Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report (10)
• i3U(201.2- Ca0 • a9, I�1 D w 4 fiU lv4 RECEIVE D 1( Nov 13 2012 CITYOFTIGARID Storage Rack Design BUILDNG DNIWN for Tigard Win S Location Tigard, Or Project Number TD091210 These calculations review the structure being installed for structural capability. The sealing of the drawings used in conjunction with these calculations is for the structural review only.Other information is not reviewed,nor approved. ��Ep PROP? �� �NGINE9 iO2v 669 r` •y 15,200 '<'b q.RY J. M0" (EXPIRATION DATE:/1/31)1'.1 • 9/28/2012 Engineering Seal Data: State Number Exp Date OR 66944PE 31-Dec-12 INDEX Design Summary- Seismic base shear 2 Period of vibration 5 Rack loading data 7 Rack configuration-seismic forces 8 Moment diagram 9 Column check 10 Load beam check 11 Beam to connector weld 12 Beam to Column Connection check 13 End connector check 14 Overturning check 15 Frame bracing check 17 Base plate analysis 18 Anchor bolt check 20 Column base weld 21 Slab analysis 22 t Date: 9/28/2012 Design Summary Sheet Pagel I ` Project: Tigard Win Supply Pallet Rack Tigard,OR 4 Level S Building Code 2010 OSSC 0.944 Zone Accel. Used Steel Design Specification AISI and AISC both based on LRFD Method Total No.of Storage Levels 4 Top Storage Level 8.000 Feet Frame Depth 48 Inches Typical Beam Span 96 Inches Panel Spacing 42 Inches Allowable Soil Pressure 1500 Psf Max.Shelf Loading-- 1200 Pounds Allowable Compressive Strength of Concrete 3000 Psi Avg.Shelf Loading-- 1200 Pounds Total bay load including dead---- 5.200 Max Bay Loading 3.616 Avg. Period of vibration-Based on Rayleigh Method-down aisle---Kx= 1.7 kips T= 0.308 Seconds Seismic base shear down aisle 0.1177 Ws Ws=Total bay load+dead load Total base shear in kips 0.2129 Kips per rack column---down aisle Seismic base shear cross aisle 0.589 Kips per frame-based on default values Column Type C-Section IR Face 3 Thickness 0.07 CIR Depth 1.625 _First Level Drift Design Ratio Live load+dead load+seismic 0.518 _ 0.084 Inches Design Ratio Live load+dead load 0.302 Weld Actual or cross aisle Beam Capacity Moment Level No. Beam Connectors Connector Beam Weld in-kips in-kips 1 3 Pin Connector 3P 3 pin 18400 Weld all 42.8 4.84 2 3 Pin Connector 3P 3 pin IB400 Weld all 42.8 2.73 3 3 Pin Connector 3P 3 pin IB400 Weld all 42.8 2.39 4 3 Pin Connector 3P 3 pin IB400 Weld all 42.8 1.52 5 No storage level da N/A da 0 0 0.00 6 No storage level da N/A da 0 0 0.00 7 No storage level da N/A da 0 0 0.00 8 No storage level da N/A da 0 0 0.00 9 No storage level da N/A da 0 0 0.00 10 No storage level da N/A da 0 0 0.00 11 No storage level da N/A da 0 0 0.00 12 No storage level da N/A da 0 0 0.00 Upright Bracing Summary Vertical Leg 1.5 Inches Yield Fy= 36 Ksi Width 1.5 Inches Brace type= CWLips Gage 0.063 Inches Design Ratio 0.310 Base Plate Summary Slab Thickness 6 Inches Ratio= 0.140 OK Base Plate Width..... 7 Base Plate Depth 5 Base Plate Thick.... 0.375 Yield Fy= 36 Ksi Anchor Bolt Summary Hilti Kwik Bolt TZ ESR-1917 Anchor Bolt Description 1/2"Dia.X 3-5/8" Embd. Qty/Col.= 1 Anchor Bolt Design Ratio 0.21 Date: 9/28/2012 Pallet Rack Configuration 4 Level Page: 9a Single rows do not need top ties. da N/A0 Weld r, da N/A0 Weld da N/A0 Weld da N/A0 Weld da N/AO Weld Upright da N/A0 Weld \ 16400 3 pin Weld all Wel Beam Horizontal IB400 3 pin Weld all Wel Brace 1.5 x 1.5 x 0.06:'. ( N 24 CWLips 1B400 3 pin Weld all Wel Diagonal Brace 18 Base Plate IB400 3 pin Weld all Wel 7 x 5 x 0.375 l (1)0.5 Anchors 96 I_ 48 01 Column Main- 3 x 1.625 x 0.07 Doubler- None Front Elevation End View Downaisle Longitudinal Crossaisle Tra•nsverse Direction Direction Storage Level Shelf Loading Dead Load 1 1200 100 2 1200 100 3 1200 100 4 1200 100 5 6 7 8 9 10 11 12 Conterminous 48 States 2005 ASCE 7 Standard Zip Code = 97223 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Data are based on a 0.05 deg grid spacing Period Centroid Sa (sec) (g) 0.2 0.944 (Ss) 1.0 0.340 (S1) Period Maximum Sa (sec) (g) 0.2 0.971 (Ss) 1 .0 0.347 (S1) Period Minimum Sa (sec) (g) 0.2 0.907 (Ss) 1 .0 0.334 (S1) Date: 2010 OSSC Page: 2 9/28/2012 Using RMI specifications 2010 OSSC Section 2208.1 Steel Storage Racks RMI Section 2.7.2 Minimum Seismic Forces modified by 2010 OSSC Down Aisle direction---Longitudinal Lat. Long. Zip Code 97223 V=CsIeW Height 8.000 Feet Cs=1.2*Cv I[R*T"2/3)] le= 1 R= 6 Limit State RMI Sec.2.7.3 Cv=Sd1 16-18 Sds=2/3 Sms 16-16 Sms=FaSs Table 1615.1.2(1) Ss= 0.944 Fa= 1.122 Soil profile D Sms= 1.060 Cs= 0.1709 Sds= 0.706 1617.4.2.1 1617.4.2.1 Ct Ta Calculated T in accordance with the Rayleigh Method 0.035 0.166 0.20 0.308 Cs=2.5*Ca/R 16-19 Sd1 =2/3Sm1 Ca=Sds/2.5 16-17 Sm1 =FvS1 Table 1615.1.2(2) 51 = 0.340 Fv= 1.720 Soil profile D Sm1 = 0.585 Cs= 0.1177 Max. Sd1 = 0.390 Cs=.14Sds Cs= 0.0989 Min. Cs used in Base Shear Calculations Down Aisle Cs= 0.1177 Page: 3 Date: 2010 OSSC 9/28/2012 Using RMI specifications 2010 OSSC Section 2208.1 Steel Storage Racks RMI Section 2.7.2 Minimum Seismic Forces modified by 2010 OSSC Cross Aisle direction--Transverse V=CsIeW Height 8.000 Feet Cs=1.2*Cv/[R*T"2/3)] le= 1 R= 4 Limit State RMI Sec.2.7.3 Cv=Shc Sds=2/3Sms Sms=FaSs Table 1615.1.2(1) Ss= 0.944 Fa= 1.122 Soil profile D Sms= 1.060 Cs= 0.3423 Sds= 0.706 1617.4.2.1 1617.4.2.1 Ct Ta Calculated T in accordance with the Rayleigh Method 0.035 0.166 0.20 0.308 Cs=2.5*Ca/R Sd1 =2/35m1 Ca=Sds/2.5 Sm1 =FvS1 Table 1615.1.2(2) S1 = 0.340 Fv= 1.720 Soil profile D Sm1 = 0.585 Cs= 0.177 Max. Sd1 = 0.390 Cs=.14Sds Cs= 0.0989 Min. Cs used in Base Shear Calculations Cross Aisle Cs= 0.1766 Page: 4 Base Shear Section 2.2 Load Factors and Combinations for LRFD Method For all rack members 1 1.2D+L+1.4P D=dead load 2 1.2D+1.6L+.5(S or R)+1.4P L=live load 3 1.2D+1.6(S or R)+(.5L or.8W)+.85P P=product load 4 1.2D+1.3W+.5L+.5(S or R)+.85P S=snow load 5 1.2D+1.5E+.5L+.2S+.85P W=wind load 6 1.2D+1.5E+.5L+.2S+.85P R=rain 7 .9D-(1.3W or 1.5E)+.45P E=seismic I=impact 1 Warehouse Rack System Non-public Ip= 1 V=CsIeWs Cs= 0.118 Longitudinal V=CsIeWs Cs= 0.177 Transverse V1= 0.1177 Ws Longitudinal Limit State Vt= 0.1766 Ws Transverse Limit State Rack systems Ws=(.67*Prf'P)+D+.25L Prf=Paverage/Pmaximum Force at various shelf levels Fx=(V-F1)WxHx"k/1'Wi HiAk for shelves greater than 12"above floor