Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report
M ST 20 is-Oco2 3 RECEIVED MILLER MAR 32015 CONSULTING CITY OF ENGINEERS BUILDING p BARD SIGN STRUCTURAL CALCULATIONSPECIAL INSPECTION REQUIRED • of Or{mcoir `r ir! ral Specialty Code Swim Spa Support 13270 SW Nahcotia Dr., Tigard, OR 7rete and Reinforcing Steel Mitchell NW ❑ Bolts Installed in Concrete February 18, 2015 ❑ Special Moment-Resisting Concrete Frame Project No. 141137 ❑ Reinforcing Steel&Prestressing Steel Tendons 32 pages ❑ Structural Welding Principal Checked: ❑ High-Strenght Bolting ❑ Structural Masonry El Reinforced Gypsum Concrete ❑ Insulatin oncrete Fill .8 R u C T u R El S y Applied Fire-Resistive Materials THE CALCULA f■ ;g,4Q-y. ,Drilled Piers and Caissons .tx // �� ❑ Shotcrete 61043 U Special Grading, Excavation and Filling = ontroi Systems y OREGON c _ • 9 �,'q RY 23 2O Other Inspections C R. WP-5 AND SIGN • : INAL EXPIRES: 06-30-20(6 *** LIMITATIONS *** Miller Consulting Engineers, Inc. was retained in a limited capacity for this project. This design is based upon information provided by the client, who is solely responsible for accuracy of same. No responsibility and or liability is assumed by or is to be assigned to the engineer for items beyond that shown on these sheets. Engineering Practical, Diverse, Structural Solutions Since 1978 9570 SW Barbur Blvd., Suite 100 Portland, Oregon 97219-5412 Phone (503) 246-1250 Fax (503) 246-1395 www.miller-se.com • Building Code: 2014 Oregon Structural Specialty Code Soils Report: No Soils Report by: N/A Dated: N/A Soil Bearing: 1500 PSF Retaining Walls: No Equivalent Fluid Pressure(active): N/A PCF Passive bearing: N/A PCF Friction: N/A Structural System: Non-building Structure Vertical System: Steel Frame Supported on Pin Piles Lateral Sys: Steel Frame Supported on Pin Piles Element Swim Spa Platform Load Type Dead Dead Basic Design Value(PSF) 3,800 lbs 10 Loads: Load Type Water Live Value(PSF) 19,194 lbs 40 Lateral Design Parameters: Wind Design: N/A MPH Exposure Importance Factors Iw= IE= Is= II= Risk Cat: II (ice) (seismic) (snow) (ice) Seismic Design Latitude: 45.423890 Seismic design parameters are based on published Longitude: -122.827040 values from the USGS web site.See following page. 2%PE in 50 years,0.2 sec SA=Ss 2%PE In 50 years,1.0 sec SA=S1 (Site class B parameters are indicated on this page,for actual site class used in design,refer to seismic design summary) • Design Summary: The following calculations are for the design of a new swim spa on a steel frame platform supported by pin piles.The new stucture is designed to carry both vertical and lateral seismic loads due to the weight of the structure. INDEX PG l—'L(: P2 o • DESLG N C2y7�R�A PG s-II VE2Ty��� AN H t_YSZf 1°6 Iz-2S- tr6g- . rf F L7'SZJ • PG ZG-3Z- PZt) P. sk coo EC.7Zo r•-) c£Sz G ' 9570 SW Barbur Blvd. Project Name: Swim Spa Support Project#: 141137 ' Suite One Hundred MIS Portland,OR 97219 Location: 13270 SW Nahcotia Dr.,Tigard,OR MILLER (503)246-1250 Client: Mitchell NW CONSULTING FAX:246-1395 ENGINEERS By: ALB Ck'd: I Date: 02/18/15 Page 1 of 32 -US Design Maps Summary Report User-Specified Input Report Title Swim Spa Support . Wed February 18,2015 17:38:36 UTC Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.42389°N, 122.82704°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III I 15000x1 III" �i, it ..' +� ", ' _'d ------ .. - - - (D. .. . ,, „ ._ hf .' x.11 � Pardo . j I� ticiat e* r v , ':` � I ;Sti --- Iii .f i ,,', 'c.-7.12 ' •`-, kip w1 t ' lt I i "7+ _ Scholl' l ing CUy__ N 0 R . rr� -1 I _. O y ' i 0,-.