Report 2 U PZ01 !—O003-7
SEIZMIC `7 3101 5 J Kab
MATERIAL HANDLING ENGINEERING
r EST. 1985 HOC)
STORAGE RACKS STEEL SHELVING SEISMIC ANALYSIS ALASKA KENTUCKY NORTH CAROLINA
DRIVE-IN RACKS MOVABLE SHELVING STRUCTURAL DESIGN ARIZONA MARYLAND OHIO
CANTILEVER RACKS STORAGE RACKS CITY APPROVALS CALIFORNIA MASSACHUSETTS OKLAHOMA
MEZZANINES MODULAR OFFICES STATE APPROVALS COLORADO MICHIGAN OREGON
CONVEYORS GONDOLAS PRODUCT TESTING CONNECTICUT MINNESOTA PENNSYLVANIA
CAROUSELS BOOKSTACKS FIELD INSPECTION FLORIDA MISSOURI TENNESSEE
PUSHBACK RACKS FLOW RACKS SPECIAL FABRICATION GEORGIA MONTANA TEXAS
RACKBUILDINGS FOOTINGS PERMITTING SERVICES IDAHO NEBRASKA UTAH J:q
ILLINOIS NEVADA VIRGINIA
INDIANA NEW JERSEY WASHINGTON
KANSAS NEW MEXIREc
ED
FEB 1 3 2013
CITY OF TIGARD
BUILDING DIVISION
SEISMIC ANALYSIS
OF STORAGE RACKS
FOR
QUALITY CUSTOM DIST
7319 SW KABLE LN, STE 500
PORTLAND,OR, -
Job No. 13-0039
4('
44t•
4 Ins ‹t7
a L AFE ETJ.M 05' 13 '103
12-I S
•
161 ATLANTIC STREET * POMONA * CA 91768 * TEL: (909) 869-0989 * FAX:(909)869-0981
t,A 1 .
f: `StIZMIC
PROJ ECT QUALM CUSTOM DIS LR-IO,'
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 2
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
TABLE OF CONTENTS
TABLE OF CONTENTS & SCOPE
PARAMETERS
COMPONENTS & SPECIFICATIONS 4
LOADS & DISTRIBUTION
LONGITUDINAL ANALYSIS 8
COLUMN 9
BEAM I I
BEAM TO COLUMN 13
BRACING 15
OVERTURNING 16 .
BASE PLATE !7
SLAB & SOIL 18
.._.
SCOPE: L. -
THIS ANALYSIS OF THE STe '_,.GE SYSj 0 DETERMINE ITS
COMPLIANCE WITH THE APP',II '' JCODES WITH RESPECT TO
STATIC AND SEISMIC FORCES. 44..1 -*4'
THE STORAGE RACKS ARE PREFARIBMITED AND ARE TO BE FIELD
ASSEMBLED ONLY, WITHOUT ANY FIELD WELDING.
- SEIZMIC
PROJECT QUALITY CUSTOMDISTRIBG'RTION
FOR HANNIBAL
• MATERIAL HANDLING ENGINEERING SHEET NO. 3
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
THE STORAGE RACKS CONSIST OF SEVERAL BAYS, INTERCONNECTED IN ONE OR BOTH DIRECTIONS,WITH THE
COLUMNS OF THE VERTICAL FRAMES BEING COMMON BETWEEN AND ADJACENT BAYS.
THE ANALYSIS WILL FOCUS ON A TRIBUTARY BAY TO BE ANALYSED IN BOTH THE LONGITUDINAL AND
TRANSVERSE DIRECTION.
STABILITY IN THE LONGITUDINAL DIRECTION IS MAINTAINED BY THE BEAM TO COLUMN MOMENT RESISTING
CONNECTIONS, WHILE BRACING ACTS IN THE TRANSVERSE DIRECTION.
p i-y,, .., ,,,,.,..,,--
,--:-: --.
fill
"\, ..
,...
Nii...H------- --- 10i-----1
.,,,,,., _________;._:, ..-
\\‘‘ \, it\\---------°41 11
0
\ -,s.t.
\‘, 1,0 61
,,,,,,,,„, CI el _
• ID...
CONCEPTUAL DRAWING
Some components may not
be used or may vary.
TRIBUTARY AREA
LEGEND / _ _ _ _
I.COLUMN
2. BEAM L ..,.. .
3. BEAM TO COLUMN
4. BASE PLATE
5. HORIZONTAL BRACING I........ ..._. . ..... . ......'.
' 6. DIAGONAL BRACING i
7. BACK TO BACK CONNECTOR TRANSVERSE
LONGITUDINAL
NOTE: ACTUAL CONFIGURATION SHOWN ON COMPONENTS&SPECIFICATIONS SHEET
SEIZMIC PROJECT QUALITY CUSTOMDISTRIBURTION -
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 4
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
COMPONENTS& SPECIFICATIONS : SELECTIVE
SITE CLASS=D
111 =84 in. \ \ W 2 W 1=40001bs. — Y 1 =50 in
LEVELS=2 I Y2=50 in
H2=84 in. W2=4000 lbs.
PANELS=3 Y3=50 in
Y3
LIVE LOAD=4000 lbs. H2
FRAME HEIGIIT= 168 in.