Fl =CslpWs for shelf 12"or less above floor Fx=VWxHx"k/ Willi"k for all levels when first shelf>12"above floor Exponent related to the structures period T<=.5 k= 1 T>2.5 k= 2 If the base shear is based on the default Cs value then k shall be taken as 1 • Period Longitudinal direction 0.308 seconds k= 1 Period Transverse direction 0.200 seconds k= 1 FUNDAMENTAL PERIOD OF VIBRATION WORKSHEET Pager 5 9/28/2012 Based on the Rayleigh Method Used base shear-Longitudinal direction only Percent Total Load/Level contributing base shear > 67.00 %for seismic Distribution exponent-(k) > 0.904 Kx > 1.7 T > 0.308 seconds E*Ix Column Style OC 20798 Computed Distribution exponent-(k) ---- 0.904 Column Column Column Column Column Elevation DL PL LL Tot.Load Cu.Load W W*h^k H 30 0.050 0.6 0 0.65 2.60 0.452 9.8 0.13 48 0.050 0.6 0 0.65 1.95 0.452 15.0 0.20 72 0.050 0.6 0 0.65 1.30 0.452 21.6 0.29 96 0.050 0.6 0 0.65 0.65 0.452 28.0 0.38 0 0.000 0 0 0 0.00 0 0.0 0.00 0 0.000 0 0 0 0.00 0 0.0 0.00 0 0.000 0 0 0 0.00 0 0.0 0.00 0 0.000 0 0 0 0.00 0 0.0 0.00 0 0.000 0 0 0 0.00 0 0.0 0.00 0 0.000 0 0 0 0.00 0 0.0 0.00 0 0.000 0 0 0 0.00 0 0.0 0.00 0 0.000 0 0 0 0.00 0 0.0 0.00 96 0.2 2.4 0 2.6 1.81 74 1 Level Cum F L Pcr AP t2 At Wi*At^2 Fi*4t 1 1.0000 30 78.917 0.380 1.034 0.393 0.07 0.052 2 0.8684 18 219.214 0.451 1.009 0.465 0.10 0.094 3 0.6671 24 123.308 0.581 1.011 0.596 0.16 0.173 4 0.3767 24.000 123.308 0.655 1.005 0.670 0.20 0.252 5 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 6 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 7 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 8 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 9 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 10 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 11 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 12 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.53 0.57 g=32.2 ft/sec^2 T= 0.308 seconds T= 2r EWiA^2 /g 2;FiAi Eq 30-10 I- Date: FUNDAMENTAL PERIOD OF VIBRATION WORKSHEET Page:1 6 • 9/28/2012 Ss 0.94 Seismic Coeficients: S1 0.340 Soil Profile Type-D Rd= 6 Down Aisle Cs=1.2*Cv/(R*T".667) Rc= 4 Cross Aisle Cs= 0.1177 Down aisle per column Av= 0.944 Cs= 0.1766 Cross aisle per frame Actual Down-aisle base shear per col.= 0.213 kips Actual Cross-aisle base shear per frame= 0.639 kips Level Drift FN Shelf Spacing Guide Line for Drift Limit Only 1 0.0837 0.22 30 .333'Column Width 2 0.0990 0.19 18 Column Width 3 0.1269 0.16 24 3 4 0.1426 0.09 24 5 0.0000 0.00 0 6 0.0000 0.00 0 i 7 0.0000 0.00 0 • 8 0.0000 0.00 0 i 9 0.0000 0.00 0 I 0.10 Inches 10 0.0000 0.00 0 ~- 11 0.0000 0.00 0 12 0.0000 0.00 0 0.084 Inches Rack Displacement Actual Date: LOADING DATA ON RACK SYSTEM Pagel 7 9/28/2012 Special Notes: Tigard Win Supply Tigard,OR 0.005 Rack Elevations and Loadings Multiple deep-Single column load l No Number Of Storage Levels No.= 4 Level Hi Exterior Column Check A Shelf Load is for 1 Deep Level No. Spacing Dead Load Sum -helf Load I ilk 0 1 30 1200 100 5200 2 18 1200 100 3900 Beam 7 4 3 24 1200 100 ( 2600 Level H3 4 24 1200 1 100 1300 A 1 5 0 Pallet Load 6 rt 0 7 0 Level H2 I 8 0 9 0 10 ' 0 11 0 Level H1 12 0 v / 1-11-1rn Db 4 Column Totals 96 4800 400 2.60 Slab Top Storage Level= 8.00 Feet Column Loading Pc= 2600 Pounds Dead+Live Load ►III 60 Pc= 2.6 Kips Unfactored l4 Bay Width Beam Depth Db= 4 Inches FRONT ELEVATION Rack Area/Profile: Pallet Rack 4 Level SLAB AND SOIL DATA Product Type- C I R Allowable Soil Pressure Qsp= 1500 Column: C-Section IR Qsp= 10.42 Psi Shelf Loading for Seismic RMI 2.7.2 Allowable Compressive Strength Concrete CA Ws=.67P+D Live load=0 Fc'= 3000 Psi DA Ws=(.67*R*P)+D+.25*L DA Ws= 0.670 P+D Maximum Shelf Load PLm= 1200 Pounds CA Ws= 0.670 P+D Average Shelf Load PLa= 1200 Pounds 0.9 Load coff. Pay/Pm Ratio Ral= 1.000 100% Ratio Down aisle cofficient 0.67 RMI Section 2.7.2 Cross aisle coffecient 0.67 L Date: RACK CONFIGURATION---LOAD/LEVEL/SEISMIC DATA Pagel 8 9/28/2012 Enter Seismic Code 2010 OSSC Avg.Top Shelf Load= 1200 Pounds {�� Depth No.of Storage Levels= 4 I I 48 Level 2 `_.. • 0. Span 96 Inches H2 42 -Ive.. i Depth Db= 4 Inches Bottom Panel Level 1 Spacing Inches V H1 Vb Base Shear I i Front Elevation End Elevation Longitudinal Direction Transverse Direction Load-Level-Seismic Values Vb= 0.1177 Wp Down aisle seismic loading Vb= 0.426 kips/frame Level Spacing Loading Dead Vb= 0.213 Kips/Column Inches Pounds Load Ratio Vi/Level Sum 1 30 804 100 3616 0.122 0.026 0.213 2 18 804 100 2712 0.195 0.042 0.187 3 24 804 100 1808 0.293 0.062 0.145 _ 4 24 804 100 904 0.390 0.083 0.083 5 0 0 0 0 0.000 0.000 0.000 6 0 0 0 0 0.000 0.000 0.000 7 0 0 0 0 0.000 0.000 0.000 8 0 0 0 0 0.000 0.000 0.000 9 0 0 0 0 0.000 0.000 0.000 10 0 0 0 0 0.000 0.000 0.000 11 0 0 0 0 0.000 0.000 0.000 12 0 0 0 0 0.000 0.000 0.000 Totals 96 3216 400 1.000 0.213 Kips Loads: 1.81 Kips 0.20 Kips Total D+P+L 3.62 Kips-Avg. Summary of Data Seismic down aisle loading Summation of Rack Load = 5.20 Kips D+P 3.62 kips Total Base Shear/Column = 0.213 Kips Seismic cross aisle loading Total Base Shear/Frame = 0.426 Klps 3.62 kips LRFD Design Loadings Load Combinations Frame Column Ratio Load Factor Axial Loading 1.2D+1.4P 7.20 3.60 1.991 1 Axial plus seismic 1.2D+.85P+E 4.56 2.28 1.261 i Date: SHEAR/ MOMENTS IN COLUMNS AND BEAMS Page:r 9 9/28/2012 • Moment Diagram of Rack Structure Level 3 (IIIIIIIIIIIIII!IlIll1um . Base Fixity " PinnedRb=_ 1 Fixed Rb= 0.5 Level 2 1IIIIIIIIIIIIIIIItia33,,.. Base Fixity Rb= 1 Base Shear Vb= 0.213 Kips Moment at Base Mb= (H1 "Vb)*Rb Level 1 =�1�III�IIIIIIIIIIIIUu,". Vv Moment at base Mb= 0.00 In-Kips M Column Load Pmax= 1.81 Kips H1 = i Slab = Vb Mu= Moment Above Beam Level-Kips S Mi= Moment Below Beam Level-Kips Bay Width Mc=Connection Moment-Kips Mb 96 In Vv=Vertical Shear-End Connection-Kips Front Elevation PORTAL MOMENT DISTRIBUTIONS Column Level Spacing Mi Mu Mc M facotored 12 0 0.00 0.00 0.00 0.00 11 0 0.00 0.00 0.00 0.00 10 0 0.00 0.00 0.00 0.00 9 0 0.00 0.00 0.00 0.00 8 0 0.00 0.00 0.00 0.00 7 0 0.00 0.00 0.00 0.00 6 0 0.00 0.00 0.00 0.00 5 0 0.00 0.00 0.00 0.00 4 24 1.00 0.00 0.50 1.00 3 24 1.74 1.00 1.37 1.74 2 18 1.68 1.74 1.71 1.68 1 28.00 5.96 1.68 3.82 5.96 Totals 94.00 Inches 7.83 Feet I • COLUMN DESIGN CHECK--COMBINED AXIAL AND SEISMIC Page:I 10 Date: 9/28/2012 . Description: 4 Level Q value= AISI Column Description: Fy= 50 Ksi special Column E= 29500 Yaxis Column Section Properties Hole Pat A Column= special 2 C T= 0.0700 In. Gross Area Ag= 0.507 InA2 Net Area An= 0.38 In^3 Face t-• •-r_• - X axis lx= 0.705 In.