- ., i _ . y,f1" ' ,.c,T/ ' 'AMERICA' . ' ,l .:. ^,_=. _ _. .,- `may 1 l : .,,.i... '..A F mapquest h _ 02015 Dla lestVilibighata 020 ' 'Op Q u 0 MapQuest USGS-Provided Output S5 = 0.957 g SMS = 1.069 g Sos = 0.713 g S,_ = 0.423 g SM1 = 0.667 g SD1 = 0.445 g For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP" building code reference document. MCER Response Spectrum Design Response Spectrum 1.10 0.72 0.99 0.64 0.22 0.56 0.77 0.49 0.66 1 `'' 0.40 co 0.55 1 i 0.32 0.44 0.33 0.24 0.22 0.16 0.11 0.02 0.00 0.00 0.00 0.20 0.40 0.60 0.20 1.00 1.20 1.40 1.60 1.90 2.00 0.00 0.20 0.40 0.60 0.30 1.00 1.20 1.40 1.60 1.80 2.00 Period, T(sec) Period, T(sec) 2 of 32 SEISMIC DESIGN FORCE,Section 13.3: Elements of Structures, Nonstructural Components,and Equipment Supported by Structures Site Class: D ASCE 7-10,Sec.20.3,Table 20.3-1,pg.152 Seismic Design Category: D ASCE7-10,Sec.11.6,pg 56 Risk Category: I I IBC 2012 Sec 1604.5,pg 336 S$= 95.70% ASCE 7-10,Figure 22-1 page 158 Fa= 1.12 ASCE 7-10 Table 11.4-1 pg 55(Linear interpolation is used) SMS= 1.07 ASCE 7-10 eqn.11.4-1 pg 55 Sps= 0.71 ASCE 7-10 eqn.11.4-3 pg 55 IE= 1.00 ASCE 7-10 Sec 13.1.3,pg 87 aP 1.0 ASCE 7-10 Table 13.6-1,pg 93 RP 2.00 ASCE 7-10 Table 13.6-1,pg 93 z(ft)= 50 Component attachment elevation WI respect to grade h(ft)= 50 Structure roof elevation with respect to grade FP 0.428 •Wp ASCE 7-10 Eq.13.3-1,pg 88 OR 1.140 'Wp ASCE 7-10 Eq.13.3-2,pg 89 Not less than 0.214 'Wp ASCE 7-10 Eq.13.3-3,pg 89 Fp 0.428 •Wp 0.2SpsWp= 0.143 *Wp (ASCE7-10 Sec.13.3,pg 88) • . 9570 SW Barbur Blvd Swim Spa Support 141137 . Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 3 of 32 ENGINEERS www.miller-se.com SPA Stn PPo ie 7 pal zG rJ D i=S :&rJ 4-014-05 t1FQ7-7-c._A-L— 1 0 PJF Di. cl o PSI= 4t, SP/-} OL= 3,Fsoo c.gf ilit-)-- - — — ORL Wit}-TFr? O(. = GA•t)(7,3` r `es/6A7` = /`Y, Ig3.S LrSS . T°'Tkt. PL- (to PsF)(2t')(10') 15° f (3,goo ci71) +0, P33.S t(35) - = ZS, 03- S` '41 SEzrMZC FF>zCE= O,c4t r J =7, TL18 (4/ 1(o © Iir L x P xo pm,rtt ys 75- sw,i y 1 r41e y PI VE2T Loic10 Ci•o) LAT co og (1.0) i c= Ij8SZ (45 F= 67i t ; 10 2 c= 3,10/ F- /.,3t/8 r-al 3 L-- 1,$SZ tali' F- 6-)(-1 gal _ m r�i;2 11 I S — %, 6/C LKj F-- 2,616 i-6I 6 c.-r- c S&/ Lit/ F—1,34-fd (4) / / / / / / 1 -7 C C . 1, S.S-2_ t.g.1 r-= 67K Lai I•s' a.c' 31 3' o,s-' 1.7 I C= 3, t-07 Lai F=1,31-1$ Lai °t c;:- I,'-52. ( ) r= 6-y La/ S 9570 SW Barbur Blvd Swim Spa Support 141137 Suite One Hundred Project Name Project# Portland,OR 97219 MILocation 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd ) Date 02/18/2015 Page 4 of 32 ENGINEERS www.miller-se.com VER-r oPrL OCSZGro (D4-I.) r�►FVh662 * W!_ ( ya PIF t- 10 PiF) (s = ?co Pc,F Wti= ((3,Too Las) t-(rg) 193,5 Li ' ) /(-)/ (zo') = - PLF L U,. ►e,= 23 = 3, 367_ t,tSJ 4 4 ,} .L 4 L y 4 Sr 01 �s R /44- gZ sea ftz= 10, 2• 5 Lg.( i t / r!o„ l o'-o" • l o'- o" I'o" USE I-}SS `1x `lk %Y > SEE P, 6-7 Fog_ QA'sz 6!J = 3, 3LZ Lt3S (ovTE(L MEmr3.q.:14) 02 2-/SLai"Lai" Mrn=NNc . r3t:re-) = 10, Z-� L OuTE2: �l= R'3z LOS hi Rt. i 23 / / / / / i / z 3 2.o-1 t-81 o.S' 3' 3' o,S' (S' T NeJ,c It 8-11 ! =(4.3= S rt.r �R1 vsE Mc.. 8 k /�,1 SEE P6 Fo2 QE`Sz 6t.) Rt= q, 6 (s LA) V5(2rX-clyn., LOAD To PZtcS P7t-ES I, 3;7 4 9 = c= I, g5 L c.as PzLES 2 A g c=3,7-61 c-rSS ezLE1 '-f $ c G= S;S6 1971...Ei s c= 9, 615' 1.41J . 9570 SW Barbur Blvd Swim Spa Support 141137 . Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 c�� CONSULTING Fax 503.246.1395 By ALB Ck'd `1/4AW Date 02/18/2015 Page 5 of 32 www.miller-se.com ENGINEERS G7/i7Bearn Project: Member#1- Vertical Load(Allowable) Reactions - kips, kip ft -0.575 � -0.25 fj�(jT A 7c7)7 3.362 10.275 3.362 Shear - kips 5. 137500 -5.137500 Moment - kip ft .745758 -10.250000 6 of 32 Steel Column/Beam Design-AISC 13th Addition Member#1- Vertical Load(Allowable) Shape: HSS Shape Capacity=0.95 <1.0 Size: 4X4X1/4 • AS D Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 3.37 in2 Mr.= 10.25 ft-k,strong axis moment Qa= 1 (Section E7,pg 16.1-42) Mry= 0.00 ft-k,weak axis moment Fe.= 45.92 ksi,(Section E3 pg 16.1-33) Vrr= 5.14 k,strong axis shear Fey= 45.92 ksi,(Section E3 pg 16.1-33) Vry= 0.00 k,weak axis shear Fcr.= 30.25 ksi.(Section E3 pg 16.1-33) Tr= 0.00 ft-k,torsional load Fcry= 30.25 ksi,(Section E3 pg 16.1-33) K.= 1.00 (Table C-C2.2,pg 16.1-240) Pnx= 102 k,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Pny= 102 k,(Section E3 pg 16.1-33) LX= 10.00 ft Moment Capacity,Chapter F Ly= 10.00 ft Self.