FRAME DEPTH=42 in.
H N W 1 H Y2
BEAM LENGTH=96 in.
SEISMIC CATEGORY=D H1
(Fa= 1.12, Ss=0.96) Y1
/)
N N
COLUMN BEAM ( Level 1 CONNECTOR @ Level I
OK OK OK '
Struc C3x3.5 4 12"a 2 34"x 14 ga TWO BOLT CONNECTOR
Steel =55000 psi Steel=55000 psi Stress=68%
Stress=95% Max Static Capacity=6382 Ib
Stress=633/4
COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+
OK OK
4 12"x 2 3'4"x 14 ga TWO BOLT CONNECTOR
None Max Static Capacity=6382 lb Stress=30%
Stress= S rtes=63%
BRACING SLAB&SOIL
HORIZONTAL OK DIAGONAL OK Slab=5.5" X 3000 psi OK
Soil Bearing Pressure=2000 psf
Struc Ll-I/2 x L1-I/2 x 1/8 Struc L1-1/2 x L1-1/2 x 1/8 Slab Puncture Stress=36%
Stress= 18% Stress—70% Slab Bending Stress=21%
BASE PLATE ANCHORS
OK Hilti Kwikbolt TZ 0.5 Dia. X 2 Min. Embd. OK
8 in X 5 in X 0.375 in Pullout Capacity=910 lbs.
Steel=36000 psi Shear Capacity=980 lbs.
MBase=0 in. lb. No.Of Anchors=2 per Base Plate
Stress=37% Anchor Stress=35%
NOTES: ANALYSIS PER THE 2010 OSSC -
- SEIZMIC PROJECT QUALITY CLSTOMDISTRIBURTION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 5
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
COMPONENTS& SPECIFICATIONS : PUSH BACK(INT)
SITE CLASS= D
LEVELS=3 HI=16 in. W 9 WI 4000 1bs. — Y I=40 in
H2=86 in. W2=8000 lbs. Y2=40 in
PANELS=4
H3=86 in. W3=8000 lbs. Y4 \ Y3=48 in
H3 \ Y4=48 in
LIVE LOAD=Load Varies
�
\ W 2 i'}
FRAME HEIGHT= 192 in. Y3 /
1., <
FRAME DEPTH=54 in.
H H2 H
BEAM LENGTH=96 in. \ W 1 Y2 \
SEISMIC CATEGORY=1)
t \
(Fa= 1.12, Ss=0.96) H1 vi
i 't /
COLUMN BEAM (a?Level 1 CONNECTOR(a), Level 1
• OK OK OK
Struc C3x3.5 Struc C5x6.7 TWO BOLT CONNECTOR
Steel=55000 psi Steel=55000 psi Stress—81%
Stress=71% Max Static Capacity= 14649 lb.
Stress=27%
COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+
OK OK OK
Backer Up To Level=2 Struc C5x6.7 THREE BOLT CONNECTOR
C3 X 5/C3 X 5 Max Static Capacity= 14649 lb. Stress=86%
Stress=42% Stress=55%
BRACING SLAB&SOIL
HORIZONTAL OK DIAGONAL OK Slab=5.5" X 3000 psi OK
Soil Bearing Pressure=2000 psf
Struc LI 3/4 X 13/4 X 1/8 Struc LI 3/4 X 1 3/4 X 1/8 Slab Puncture Stress=73%
Stress= 17% Stress=82% Slab Bending Stress=88%
BASE PLATE ANCHORS
OK Hilti Kwikbolt TZ 0.5 Dia.X 2 Min. Embd. OK
8 in X 8 in X 0.375 in Pullout Capacity=910 lbs.
Steel=36000 psi Shear Capacity=980 lbs.
MBase=0 in. lb. No. Of Anchors=2 per Base Plate
Stress=58`% Anchor Stress—67%
NOTES: LOADING BASED ON TRIBUTARY TO INTERIOR COLUMNS; ACTUAL LOAD 20004 PER PALLET
SEIZMIC PROJECT -
QUALITY CUSTOM DISTRIBURTION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 6
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA.CA 91768 DATE 1/22/2013
COMPONENTS& SPECIFICATIONS : PUSH BACK(EXT)
SITE CLASS=D
LEVELS=3 HI =16 in. r W 3 W I -4000 lbs.
— Y I =40 in
112=86 in. I W2=4000 lbs. Y2=40 in
PANELS=4
H3=86 in. W3=4000 lbs. Y4 Y3=48 in
H3 Y4=48 in
LIVE LOAD—4000 lbs.
W2
FRAME HEIGHT=192 in. Y3
H H2 H dc-- K\
FRAME DEPTH=54 in.
BEAM LENGTH=96 in. \ W 1 Y2
i,
SEISMIC CATEGORY=D
(F's =1.12, Ss=0.96) H1 Y1
I F
'f L 'f +-- D --71' -
COLUMN BEAM @ Level 1 CONNECTOR(a), Level 1
OK OK OK
Struc C3x3.5 Struc C4x4.5 TWO BOLT CONNECTOR
Steel=55000 psi Steel=55000 psi Stress=55%
Stress=68% Max Static Capacity=4259 lb.