^4 3 � Sx= 0.47 In."3 � Rx= 1.18 In. i ly= 0.205 In.^4 • Min. Sy= 0.21 In.^3 Section W gt/Ft. i Ry= 0.636 In. 1.72 i I Torsional Properties Xo _O. !, Width M= 0.905 Xo= -1.522 1.625 Cw= 0.584 Ro= 2.028 J= 0.0008276 Column Cross Section g= 0.437 Sx eff= 0.353 In.^3 Critical Buckling Values ---Current Edition AISI LRFD aex= (7^2E(Kx1X/Rx)^2) Eq.C3.1.2-7 178.86 aey=(r"2E(KyLy/Ry)"2) Eq.C3.1.2-8 81.519 aet=(1/ARo"2)*(GJ+r^2Cw/(KtLt)^2) Eq.C3.1.2-9 92.741 Fe=(1/2(3)*((aex+at)-((aex+at)^2-4,8 aexat)".5 Eq.C4.2-1 68.655 If First Beam Level Is Near Floor Use Second Level For Column Design Lx= 28.000 Inches Ly= 38 Inches Lt= 38 Kx= 1.7 Inches Ky= 1 Inches Kt= 0.8 Inches Concentrically Loaded Compression Members Section C4 Fe= 68.655 Fy= 50 For A<1.5 Fn=Fy*.658^(202) A= 0.853 For A >1.5 Fn=Fy•.877/002) = 0.85 Fn= 36.863 Ksi 1)Pn= 11.90 Kips Frame Capacity-Vertical Load Only= 17,217 Pounds Lateral Buckling Strength Section c3.1.2 Mn=Sx eff(Mc/Sx) ` b= 0.9 My = Sx* Fy Me=Cb Ro A(aeyat)^.5 Cb=1.00 My = 23.508 Mc= Crit.Moment Me= 89.331 Mc= 23.508 . For Me>2.78*My Mc=My For .56*My<Me<2.78*My Mc=My(1-10*My/(36*Me)) Mn= 17.672 For Me<.56*My Mc=Me `UMn= 15.905 in-kips Page:I /Oa Date: COLUIVIN DESIGN CHECK--CONT'D 9/28/2012 Section C5 Combined Axial Load and Bending Design Ratio Dr= Pu/Oc Pno + CmMux/ObMnx 0 nx<=1.0 Cm=.85 uex= (1-Pu/ Pe) (Pc=.85 (hb=.9 Pe=Tr^2EIb/(Kb Lb)^2 First Beam Level H1= 28 Kb= 1.7 Column Unfact Fact Fact H2= 18 Pe= 90.62 P1 = 2.60 2.28 3.6 M1 = 5.96 P2= 1.95 1.71 2.70 M2= 1.68 Nominal Axial Strength 4Pn= 11.90 Kips from previous page Full Dead+Live Load Pu unfactored Puf= 2.60 Kips 1.2D+1.4L Pu= 3.60 Kips 1.2D+.85P RMI Factored Pu= 2.28 Kips Nominal Flexu Flexural Strength 4Mnx= 15.91 In-Kips Required Mux unfactored Muxf= 5.96 In-Kips Magnification factor= 0.872 Seismic moment factored Mux = 5.96 In-kips Factor= 1.000 Total factored moment 5.96 In-kips 1.2D+.85L+E Pu/(Pc Pn = 0.192 Mf*Mu/(4'Mn)= 0.327 Dr=design ratio Pu/4'Pn+CmxMx/(PbMnx a Dr = 0.518 1 O.K. Design Check For Dead Load+Live Load Only Unfactored Column Load Pc= 2.60 Kips 1.2D+1.4W Factored Column Load Pu= 3.60 Kips Cross Aisle 3.22 Kips Down Aisle Control P= 3.60 Kips Nominal Axial Strength fiPn= 11.90 Kips (Pc= 0.85 Design Ratio Pu/(Pc Pn = 0.302 Ok I DATE: BEAM DESIGN WITH PARTIAL END FIXITY Page:I 11 9/28/2012 Beam= Special Span= 96 Inches T= 0.063 In. YIELD Fy= 50 Ksi Inside Rad 0.125 In. From Cold Working 55.27 Ksi 1.75 Area = 0.809 In^2 Fu= 63.64 Ksi SECTION PROPERTIES 1.625 4926 stress Sx = 0.767 In.^3 5374 deflection Ix = 1.634 In.^4 4.00 — — X-Axis E*Ix = 48203 Ksi Req.Cap. (t)bMn= .95*Sx*Fy ( 1200 Iv cPbMn= 40.28 in-kips Gr= 4.73 2.75 Mer= 1.017 RMI impact addition 0.125 II 110, Load factor= (1.4+1.4*RMI addition)*PL Load factor= 1.575 1.2D+1.4L= 1.424 Beam weight= 24.00 END CONNECTOR SPRING CONSTANT G=2*E*Ix/(Fe*L)+1 Me=W*U(12*G) Fe = 270 In-Kips/Ra G= 4.719 W=8*(Phi*Mn/L.F.+Me)/L-1.2D Me_max= 6 In-Kips Unfactored Upper limit . W Me= 4.18 at stress limit r .... .41= 2.463 Kips/Beam Factored Fe D= 0.489 IN. Deflection R R SPAN L 96 Wt = 4926 Per Pair of Beams tress limit II Equation for Defl.Cap when limit is L/180: W=(384*E*lx)*(U180+Me*L^2/(8*E*Ix))/(5*L^3) Deflection Limit Span divided by----> 180 Di = 0.533 In.Deflection Limit Wd =Beam Load Based on Deflection Limit = UDeflection limit Wd = 2.687 Kips Me= 4.555 at defl.limit Wt = 1 5374 Per Pair of Beams peflection Limit i Date: Beam Weld Pagel 12 9/28/2012 Plastic Section Modulus L1= 1.75 Inches Offset L2= 4 Inches 1.625 • L1 L3= 2.5 Inches • L4= 2.375 Inches L5 L5= 0 Inches 2.594 10.625 Inches H1 L2 T r _ L4 0.9688 1.406 £ H2 _____- • L3 At=Ab Center of Area Weld Pattern At=(L2-Y)+L1 +(L4-Y)+(L5-Y) Ab=2Y+L3 Y=(L1 +L2+L4+L5-L3)/4 Y= 1.4063 Inches H1= 1.5759 Inches At= 5.313 H2= 1.0340 Inches Ab= 5.313 Z=H1'At+H2'Ab Z= 13.865 Inches^3 Steel Thickness= 0.063 Inches Zt= 0.874 Inches^3 Plastic Moment Capacity `h= 0.7 Mu= 61.15 In-Kips Fu= 70 Ksi cilMn= 42.80 In-Kips 43= 0.55 Vn= 21.085 4Vn= 11.597 Kips Design Ratio Check Mfac= 4.838 In-Kips D+L+E Vfact= 0.325 Kips Shelf Load 1300 Pounds Ratio=Mfac/FMn+Vfac/FVn<1.03 Ratio= 0.141 Ok Date: BEAM TO COLUMN CONNECTION CHECK Page:l 13 9/28/2012 lir es- ," Moment at Beam to Column Connection Factored Factored ' Column Level No. Moment Beam Shear r w• b Mc In-Kips Vi Kips 1 3.82 0.285 2 1.71 0.285 1. INI M 1.37 3 1.37 0.285 Mc � 4 0.50 0.285 I - - 5 0.00 0.000 6 0.00 0.000 I . Dc 7 0.00 0.000 7,...:?:.. .- Beam 8 0.00 0.000 9 0.00 0.000 C•nnector 10 0.00 0.000 11 0.00 0 Beam to Column Connection 12 0.00 0 Mca=d*(Fva"2-(Ri/Nc)%2)".5 Allowable Shear on Connectors Fva=(Vh"2+Vi"2)".5 or, Fv=.4Fu Vh=Mc/d Fv= 20 Ksi Vi=Ri/Nc n Tv Fva=Ab*Fv Nc=Number r M Ab=Shear Area of Connector i . Connectors Connector Discription: Stud A d -- .- Cv Ab= 0.155 In.^2 ki Compression Zone Fva= 3.10 Kips Allowable Shear Ri Beam Type Includes fixed end moment Combined Forces on Connection Point Offset (? = 1 Connectors Shelf Weld Factored Mc Level End Conn Moment Loading Beam No. Description Ma End Mom. 1 3P 13.14 1300 4 18400 Weld all 42.8 4.84 2 3P 13.14 1300 4 18400 Weld all 42.8 2.73 3 3P 13.14 1300 4 lB400 Weld all 42.8 2.39 4 3P 13.14 1300 4 18400 Weld all 42.8 1.52 5 da 0 0 . da 0 0 0.00 6 da 0 0 . da 0 0 0.00 7 da 0 0 . da 0 0 0.00 8 da 0 0 . da 0 0 0.00 9 da 0 0 . da 0 0 0.00 10 da 0 0 . da 0 0 0.00 11 da 0 0 . da 0 0 0.00 12 da 0 0 da 0 0 0.00 Connectors SC Standard MC Seismic Connector SP Special Welds: S Standard C Weld W Weld All Around Stud Connector 3 Pin Page: 14 Studs Ae= 0.110 In^2 Dia.Stud= 0.375 I 0.66 Fu= 67 Ksi Fy= 50 T2 2 T1 * i • i •1. H3-x 5 1 H3 1 •.1 . 3 I .33X ' X C Connector Analysis 0.67 1.33 C=T2+Ti T2�� • I Tavg • C=Tavg H2 2 E Ma=0=.67XC-((H3-X)+1.34)Tavg Ti .•41 _ = • .67XC=((H3-X)+1.34)Tavg .67X=H3-X+1.34 . H1 0.41 5 x= 2.59 Inches a .. r .. • =.. 1.73 T2max=.4FuAe ,•• • 2.59 T2max= 2.96 Kips '. C A T1=H1T2 I(H1+H2)= 0.50 Kips Force Diagram 0.86 Determine Moment Capacity of Connector--Based on Stud Shear Capacity C=T2+T1 = 3.46 Kips Ma=(T2+T1)*Dist.