= 3.9 In' Lv= N/A ft,(for round shapes) Seffy= 3.90 KUr x= 78.95 Mnx= 17.98 ft-k,(Section F7pgs 16.1-55,56) KUr y= 78.95 Mny= 17.98 ft-k,(Section F7 pgs 16.1-55,56) E= 29000 ksi Shear Capacity:Chapter G Fy= 46 ksi kv= 5 (Section G5,pg 16.1-68) Ag= 3.37 in2 CV,= 1.00 (Section G2,pg 16.1-65) t= 0.233 in Cvy= 1.00 (Section G2,pg 16.1-65) ZX= 4.69 in3 Aw,= 1,54 in2,(Section G5,pg 16.1-68) Zy= 4.69 in' Awy= 1.54 in2,(Section G5,pg 16.1-68) Sx= 3.9 in3 Fcr= N/A ksi,(Section G6,pg 16.1-68) Sy= 3.9 in' Vn,,= 42.6 k,(Section G2,pg 16.1-65) IX= 7.8 in4 Vny= 42.6 k,(Section G2,pg 16.1-65) I Y= 7.8 in4 Torsional Capacity:Chapter H rX= 1.52 in Fcr= 27.60 ksi, (Section H3 pg 16.1-75) ry= 1.52 in C= 6.56 torsional shear constant - Section is Compact in the strong axis(x) Tn= 15.1 ft-k, (Section H3 pg 16.1-74) Section is Compact in the weak axis(y) Allowable Capacties: Rn/f?(ASD);Rn* (LRFD) (ASD) Pc,k Mc,ft-k Vc,k Tc,ft-k x-axis 61.0 10.8 25.5 9.0 y-axis 10.8 25.5 Interaction Equations: Pr/Pc= 0.00 Tr/Tc= 0.95 <1.0 OK Equation H1-lb,AISC 13 ed.,pg 16.1-70 Use HSS 4X4X1/4 • ' 9570 SW Barbur Blvd Swim Spa Support 141137 Suite One Hundred Project Name Project# Mih Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 7 of 32 ENGINEERS www.miller-se.com /vi7Beam Project: Member#2(Outer)-Vertical Load(Allowable) Reactions - kips, kip ft -3.362 3.362 -0.0187 6 1'1.729 T 3.453 T 1.729 Shear - kips .3.399407 `-3.399400 Moment - kip ft 813593 • D 8 of 32 Steel Column/Beam Design-AISC 13th Addition Member#2(Outer)-Vertical Load(Allowable) Shape: MC Shape Capacity=0.24 <1.0 Size: 8X18.7 • ASD Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 5.50 in2 Mrx= 6.81 ft-k,strong axis moment Q= 1.00 Mry= 0.00 ft-k,weak axis moment Qs= 1.00 (Section E7,pg 16.1-43) Vrx= 3.40 k,strong axis shear Qa= 1.00 (Section E7,pg 16.1-42) Vry= 0.00 k,weak axis shear Fe.= 2108.7 ksi,(Section E3 pg 16.1-33) K.= 1.00 (Table C-C2.2,pg 16.1-240) Fey= 166.4 ksi,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Fcr„= 35.7 ksi,(Section E3 pg 16.1-33) Lbx= 3.00 ft Fcry= 32.9 ksi,(Section E3 pg 16.1-33) Lby= 3.00 ft Pnx= 197 k,(Section E3 pg 16.1-33) KUr x= 11.65 Pny= 181 k,(Section E3 pg 16.1-33) KUr y= 41.47 Moment Capacity,Chapter F E= 29000 ksi Cb= 1 Fy= 36 ksi Mn.= 46.8 ft-k,(section F2 pg. 16.1-47) d= 8 in Mny= 9.4 ft-k,(section F6 pg.16.1-54) Ag= 5.50 in2 Shear Capacity:Chapter G tf= 0.5 in kvx= 5 (Section G2,pg 16.1-65) bf= 2.98 in kvx= 1.2 (Section G7,pg 16.1-68) tw= 0.353 in Cvx= 1.00 (Section G2,pg 16.1-65) hw= 5.75 in Cvy= 1.00 (Section G2,pg 16.1-65) Zx= 15.6 in3 Awx= 2.82 in2,(Section 05,pg 16.1-68) Zy= 3.72 in3 Awy= 2.98 in2,(Section G5,pg 16.1-68) Sx= 13.1 in3 Vnx= 61.0 k,(Section 08,pg 16.1-68) Sy= 1.95 in3 Vny= 64.4 k,(Section G6,pg 16.1-68) Ix= 52.4 in4 Allowable Capacties: Rn/(2(ASD); Rn*4) (LRFD) I y= 4.15 in4 (ASD) Pc,k Mc,ft-k Vc,k rx= 3.09 in x-axis 108.3 28.0 40.7 ry= 0.868 in y-axis 5.6 42.9 J= 0.38 in4 Interaction Equations: Cw= 45 ins Section is Compact in the flange for flexure Pr/Pc= 0.00 <0.2,Equation H1-1b controls Section is Compact in the flange for compression 0.24 < 1.0 OK Section is Compact in the web for flexure Equation H1-1b,AISC 13 ed.,pg 16.1-70 Section is Compact in the web for compression I Use MC 8X18.7 ' 9570 SW Barbur Blvd Swim Spa Support 141137 . Suite One Hundred Portland,OR 97219 Project Name Project# Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 9 of 32 www.miller-se.com ENGINEERS Wir7Beam Project: Member#2(Inner)-Vertical Load(Allowable) Reactions - kips, kip ft -10.275 -10.275 -0.0187 T 5.188 T 10.361 5.188 Shear - kips ,10.312421 10.312400 Moment - kip ft =20. 631655 10 of 32 Steel Column/Beam Design-AISC 13th Addition Member#2(Inner)-Vertical Load(Allowable) Shape: MC Shape Capacity=0.74 <1.0 Size: 8X18.7 ASD Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 5.50 in2 Mr.= 20.63 ft-k,strong axis moment Q= 1.00 Mry= 0.00 ft-k,weak axis moment Qs= 1.00 (Section E7,pg 16.1-43) Vrx= 10.31 k,strong axis shear Qa= 1.00 (Section E7,pg 16.1-42) Vry= 0.00 k,weak axis shear Fe.