Stress=94%
COLUMN BACKER BEAM (a Level 2+ CONNECTOR @ Level 2+
OK OK
Struc C4x4.5 TWO BOLT CONNECTOR
None Max Static Capacity=4259 lb. Stress=64%
Stress= Stress=94%
BRACING SLAB&SOIL
HORIZONTAL OK DIAGONAL OK Slab=5.5" X 3000 psi OK
Soil Bearing Pressure=2000 psf
Struc LI 3/4 X 13/4 X 1/8 Struc LI 3/4 X 1 3/4 X 1/8 Slab Puncture Stress=51%
Stress= 12% - Stress=53% Slab Bending Stress=43%
BASE PLATE ANCHORS
OK Hilti Kwikbolt TZ 0.5 Dia. X 2 Min. Embd. OK
8 in X 5 in X 0.375 in Pullout Capacity=910 lbs.
Steel=36000 psi Shear Capacity=980 lbs.
MBase=0 in. lb. No.Of Anchors=2 per Base Plate •
Stress=56% Anchor Stress=41%
NOTES: LOADING BASED ON TRIBUTARY TO EXTERIOR COLUMNS;ACTUAL LOAD 2000# PER PALLET -
SEIZMIC
PROJECT QUALITY CUSTOMDISTRIBURTION
FOR HANNIBAL
• MATERIAL HANDLING ENGINEERING SHEET NO. 7
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET.POMONO,CA 91768 DATE 1122/2013
ELn I 1 fn
LOADS AND DISTRIBUTION: ..----,--
e s F6•
EL F4
Fa: 1.12
EL F3
Number Of Levels: 3 Ss: 0.96
EL2 _�
wLL(Sum of live loads): 20000 lbs le: 1.00 fz
El 1 F
wDL(Sum of dead loads): 300 lbs Rw(Longitudinal): 6.00
TOTAL FRAME LOAD: 20300 lbs Rw(Transverse): 4.00 I•--
LONGTUDINAL DIRECTION TRANSVERSE DIRECTION
V _ 2/3.Fa •Ss.•I,.(((2/3)-Wi.,.)+Wi,,.� _ 2/3•Fa •S., •I, '�((2/3).Wia.)+W,,.)
,.�,ax — Rw•1.4 V,;L�E. —
R,, •1.4
(2/3)X 1.12 X 0.96 X 1 X(((2/3)20000)+300)/(6 X 1.4) (2/3)X 1.12 X 0.96 X 1 X(((2/3)20000)+300)/(4 X 1.4)
• V/,)fl; : 1163 lbs V,;a,�s • 1745 lbs
F = V
�, ,
L H W,H,
Levels /? LONGITUDINAL TRANSVERSE
x xwh f
wx w, wxhx .f
I 16 4,100 65,600 32 4,100 65,600 47
2 102 8,100 826,200 398 8,100 826,200 597
3 188 8,100 1,522,800 734 8,100 1,522,800 1,101
2,414,600 1 163 lbs 2,414,600 1745 lbs
-
SEIZMIC PROJECT QUALITY CUSTOMDISTRIBURTION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 8 -
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
LONGITUDINAL ANALYSIS:
THE ANALYSIS IS BASED ON THE PORTAL METHOD, WITH THE POINT OF CONTRA FLEXURE OF THE COLUMNS
ASSUMED AT MID-HEIGHT BETWEEN BEAMS, EXCEPT FOR THE LOWEST PORTION,WHERE THE BASE PLATE
PROVIDES ONLY PARTIAL FIXITY,THE CONTRA FLEXURE IS ASSUMED TO OCCUR CLOSER TO THE BASE.(OR
AT THE BASE FOR PINNED CONDITION, WHERE THE BASE PLATE CANNOT CARRY MOMENT).
Mn-n
All Upper +MLower =M(bnn'R' +MConn'l.' Fn
M5-5
M Conn'R' — M(bnn'l,' ��� F5
I/
M(',:,, .2 - Mtipper +lYl lower M4-4
■! P4
M _ (M p� +M \+M •
Upper lower M3-3
Corot 2 lint/r • l
F3
/
M2-2 ,
V _ Vl'2' = 5821bs MI-I �1
� Z
<n/ - 2
,Fill F
M base
MBnce = 0 in/lb Mb:,,d, = 4064 in/lb
FRONT El.EV ATION
LEVELS h f AXIAL LOAD MOMENT Mconn
1 14 16 10,150 8,148 20,307
2 86 199 8,100 24,338 28,124
3 86 367 4,050 15,781 15,954
SAMPLE CALC.