+C*Dist Ma= 13.30 Inch-Kips •---Connector Capacity Mas= 17.74 Inch-Kips ♦ Connector Capacity--Seismic Bearing Consideration Column Thickness Mas F=(d*Col.Tk.*1.67*Ft) Actual Thickness 0.07 Inches 13.14 In-Kips 0.07 0.075 Inches 14.07 In-Kips 2.192 0.083 Inches 15.58 In-Kips 13.14 in-kips 0.1 Inches 17.74 In-Kips 0.126 Inches 17.74 In-Kips 0.135 Inches 17.74 In-Kips CHECK RACK OVERTURNING....TRANSVERSE DIRECTION Page:l 15 Date: 9/28/2012 . All Shelves Loaded - Top Level SEISMIC FORCES HORIZONTAL • Seismic Level No. Vi*Hi Shelf Load Moment Due to OT Vt In-Kips Kips In-Kips Comp Vt=Total Shear 1 2.37 0.804 43.95 3.5 Rack Hgt. 2 5.87 0.804 41.58 2.9 overturning based on 3 12.94 0.804 35.71 2.1 heigth to load mass center 4 22.77 0.804 22.77 1.1 Mil 5 0.00 0.000 0.00 0.0 6 0.00 0.000 0.00 0.0 EPIIIII Vt v Slab 7 0.00 0.000 0.00 0.0 8 0.00 0.000 0.00 0.0 9 0.00 0.000 0.00 0.0 Depth Df= 48 10 0.00 0.000 0.00 0.0 Frame Depth 11 0.00 0.000 0.00 0.0 � ` Base Shear Vt= 0.59 12 0.00 0.000 0.00 0.0 43.95 Ra Rb Seismic Reaction Due to Overturning Reaction Due to Pallet Loads+Dead Load Rs=Mot/Frame Depth Df Rp=Pallet+Dead Load/2(2 Columns/Frame) Rs = 0.94 Kips Rp= 2.28 Kips Fac Rs= 0.94 Kips Fac Ue= 1.35 Kips- factored Uplift Resulting Reactions Combining Seismic+Pallet+Dead Load Ra=Rp-Rs Uplift Side If Uplift Exists Rs Must be>Rp for Tension Rb=Rp+Rs Compression Side of Upright Factored Values: Loading/inch of height Rb= 3.215 Kips Seismic 0.010 Ra= 1.345 Kips No Uplift DL+PL 0.024 Vc= 0.295 kips • Date: CHECK RACK OVERTURNING----CONTD Pagel 16 9/28/2012 Top Shelf Loaded Only Top Load Lt = 1.3 Kips Top Shelf Ot= 22.04 In-Kips Vt -~ Top S elf t Slab MilIMMINNIMMENEN V= 0.23 kips Frame Depth Df = 48 Inches Ra Rb Seismic Reaction Due to Overturning Reaction Due to Pallet Loads+Dead Loads Rs=Mot/Frame Depth Df Rp=Pallet+Dead Load/2(2 Columns/Frame) Rs= 0.479 Kips Rp= 0.570 Kips Fac E= 0.48 Kips Resulting Reactions Combining Seismic+Pallet+Dead Load Ra=Rp-Rs Uplift Side Frame Rs Must be>Rp for Tension In Anchor Bolt Rb=Rp+Rs Compression Side of Frame Factored Values: Rb= 1.05 Kips Ra= 0.09 Kips No Uplift Date: CHECK DIAGONAL BRACING IN FRAME Pager 17 9/28/2012 Bottom Diagonal Brace in Frame Lb=Diagonal Brace Length Lb=((Depth-2*Cd)^2+(Panel Spacing-(2*Bo))^2)^.5 Column Depth Cd= 1.625 / Depth-2*Col Lh= 44.75 Panel Spacing-2*Bo Lv= 34 Lb=(LhA2+Lv^2)^.5 Lb A Bracing Offset Bo= 4 Lb= 56.2 Inches II al Panel Total Horizontal Base Shear Spacing '21111MM ' 42 Vt= 0.589 Kips Maximum Compression in Diagonal Depth 48 End Elevation Cmax=(Lb/Lh)*Vt*1.05 Frame geometry multiplier Load Distribution to Columns Cmax= 0.78 Kips Factored Date: C Section Axial Load Capacity Page:J 178 9/28/2012 Frame Bracing Member Un-braced length Special 56.2 inches Q value= 1 Column Description: No Holes Fy= 50 Ksi Column E= 29500 Yaxis Column Section Properties Hole Pat A . I Column= Special 0 i . T= 0.0630 In. Gross Area Ag= 0.288 In"2 Net Area An= 0.288 In"3 Face 4 - •_fr X axis Ix= 0.113 In.^4 1.5 � Sx= 0.151 In.^3 Rx= 0.627 In. Flange ly= 0.079 In."4 0.25 Min. Sy= 0.087 In.^3 • Section Wgt/Ft. i Ry= 0.523 In. 0.98 i Torsional Properties 3333.5 i Xo I Width M= 0.728 Xo= -1.289 — ♦ 1.5 Cw= 0.04 Ro= 1.526 J= 0.0003805 Column Cross Section 13 = 0.286 Sx eff= 0.151 In.^3 Critical Buckling Values --Current Edition 1996 AISI LRFD uex=(7r"2E(KxlX/Rx)^2) Eq.C3.1.2-7 36.268 Qey=002E(KyLy/Ry)^2) Eq.C3.1.2-8 25.239 aet=(1/ARo^2)*(GJ+7T^2Cw/(KtLt)^2) Eq.C3.1.2-9 15.052 Fe=(1/2(3)*((aex+at)-((aex+at)^2-4faexat)".5 Eq.C4.2-1 11.357 Lx= 56.20 Inches Ly= 56.20 Inches Lt= 56.20 Kx= 1 Inches Ky= 1 Inches Kt= 0.8 Inches Concentrically Loaded Compression Members Section C4 Fe= 11.357 Fy= 50 For A<1.5 Fn=Fy*.658"(NA2) A= 2.098 For A >1.5 Fn=Fy*.877/(A^2) = 0.85 Fn= 9.96 Ksi `I'Pn= 2.44 Kips Channel Capacity Pmax= 2.51 kips Cmax= 0.78 kips Ratio= 0.310 Date: BASE PLATE ANALYSIS AND DESIGN Pager 18 9/28/2012 Pe= 2.600 Kips Fc= 3000 psi f . Unfactored Bolt Data Dia.= 0.5 ( Qty.= 1 Slab i Mb= 0.000 In-Kips Solve For Tension In Anchor Bolt Unfactored Pt=-Pe[(W/2-X/3-e)/(W/2-X/3+f)] iii iiiiiiiiiiiiiiiiiiiiiiiii. Pt= 0.00 Kips ......�"���� 1111 i111111IIIIIIIII I If Negative No Tension In Anchor Bolt Special i El Thick.= 0.375 Inches Check Maximum Stress on Slab .333X F1=Pmax/Base Plate Area I Fl = 0.074 Ksi I 1 I Eb= 6 Inches Inches $ I Solve cubic equation for x value Pt I X^3+K1X^2+K2X+K3=0 Blodgett(base plate) Ec= 3.5 Inches K1 =3(e-W/2) K2=6nAs/B(f+e) 4 Base Plate Width= 7 Inches K3=K2(W/2+f) Base Plate Depth= 5 Inches X= 0 Inches Solve for concrete stress Axix a Qe=2(Pe+Pt)/XB Pe= 2.600 • Pt= 0.000 From Pe ",II1IIIIIIIIIIIIIIIIIIIII11 • ge= 0.074 rr e 1r Umax= 0.074 Ksi Actual Ok Fall= 1.800 Ksi I Allowable Axis b I X Base Plate Data Pressure On Slab From Base Plate Width= 7 Depth= 5 Thickness 0.375 Check Bearing Plate for Full Load Effective Depth= 5 inches LRFD Pp=1.7 Fc'Ae = 0.6 Ae= 35.00 inA2 effective area RMI 7.2 Fc'= 3000 psi Pu= 3.60 kips 1.2D+1.4P+.25L per column Pp= 178.500 kips Pu= 3.22 kips 1.2D+.85P+E per column (i)pp= 107.100 kips Pmax= 3.60 kips Ok • Date: CHECK BASE PLATE THICKNESS Pagel 19 9/28/2012 Post Style Check Bending In Base Plate C Moment from tension side . Pmax= 2.600 Kips M=PL/2 Pt= 0.0000 kips Column If Pt is negative then no tension Mb= 0.000 therefore Pt=0 3 In-Kips Mbp=Pt C Mbp= 0.000 in-kips Ovh = 2 Thick.= 0.375 C= 1 inches I • Overhang •ngllll1i1� 111111 I l A Mbp = 0.000 In-Kips �II�IIII)II Moment from compression side IIII 1111 llll J e M=W L^2/3 V axis a W= 0.0371 Pli I Pe+Pt L= 1 inches 7 Mbp= 0.012 in-kips Design Moment Base Plate Loading Mmax= 0.012 in-kips Properties Of Base Plate Section Modulus Sx=1"*T^2/6 x-axis ' '., l0.37 Sx= 0.0234 In.^3 l1" 5 Allowable Bending Stress Fb=.75*Fy AISC Fy= 36 Ksi Fb= 27 Ksi Allowable Bending Moment Mall=Sx*Fb Mall= 0.633 In-Kips Mbp= Mactual= 0.012 In-Kips Design Ratio Rd= Mactual/Mallowable Design Ratio Rd= 0.020 <=1.000 OK zo I■■III�TI www.hilti.us Profis Anchor 2.3.0 Company: Page: 20 Specifier: Project: Tigard Win Supply Address: Sub-Project I Pos.No.: Phone I Fax: Date: 9/28/2012 E-Mail: Specifier's comments: 1 Input data Anchor type and diameter: Kwik Bolt TZ-CS 1/2(3 1/4) Effective embedment depth: h.,=3.250 in.,h„om=3.625 in. Material: Carbon Steel Evaluation Service Report:: ESR 1917 Issued I Valid: 5/1/2011 1 5/1/2013 Proof: design method ACI 318/AC 193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.375 in. Anchor plate: I„x ly x t=5.000 in.x 7.000 in.x 0.375 in.;(Recommended plate thickness:not calculated) Profile: Rectangular HSS(AISC);(L x W x T)=3.000 in.x 1.625 in.x 0.075 in. Base material: cracked concrete,3000,f,'=3000 psi;h=6.