TO THE BASE.(OR AT THE BASE FOR PINNED CONDITION, WHERE THE BASE PLATE CANNOT CARRY MOMENT). Mn-n All Upper +MLower =M(bnn'R' +MConn'l.' Fn M5-5 M Conn'R' — M(bnn'l,' ��� F5 I/ M(',:,, .2 - Mtipper +lYl lower M4-4 ■! P4 M _ (M p� +M \+M • Upper lower M3-3 Corot 2 lint/r • l F3 / M2-2 , V _ Vl'2' = 5821bs MI-I �1 � Z <n/ - 2 ,Fill F M base MBnce = 0 in/lb Mb:,,d, = 4064 in/lb FRONT El.EV ATION LEVELS h f AXIAL LOAD MOMENT Mconn 1 14 16 10,150 8,148 20,307 2 86 199 8,100 24,338 28,124 3 86 367 4,050 15,781 15,954 SAMPLE CALC. MI--1 = (Vcnl •h,)—M Bose =(582 lbs X 14 in)-0 in/lb=8,148 in/lb ' SEIZMIC PROJECT QUALITY CUSTOM DISTRIBURTION FOR HANNIBAL ▪ MATERIAL HANDLING ENGINEERING SHEET NO. 9 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 COLUMN ANALYSIS : P= 4050 lbs M= 15781 in/lb Kx.L1 = 1.2 X 84in/ 1.267in = 79.6 Rx —Max L = 101.5 Ky•Ly — I X 40in/0.394in R = 101.5 Y :4xiul = 102 Since:7? Max<=Cc 1_(KL/R)Max2 .FY 2 = (1 -((101.5 A2)/(2 X 102.0193^2)))X 55000)/((5/3)+((3 X • Fa — 2.0 1000 101.5)/(8 X 102.0193))-(001.5^3)/(8 X 102.0193^3))) [5+3•(KO)M, _ (KL/R)Mox3 SECTION PROPERTIES 3 8'CC 8.C 3 = 14487 PSI fa -PM./Awl = 4050/0.881 = 4597 PSI Aeff: 0.881 in^2 fh =MMax/Sx = 15781 /0.9 = 16735 PSI Ix : 1.414 in^4 Sx : 0.943 inA3 f Rx : 1.267 in F = 0.32 ly : 0.138 in^4 Sy : 0.157 in^3 Flexure Ry : 0.394 in Kx : 1.2 Lx : 84 in Since:—f >0.15 Check: fn + '" fh <-1.33 Ky : 1 Fa Fn(1—Fa/Fc) Ly : 40 in Fy : 55 KSI Fh =0.6 FY = 33000 KSI E : 29500 KS1 0.00 F, — 12112E .1000 = 23593 PSI Q 1.67 23(KL/R)Mar2 C : 0.85 Cb : I Column Stress=(4597/ 14487)+(l X 16735)/(33000 X(1 -(4597/23593)D=71% < 1.33 (71%) E I Z M I C PROJECT QUALITY CUSTOM DISTRIBURTION - FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 10 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 COLUMN BACKER ANALYSIS : P= 8100 Ibs M = 24338 in/lb KX •Lx 1.2 X 84in/ 1.28in R = 78.8 X RL Max = 78.8 Ky•Ly = I X 40in/ 1.34in R = 29.9 Ry Axial = 102 Since: RL Max<=C, 1_(KL/R)Max2 . Fy = (I -((78.8^2)/(2 X 102.0193^2)))*55000)/((5/3)+((3 X 78.8)/ 2 C 2 1000 F., - (8 X 102.0193))-((78.8^3)/(8 X 102.0193^3))) 5+3•(KL/R)M _[(KLIRL1 SECTION PROPERTIES 3 8•Cc 8•C,,; = 20338 PSI fa -PMar/A,. = 8100/2.156 = 3757 PSI Aeff: 2.156 in^2 0/2.37 = 10269 PSI Ix : 3.56 in^4 .4 —MMax/Sx Sx 2.37 in^3 f a Rx : 1.28 in = 0.18 Iy : 3.86 in^4 Fa Sy : 2.57 in^3 Ry : 1.34 in Flexure Kx : 1.2 Lx : 84 in Since:F, >0.15 Check: F°+ 1"'�nF <_1.33 Ky : 1 Fa a h( a/ e) Ly : 40 in Fy : 55 KSI Fb =0.6•F = E : 29500 KSI y 33000 KSI C?c: 0.00 12112E c2f: 1.67 Fe = 2 •1 000 = 24080 PSI Cmx: 0.85 23(KL/R)M Cb : I Backer Stress= (3757/20338)+(1 X 10269)/(33000*(1 -(3757/24080)))=035 <1.33 . (42%) SEIZMIC PROJECT QUALITY CUSTOM DISTRIBUR1ION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. I I TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET, POMONA,CA 91768 DATE 1/22/2013 BEAM ANALYSIS : BEAM TO COLUMN CONNECTIONS PROVIDE ADEQUATE MOMENT CAPACITY TO STABLIZE THE SYSTEM, ALTHOUGH IT DOES NOT PROVIDE FULL FIXITY,THUS,THE BEAMS WILL BE ANALYSED ASSUMING PARTIAL END FIXITY. FOR THE COMPUTATION OF BEAM TO COLUMN MOMENT CAPACITY,THE PARTIAL END FIXITY MOMENT OF THE BEAM WILL BE ADDED TO THE LONGITUDINAL FRAME MOMENT FOR THE ANALYSIS OF THE CONNECTION. EFFECTIVE MOMENT FOR PARTIALLY FIXED BEAM For a simply supported beam,the max moment at the center is given by WL '/8 .An assumption of partial fixity will decrease this maximum moment by the following method. Percentage of End Fixity= 25% 0= 0.25 Mcenter(sn,ple) MCenter=MCenter(Simple ends)-0*MCenter(Fixed ends) Mends (tnmd) •-- - Mcenter ---- Wl 2/8 — •W12/12)= 0.104.W/2 RIO LI 1110 1,41111111Nl Ira I ultl:6 I; 1 Ualn�+rr: Reduction Coefficient [3 = 0.104/0.125 = 0.833 17. M('enter —Y -rr`2 g =0.833 •W/78 M,.nd,. =0•M, (FixedEnds) = W12/12. 0.25 H L 0.0208 •WIZ TYPICAL BEAM FRONT VIEW EFFECTIVE DEFLECTION FOR PARTIALLY FIXED BEAM For a simply supported beam,the max deflection at the center is given byswr'/384 El An assumption of partial fixity will decrease this maximum deflection by the following method. 5W14 64a.r =/3•384•E•IX LiveLoad 1 1v= 4000 lbs DeadLoad 1 1v=41b/ft X 2 X(96/12) = 64 lbs M('enJer = 0.104* Wl2 —20320 in/lb = 0.0208* Wit = 4064 in/lb F,, =0.6-FF = 27996 PSI FB1,ir = 27996 PSI SEIZMIC 1- • .......// PROJECT QUALITY CUSTOM DISTRIBURIION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 12 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET, POMONA,CA 91768 DATE 1/22/2013 BEAM ANALYSIS : o�.e� MAXIMUM STATIC LOAD PER LEVEL DEPENDS ON: I. MAXIMUM MOMENT CAPACITY r D tF/, =MIS., FB; (WI 2/8) ,�,�� lIl — S h� , S, FB . _ •16•S Max.Weight/1v1= /.�. x .a /.1•L =((27996 X 16 X 2.99)/(0.833 X 96))X 0.875 = 14649 Ibs/M j• =7.48 in^4 S = 2.99 in^3 x cx 2. MAXIMUM ALLOWABLE DEFLECTION F„, =55000 PSI a(impaciCoeffcieni)= 0.875 • Datlaw =L/180 = 0.533 In fi= 0.833 9 — = 0.25 5W/4 L(Length)= 96 in L = 48 in Q- 384 E Ix Q Step(D)= 0 in BeamThickness= 0.19 in BeamDepth(A)= 5 in • Max.Weight/lvl= 384•E•Ix •AAU„N, .L3 • TopWidth(C)= 1.75 in BottomWidth(B)= 1.75 in 5-48 =((384 X 29000000 X 7.48 X 0.533)/(5-(4 X 0.25)))X 96^3=25106 Ibs/M MAXIMUM ALLOWABLE LIVE LOAD PER LEVEL= 14649Ibs/lvl BeamSlress= 27% ALLOWABLE AND ACTUAL BENDING MOMENT AT EACH LEVEL Ms,„/„• =W12/8 MANow,.tikcrrc =S. *Fb Aiiow,.leismrc =Sx. *F *1.33 M/m acl =MRiaiic *1'125 M h Seismic• —MConn Level MStatic Mlinpaci MA„ow,S,nlic Mseismic M A llow,Scism ic Result 1 20320 22860 83708 20307 111611 GOOD 2 40320 45360 83708 28124 111611 GOOD 3 40320 45360 83708 15954 111611 GOOD SEIZIVIIC PROJECT QUALITY CUSTOM DISTRIBURTION FOR HANNIBAL ' MATERIAL