MI--1 = (Vcnl •h,)—M Bose
=(582 lbs X 14 in)-0 in/lb=8,148 in/lb
' SEIZMIC
PROJECT QUALITY CUSTOM DISTRIBURTION
FOR HANNIBAL
▪ MATERIAL HANDLING ENGINEERING SHEET NO. 9
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
COLUMN ANALYSIS :
P= 4050 lbs
M= 15781 in/lb
Kx.L1 = 1.2 X 84in/ 1.267in
= 79.6
Rx —Max L = 101.5
Ky•Ly — I X 40in/0.394in
R = 101.5
Y
:4xiul
= 102
Since:7? Max<=Cc
1_(KL/R)Max2 .FY
2 = (1 -((101.5 A2)/(2 X 102.0193^2)))X 55000)/((5/3)+((3 X
• Fa —
2.0 1000 101.5)/(8 X 102.0193))-(001.5^3)/(8 X 102.0193^3)))
[5+3•(KO)M, _ (KL/R)Mox3 SECTION PROPERTIES
3 8'CC 8.C 3 = 14487 PSI
fa -PM./Awl = 4050/0.881 = 4597 PSI
Aeff: 0.881 in^2
fh =MMax/Sx = 15781 /0.9 = 16735 PSI Ix : 1.414 in^4
Sx : 0.943 inA3
f Rx : 1.267 in
F = 0.32 ly : 0.138 in^4
Sy : 0.157 in^3
Flexure Ry : 0.394 in
Kx : 1.2
Lx
: 84 in
Since:—f >0.15 Check: fn + '" fh <-1.33 Ky : 1
Fa Fn(1—Fa/Fc) Ly : 40 in
Fy : 55 KSI
Fh =0.6 FY = 33000 KSI E : 29500 KS1
0.00
F, — 12112E .1000 = 23593 PSI Q 1.67
23(KL/R)Mar2 C : 0.85
Cb : I
Column Stress=(4597/ 14487)+(l X 16735)/(33000 X(1 -(4597/23593)D=71% < 1.33 (71%)
E I Z M I C PROJECT QUALITY CUSTOM DISTRIBURTION -
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 10
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
COLUMN BACKER ANALYSIS :
P= 8100 Ibs
M = 24338 in/lb
KX •Lx
1.2 X 84in/ 1.28in
R = 78.8
X RL Max = 78.8
Ky•Ly = I X 40in/ 1.34in
R = 29.9
Ry
Axial
= 102
Since: RL Max<=C,
1_(KL/R)Max2 . Fy = (I -((78.8^2)/(2 X 102.0193^2)))*55000)/((5/3)+((3 X 78.8)/
2 C 2 1000
F., - (8 X 102.0193))-((78.8^3)/(8 X 102.0193^3)))
5+3•(KL/R)M _[(KLIRL1 SECTION PROPERTIES
3 8•Cc 8•C,,; = 20338 PSI
fa -PMar/A,. = 8100/2.156 = 3757 PSI
Aeff: 2.156 in^2
0/2.37 = 10269 PSI Ix : 3.56 in^4
.4 —MMax/Sx Sx 2.37 in^3
f a Rx : 1.28 in
= 0.18 Iy : 3.86 in^4
Fa
Sy : 2.57 in^3
Ry : 1.34 in
Flexure Kx : 1.2
Lx : 84 in
Since:F, >0.15 Check: F°+ 1"'�nF <_1.33 Ky : 1
Fa a h( a/ e) Ly : 40 in
Fy : 55 KSI
Fb =0.6•F = E : 29500 KSI
y 33000 KSI
C?c: 0.00
12112E c2f: 1.67
Fe = 2 •1 000 = 24080 PSI Cmx: 0.85
23(KL/R)M Cb : I
Backer Stress= (3757/20338)+(1 X 10269)/(33000*(1 -(3757/24080)))=035 <1.33 .
(42%)
SEIZMIC
PROJECT QUALITY CUSTOM DISTRIBUR1ION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. I I
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET, POMONA,CA 91768 DATE 1/22/2013
BEAM ANALYSIS :
BEAM TO COLUMN CONNECTIONS PROVIDE ADEQUATE MOMENT CAPACITY TO STABLIZE THE SYSTEM,
ALTHOUGH IT DOES NOT PROVIDE FULL FIXITY,THUS,THE BEAMS WILL BE ANALYSED ASSUMING PARTIAL END
FIXITY. FOR THE COMPUTATION OF BEAM TO COLUMN MOMENT CAPACITY,THE PARTIAL END FIXITY MOMENT OF
THE BEAM WILL BE ADDED TO THE LONGITUDINAL FRAME MOMENT FOR THE ANALYSIS OF THE CONNECTION.
EFFECTIVE MOMENT FOR PARTIALLY FIXED BEAM
For a simply supported beam,the max moment at the center is given by WL '/8 .An assumption of partial fixity will decrease
this maximum moment by the following method.
Percentage of End Fixity= 25% 0= 0.25 Mcenter(sn,ple)
MCenter=MCenter(Simple ends)-0*MCenter(Fixed ends) Mends
(tnmd) •-- - Mcenter
----
Wl 2/8 — •W12/12)= 0.104.W/2 RIO
LI 1110 1,41111111Nl Ira I ultl:6 I; 1 Ualn�+rr:
Reduction Coefficient [3 = 0.104/0.125 = 0.833
17.
M('enter —Y -rr`2 g =0.833 •W/78
M,.nd,. =0•M, (FixedEnds) = W12/12. 0.25 H L
0.0208 •WIZ TYPICAL BEAM FRONT VIEW
EFFECTIVE DEFLECTION FOR PARTIALLY FIXED BEAM
For a simply supported beam,the max deflection at the center is given byswr'/384 El
An assumption of partial fixity will decrease this maximum deflection by the following
method.