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[lb,in.lb] a, y.. 2 Proof I Utilization (Governing Cases) Design values[lb] Utilization Loading Proof Load Capacity 1,/ [%] Status Tension - - - -/- - Shear Pryout Strength 589 2864 -/21 OK Loading 6fg Utilization 13,,,,v[%] Status Combined tension and shear loads - - - - 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Input data and results must be checked for agreement with the existing conditions and for plausibility!, PROFIS Anchor(c)2003-2009 Hilt AG,FL-9494 Schaan Hilt is a registered Trademark of Hilt AG,Schwan ZOa 1�■�IL. 1 www.hilti.us Profis Anchor 2.3.0 Company: Page: 21 Specifier: Project: Tigard Win Supply Address: Sub-Project I Pos.No.: Phone I Fax: i Date: 9/28/2012 E-Mail: Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan • Date: Column Welds To Base Plate Page:l 21 9/28/2012 Weld patterm on column Pfac= 2.28 Kips E4 E6 E5 Welds Factored 1 , Mb= 0.00 In-Kips E2 —"'—•''—'—' ' E3 • Slab , .`,' Factored A 0.319 Kips El Ref. Axis y,.........,, `t>z, "wiz .JA 4— Factored Aisle Side of Column Base Shear Section--A Weld Section Length Dimensions Weld C.G. Base Plate Width= 7 El 3 3 1.5 Base Plate Depth= 5 E2 1.625 1.625 3 E3 0 1.625 0 Allowable Weld Stress E4 0.75 0.75 2.625 Eq. E2.4-1 E2.4-2 E5 0.75 0.75 0.375 E6 0 1.5 0 Pna=.4125*Tm*Lw*Fu Longitudinal Section Modulus of Weld Pattern Pnb=.6*Tm*Lw*Fu Transverse Fillet Weld Size Tw= 0.1 Inches Weld Fu= 70 Ksi Pna= 17.69 Longitudinal Sx= 0.36 InA3 Pnb= 25.725 Transverse 42.00 Lw= 6.125 Length of weld Aw= 0.61 InA2 Mc=Sx*Fu Liong= 4.5 Inches Mc= 25.47 In-Kips Ltran= 1.625 Inches 4) =.6 Ac= 0.925 InA2 49Mc= 15.28 In-Kips Fa=Pmax/Ac Fa= 2.46 Ksi If Fb>Fa If Fb<Fa Fv=0 Fb=Mmax/Sx Fb= 0.00 Ksi Ft= -2.46 Ksi Fv=Vs/Aw Fv= 0.52 Ksi Design Ratio Check Desing Ratio Dr= Ft/Pnb + Fv/Pna = 1.03 Dr one= -0.059 Dr two= 0.029 Dr= 0.000 Ok Date BASE PLATE SLAB/SOIL ANALYSIS Page:l 22 9/28/2012 Pact ..."� Column Loading= 2.60 Kips Worst Columns I unfactored Case • Ill li. 1 V Fc'= 3000 Psi w Qs= 1500 Psf ` lab Thick. ® Thick.= 6 In. Base Plate ► 4 De Aw FOOTER PROFILE UNDER COLUNM TOP VIEW OF FOOTER Slab Section *I Be AI Sx=1*T^2/6 Dw :• � � T X �` Sx= 6.000 In.^3 $„\ V • 01 14 1 In. :e B Enter Base Plate Size Dw= 7 Bw= 5 Effective Area Ae= (2*Be+Bw)*Dw+(2*Be)*Bw+p*Be^2 Be=\*Sx*Fct/Qs Beam fixed one end pinned other Fct= 87.6 Psi Fct=1.6 Ng c' Seismic Increase 1 Be= 20.10 In. Yes= 1.333 No= 1 Affective Area Ae= 1785.3 In.^2 12.4 Ft.^2 Maximum Column Load Pmax = 18597 Pounds 18.6 Kips Allowable Actual Loading on Column Pmax= 2600 Pounds 2.60 Kips Ratio= 0.140 Ok EMERGENCY EXIT Not Blocked (1....„,..____________,„.......— 1 wooJyle xis u ` mq pa et racking I. 13'-8" L =anima 25'-2" -1 Ei 1 xi 1- a 32'-6" w a c cy N ) o o aiLl 4 bays of I,ght duty racking 11 o? p o 15-4 ti, c i a 6 1 O 11 • V/ K J ca V/ -' 20'-0" .11, ... 0 3 bays rght duty rackin 7 NEW 4 bays of light duty racking i 0) —_-- 1 III I IMIly i G = 7'-2" u, New ---, ru ° ew p , r---24'-2"�► ` ! 24'-6" 32'-6" 1 N I A ca di •0 U U. -- ,�.�' -1 0 Z �� it 0 � z � � a m 98'-0" 0 o _ v flc p ° -< ?r B r °: 3 ?r -< o `„ tv (" OF m co u) al ao c�up X Z m cp 70 C x _^ IQ 7 C. -L 0 'ZIfl2CInt --I= o- 111 A -e- -D Fire Protection Sprinkler Systems $Igineerinc•Fabrication•Installation Suite B 13896 Fir Street, Commercial•Industrial•Residential•Institutional � �e ,. Special Hazards•High Tech•Defense•Hangars Portland OR,97045 Retrofit•Service•Inspection•Maintenance Ph.(503)657-5155 fax.(503)657-5182 www.wsfp.com 3-D / BIM " " °,� `, CCB#104570 DESIGN RTCEIVED October 31,2012 NOV 13 2012 Joe Frediani ,I.�A� Win Supply 12970 S.W. Hall Blvd. CITY UILDINGDWISION Tigard,OR 97223 Re: Building Located at 12970 S.W.Hall Blvd.,Tigard, OR 97223 Subject:Fire Sprinkler System Review Mr.Frediani, We have completed the review of existing fire sprinkler system and current storage arrangements in the above referenced facility.A description of that review follows with recommendations. Win Supply occupies approximately 9,150 sq. ft.of a larger building currently protected by a modified wet pipe extra ha7 rd pipe schedule fire sprinlder system. Sprinkler heads are the old lever and link style, 165°F, ''A"orifice uprights. The building consists of concrete walls with a roof system of wood sub-purlins framed into wood purlins framed into wood glue-lam beams.Insulation with a vapor barrier is attached to bottom of wood purlins. The bottom of insulation at the eves is approximately 22 feet.The peak,running the length of the building at the center is approximately 22.5 feet. The building use is primarily for the storage of plumbing supplies,fittings,and tools on single row racks with a maximum storage height of 12 feet.Racks are spaced at least 6 feet apart. Lower tiers of the racks have solid plywood shelves and are primarily used for shelf storage although it cannot be defined as shelf storage by NFPA 13.Upper tier storage does not have solid shelves and is primarily used for the storage of large objects such as wheel barrows,and plastic garbage cans. It was observed that at least 50%of the storage is small PVC fittings and components stored in card board cartons on lower rack tiers. PVC material as defined by NFPA 13 is considered a Class A plastic. Because they are generally small fittings we consider these to be a free-flowing Class A plastic. NFPA 13,2010 Edition: Class A plastics stored on racks are covered in Chapter 17 Protection of Plastic and Rubber Commodities That Are Stored on Racks. Because these are free-flowing Class A plastics,chapter 17 defines the storage as Class IV and refers you back to Chapter 16. See Section 17.1.2.2. Chapter 16, section 16.2.1.2.1 refers you back to Chapter 13 Miscellaneous Storage because storage is 12 feet or less. ALBUQUERQUE, NM •AUSTIN,TX• BEND, OR •DALLAS,TX•DECATUR, IL• DENVER, CO• HOUSTON,TX• KANSAS CITY. KS • MINNEAPOLIS, MN • PHOENIX, AZ PORTLAND,OR• RAPID