= 2108.7 ksi,(Section E3 pg 16.1-33) Kx= 1.00 (Table C-C2.2,pg 16.1-240) Fe = 166.4 ksi,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Fcrx= 35.7 ksi,(Section E3 pg 16.1-33) Lbx= 3.00 ft Fcry= 32.9 ksi,(Section E3 pg 16.1-33) Lby= 3.00 ft Pnx= 197 k,(Section E3 pg 16.1-33) KUr x= 11.65 Pny= 181 k,(Section E3 pg 16.1-33) KUr y= 41.47 Moment Capacity,Chapter F E= 29000 ksi Cb= 1 Fy= 36 ksi Mnx= 46.8 ft-k,(section F2 pg.16.1-47) d= 8 in Mny= 9.4 ft-k,(section F6 pg. 16.1-54) Ag= 5.50 in2 Shear Capacity:Chapter G ff= 0.5 in kvx= 5 (Section G2,pg 16.1-65) bf= 2.98 in kvx= 1.2 (Section G7,pg 16.1-68) tw= 0.353 in Cvx= 1.00 (Section G2,pg 16.1-65) hw= 5.75 in Cvy= 1.00 (Section G2,pg 16.1-65) Zx= 15.6 in3 Awx= 2.82 in2,(Section G5,pg 16.1-68) Zy= 3.72 in3 Awy= 2.98 in2,(Section G5,pg 16.1-68) Sx= 13.1 in3 Vnx= 61.0 k,(Section G6,pg 16.1-68) Sy= 1.95 in3 Vny= 64.4 k,(Section G6,pg 16.1-68) lx= 52.4 in4 Allowable Capacties: Rn/12(ASD);Rn* (LRFD) ly= 4.15 in4 (ASD) Pc,k Mc,ft-k Vc,k rx= 3.09 in x-axis 108.3 28.0 40.7 ry= 0.868 in y-axis 5.6 42.9 J= 0.38 in4 Interaction Equations: Cw= 45 ins Section is Compact in the flange for flexure Pr/Pc= 0.00 <0.2, Equation H1-1b controls Section is Compact in the flange for compression 0.74 < 1.0 OK Section is Compact in the web for flexure Equation H1-1b,AISC 13 ed.,pg 16.1-70 Section is Compact in the web for compression Use MC 8X18.7 . 9570 SW Barbur Blvd Swim Spa Support 141137 - Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd -` A.. Date 02/18/2015 Page 11 of 32 ENGINEERS www.miller-se.com L/irgli-t.- DSzGr- • i" 101.,£ 1, 3, 7 t5 F= (0.Lizg)(ZS,I`i3..c)('Yf) (%-t) '� I I Y = 67`( Lr31 x 0 --- > Pi-LE z 4 t ---- F= (0,cIZ``) (Z5,193s) ( 1/y) ('/t-) 1 = 13 4 g LI>;J 1 10 P7-trE 91, 6 I I F= 60,471)(Z-S,Ig 3,S)( %Z)( ‘/i)- -_ d 0 _ _. q _ 13`q I?f I' eXt✓E S- !- I / f---,' Z' 3' 3' z` F, (0,`•1z$) (7.-S7(9 3 S) ( Y2.)(‘11--) 2,41 6 CliI CH-g.rc aE . *I FofL c.ATE(zi4t•. Loom (CoAozoG 7 x -oz-(2-5trzo•.3) - W, = (5- )(to PSF)O.y2.t )(017) = IS P6F W- _((3,boa ( s)+(19,199 1.(?S))/(2)/0-0 1)(W.))(0,11Z0 = I z. PCP 0, 4 4, 4 4 4 4,WL 4 4 49 1 `^'t I ' /o' /0 r I' (155 'ix`-f )4 .I zs PrOrG p,7( -> _SEC ec 14-15 Fog °ESr6,, GI+ Cic T'Irwna((z #Z Foe. Cat-766th Logi(3 CC-06-0Z AJ G zt-) Y-DXRECTZor-I) r= (7, yqg (AS) /(z) /(z) = I, $$7 (.135 (xNNEIe-) oft P,(I, 'wi La;) /(L) ¶ci I L&J (out7(a 2) GPIs f-- 4-1 F `dl._ 1 f— /04. ...g x/`t.7 TS AAo£Qtket7E 1;5' o,c-' 3' 3 ' as' IV > .SE-E m16-19 FoIZ °ESL'Cr-, S 9570 SW Barbur Blvd Swim Spa Support 141137 Suite One Hundred Project Name Project# Portland,OR 97219 ViLocation 13270 SW Nahcotia Dr•, Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 12 of 32 CONSULTING Fax 503.246.1395 By ALB Ck'd E Date 02/18/2015 Page www.miller-se.com ENGINEERS C t}fck LAt7F:42 At. Anne V E(LT zc,-t. e'-OADZOC f..o rva xlv Co (0•G r) t O.7 E• • Mc•n(SE(L # 1 t' VE2TZcfit y 4 4 t yw� a-3 113 S L6f ' y 4 L Z 4 L W' (L- 9,cg3La1 A a3 hs,= (re Pff) a ') (0.6)- 3o pLF I.Jz= ( (3,tdo cgs) f( 15) 113-S- Las)) (CZ) /(L.')(o.4) = 31S PLF S££ PG 20 M��x T 2,z9Z /c-Fr 14 s££ pG O,9'13- /C tiff I-ix(ix '/Y X-S A-o Ca L,1q--(F s££ PG 21 tt- VEK-rzcA-�.: . I p P k �Y' '" 22 & 24 if j3% tds Cotnrcrz) P= 9, 4,$1 Uf (c,.,Nc,rz) SCE PC CPrr MrnRx = I. (4 IC Ic-rr 16 sFC PC —. VrnAx = 0.9'-IY Ic (Tor--)Sr-) Mr.,oc = Z,$3 lc-Fr 18 SEE (6 V.N P r x = l. 7 k • ML e x Ig.� —� s £ PC 23 & 25 zs An�a�.r�-r E 9570 SW Barbur Blvd Swim Spa Support 141137 - Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 3 of 32 ENGINEERS www.miller-se.com 1iiBeam Project: Member#1 - Lateral Load(Allowable) Reactions - kips, kip ft -0.172 0.015 T 0.315 1'0.629 0.315 Shear - kips 0.942535 -0.942503 Moment - kip ft .292452 `-U.U82854 14 of 32 Steel Column/Beam Design-AISC 13th Addition Member#1 - Lateral Load(Allowable) Shape: HSS Shape Capacity=0.21 <1.0 Size:4X4X1/4 ASD Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 3.37 in2 Mr„= 0.00 ft-k,strong axis moment Qa= 1 (Section E7,pg 16.1-42) • Mry= 2.29 ft-k,weak axis moment Fe„= 45.92 ksi,(Section E3 pg 16.1-33) Vr„= 0.00 k,strong axis shear Fe = 45.92 ksl,(Section E3 pg 16.1-33) Vry= 0.94 k,weak axis shear Fcr„= 30.25 ksi,(Section E3 pg 16.1-33) Tr= 0.00 ft-k,torsional load Fcry= 30.25 ksl,(Section E3 pg 16.1-33) = 1.00 (Table C-C2.2,pg 16.1-240) Pnx= 102 k,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Pny= 102 k,(Section E3 pg 16.1-33) L.