5W14
64a.r =/3•384•E•IX
LiveLoad 1 1v= 4000 lbs
DeadLoad 1 1v=41b/ft X 2 X(96/12) = 64 lbs
M('enJer =
0.104* Wl2 —20320 in/lb
= 0.0208* Wit = 4064 in/lb
F,, =0.6-FF = 27996 PSI
FB1,ir = 27996 PSI
SEIZMIC 1- •
.......// PROJECT QUALITY CUSTOM DISTRIBURIION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 12
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET, POMONA,CA 91768 DATE 1/22/2013
BEAM ANALYSIS : o�.e�
MAXIMUM STATIC LOAD PER LEVEL DEPENDS ON:
I. MAXIMUM MOMENT CAPACITY r
D tF/, =MIS.,
FB; (WI 2/8) ,�,��
lIl — S h� ,
S,
FB . _ •16•S
Max.Weight/1v1= /.�. x .a
/.1•L
=((27996 X 16 X 2.99)/(0.833 X 96))X 0.875 = 14649 Ibs/M j• =7.48 in^4 S = 2.99 in^3
x cx
2. MAXIMUM ALLOWABLE DEFLECTION F„, =55000 PSI a(impaciCoeffcieni)= 0.875 •
Datlaw =L/180 = 0.533 In
fi= 0.833 9 —
= 0.25
5W/4 L(Length)= 96 in L = 48 in
Q-
384 E Ix Q Step(D)= 0 in BeamThickness= 0.19 in
BeamDepth(A)= 5 in •
Max.Weight/lvl= 384•E•Ix •AAU„N, .L3 • TopWidth(C)= 1.75 in BottomWidth(B)= 1.75 in
5-48
=((384 X 29000000 X 7.48 X 0.533)/(5-(4 X 0.25)))X 96^3=25106 Ibs/M
MAXIMUM ALLOWABLE LIVE LOAD PER LEVEL= 14649Ibs/lvl BeamSlress= 27%
ALLOWABLE AND ACTUAL BENDING MOMENT AT EACH LEVEL
Ms,„/„• =W12/8 MANow,.tikcrrc =S. *Fb Aiiow,.leismrc =Sx. *F *1.33
M/m acl =MRiaiic *1'125 M
h Seismic• —MConn
Level MStatic Mlinpaci MA„ow,S,nlic Mseismic M A llow,Scism ic Result
1 20320 22860 83708 20307 111611 GOOD
2 40320 45360 83708 28124 111611 GOOD
3 40320 45360 83708 15954 111611 GOOD
SEIZIVIIC
PROJECT QUALITY CUSTOM DISTRIBURTION
FOR HANNIBAL
' MATERIAL HANDLING ENGINEERING SHEET NO. 13
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
BEAM TO COLUMN ANALYSIS :
CONNECTION CAPACITY DEPENDS ON THE FOLLOWING PARAMETERS:
1. SHEAR CAPACITY OF BOLT
BoltDiameter=0.51n.
F,, =21000PS/ 0 P1
II \
=Diameter- •— = 0.1963 inA2
Alhear
4
PShear—`Shear.F, = 0.4 X 55000 X 0.1963 in^ = 4123 lbs
2. BEARING CAPACITY OF BOLT Pz
,r-
ColumnThickness= 0.132 f ■ r } �i
F, =65000PS1
S2 = 2.22
a =2.22
PH.,.,,,g =a•F„ •Dia.•Col.Thickness/S2 = 2.22 X 65000 X 0.5 X 0.132/2.22 = 4290 Ibs
3. MOMENT CAPACITY OF BRACKET
EdgeDist.=I.01n.
BoltSpacing = 4 In
Fy = 55000 PSI
C= P +Pz = P +i (.5/4.5) = PIX1.11
=0.1791n.
=0.1271n3
M(.(,p ,(), =SClip •Fnend,ng = 0.127 In^3 X .66 X Fy = 4610 in-lb
C*d=Mrapa,„y = 1.11 p .d
3"
d=EdgeDist/2 = 0.5
t
P'lip =M Capacity!(1.1 1 •d) = 4610/(1.11 X 0.5) = 8306 lbs
I 1
MINIMUM VALUE OF PI GOVERNS
,�- 1-5/8" -�
P = 4123 lbs
M(oar- = [P, *4.5]+[P, *(5/4.5)*.5]*1.33
= 24981 in-lb >20307in-lb OK
I C
SE�Z111�C PROJECT QUALITY CUSTOMDISTRIBURTION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 14
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY RF
161 ATLAN'T'IC STREET,POMONA,CA 91768 DATE 1/22/2013
BEAM TO COLUMN ANALYSIS :
CONNECTION CAPACITY DEPENDS ON THE FOLLOWING PARAMETERS:
I. SHEAR CAPACITY OF BOLT
BoltDiameter=0.51n. O pi f —'
FY =21000PS/
2-
A,heO,. =Diameter2 • 4 = 0.1963 in^2 O P2 I.
PV,ea, =A.Vrca, 'F,. = 0.4 X 55000 X 0.1963 in^2 = 4123 lbs 2„
2. BEARING CAPACITY OF BOLT P3
1/2'
Column Thickness= 0.132 �— 1/2"
F„ =65000PS/
S2= 2.22
a= 2.22
P,i«,,,hg a•F„ •Dia.•Col.Thickness/S2 = 2.22 X 65000 X 0.5 X 0.132/2.22 = 4290 lbs
3. MOMENT CAPACITY OF BRACKET
EdgeDist.=1.0In.