CITY, SD•SALT LAKE CITY, UT • SEATTLE, WA• ST. LOUIS, MO •TULSA.OK . ` Page Two 10/31/12 Fire Sprinkler System Review Chapter 13,Table 13.2.1 Discharge Criteria for Miscellaneous Storage 12 it. or Less in Height: • Commodity: Class IV • Type of Storage: Rack back to back shelf storage • Storage Height: 10 to 12 ft. • Maximum Ceiling Height: 32 ft. (Actual is 22.5 ft.) • Design Curve EH1.0.30 gpm over 2500 sq. ft. • Total Combined Inside&Outside Hose: 500 gpm Recommendations: Hydraulic calculations prove current existing sprinkler system exceeds required demand by about 45%. NFPA 13,2010 Edition,Section 12.6,2 requires sprinklers for storage application densities greater than 0.20 gpm/sq. ft, and smaller than 0.34 gptn/sq. ft. to have a minimum k-factor of 8.0. Current sprinklers have a k-factor of 5,b.These are also very old sprinklers and should be replaced based on the recommendations of NFPA 25 Standard for the Inspection, Maintenance, and Testing q/'Water Based Fire Protection Systems It is our recommendation that these sprinklers be replaced with a special retrofit 286°F,k-8.0 upright sprinklers. If you should have any questions regarding this review please feel free to call. Tha you, //t;eL.;- C.i Lt..L.' Steve Jones PM/Designer 2 ■ �tl�tttt�� • c Overview . 1 Job Number LS2991 UUUUUYYYYY � Report Description WIN SIJPPI Y Jo im - LS2991 I Steve Jones ion tame. ---- , done _.__.... _ _.. . Win Supply Hydraulic Calculation l 503-657-5155 503-657-5182 Address t SWaCwelmuiaNlamonaeNUmter 12970 SW Hall Blvd. Tigard OR 97223 Mdrw 3 Jab SAal9ulldnp ,stem Da-„r> Ma of Appgeatbn 0.300gpm/ft' 2500.00ft2(Actual 2559.37ft2) wit Dam Mdnq SgtreaarDwa - Noll Slrpams 5.6 K-Factor 25.59 at 20.888 500.00 CovMreq?M Sprketer Nun,Wm 01 Sommers Catcumer[ 85.31ft2 30 Syatamproeaure Demand System Flow Demand 56.293 827.38 Toad Demand Pressure Reawt 1327.38 i 56.293 +46.607(45.3%) Supplies Check Point Gauges . Node Flow(gom) Hose Flow(gpml 5tatic(osi) ResidualtosI, identifier Presswe(osi) K-Factor(Kl Flow(gpm) 1 2500.00 500.00 106.000 96.000 LS2991 Win Supply.cad Supply at Node 1 (2500.00,500,00, 106 000,96.000) 150 T 135 - - . 120 ? -, 1 / r 1 =Static Pressure 106.0-_.. / E 990 ^ i Y 1 75 / . • -^,.) 1 _ 80 = r-827-38 JSi 327.345 r.._1:- /1 8 with hose streams 7/7,,, � / - System demand curve f 30 -7. �� "�' INaldHUI&II IIIHltil lllillllm ll lilI111 111.11111 11,111111 tl ltll le[ 'Al ;1111(MillitalM'f' 0,, >Amy z5U 07501 1250 1500 1750 2� 2250 Water flow.gpm (,©M P.CAD, Inc. 41 AutoSPRINK®VR8 v8.1 12 0 10/31/2012 11.17 32AM Pagel 4 -iiiii[Hydraulic Summary Job Number.LS2991 Report Description WIN SUPPLY Job ' Nam'.Engin. LS2991 Steve Jones Joa3033,1 e SW*C.artacalkAA.A3Aago Win Supply Hydraulic Calculation mow.I 1,14J 12970 SW Hall Blvd. AC31F012 SAVEttRing Tigard,OR 97223 A.00•3 i Drawing Name LS2991Win Supply cad ystem Remote Area(s) aIng crrrr,e Oar, 5.6 K-Factor 25.59 at 20 888 Extra Hazard Group I time"Aorance At Source INIAmity Whfcdt,301KA 500.00 0.300gpm/ft2 2500.0062(Actual 2559.37ftz) Addibanal Nose SuppPes tArstAr Of SAAAI6Ars CSAF01100d Cotatow Po%vowel flowlgoml. 30 85.31fta ArinFaIllt RON.41 RAMO fret Rpm*.maw 44aara PAM Rime%Anmi Tow”tore streams 500.00 System Flow 1:16mand j TAtrt.4 AM,ROANAI(tnAl.3.9t4.• 827.38 1327.38 Movernurn Promote Unt.&me' Int—ops 0.000 • 7AluorPutft VZeoty ALr.e GA:moo 16.95 between nodes 25 and 31 .— MAMMA,>Neatly tAdOlt3,0■1130 4.80 between nodes 1 and 3 Av. ,otpanSTofDny0tp,. 1071.78gal Supplies Hose Flow Static Residual Flow Available @ Total Demand , Required Safety Margin Node (51Pr1) SPS4 (Ps') (gPM) (Ps!) (Pm) (Psi) (Psil 1 500.00 I 06:0 00 06.000 I 2500.00 102.900 I 1327.38 56.293 46.607 Contractor CGrtrsaur Ntimuca C paw Nano Contact Trio • I 22 Steve Jones PM eat Canna., Pew. Egtemon Western States Fire Protection Company 503-657-5155 210 AddAnt FAX 13896 Fir Street,Suite B 503-657-5182 • Atfilttlia Aka Oregon City,Oregon 97045 stave_jonesewsfp.us '-3ak-r—S•F Watt-Ms M.E.P.CAD,Inc. AutoSPRINK )VR8 v8.1.12.0 10/3112012 11:17:34AM Page 2 It '. _ .. 7 ,,� 7 Job Number:LS2991 Report Description:WIN SUPPLY . Actual Flow ! Minimum Flow K-Factor Pressure I Device (gpm) (gpm) (K) (psi) Sprinkler 179 26.49 25.59 5.6 �..-22.381 Sprinkler 180 26.81 25.59 _ 5,6 22.921 • Sprinkler 181 k _ 27.33 25.59 5.6 23.824 Sprinkler 182 ' 27.67 25.59 , 5.6 24.412 Sprinkler 183 28.22 25.59 5.6 25.402 - Sprinkler 184 29.93 25.59 5.6 28.572 ...._. b Sprinkler 185 25.59 25.59 5.6 20.888 ., Sprinkle 186 25.90 25.59 5.8 Y 21.397 Sprinkler 187 26.41 25 59 ..._....__._... 5.6 22.246 _._.._, t_. .. .._ _. Sprinkler 188 26.74 25.59 1 5.6 22.800 Sprinkler 189 27.28 25.59 • 5.6 23.731 Sprinkler 190 28.94 25.59 5 6 26.708 . Sprinkler 191 I 26.77 25.59 5 6 22.856 Sprinkler 192 i 27.09 25.59 5.6 23.406 Sprinkler 193 ; 27.62 25.59 5.6 24.326 Sprinkler 194 S 27.96 25.59 5.6 24.925 Sprinkler 185 28.52 25.59 5.6 25.933 Sprinkler 196 30.24 25.59 5.6 29.164 Sprinkler 197 26.32 25.59 r 5.6 22.095 Sprinkler 198 26,64 25.59 5.6 22.629 Sprinkler 199 27.16 25.59 5.6 23.522 Sprinkler 200 27.49 25.59 5.6 24.104 Sprinkler 201 28.05 25.59 5.6 25.081 _____ Sprinkler 202 29.75 25.59 �,..._.....� 5.6 8.215_ _. Sprinkler 203 26.49 25.59 5.6 22.374 __.._ Sprinkler 204 26.81 25.59 -_ ....5.6..__..................22.914 Sprinkler 205 27.33 25.59 5.6 I 23.816 Sprinkler_....__._. ..._._...._206 27.66 25.59 5.6 ( 24.405 __Sprinkler _. .......... 207 ..._ 28.22 a 25.59 5.6 25.393 Sprinkler 208 - 29.93 ___.__...._._25.59 .,_ 5.8 28.563 c Most Demanding Sprinkler Data k,©M.E.P.CAD,Inc. el AutoSPRlNK®VR8 v8.1.12.0 10/31/2012 11_17:36AM Page 3 lode Analys i s 1 Job Number:LS2991 Report Description.WIN SUPPLY • , Node , Elevation(Foot) Fittings Pressure(ps1) Dischargefgpmt 1 -3%6 S 56.293 827.38 179 j. 21-0 Spr(-22.3811 22.381 26,49 . 180 20-11 Spr(-22.921) 22.921 . 26.81 181 20.-10 Spr(-23.824) 23.824 27.33 182 20-9 Spr(-24.412) 24.412 27.67 183 20-8 Spr(-25.402) 25.402 28.22 _- 184 20-7 Spr(-28.572),T(10.-0) 28.572 29.93 185 21 0 Spr(720.888)_ 20888 25.59 _ 186 20-11 , Spr(-21 3971 „ 21.397 25.9q_ 187 20'-10 S v1:22.2461 22246 26.4' . .._. 188 2V-9 Spr(-22.800) 22 800 26.74 • 189 20-8 Spr(-23.731) 23.731 27.28 ---, 190 20-7 Spr(-26.708),U1 :0) . 