= 10.00 ft Moment Capacity,Chapter F Ly= 10.00 ft Seffx= 3.9 in3 Lv= N/A ft,(for round shapes) Seffy= 3.90 in3 KUr x= 78.95 Mn„= 17.98 ft-k,(Section F7pgs 16.1-55,56) KUr y= 78.95 Mny= 17.98 ft-k,(Section F7 pgs 16.1-55,56) E= 29000 ksi Shear Capacity:Chapter G Fy= 46 ksi kv= 5 (Section G5,pg 16.1-68) Ag= 3.37 in` Cv„= 1.00 (Section G2,pg 16.1-65) t= 0.233 in Cvy= 1.00 (Section G2,pg 16.1-65) Z.= 4.69 In' Awx= 1.54 in2,(Section G5,pg 16.1-68) Zy= 4.69 in' Awy= 1.54 in2,(Section G5,pg 16.1-68) S.= 3.9 in' Fcr= N/A ksi,(Section G6,pg 16.1-68) Sy= 3.9 in' Vnx= 42.6 k,(Section G2,pg 16.1-65) = 7.8 in4 Vny= 42.6 k,(Section G2,pg 18.1-65) ly= 7.8 in4 Torsional Capacity:Chapter H r„= 1.52 in Fcr= 27.60 ksi, (Section H3 pg 16.1-75) r = 1.52 in C= 6.56 torsional shear constant ' Section is Compact in the strong axis(x) Tn= 15.1 ft-k,(Section H3 pg 16.1-74) Section is Compact in the weak axis(y) Allowable Capacties: Rn/12(ASD);Rn*4)(LRFD) (ASD) Pc,k Mc,ft-k Vc,k Tc,ft-k x-axis 61.0 10.8 25.5 9.0 y-axis 10.8 25.5 Interaction Equations: Pr/Pc= 0.00 Tr/Tc= 0.21 < 1.0 OK Equation H1-1b,AISC 13 ed.,pg 16.1-70 Use HSS 4X4X114 • . 9570 SW Barbur Blvd Swim Spa Support 141137 - Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd �~- ' Date 02/18/2015 Page 15 of 32 www.miller-se.com ENGINEERS • Mai Zaearn Project: Member#2(Outer)- Lateral Load(Allowable) Reactions - kips, kip ft • -0.944 -0.944 1 1 7377 77377 77377 T 0.629 0.629 0.629 Shear - kips /0.9 4032 -0. 44000 Moment - kip ft .n nnnnnn ` =1.4 51 962 16 of 32 • Steel Column/Beam Design-AISC 13th Addition Member#2(Outer)- Lateral Load(Allowable) Shape: MC Shape Capacity=0.25 <1.0 Size: 8X18.7 ASD Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 5.50 in2 MT„= 0.00 ft-k,strong axis moment Q= 1.00 Mry= 1.42 ft-k,weak axis moment Qs= 1.00 (Section E7,pg 16.1-43) Vrx= 0.00 k,strong axis shear Qa= 1.00 (Section E7,pg 16.1-42) Vry= 0.94 k,weak axis shear Fe,= 2108.7 ksi,(Section E3 pg 16.1-33) Kx= 1.00 (Table C-C2.2,pg 16.1-240) Fey= 166.4 ksi,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Fcrx= 35.7 ksi,(Section E3 pg 16.1-33) Lbx= 3.00 ft Fcry= 32.9 ksi,(Section E3 pg 16.1-33) Lby= 3.00 ft Pnx= 197 k,(Section E3 pg 16.1-33) KUr x= 11.65 Pny= 181 k,(Section E3 pg 16.1-33) KUr y= 41.47 Moment Capacity,Chapter F E= 29000 ksi Cb= 1 Fy= 36 ksi Mnx= 46.8 ft-k,(section F2 pg.16.1-47) d= 8 in Mn.,= 9.4 ft-k,(section F6 pg.16.1-54) Ag= 5.50 in2 Shear Capacity:Chapter G ff= 0.5 in kvx= 5 (Section G2,pg 16.1-65) bf= 2.98 in kvx= 1.2 (Section G7,pg 16.1-68) tW= 0.353 in Cvx= 1.00 (Section G2,pg 16.1-65) hw= 5.75 in Cvy= 1.00 (Section G2,pg 16.1-65) Zx= 15.6 in3 Awx= 2.82 in2,(Section G5,pg 16.1-68) Zy= 3.72 in3 Awy= 2.98 in2,(Section 05,pg 16.1-68) Sx= 13.1 in3 Vnx= 61.0 k,(Section G6,pg 16.1-68) Sy- 1.95 in3 Vny= 64.4 k,(Section G6,pg 16.1-68) = Ix= 52.4 in4 Allowable Capacties: Rn/12(ASD);Rn* (LRFD) Iy= 4.15 in4 (ASD) Pc,k Mc,ft-k Vc,k rx= 3.09 in x-axis 108.3 28.0 40.7 r = 0.868 in y-axis 5.6 42.9 J= 0.38 in4 Interaction Equations: Cw= 45 in6 Section is Compact in the flange for flexure Pr/Pc= 0.00 <0.2,Equation H1-lb controls Section is Compact in the flange for compression 0.25 < 1.0 OK Section is Compact in the web for flexure Equation H1-1b,AISC 13 ed.,pg 16.1-70 Section is Compact in the web for compression I Use MC 8X18.7 . 9570 SW Barbur Blvd Swim Spa Support 141137 . Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 17 of 32 www.miller-se.com ENGINEERS roject: Member#2(Inner)- Lateral Load(Allowable) actions - kips, kip ft -1.887 -1.887 ,73,7 77377 J. I T T T 1.258 1.258 1.258 ear - kips A..8P7013 -1 . 887000 ment - kip ft fr 18 of 32 Steel Column/Beam Design-AISC 13th Addition Member#2(Inner)- Lateral Load(Allowable) Shape: MC Shape Capacity=0.5 <1.0 Size: 8X18.7 ASD Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 5.50 in2 Mr.= 0.00 ft-k,strong axis moment Q= 1.00 ' Mry= 2.83 ft-k,weak axis moment Qs= 1.00 (Section E7,pg 16.1-43) Vrx= 0.00 k,strong axis shear Qa= 1.00 {Section E7,pg 16.1-42) Vry= 1.89 k,weak axis shear Fe.