BoltSpacing= 2 In
Fy = 55000 PSI
C = P +P2 +P3 = P +P,(2.5/4.5)+PP/4.5) = PI X 1.667
Tow p =0.1791n.
S(.,,p =0.127In3 _
MCapacity =Scrp 'FReadmp = 0.127 In^3 X .66 X Fy = 4610.1 in-lb
C•d =M(.ap�i,Y = 1.667 P .d
d=EdgeDist/2 = 0.5 3"
P•dip =M(bpaciiy/( 1.66 •d) - 4610.1 /(1.667 X 0. = 5531 lbs 1_7 ed
MINIMUM VALUE OF PI GOVERNS i i
P = 4123 lbs 1-5/8"
A4'C,,nn_A„„w = [11 ,4.5]±[p, *(2.5/4.5)*2.5]+[P *(5/4.5)*.5]*1.33
32597 in-lb >28124in-Ib OK
- SEIZMIC
PROJECT QUALITY CUSTOMDISTRIBLRTION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 15
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
TRANSVERSE ANALYSIS: BRACING:
IT IS ASSUMED THAT THE LOWER PANEL RESISTS THE FRAME SHEAR IN TENSION AND COMPRESSION.
IF HORIZONTAL AND DIAGONAL MEMBERS ARE THE SAME,ANALYSIS WILL BE DONE ON THE
DIAGONAL MEMBER AS IT WILL GOVERN.
DIAGONAL BRACING :COMPRESSION MEMBER
Ldiag=1j(L—6)2+(D—(2•BCo1))2 _ 60.8"
141 o
Vtrans •LDiag ["'
Vdiag = d =2209 lbs
Pma
k l (1 X 60.7644)/(0.345) = 176.1 In L /Z.
rMin
II
= Ze = 9226.5 PSI
(k.1/Mi nl
Fl,
SIDE ELEVATION
= 27500
2
Panel Height(L)= 40 In
F FY Panel Depth(D)= 54 In
2
Column Depth(B)= 1.37 In
Fn =F•
= 9226.5 PSI Clear Depth(d)=(D-2*B)= 48
Pn =Area•Fn - 3875 lbs
12c•=1.92
Pn= n = 20181bs
S2c
VDiag
Brace Stress = = 1.09 < 1.33 (82 %)
•
a
SEIZMIC
INC. PROJECT QUALITY CUSTOM DISTRIBURTIO'
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 15.1
TEL:(909)869-0989/FAX:(909)869-0981 CALCULATED 13)RF
161 ATLANTIC AVENUE,POMONA,CA 91768 DATE 1/22/2013
POST-INSTALLED ANCHOR ANALYSIS PER ACI 318 APPENDIX D
Assumed cracked concrete application
Anchor Type: Hilti Kwik Bolt TZ(KB-TZ)
ICC Report Number: ESR-1917(2009 IBC)
Slab Thickness(ha): 5.50 in
Min. Slab Thickness(hmin): 4.00 in O.K.
Concrete Strength(fc): 3000 psi
Size,diameter(da) : 1/2 in
Minimum embedment(hna„): 2.500 in
Effective Embedment(hef) : 2.000 in
#Anchors(n)— 2
1.5*hcf= 3.00 in <===maximum
cal= 6.00 in use cai,,di= 3.00 in
c,2= 12.00 in use c,2.adi= 3.00 in
3*hef= 6.00 in <_=maximum
s, = 6.00 in use s1adi= 6.00in
s2= 0.00 in use s2.ad1= 0.00 in
e'N= 0.00in
e'V= 0.00 in
From ICC ESR report
ASe= 0.1010 in^2
fut.= 106000 psi
Smin= 2.75 in
Cmin= 2.75 in
C,c= 5.50 in
Np.cr= N/A DOES NOT GOVERN ACCORDING TO REPORT
°seismic Adj. Strength ASD value
conversion factor= 1.4
Tension Capacity 1712 lb 0.75 1284 lb 910 lb
Shear Capacity 1844 lb 0.75 1383 lb 980 lb
SEIZMIC
INC. PROJECT QUALIIT CUSTOM DISTRIBURTIOX
FOR HANNIBAL
• MATERIAL HANDLING ENGINEERING SHEET NO. 15.2
TEL:(909)869-0989/FAX:(909)869-0981 CALCULATED B}RF
161 ATLANTIC AVENUE,POMONA,CA 91768 DATE 1/22/2013
TENSION STRENGTH
Determine the design tensile strength
a)Steel strength(ONga) D.5.1
0= 0.75 D.4.3 a)i)
ON.= OnAsefwa D-2
= 0.75 x 2 x 0.101 x 106000
= 16059 lb
b)Concrete breakout strength(ONcbg) D.5.2
0= 0.65 D.4.3 c)ii)condition B category 1
ANc= (Ca I,adj+si.add+1.5hef)*(Caz,al+s2,aa1+I.5hef)
= 72.0 in^2
ANco= 9hef
= 36.0 in"2