HANDLING ENGINEERING SHEET NO. 13 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 BEAM TO COLUMN ANALYSIS : CONNECTION CAPACITY DEPENDS ON THE FOLLOWING PARAMETERS: 1. SHEAR CAPACITY OF BOLT BoltDiameter=0.51n. F,, =21000PS/ 0 P1 II \ =Diameter- •— = 0.1963 inA2 Alhear 4 PShear—`Shear.F, = 0.4 X 55000 X 0.1963 in^ = 4123 lbs 2. BEARING CAPACITY OF BOLT Pz ,r- ColumnThickness= 0.132 f ■ r } �i F, =65000PS1 S2 = 2.22 a =2.22 PH.,.,,,g =a•F„ •Dia.•Col.Thickness/S2 = 2.22 X 65000 X 0.5 X 0.132/2.22 = 4290 Ibs 3. MOMENT CAPACITY OF BRACKET EdgeDist.=I.01n. BoltSpacing = 4 In Fy = 55000 PSI C= P +Pz = P +i (.5/4.5) = PIX1.11 =0.1791n. =0.1271n3 M(.(,p ,(), =SClip •Fnend,ng = 0.127 In^3 X .66 X Fy = 4610 in-lb C*d=Mrapa,„y = 1.11 p .d 3" d=EdgeDist/2 = 0.5 t P'lip =M Capacity!(1.1 1 •d) = 4610/(1.11 X 0.5) = 8306 lbs I 1 MINIMUM VALUE OF PI GOVERNS ,�- 1-5/8" -� P = 4123 lbs M(oar- = [P, *4.5]+[P, *(5/4.5)*.5]*1.33 = 24981 in-lb >20307in-lb OK I C SE�Z111�C PROJECT QUALITY CUSTOMDISTRIBURTION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 14 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY RF 161 ATLAN'T'IC STREET,POMONA,CA 91768 DATE 1/22/2013 BEAM TO COLUMN ANALYSIS : CONNECTION CAPACITY DEPENDS ON THE FOLLOWING PARAMETERS: I. SHEAR CAPACITY OF BOLT BoltDiameter=0.51n. O pi f —' FY =21000PS/ 2- A,heO,. =Diameter2 • 4 = 0.1963 in^2 O P2 I. PV,ea, =A.Vrca, 'F,. = 0.4 X 55000 X 0.1963 in^2 = 4123 lbs 2„ 2. BEARING CAPACITY OF BOLT P3 1/2' Column Thickness= 0.132 �— 1/2" F„ =65000PS/ S2= 2.22 a= 2.22 P,i«,,,hg a•F„ •Dia.•Col.Thickness/S2 = 2.22 X 65000 X 0.5 X 0.132/2.22 = 4290 lbs 3. MOMENT CAPACITY OF BRACKET EdgeDist.=1.0In. BoltSpacing= 2 In Fy = 55000 PSI C = P +P2 +P3 = P +P,(2.5/4.5)+PP/4.5) = PI X 1.667 Tow p =0.1791n. S(.,,p =0.127In3 _ MCapacity =Scrp 'FReadmp = 0.127 In^3 X .66 X Fy = 4610.1 in-lb C•d =M(.ap�i,Y = 1.667 P .d d=EdgeDist/2 = 0.5 3" P•dip =M(bpaciiy/( 1.66 •d) - 4610.1 /(1.667 X 0. = 5531 lbs 1_7 ed MINIMUM VALUE OF PI GOVERNS i i P = 4123 lbs 1-5/8" A4'C,,nn_A„„w = [11 ,4.5]±[p, *(2.5/4.5)*2.5]+[P *(5/4.5)*.5]*1.33 32597 in-lb >28124in-Ib OK - SEIZMIC PROJECT QUALITY CUSTOMDISTRIBLRTION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 15 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 TRANSVERSE ANALYSIS: BRACING: IT IS ASSUMED THAT THE LOWER PANEL RESISTS THE FRAME SHEAR IN TENSION AND COMPRESSION. IF HORIZONTAL AND DIAGONAL MEMBERS ARE THE SAME,ANALYSIS WILL BE DONE ON THE DIAGONAL MEMBER AS IT WILL GOVERN. DIAGONAL BRACING :COMPRESSION MEMBER Ldiag=1j(L—6)2+(D—(2•BCo1))2 _ 60.8" 141 o Vtrans •LDiag ["' Vdiag = d =2209 lbs Pma k l (1 X 60.7644)/(0.345) = 176.1 In L /Z. rMin II = Ze = 9226.5 PSI (k.1/Mi nl Fl, SIDE ELEVATION = 27500 2 Panel Height(L)= 40 In F FY Panel Depth(D)= 54 In 2 Column Depth(B)= 1.37 In