26.708 ___ 28.94 ... ,-,,,,, 191 21-0 . Spr(-22.856) 22.856 26.771 _ 192 20'-11 Spr(-23.406) 23.406 27.0 193 2040 ' Sol:24.326) 24.326 27.6 194 20'-9 , Spr(-24.925),_ 24.925 27. 195 2V-8 t p25 933) 25.933 28.5 t___ __, 196 20.-7 Spr(-29.164),T(10'-0) 29.164 30.24 __ 197 21'-0 Spr(-22.095) 22.095 26.32,_ 198 20-11 Spr(-22.629) 22.629 26.64 199 20-10 Spr(-23.522) 23.522 27.16 200 20-9 Spr(-24.104)_ _ 24.104 27.49 _, ---1 201 20-8 Spr(-25.081)_ _ 25.081_4 28.05 r 202 20'4 Spri-28.215),I(10'-0) 28.21s 29.75 _ 203 21.-0 Spr(-22.374) 22.374 26.49_ 204 20.-11 Spr(-22.914) 22.914 2681 205 20-10 Spr(-23.816) 23.816 27.3 • 206 20'-9 i Spr(-24 405) _24.405 27. _ 207 20.-8 1 Spr(-25.393) 25.393 28.2 208 20'-7 ' Spr(-28.563),T(10-0) 28.563 29.93 • 3 1,-0 46.582 11 19'-7 T(31Y-01 . 37 849 L , _± 35.717 -......, _ _ 12 19'4 _T(30.7_0) . 16 19-63/4 E(18.-0) 38.167 17 19'-7 1(25-0) 38.019 1 ,-.-.......___......_....4 18 19'-7 t T110'-01 34A81 ,_. ... . . . --..---- 25 AsIg_iT 32.870 t- 26 19.-7 I T(10'-0) _ - . .--- - 27 14 TO 2.-9)_ --""" 19'-7 T(12'-0)_ 37A01 29 19'-7 T(16.-5%) 37.238_ _ 30 . 19'-7 P0(1Z-0), _,_ 29.949 - 31 19'-7 111cy-ol 31.659 33 19-7 T(12.-0) 30.943 35 19'.7 ; T(12'-0) 28.381 ' --- 38 i 19.-7 i T(12.-0) _ - 37j 7 i T(12'-0) __1... 30.316 k,tM E.P.CAD.Inc. a AutoSPRINK®VR8 v8 1 12 0 10/31/2012 11.17.37AM Page 4 Job Number.LS2991 Report Description:WIN SUPPLY Pipe Tips _ Diameter --_How---...._ Velocity HWC Friction Loss __I Length [Pressure Downstream Elevation Discharge K-Factor Pt Pn Fittings 1Eq.Length 'Summary Upstream 'Total Length se Route 1 - • 61 1 3800 25.59..., 5.49 120 0.054012 8 185 21'-0 25.59 5.6 20.888 Sprinkler . e 0.036 186 20'-11 21.397 i 8'- Pv BL _ 1.6100 51.50 _............. 8.12 120 . 0,092942 8'- Pf 0.813 186 20'-11 25.90 5.6 21.397 Sprinkler I Pe 0.036 187 20'40 22.246 8'-9 Pv BL 2.0670 _ 77.91 7.45 120 0_059210 8'-9 187 20'-10 26.41 5.6 _.`..._____. 22,246 Sprinkler -' Pe 0.036 188 20'-9 22.800 8'-9 Pv BL 2.0670 104.65 10.01 120._..... 0:102202 T_.. 8'-9 Pf 0.894 188 20'-9 26.74 5.6 22.800 Sprinkler !Pe 0.036 189 20'-8 23.731 8'- Pv BL 2.0670 131.93 12.61 120 0.156884 8'- Pf 2.942 189 20'-8 27.28 5.6 23.731 Sprinkler, 10'-0;Pe 0.036 190 20'-7 26.708 T(10.-0) 18'-9 Pv RN 2.4890_.__-_160.87 10.78._ 120 ._._...._._..._..__.__. 0,095292-..__._...___._ 1'-0'Pf 1.239 190 20'-7 28.94 5.6 26.708 Sprinkler, 12'-01 Pe 0.434 35 19'-7 28.381 T(12'-0) 13'-0 Pv CM 2.4690 ...._...._ 160.87............. _10.78_.... ........ ._120... -...__0.095292 __..._ 4'-5% Pf 1.568 35 19'-7 28.381 12'-0 Pe 30 19'-7 29.949 P0(12'-0) 16'-5%Pv CM 2.6350 .._..___154,82..._...._...._._9.11 120 0.064661 „� 96'-3 Pf 7 289 30 19'-7 29.949 16-5'4 Pe 29 19'-7 37.238 T(16'-5%)_ 112'-8%1Pv FM 3.0680 15.4.82 6.72 120 0.030822 5'-314 Pf 0.163 29 19'-7 37.238 _ Pe 28 19'-7 37.401 5'-31/%Pv FM 3.5480 154.82 5.02 120. 0.015185 - 9'-9 Pf 0.148 28 19'-7 37.401 Pe 27 19'-7 37.549 9'-9 Pv FM -__..._ 4.0260 154.82 3.90 120 0.006206 ____ ___... 19'-6 Pf 0.160 27 19'-7 37.549 Pe 26 19'-7 37.709 19'-6 Pv FM...... .._.. .5.0470_._... 154.82 __ .._2.48 120 0.002729 88'-7%Pf 0.310 26 19'-7 37.709 25'-0 Pe 17 19'-7 38.019 T(25'-0) 113'-71/91 Pv FM 7.9810 827.38 5.31 120 0.006507 2'-101/ Pf 0.136 17 19'-7 672.56 38.019 Flow(q)from Route 2 . 18'-0 Pe 0.012 16 19'-6% 38.167 E(,18'-0) 20'-101/ Pv FR __ 7.9810... 827.38 531__.. 120 .__.. 0.006507 ._I 16•6%Pf 0.370 16 19'-6% 38.167 j Pe 8.045 3 1'-0 46.582 ALV(-0.250) i 18'-6'/Pv UG.___ _... _ _ 8.3900_......_ 827.38 4.80 140__..._ ._... 0.003836 154'-1"Y. Pf 7.760 3 1'-0 46.582 Supply 44'-11/.Pe 1.951 1 -3'-6 56.293 2LtE(22 0%),BFP(-7.000),S 198'-214 Pv 500,00 Hose Allowance At Source , 1 1327.38 , • Route 2 BL ?- 1.3800 26.32 5.65 120..._ 0_056894... - 8'-9 Pf 0.498 197 21'-0 26.32 5.6 22.095 Sprinkler Pe 0.036 198 20'-11 22.629 8'-9 Pv BL 1.6100 52.96 8.35 120. 0.097892 _ 8'-9'Pf 0.857 198 20'-11 26.64 5 6 22.629 Sprinkler Pe 0.036 199 20'-10 23.522 8'-9 Pv BL 2.0670 80.12 766 120........_.._ 0.062457 ....__.... ..... + 8'-9 Pf 0.546 199 20'-10 27.16 5.6 23.522 Sprinkler Pe 0.036 200 20'-9 24.104 8'-9 Pv BL �.. 2.0670 .....__...._-. 107.62 10.29 -__120 _0.107625_ _ 8'- Pf 0.942 200 20'-9 27.49 5.6 24 104 Sprinkler 1 Pe 0.036 201 20'-8 25.081 8'-91 Pv Bt._ 2.0670 135.65 12.97 120 0.165191 8'-91'Pf 3.097 201 20'-8 28.05 5.6 25.081 Sprinkler, 10'-0 Pe 0.036 202 20'-7 28.215 1(10.-0) 18'-9 Pv ' RN __._.,.. ._ 2.4690 165.41 11.08 120 0.100323 1'-0 Pf 1.304 202 20'-7 29.75 5.6 28.215 Sprinkler, 12'-0 Pe 0.434 36 19'-7 29.953 T(12'-0) 13'- I Pv FM 3.060 ..._ 171.46 ._. 7.44 120 - _ 0,037226__ _... 1 9'- Pf 0.363 36 19'-7 29.953 Pe 37 19'-7 30.316 9'- ,Pv {,©M.E.P.CAD,Inc. •AutoSPRINK®VR8 v8.1.12.0 10/3112012 11:17:39AM Page 5 F ir i. Hydraulic Analysis I Job Number:LS2991 Report Description:WIN SUPPLY Pipe Type Diameter_ Flow Velocity HWC Friction Loss Length (Pressure ' Downstream Elevation Discharge K-Factor Pt Pn Fittings Eq.Length Summary Upstream Total Length FM 3_5480 .........._.337.89 10.96 120 0.064339 9'-9 Pf 0.627 37 19'-7 166.44 30.316 Flow(q)from Route 3 Pe 33 19'-7 30.943 9'-9 Pv FM 4.0260 506.10 12.75 120 0.073409 Pf 0.716 33 19'-7 168.20 30.943 Flow(q)from Route 5 9 Pe -0.000 31 19'-7 31.659 7-91 Pv FM 4.0260_._..._......._......._.._67256 16.95 120 0.124228 ., 9'-9_ Pf 1.211 31 19'-7 166.46 31 659 Flow(q)from Route 4 Pe 0.000 25 19'-7 32.870 9'-9 Pv FM_....... 5.0470. 672.56 10.79 120 0_041322 25 19'_7 32.870 _._ 39' Pf 1.612 Pe 0.000 18 19'-7 34.481 39'4 Pv FM 6.0650 672.56 7.47 120 0.016888 43'-2t`Pf 1.236 18 19'-7 34.481 30' Pe -0.000 12 19'-7 35.717 T(30'-0) 73'- Pv FR 6.0650 672.56 7.47 120 0.016888 96' Pf 2.132 12 19'-7 35.717 30'- Pe 11 19'-7 37.849 1(30.-0) 126'-3 Pv FM _.._._.. 7.9810 672.56 431 120 .___....0.004435 6-31/ Pf 0.170 11 19'-7 37.849 35-0 Pe 17 19'-7 38.019 T(35'-0) 38'-3%Pv •i Route 3 BL 1.3800 26.49 5.68 120 0.057558 ! 8'-9 Pf 0.504 203 21'-0 26.49 5.6 22.374 Sprinkler - - Pe 0.036 204 20'-11 22.914 8'-9i Pv BL....................... _._-.-- 1.6100 53.29 8.40 120 0.099033 -__...._ 8'- Pf 0.867 204 20'-11 26.81 5.6 22.914 Sprinkler Pe 0.036 205 20'-10 23.816 8'- Pv BL 2.0670 80.62 7.71 120 0.063082 ............. ....._....__._ 8,- Pf 0.552 205 20'-10 27.33 5.6 23.816 Sprinkler Pe 0.036 206 20'-9 24.405 8'-9 Pv BL ......... 2.0670 _...._.... 108.29 10.35 120 _._._ _.......