Check if AN <nA„co TRUE
ANc/ANco= 2.00 <==effective ratio to use
''ec,N= 1.00 for cracked concrete D.5.2.4
`1`ea,N= 1.00 Cmin>1.5hef D.5.2.5
`I'c,N= 1.00 for cracked concrete w/o reinf. D.5.2.6
kc= 17 for cracked concrete D.5.2.2
2+p= 1
Nb= keka(fc)o.5(hef)'..5 D-6
= 2634 LB
`l'cp.N= I D.5.2.7
ONcbg= 0(ANc/ANco)(Tec,N)(Ted,N)(Pc,N)(Tcp,N)(Nb) D.5.2.1
= 0.65x(2)xlx1xIx1x2634
= 3424 lb
c)Pullout strength(ONpa) D.5.3
0= 0.65 D.4.4 c)ii)condition B category 1
'1'c,p= 1 for cracked concrete D.5.3.6
0NP„= 0`I'c•PNp.c,.(fc/2500)0•5 D.5.3.1
= 0.65 x 2 x 0 lb x(3000/2500)^0.5
= N/A
• Steel strength(0Nsa): 16059 lb
Embedment strength-concrete breakout strength(ONcbg): 3424 lb <===governs
• Embedment strength-pullout strength(ONpn): N/A
SEIZMIC
INC. PROJECT QUALITY CUSTOM DISTRIBURTION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 15.3
TEL:(909)869-0989/FAX:(909)869-0981 CALCULATED S1 RF
161 ATLANTIC AVENUE,POMONA,CA 91768 DATE 1/22/2013
SHEAR STRENGTH
Determine the design shear strength
a)Steel strength(OVsa) D.6.1
0= 0.65 D.4.3 a)ii)
0Vaa= 0n0.6Asefma D-28
= 0.65 x 2 x 0.6 x 0.101 x 106000
= 8351 lb
b)Concrete breakout strength(OVebg) D.6.2
0= 0.70 D.4.3 c)i)condition B
AVe= (1.5ca1+si,adj+l.5ca1)ha
= 132.0 inA2
Avc= 3ca ha
= 99.0 in^2
Check if Avo<nA,,e0 TRUE
Av/Aveo= 1.33 <=effective ratio to use
`Yeo,v= 1.00 D.6.2.5
`I`ed,v= 1.00 D.6.2.6
`1'c,v= 1.00 for cracked concrete w/o reinf. 116.2.7
Thy= 1.28 D.6.2.8
da= 0.500 in
le= 1.00 in D.6.2.2
= I D.3.6
Vb= The smaller of 7(le/da)°'2(da)0•5?.a(fc)°5ca11.5 and W405;11.5 D-33,D-34
= 4577 lb
OVebg= 0(Avc/AvcOO Pec.v)(`1'ed.v)(Pc,v)(Th,v)(Vb) D.6.2.I
= 0.7x(1.33)x l x 1 x i x 1.28 x 4577
= 5454 lb
c)Concrete Pryout Strength(OVcpg) D.6.3
0= 0.70 D.4.3 c)i)condition B
Kg,= 1.0 D.6.3.1
Ncbg= 5268 lb
0Vcpg= OKepNcbg D.6.3.1
= 0.7 x 1 x 5268 lb
= 3688 lb
Steel strength(0Vsa): 8351 lb
Embedment strength-concrete breakout strength(OVebg): 5454 lb
Embedment strength-pryout strength(OVp„): 3688 lb <_=governs
•
SEIZMIC
PROJECT QUALITY CUSTOM DISTRIBURTION
FOR HANNIBAL
• MATERIAL HANDLING ENGINEERING SHEET NO. 16
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
OVERTURNING ANALYSIS :
FULLY LOADED
Total Shear = 1745 lbs
v
Mow = Vrrw,s •Ht
F r
Al ,nv = 1745 X 154 = 268730 in/lb
F 6
M, =E(W +.85wDL)•d/2
V
M = (20000+(,85 X 300))X 54/2 = 546885 in/lb F6
10M Y —Al ,)., = (268730-546885)/54
=
trp;.,p d -5151 lbs.Puplift<=0 No Up Lift
F4
TOP SHELF LOADED
3
Shear = 1062 lbs F
M„w = v,,,, 'Ht •1.15 F2
M
= 1062 X 188 X 1.15 = 229691 in/lb
= (W,, +wDL)•d/2 F 1
M r = (8000+(.85 X 300))X 54/2 = 222885 in/lb �D
Pup lift
P _ 1(M„�, —M'.,) _ (229691 -222885)/54 CROSS AISLE ELEVATION
= 126 lbs.
ANCHORS
No. of Anchors : 2
Pull Out Capacity: 910 Lbs.
Shear Capacity : 980 Lbs.
COMBINED STRESS
Fully Loaded = (0/910 X 2))+((1745/2)/(980 X 2))= 0.45
Top Shelf Loaded = (126/(910 X 2))+((1062/2)/(980 X 2))= 0.34
USE 2 Hilti Kwikbolt TZ 0.5 Dia.X 2 Min. Embd.Anchors per BasePlate.