= 2108.7 ksi,(Section E3 pg 16.1-33) ' K.= 1.00 (Table C-C2.2,pg 16.1-240) Fey= 166.4 ksi,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Fcrx= 35.7 ksi,(Section E3 pg 16.1-33) Lbx= 3.00 ft Fcry= 32.9 ksi,(Section E3 pg 16.1-33) Lby= 3.00 ft Prix= 197 k,(Section E3 pg 16.1-33) KL/r x= 11.65 Pny= 181 k,(Section E3 pg 16.1-33) KL/r y= 41.47 Moment Capacity,Chapter F E= 29000 ksi Cb= 1 Fy= 36 ksi Mn.= 46.8 ft-k,(section F2 pg. 16.1-47) d= 8 in Mny= 9.4 ft-k,(section F6 pg.16.1-54) Ag= 5.50 in2 Shear Capacity:Chapter G ff= 0.5 in kvx= 5 (Section G2,pg 16.1-65) bf= 2.98 in kvx= 1.2 (Section G7,pg 16.1-68) tw= 0.353 in Cvx= 1.00 (Section G2,pg 16.1-65) hw= 5.75 in Cvy= 1.00 (Section G2,pg 16.1-65) Zx= 15.6 in3 Awx= 2.82 in2,(Section G5,pg 16.1-68) Zy= 3.72 in3 Awy= 2.98 in2,(Section G5,pg 16.1-68) S.= 13.1 in3 Vnx= 61.0 k,(Section 06,pg 16.1-68) Sy= 1.95 in3 Vny= 64.4 k,(Section G6,pg 16.1-68) Ix= 52.4 in4 Allowable Capacties: Rn/0(ASD);Rn*4)(LRFD) I Y= 4.15 in4 (ASD) Pc,k Mc,ft-k Vc,k rx= 3.09 in x-axis 108.3 28.0 40.7 ry= 0.868 in y-axis 5.6 42.9 J= 0.38 in4 Interaction Equations: Cw= 45 ins Section is Compact in the flange for flexure Pr/Pc= 0.00 <0.2,Equation H1-lb controls Section is Compact in the flange for compression 0.50 <1.0 OK I Section is Compact in the web for flexure Equation H1-lb,AISC 13 ed.,pg 16.1-70 Section is Compact in the web for compression I Use MC 8X18.7 1 F ' 9570 SW Barbur Blvd Swim Spa Support 141137 Suite One Hundred Project Name Project# Portland,OR 97219 MkLocation 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 02/18/2015 19 of 32 CONSULTING Fax 503.246.1395 By ALB Ck'd ^J Date Page www.miller-se.com ENGINEERS Nal7Beam Project: Member#1- Vertical Load(0.6)(Allowable) Reactions - kips, kip ft -0.345 --- ---717! -0.03 7 A T 1.438 T 4.683 1.438 Shear - kips 2.341500 �-2.341500 Moment - kip ft L2,630090 -4.680000 20 of 32 Steel Column/Beam Design-AISC 13th Addition Member#1 - Vertical+Lateral Load(0.6D+0.7E)(Allowable) Shape: HSS Shape Capacity=0.65 <1.0 Size:4X4X1/4 ASD Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 3.37 in2 Mrx= 4.68 ft-k,strong axis moment Qa= 1 (Section E7,pg 16.1-42) Mry= 2.29 ft-k,weak axis moment Fex= 45.92 ksi,(Section E3 pg 16.1-33) Vrx= 2.34 k,strong axis shear Fey= 45.92 ksi,(Section E3 pg 16.1-33) Vry= 0.94 k,weak axis shear Fcrx= 30.25 ksi,(Section E3 pg 16.1-33) Tr= 0.00 ft-k,torsional load Fcr,,= 30.25 ksi,(Section E3 pg 16.1-33) Kx= 1.00 (Table C-C2.2,pg 16.1-240) Pnx= 102 k,(Section E3 pg 16.1-33) Ky 1.00 (Table C-C2.2,pg 16.1-240) Pny= 102 k,(Section E3 pg 16.1-33) Lx= 10.00 ft Moment Capacity,Chapter F Ly= 10.00 ft Seffx= 3.9 in Lv= N/A ft,(for round shapes) Seff = 3.90 in3 KUr x= 78.95 Mnx= 17.98 ft-k,(Section F7 pgs 16.1-55,56) KUr y= 78.95 Mny= 17.98 ft-k,(Section F7 pgs 16.1-55,56) E= 29000 ksi Shear Capacity:Chapter G Fy= 46 ksi kv= 5 (Section G5,pg 16.1-68) Ag= 3.37 in` Cv, = 1.00 (Section G2,pg 16.1-65) t= 0.233 in Cvy= 1.00 (Section G2,pg 16.1-65) Zx= 4.69 in3 Awx= 1.54 in',(Section G5,pg 16.1-68) Zy= 4.69 in' Awy= 1.54 in2,(Section G5,pg 16.1-68) Sx= 3.9 in' Fcr= N/A ksi,(Section G6,pg 16.1-68) Sy= 3,9 ins Vnx= 42.6 k,(Section G2,pg 16.1-65) Ix= 7.8 in4 Vny= 42.6 k,(Section G2,pg 16.1-65) ly= 7.8 in4 Torsional Capacity:Chapter H rx= 1.52 in Fcr= 27.60 ksi, (Section H3 pg 16.1-75) r = 1.52 in C= 6.56 torsional shear constant Section is Compact in the strong axis(x) Tn= 15.1 ft-k,(Section H3 pg 16.1-74) Section is Compact in the weak axis(y) Allowable Capacties: Rn/1 (ASD);Rn*4 (LRFD) (ASD) Pc,k Mc,ft-k Vc,k Tc,ft-k x-axis 61.0 10.8 25.5 9.0 y-axis _ 10.8 25.5 Interaction Equations: Pr/Pc= 0.00 Tr/Tc= 0.65 <1.0 OK Equation H1-1b,AISC 13 ed.,pg 16.1-70 Use HSS 4X4X1/4 . 9570 SW Barbur Blvd Swim Spa Support 141137 . Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 ( ; 02/18/2015 21 of 32 CONSULTING Fax 503.246.1395 By ALB Ck'd I 1 Date Page www.miller-se.com ENGINEERS 14/, Beam Project: Member#2(Outer)-Vertical Load(0.6)(Allowable) Reactions - kips, kip ft • -1.438 -1.438 -0.0187 JI• T 0.747 1.494 0.747 Shear - kips .1 .460473 1.460440 Moment - kip ft 0 00000_ -2.931975 22 of 32 Steel Column/Beam Design-AISC 13th Addition Member#2(Outer)-Vertical+Lateral Load(0.6D+0.7E)(Allowable) Shape: MC Shape Capacity=0.36 <1.0 Size: 8X18.7 ASD Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 5.50 in2 Mr„= 2.93 ft-k,strong axis moment Q= 1.00 Mry= 1.42 ft-k,weak axis moment Qs= 1.00 (Section E7,pg 16.1-43) Vrx= 1.46 k,strong axis shear Qa= 1.00 (Section E7,pg 16.1-42) Vry= 0.94 k,weak axis shear Fe„= 2108.7 ksi,(Section E3 pg 16.1-33) Kx= 1.00 (Table C-C2.2,pg 16.1-240) Fe = 166.4 ksl,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Fcrx= 35.7 ksi,(Section E3 pg 16.1-33) Lbx= 3.00 ft Fcr = 32.9 ksi,(Section E3 pg 16.1-33) Lby= 3.00 ft Pnx= 197 k,(Section E3 pg 16.1-33) KL/r x= 11.65 Pny= 181 k,(Section E3 pg 16.1-33) KL/r y= 41.47 Moment Capacity,Chapter F E= 29000 ksi Cb= 1 Fy= 36 ksi Mn„= 46.8 ft-k,(section F2 pg.16.1-47) d= 8 in Mny= 9.4 ft-k,(section F6 pg.16.1-54) Ag= 5.50 in2 Shear Capacity:Chapter G tf= 0.5 in kvx= 5 (Section G2,pg 16.1-65) bf= 2.98 in kvx= 1.2 (Section G7,pg 16.1-68) tw= 0.353 in Cvx= 1.00 (Section G2,pg 16.1-65) hw= 5.75 in Cvy= 1.00 (Section G2,pg 16.1-65) Z x= 15.6 in3 Awx= 2.82 in2,(Section G5,pg 16.1-68) Zy= 3.72 in3 Awy= 2.98 in2,(Section G5,pg 16.1-68) S x= 13.1 in3 Vnx= 61.0 k,(Section G6,pg 16.1-68) S r= 1.95 in3 Vny= 64.4 k,(Section G6,pg 16.1-68) Ix= 52.4 in4 Allowable Capacties: Rn/0(ASD);Rn* (LRFD) I r= 4.15 in4 (ASD) Pc,k Mc,ft-k Vc,k rx= 3.09 in x-axis 108.3 28.0 40.7 ry= 0.868 in y-axis 5.6 42.9 J= 0.38 in4 Interaction Equations: Cw= 45 in6 Section is Compact in the flange for flexure Pr/Pc= 0.00 <0.2,Equation H1-lb controls Section is Compact in the flange for compression 0.36 < 1.0 OK Section is Compact in the web for flexure Equation H1-1b,AISC 13 ed.,pg 16.1-70 Section is Compact in the web for compression I Use MC 8X18.7 . 9570 SW Barbur Blvd Swim Spa Support 141137 - Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd ' \J Date 02/18/2015 Page 23 of 32 www.miller-se.com ENGINEERS 144, Seam Project: Member#2(Inner)-Vertical Load(0.6)(Allowable) Reactions - kips, kip ft -4.683 -4.683 -0.0187 2.37 4.737 2.37 Shear - kips ,4.7C5461 4.705440 Moment - kip ft 0 000000 -9.419416 24 of 32 Steel Column/Beam Design-AISC 13th Addition Member#2(Outer)-Vertical+Lateral Load(0.6D+0.7E)(Allowable) Shape: MC Shape Capacity=0.84 <1.0 Size: 8X18.7 ASD Axial Capacity,Chapter E Pr= 0.00 k,axial compression load Aeff= 5.50 in2 Mr.= 9.42 ft-k,strong axis moment Q= 1.00 Mry= 2.83 ft-k,weak axis moment Qs= 1.00 (Section E7,pg 16.1-43) Vrx= 4.71 k,strong axis shear Qa= 1.00 (Section E7,pg 16.1-42) Vry= 1.89 k,weak axis shear Fe.= 2108.7 ksi,(Section E3 pg 16.1-33) Kx= 1.00 (Table C-C2.2,pg 16.1-240) Fey= 166.4 ksi,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Fcrx= 35.7 ksi,(Section E3 pg 16.1-33) Lbx= 3.00 ft Fcr = 32.9 ksi,(Section E3 pg 16.1-33) Lby= 3.00 ft Pnx= 197 k,(Section E3 pg 16.1-33) KUr x= 11.65 Pny= 181 k,(Section E3 pg 16.1-33) KUr y= 41.47 Moment Capacity,Chapter F E= 29000 - ksi Cb= 1 Fy= 36 ksi Mnx= 46.8 ft-k,(section F2 pg.16.1-47) d= 8 in Mn = 9.4 ft-k,(section F6 pg.16.1-54) Ag= 5.50 in2 Shear Capacity:Chapter G tf= 0.5 in kvx= 5 (Section G2,pg 16.1-65) bf= 2.98 in kvx= 1.2 (Section G7,pg 16.1-68) tw= 0.353 in Cvx= 1.00 (Section G2,pg 16.1-65) hw= 5.75 in Cvy= 1.00 (Section G2,pg 16.1-65) Zx= 15.6 in3 Awx= 2.82 in2,(Section G5,pg 16.1-68) Zy= 3.72 in3 Awy= 2.98 in2,(Section G5,pg 16.1-68) Sx= 13.1 in3 Vnx= 61.0 k,(Section G6,pg 16.1-68) Sy= 1.95 in3 Vn = 64.4 k,(Section G6,pg 16.1-68) Ix= 52.4 in4 Allowable Capacties: Rn/0(ASD);Rn*4) (LRFD) I r= 4.15 in4 (ASD) Pc,k Mc,ft-k Vc,k rx= 3.09 in x-axis 108.3 28.0 40.7 ry= 0.868 in y-axis 5.6 42.9 J= 0.38 in4 Interaction Equations: Cw= 45 ins Section is Compact in the flange for flexure Pr/Pc= 0.00 <0.2, Equation H1-lb controls Section is Compact in the flange for compression 0.84 <1.0 OK Section is Compact in the web for flexure Equation H1-1b,AISC 13 ed.,pg 16.1-70 Section is Compact in the web for compression I Use MC 8X18.7 . 