Fn =F• = 9226.5 PSI Clear Depth(d)=(D-2*B)= 48 Pn =Area•Fn - 3875 lbs 12c•=1.92 Pn= n = 20181bs S2c VDiag Brace Stress = = 1.09 < 1.33 (82 %) • a SEIZMIC INC. PROJECT QUALITY CUSTOM DISTRIBURTIO' FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 15.1 TEL:(909)869-0989/FAX:(909)869-0981 CALCULATED 13)RF 161 ATLANTIC AVENUE,POMONA,CA 91768 DATE 1/22/2013 POST-INSTALLED ANCHOR ANALYSIS PER ACI 318 APPENDIX D Assumed cracked concrete application Anchor Type: Hilti Kwik Bolt TZ(KB-TZ) ICC Report Number: ESR-1917(2009 IBC) Slab Thickness(ha): 5.50 in Min. Slab Thickness(hmin): 4.00 in O.K. Concrete Strength(fc): 3000 psi Size,diameter(da) : 1/2 in Minimum embedment(hna„): 2.500 in Effective Embedment(hef) : 2.000 in #Anchors(n)— 2 1.5*hcf= 3.00 in <===maximum cal= 6.00 in use cai,,di= 3.00 in c,2= 12.00 in use c,2.adi= 3.00 in 3*hef= 6.00 in <_=maximum s, = 6.00 in use s1adi= 6.00in s2= 0.00 in use s2.ad1= 0.00 in e'N= 0.00in e'V= 0.00 in From ICC ESR report ASe= 0.1010 in^2 fut.= 106000 psi Smin= 2.75 in Cmin= 2.75 in C,c= 5.50 in Np.cr= N/A DOES NOT GOVERN ACCORDING TO REPORT °seismic Adj. Strength ASD value conversion factor= 1.4 Tension Capacity 1712 lb 0.75 1284 lb 910 lb Shear Capacity 1844 lb 0.75 1383 lb 980 lb SEIZMIC INC. PROJECT QUALIIT CUSTOM DISTRIBURTIOX FOR HANNIBAL • MATERIAL HANDLING ENGINEERING SHEET NO. 15.2 TEL:(909)869-0989/FAX:(909)869-0981 CALCULATED B}RF 161 ATLANTIC AVENUE,POMONA,CA 91768 DATE 1/22/2013 TENSION STRENGTH Determine the design tensile strength a)Steel strength(ONga) D.5.1 0= 0.75 D.4.3 a)i) ON.= OnAsefwa D-2 = 0.75 x 2 x 0.101 x 106000 = 16059 lb b)Concrete breakout strength(ONcbg) D.5.2 0= 0.65 D.4.3 c)ii)condition B category 1 ANc= (Ca I,adj+si.add+1.5hef)*(Caz,al+s2,aa1+I.5hef) = 72.0 in^2 ANco= 9hef = 36.0 in"2 Check if AN <nA„co TRUE ANc/ANco= 2.00 <==effective ratio to use ''ec,N= 1.00 for cracked concrete D.5.2.4 `1`ea,N= 1.00 Cmin>1.5hef D.5.2.5 `I'c,N= 1.00 for cracked concrete w/o reinf. D.5.2.6 kc= 17 for cracked concrete D.5.2.2 2+p= 1 Nb= keka(fc)o.5(hef)'..5 D-6 = 2634 LB `l'cp.N= I D.5.2.7 ONcbg= 0(ANc/ANco)(Tec,N)(Ted,N)(Pc,N)(Tcp,N)(Nb) D.5.2.1 = 0.65x(2)xlx1xIx1x2634 = 3424 lb c)Pullout strength(ONpa) D.5.3 0= 0.65 D.4.4 c)ii)condition B category 1 '1'c,p= 1 for cracked concrete D.5.3.6 0NP„= 0`I'c•PNp.c,.(fc/2500)0•5 D.5.3.1 = 0.65 x 2 x 0 lb x(3000/2500)^0.5 = N/A • Steel strength(0Nsa): 16059 lb Embedment strength-concrete breakout strength(ONcbg): 3424 lb <===governs • Embedment strength-pullout strength(ONpn): N/A SEIZMIC INC. PROJECT QUALITY CUSTOM DISTRIBURTION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 15.3 TEL:(909)869-0989/FAX:(909)869-0981 CALCULATED S1 RF 161 ATLANTIC AVENUE,POMONA,CA 91768 DATE 1/22/2013 SHEAR STRENGTH Determine the design shear strength a)Steel strength(OVsa) D.6.1 0= 0.65 D.4.3 a)ii) 0Vaa= 0n0.6Asefma D-28 = 0.65 x 2 x 0.6 x 0.101 x 106000 = 8351 lb b)Concrete breakout strength(OVebg) D.6.2 0= 0.70 D.4.3 c)i)condition B AVe= (1.5ca1+si,adj+l.5ca1)ha = 132.0 inA2 Avc= 3ca ha = 99.0 in^2 Check if Avo<nA,,e0 TRUE Av/Aveo= 1.33 <=effective ratio to use `Yeo,v= 1.00 D.6.2.5 `I`ed,v= 1.00 D.6.2.6 `1'c,v= 1.00 for cracked concrete w/o reinf. 