SEIZMIC
PROJECT QUALITY CUSTOMDISTRIBU'RTION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 17
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET,POMONA,CA 91768 DATE 1/22/2013
BASE PLATE ANALYSIS : •
THE BASE PLATE WILL BE ANALYZED WITH THE RECTANGULAR STRESS RESULTING FROM THE VERTICAL
LOAD P,COMBINED WITH THE TRIANGULAR STRESSES RESULTING FROM THE MOMENT Mb(IF ANY).
THERE ARE 3 CRITERIA IN DETERMINING Mb.THEY ARE 1. MOMENT CAPACITY OF THE BASE PLATE,
2. MOMENT CAPACITY OF THE ANCHOR BOLTS,AND 3.Vcol*h/2(FULL FIXITY).Mb IS THAT SMALLEST
VALUE OBTAINED FROM THE 3 CRITERIA ABOVE.
Pc.0/ = 10150 lbs Base Plate Width (B) = 8 in b = 3 in
Mno,e = 0 in/lb Base Plate Depth (D) = 8 in bl = 2.5 in
Base Plate Thickness (t) = 0.375 in Fv (base) = 36000 PSI
P = P°i = 158.6 PSI
A DBE
Mn = O PSI
fh = D•B216
2.b,
fh2 = fn = 0 PSI
{ 7` b 1 . b b 1
lb.I =fh fh2 = 0PSI
/ B
wb2 b2
Mb — 2� 2•[fo +./b ±.67fh21
Mb = 495.61 in/lb fa
1 /2
0.02 in/cb
S Ha =
6 ��
F„u,e =.75Fy 1.33 =
36000 PSI
Addli - tb1
fn Mn = 0.58 <= I OK ppiP —
t pr
F "SBuse•FHase
•
•
•
SEIZMIC
PROJECT QUALITY CUSTOM DISTRIBURTION
FOR HANNIBAL
MATERIAL HANDLING ENGINEERING SHEET NO. 18
TEL:(909)869-0989 FAX :(909)869-0981 CALCULATED BY RF
161 ATLANTIC STREET, POMONA.CA 91768 DATE 1/22/2013
SLAB AND SOIL :
THE SLAB WILL BE CHECKED FOR PUNCTURE STRESS. IF NO PUNCTURE OCCURS; IT WILL BE
ASSUMED TO DISTRIBUTE THE LOAD OVER A LARGER AREA OF SOIL AND
WILL ACT AS A FOOTING.
PUNCTURE
Pctallc = 10150 lbs Mot = 268730 in-lb P
P»,ar =(1.2•P„a +1.0.(M07Id))•1.1 = 18872 lbs
—2'
t = 109.54
Fm,net c
109._4 PSI
A/ntnrt = I B+ J 2 I ` +11.2.1 = 236.5 sq. in. `1
✓v = Pmar
0.73 b�— H
F,, A,,unc1 •F,uncl
/ L /
SLAB TENSION
A _ Pn,ax •144
—f 1.33 = 1022 sq. in. FOOTING
L.�A.oil = 31.96 in B = 8 in
W = 8 in
B= JB•W +t = 13.5in
Frame Denth d = 54 in
b — L—B
2 = 9.23 in CONCRETE
wb2 1.33.fti.,,;, •bz .fie = 3000 PSI
2 144 2 = 787 in-lb
= 5.5 in
1•t'
Scon. = 6 = 5.04 cb. in. 0 = 0.65
Franc —
5011.0 SOIL
= 178.01 PSI
fh = MConc (coil = 2000 PSF
= 0.88
Fh S Com •FConc
OK
Dan Nelson
' From: Bradley Hartel <BHartel @qualitycustomdistribution.com>
Sent: Thursday, February 21, 2013 1:32 PM
To: Dan Nelson
Cc: Keith Scott
Subject: BUP2013-00037 Racking Permit
Dan,
Below is the report from our fire systems contractor. This is based on the engineering of our sprinkler systems and
marked clearly on the risers. The class of product is correct,we store only Class Ill.
Please let me know if there is anything else I can to expedite the process. I did have to reschedule our contractor by
over a week. This isn't the fault of the city,it is ours. I am out of town next week for my 25th Anniversary and I'm sure
I'll enjoy it a LOT more if this permit was completed.
Thanks so much for your help and understanding,
Brad
BRAD HARTEL
Senior Facility Manager
Quality Custom Distribution—Tigard
7319 SW Kable Lane Suite 500
' Tigard, Oregon 97224
E-MAIL: bhartel(c�qualitycustomdistribution.com
CELL: 503-705-8309
OFFICE: 971-327-4331 ext 13111
FAX: 971-327-4352
From: Steve Cartales [mailto:SteveC @deltafire.com]
Sent: Thursday, February 21, 2013 1:24 PM
To: Bradley Hartel
Cc: Andrew Cartales
Subject: RE: Progress?
Brad,
The area bounded by gridlines 17 through 25 is designed to provide a density of.29/2000. This is capable of protecting
'Class III Commodities(food stuffs) up to 20ft in solid piles or 16ft on conventional racking with 8ft aisles. The area
bounded by gridlines 13 through 17 appears to be designed to a density of.365/2000. This density is capable of
protecting Class III Commodities up to 20ft on conventional racking with 8ft aisles. Hope this helps.
Steve Cartales
Delta Fire, Inc.
14795 SW 72nd Avenue
Portland, Oregon 97224
1
i