-_ 0.108874 8'-9 Pf 0.953 206 20'-9 27.6E 5.6 24.405 Sprinkler Pe 0.036 207 20'-8 25.393 1 8'-9 Pv BL 2.0670 136.51 ___-----13_05 120._..... 0.167105 _ .._.__..._... 1 &'-9 Pf 3.133 207 20'-8 28.22 5.6 25.393 Sprinkler, 10'-0 Pe 0.036 - 208 20'-7 28.563 T(10'-0) 18'- Pv RN 2.4690 166.44 11.15 120 0.101482 j 1'-0 Pf 1.319 208 20'-7 29.93 5.6 28.563 Sprinkler, 12'-0 Pe 0.434 37 19'-7 30.316 T(12'-0) 13'-O Pv se.••••Route 4••••• BL_..._.... 1.3800 26.49 5.68 ..... ._........120 ..-_. _._..._.._.___0.057575 ..___. 8'-9 Pf 0.504 179 21'-0 26.49 5.6 22.381 Sprinkler 4 Pe 0.036 180 20'-11 22.921 . 8'-0 Pv 91 1..6100 __ _ 53.30 8.40 120 _._.._ 0.099063 8'-9;1 Pf 0.867 180 20'--11 26.81 5.6 22.921 Sprinkler Pe 0.036 181 2V-10 23.824 8'-9 Pv BL 2,0670 80_64 __.7.71__.. 120. 0,063101 _ 8'-9 Pf 0.552 181 20'-10 27.33 5.6 23.824 Sprinkler Pe 0.036 182 20'-9 24.412 g'-g Pv SL 2.0670 . 108.31 10.36 120 0,108906 I 8'-0 Pf 0.953 182 20'-9 27.67 5.6 24.412 Sprinkler Pe 0.036 183 20'-8 25.402 8'-9 Pv BI.._....... 2.0670 136.53__....._._ 13.05 120._._._. 0 167154 ' 8'-9 Pf 3.134 183 20'-8 28.22 5.6 25.402 Sprinkler. I 10'-0 Pe 0.036 184 20'-7 28.572 T(10'-0) i 18'-9 Pv _RN__ 2.0670 166.46 15.92 120 0.241205 1'-0 Pf 2.653 184 20'-7 29.93 5.8 28.572 Sprinkler, 10'-0 Pe 0.434 31 19'-7 31.659 TT10'-0) I 11'-0.1 Pv as Route 5 BL 1.3800 26,77 5.74 120 _ 0.058704 1 8'- Pf 0.514 191 21'-0 26.77 5.6 22.856 Sprinkler I Pe 0.036 192 20'-11 23.406 81 Pv BL 1.6100 53_87 8.49.... _..-120 0,101003 _ __ 8'- Pf 0.884 192 20'-11 27 09 5.6 23.406 Sprinkler Pe 0.036 ' 193 20' 10 24.326 8'- .Pv BL 2.0670 81.49 7.79 120 0.064334 8'-93 Pf 0.563 193 20'-10 27.62 5.6 24.326 Sprinkler 'Pe 0.036 194 20'-9 24.925 8'-9!Pv BL 2.0670 109.44 10.46 120 0.111031 - 8'-0 Pf 0.972 194 20'-9 27.96 5.6 24.925 Sprinkler l Pe 0.036 195 20'-8 25.933 8'-0 Pv tk,©M.E.P.CAD,Inc. ill AutoSPRINK®VR8 v8.1.12.0 10/31/2012 11:17:39AM Page 6 Hydraulic Analysis Job Number LS2991 Report Description WIN SUPPLY Pipe Type Diameter Flow Velocity HWC Friction Loss !Length Pressure Downstream Elevation Discharge K-Factor Pt Pn Fittings Eq. Length Summary Upstream — Total Length BL 2.0670 13796 13.19 120 0.170409 8'-9 Pf 3.195 - 195 20'-8 28.52 5.6 25.933 Sprinkler, 10'-0 q Pe 0 036 196 20'-7 29164 T(10'-0) 18'- Pv _ RN 2.4690 168 20 11.27 120 0.103483 _� 1'-0d Pf 1.345 196 _ 20'-7 30.24 5.6 29 164 Sprinkler, 12'-0�Pe 0.434 33 19'-7 30 943 T(12'-0) 13'-0 Pv v Route 6 CM 2 4690 6 05 I 5'-3' Pf 0.004 -- ---. _.�._ _. .... o;.-_...� 120 _ 0.000220.............� 30 19'-7 29.949 PO(12'-0) 12'- Pe 36 19'-7 29.953 I 1T-31/ Pv Equivalent Pipe Lengths of Valves and Fittings(C=120 only) i al"e _Al Actual Inside Diameter 48' Value Of C 100 130 140 150 Schedule 40 Steel Pipe Inside Diameter / -Factor Multiplying Factor 0.713 1 16 1.33 1 51 Pipe Type Legend Units Legend Fittings Legend AO Arm-Over Diameter Inch ALV Alarm Valve BL Branch Line Elevation Foot AngV Angle Valve CM Cross Main Flow gpm b Bushing DN Drain Discharge gpm BaIV Bali Valve DR Drop Velocity fps BFP Backflow Preventer DY Dynamic Pressure psi BV Butterfly Valve FM Feed Main Length Foot C Cross Flow Turn 90° FR Feed Riser Friction Loss psi/Foot cpig Coupling MS Miscellaneous HWC Hazen-Williams Constant Cr Cross Run OR Outrigger Pt Total pressure at a po nt in a pipe CV Check Valve RN Riser Nipple Pn Normal pressure at a point in a pipe DeIV Deluge Valve SP ST Stand Pipe Pf Pressure loss due to friction between points DPV Dry Pipe Valve p e Pe Pressure due to elevation difference between indicated points 6 90°Elbow UG Underground Pv Velocity pressure at a point in a pipe EE 4S°Elbow YP P N Eel 111!4°Elbow Ee2 22W Elbow f Flow Device fd Flex Drop FDC Fire Department Connection fE 90°FireLock(TM)Elbow fEE 45°FireLock(TM)Elbow fig Flange FN Floating Node fT Firelock(TM)Tee g Gauge GIoV Globe Valve GV Gate Valve Ho Hose Hose Hose HV Hose Valve Hyd Hydrant LtE Long Turn Elbow mecT Mechanical Tee Noz Nozzle P1 Pump In P2 Pump Out PIV Post Indicating Valve PO Pipe Outlet PRV Pressure Reducing Valve PrV Pressure Relief Valve red Reducer/Adapter S Supply sCV Swing Check Valve Spr Sprinkler St Strainer T Tee Flow Turn 90° Tr Tee Run U Union WirF Wirsbo • WMV Water Meter Valve Z Cap L ©M.E.P CAD,Inc AutoSPRINK®VR8 v8 1 12.0 10/31/2012 11 17:39AM Page • is Hydraulic Graph Report Descripton.WINrSUPPLY Supply at Node 1 • 150 135 120 2,&atic Pressure 106.000 106 90 - 1 of 75 - a 60 827.38 56.293 -! 1327.38 with hose streams 45 System demand curve 30 15 0 -11,ID111111 1 1 1 1 1 1!1 1 1 1 1 1 1 1 1 1(_1 1 L 1 1 1(1,1 1 1 i 1 1 1 1 1 1 l 1 t t 1 1 ) 1 _1 l J L L 1 1 1 1_ 1_1 1 1 1 1 1 1 1 r i i I l i i- i t 4150 500 750 1000 1250 1500 1750 2000 2 0 25500 Water flow,gpm a dtc Grad% Supply at Node 1 Rd,-of um. 106.000 R.11ti1r.i.PIM'.UI. 96.000©2500.00 Avw.bl.Prssunn MN,d TNI —. ..—_.. _ —. __....._._...._..__�.._..�._.. 102.900 @ 1327.38 Sided O.mnn 56.293©827.38 ey tam o.n.cu uudnaraeMw e***II a...1 56.293 @ 1327.38 ( �j M.E.P CAD. Inc. 411 AutoSPRINK®VR8 v8 1 12 0 10/31/2012 11.17'42AM Page 8 ill7-.$'4"'''' ' Job Number:LS2991 '' `� � �� Report Description:WIN SUPPLY ua* l ,t,,) s / 4}, i' r _ _ • • • - 11 w e • • , ://16//./;:.' ' 11, / /I Y /• - • +A 70-4'" • -1i. tAr, AI / f; " �� �. /; = • '/', • /• '� 5.- _ '/ /z 1 ! r (I&®M.E.P.CAD,Inc. di AutoSPRINK®VR8 v8.1 12.0 10/31/2012 11:17:43AM Page 9 r. IF o `U e 3 = ' nV a a E l�... .: • 1) I C ° 'y s . I , 1 1 -F ...._._ _ _._. •i........... ........ ... ..�...... .. .. t1. 'S � _2 ∎M „' i 1 . 01 yOraubc Wpm Ow 1 / • r. I T. ma__ _ I"�s C o / / �. �f' gR'' v Alfr °�A F 1M RR StP0.7 'Loa wrc ro..� 0.o11rWn.�:r.14 ir...olld ..c.,...>-.w.«e b.w.�.q......r.r .. vy�rlM w.www�r�n.tirrM+w...........w e.e...b w.wrr.,. X ..,,., ,r▪n M ew..m....rx N.IRI� .w ..Tw 4MW n1il.1��1 .1 ...c..•..u nw 4l��wluulT.H.+. .+wobea l*glte.nwaa ...wwarne. .w Ws...*11 r....rx..'''".+Mw 11+' n. nwlYIUTPYI OYYIYw.ag.BM �„�,,, \ 11'I of I • Hydrant Flow Report http://tiggisiw/mox6/actions/flow_report_hydrants.cfm?inspno=100531 Hydrant Flow Report for Asset FHO2D12101 Work Order Number Asset ID FHO2D12101 Address Comments Start Date 2001-04-26 00:00:00.0 Assigned To Inspection Number 100531 Completed By Completion Date 2001-04-26 00:00:00.0 Residual Static Pressure(psi) Gallons Per Minute(gpm) 96 106 2500 Pressure(psi) Rating Crew • Project 10/30/2012 3:20 PM