116.2.7 Thy= 1.28 D.6.2.8 da= 0.500 in le= 1.00 in D.6.2.2 = I D.3.6 Vb= The smaller of 7(le/da)°'2(da)0•5?.a(fc)°5ca11.5 and W405;11.5 D-33,D-34 = 4577 lb OVebg= 0(Avc/AvcOO Pec.v)(`1'ed.v)(Pc,v)(Th,v)(Vb) D.6.2.I = 0.7x(1.33)x l x 1 x i x 1.28 x 4577 = 5454 lb c)Concrete Pryout Strength(OVcpg) D.6.3 0= 0.70 D.4.3 c)i)condition B Kg,= 1.0 D.6.3.1 Ncbg= 5268 lb 0Vcpg= OKepNcbg D.6.3.1 = 0.7 x 1 x 5268 lb = 3688 lb Steel strength(0Vsa): 8351 lb Embedment strength-concrete breakout strength(OVebg): 5454 lb Embedment strength-pryout strength(OVp„): 3688 lb <_=governs • SEIZMIC PROJECT QUALITY CUSTOM DISTRIBURTION FOR HANNIBAL • MATERIAL HANDLING ENGINEERING SHEET NO. 16 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 OVERTURNING ANALYSIS : FULLY LOADED Total Shear = 1745 lbs v Mow = Vrrw,s •Ht F r Al ,nv = 1745 X 154 = 268730 in/lb F 6 M, =E(W +.85wDL)•d/2 V M = (20000+(,85 X 300))X 54/2 = 546885 in/lb F6 10M Y —Al ,)., = (268730-546885)/54 = trp;.,p d -5151 lbs.Puplift<=0 No Up Lift F4 TOP SHELF LOADED 3 Shear = 1062 lbs F M„w = v,,,, 'Ht •1.15 F2 M = 1062 X 188 X 1.15 = 229691 in/lb = (W,, +wDL)•d/2 F 1 M r = (8000+(.85 X 300))X 54/2 = 222885 in/lb �D Pup lift P _ 1(M„�, —M'.,) _ (229691 -222885)/54 CROSS AISLE ELEVATION = 126 lbs. ANCHORS No. of Anchors : 2 Pull Out Capacity: 910 Lbs. Shear Capacity : 980 Lbs. COMBINED STRESS Fully Loaded = (0/910 X 2))+((1745/2)/(980 X 2))= 0.45 Top Shelf Loaded = (126/(910 X 2))+((1062/2)/(980 X 2))= 0.34 USE 2 Hilti Kwikbolt TZ 0.5 Dia.X 2 Min. Embd.Anchors per BasePlate. SEIZMIC PROJECT QUALITY CUSTOMDISTRIBU'RTION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 17 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013 BASE PLATE ANALYSIS : • THE BASE PLATE WILL BE ANALYZED WITH THE RECTANGULAR STRESS RESULTING FROM THE VERTICAL LOAD P,COMBINED WITH THE TRIANGULAR STRESSES RESULTING FROM THE MOMENT Mb(IF ANY). THERE ARE 3 CRITERIA IN DETERMINING Mb.THEY ARE 1. MOMENT CAPACITY OF THE BASE PLATE, 2. MOMENT CAPACITY OF THE ANCHOR BOLTS,AND 3.Vcol*h/2(FULL FIXITY).Mb IS THAT SMALLEST VALUE OBTAINED FROM THE 3 CRITERIA ABOVE. Pc.0/ = 10150 lbs Base Plate Width (B) = 8 in b = 3 in Mno,e = 0 in/lb Base Plate Depth (D) = 8 in bl = 2.5 in Base Plate Thickness (t) = 0.375 in Fv (base) = 36000 PSI P = P°i = 158.6 PSI A DBE Mn = O PSI fh = D•B216 2.b, fh2 = fn = 0 PSI { 7` b 1 . b b 1 lb.I =fh fh2 = 0PSI / B wb2 b2 Mb — 2� 2•[fo +./b ±.67fh21 Mb = 495.61 in/lb fa 1 /2 0.02 in/cb S Ha = 6 �� F„u,e =.75Fy 1.33 = 36000 PSI Addli - tb1 fn Mn = 0.58 <= I OK ppiP — t pr F "SBuse•FHase • • • SEIZMIC PROJECT QUALITY CUSTOM DISTRIBURTION FOR HANNIBAL MATERIAL HANDLING ENGINEERING SHEET NO. 18 TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF 161 ATLANTIC STREET, POMONA.CA 91768 DATE 1/22/2013 SLAB AND SOIL : THE SLAB WILL BE CHECKED FOR PUNCTURE STRESS. IF NO PUNCTURE OCCURS; IT WILL BE ASSUMED TO DISTRIBUTE THE LOAD OVER A LARGER AREA OF SOIL AND WILL ACT AS A FOOTING. PUNCTURE Pctallc = 10150 lbs Mot = 268730 in-lb P P»,ar =(1.2•P„a +1.0.(M07Id))•1.1 = 18872 lbs —2' t = 109.54 Fm,net c 109._4 PSI A/ntnrt = I B+ J 2 I ` +11.2.1 = 236.5 sq. in. `1 ✓v = Pmar 0.73 b�— H F,, A,,unc1 •F,uncl / L / SLAB TENSION A _ Pn,ax •144 —f 1.33 = 1022 sq. in. FOOTING L.�A.oil = 31.96 in B = 8 in W = 8 in B= JB•W +t = 13.5in Frame Denth d = 54 in b — L—B 2 = 9.23 in CONCRETE wb2 1.33.fti.,,;, •bz .fie = 3000 PSI 2 144 2 = 787 in-lb = 5.5 in 1•t' Scon. = 6 = 5.04 cb. in. 0 = 0.65 Franc — 5011.0 SOIL = 178.01 PSI fh = MConc (coil = 2000 PSF = 0.88 Fh S Com •FConc OK Dan Nelson ' From: Bradley Hartel <BHartel @qualitycustomdistribution.com> Sent: Thursday, February 21, 2013 1:32 PM To: Dan Nelson Cc: Keith Scott Subject: BUP2013-00037 Racking Permit Dan, Below is the report from our fire systems contractor. This is based on the engineering of our sprinkler systems and marked clearly on the risers. The class of product is correct,we store only Class Ill. Please let me know if there is anything else I can to expedite the process. I did have to reschedule our contractor by over a week. This isn't the fault of the city,it is ours. I am out of town next week for my 25th Anniversary and I'm sure I'll enjoy it a LOT more if this permit was completed. Thanks so much for your help and understanding, Brad BRAD HARTEL Senior Facility Manager Quality Custom Distribution—Tigard 7319 SW Kable Lane Suite 500 ' Tigard, Oregon 97224 E-MAIL: bhartel(c�qualitycustomdistribution.com CELL: 503-705-8309 OFFICE: 971-327-4331 ext 13111 FAX: 971-327-4352 From: Steve Cartales [mailto:SteveC @deltafire.com] Sent: Thursday, February 21, 2013 1:24 PM To: Bradley Hartel Cc: Andrew Cartales Subject: RE: Progress? Brad, The area bounded by gridlines 17 through 25 is designed to provide a density of.29/2000. This is capable of protecting 'Class III Commodities(food stuffs) up to 20ft in solid piles or 16ft on conventional racking with 8ft aisles. The area bounded by gridlines 13 through 17 appears to be designed to a density of.365/2000. This density is capable of protecting Class III Commodities up to 20ft on conventional racking with 8ft aisles. Hope this helps. Steve Cartales Delta Fire, Inc. 14795 SW 72nd Avenue Portland, Oregon 97224 1 i