9570 SW Barbur Blvd Swim Spa Support 141137 . Suite One Hundred Project Name Project# Portland,OR 97219 gib Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 25 of 32 www.miller-se.com ENGINEERS rzo tvAc/47- = ►,L le-= I.z- '✓ER e70 1,3, 7 red LA-7- VER..T 1,4� = I,8"Sz La/ CO' IS" red LA-7- LoAro = ( 67 K LQJ) LCJ H I ►tit-( Lss)(K')/(Z) + (I, gs2 La/) (9') (,s�))/C2) t 3 4 F1 LIS , , , V= y7 z Lai ( 1/ SS5"t. Lv)/(t.sC IT-°)) �- ( 6711 Laf)/ (5z,, (I s•°)) = K,52- L ?J use C' Sc H '-f o P -er Su Wo,CT --- SSE PG 28 2 °C/z 6N) rz L Et Veft-r l oAQ = 3,"z.o Le I pl..= 0 LA✓r Low = (117 Lt Lfrx )(6,7)_ Tic/ LQS M ( 9 LIt( Las) ( `l) /(.z) 1,tsq F (4J • v- '9 Lf3/ C 3 2.r) LA/1 Nu e7-ec Sueeo2T `-> SEE f 29 Fore- DC el--0 it 46 VC2 r LoAn = 5` 57) I L(S I L T c.0 Pro _ (I) c6 r) (0,7) _ `Pig t j t,ej 64= ( ' 'i i L&) (ti') (S,3-4l cos) ("r') (ter\ ( in ) /C?) / V6 g r 7-�35 uot; q'' Sc Liu PZee suePoRr v= S (4'1 re) 1-> Sc‘ pG 30 it oe sZ G N L= (c c f t_QS) /(Loso ) f (944 Los)/ (sxsJClr)) 1,'for c9) ' 9570 SW Barbur Blvd Swim Spa Support 14113T Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 26 of 32 www.miller-se.com ENGINEERS • 97 1.E s- • VE127 LoAra = `y, 6 tS Le.r o° L- LoPcD _ ("z-,616 Las)(o.-7)= 1, gg7 Lr M= ( 1)%q-7 LtrS, (-1') /(v) ,71'4 pr (4D V= I `dg7 L(!J C.= dI, 61s Lai use_ Li " Sctf vO 1°zeO smePo LT -''SG6 PG `i1 Fog- PC1 LGri Gon�NGC-TZo1.J 17EJ? J y r�Z t Vr"A,K= l,$87 Lai - - - -- - - — - - -- - Crinpoc - � 4ts O -I wlO MEF_!a. 6 ' r1.1 Mp,x FT = y,�6tf —LYJ '1� ���1 I I p I STEEL pLFtIF: ill1110111I CM-ECI�- 130(X} : (DOv,eLE sfr ic2' rAc.maca. e x t., pz t-E $%7 Lai•) + (°+ biS tec))/(z) Wt., i- ( 9,86g t T-caj /(6" rz z M �i rsAx 7HH L(3S CmAx u5E- (Z-) I" V q -r+�t.� ao�Tr - SEE P 6 3 2 ff0/t occz C I+Ectc Vt.Pri cif tvleovrE ` ( I) <‘s1 cr15) CIS")/(Z)/( 2 pc rrrCI 2 12-3 Zr.-) —CV/ /1101-w..ow = (36,,oQO rim) (%`•)(0.25")"/(`t)/(I.47,= '�j (01S- z ■– J s? 2,I7,3 ZN-COJ Ltc (Z) Y'/z r x4" x Icy kr-►zFE (jjrcI et 9570 SW Barbur Blvd Swim Spa Support Project# 141137 Suite One Hundred Project Name Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 �— CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 27 of 32 www.milier-se.com ENGINEERS • Steel Column/Beam Design-AISC 13th Addition Shape: PIPE Shape Capacity=0.31 <1.0 Size: 4 SCH40 ASD Axial Capacity,Chapter E Pr= 4.52 k,axial compression load Aeff= N/A in2 Mr.= 1.94 ft-k,strong axis moment Qa= 1 (Section E7,pg 16.1-43) Mry= 0.00 ft-k,weak axis moment Fe.= 283.25 ksi,(Section E3 pg 16.1-33) Vrx= 0.47 k,strong axis shear Fey= 283.25 ksi,(Section E3 pg 16.1-33) Vry= 0.00 k,weak axis shear Fcr.= 33.24 ksi,(Section E3 pg 16.1-33) Tr= 0.00 ft-k,torsional load Fcr = 33.24 ksi,(Section E3 pg 16.1-33) Kx= 1.00 (Table C-C2.2,pg 16.1-240) Pnx= 99 k,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Pn = 99 k,(Section E3 pg 16.1-33) LX= 4.00 ft Moment Capacity,Chapter F Ly= 4.00 ft Seffx= N/A in Lv= 4.00 ft,(for round shapes) Seff = N/A in3 KL/r x= 31.79 Mnx= 11.81 ft-k,(Section F8 pgs 16.1-56) KLh y= 31.79 Mny= 11.81 (ft-k,Section F8 pgs 16.1-56) E= 29000 ksi Shear Capacity:Chapter G Fy= 35 ksi kv= N/A (Section G5,pg 16.1-68) Ag= 2.97 In Cvx= N/A (Section G2,pg 16.1-65) t= 0.221 in Cvy= N/A (Section G2,pg 16.1-65) Zx= 4.05 in' Awx= N/A in',(Section G5,pg 16.1-68) Zy= 4.05 in' Awy= N/A in',(Section 05,pg 16.1-68) Sx= 3.03 in Fcr= 21.00 ksi,(Section G6,pg 16.1-68) Sy= 3.03 in3 Vnx= 31.2 k,(Section G6,pg 16.1-68) Ix= 6.82 in4 Vny= 31.2 k,(Section G6,pg 16.1-68) ly= 6.82 in4 Torsional Capacity:Chapter H rx= 1.51 in Fcr= 21.00 ksi, (Section H3 pg 16.1-74) ry= 1.51 in C= 6.36 torsional shear constant Section is Compact for uniform compression Tn= 11.1 ft-k,(Section H3 pg 16.1-74) • Section is Compact for flexure Allowable Capacties: Rn/ (ASD);Rn* (LRFD) (ASD) Pc,k Mc,ft-k Vc,k Tc,ft-k x-axis 59.1 7.1 18.7 6.7 y-axis 7.1 18.7 Interaction Equations: Pr/Pc= 0.08 Tr/Tc= 0.31 <1.0 OK Equation H1-1b,AISC 13 ed.,pg 16.1-70 Use PIPE 4 SCH40 I 9570 SW Barbur Blvd Swim Spa Support 141137 - - Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 r~ CONSULTING Fax 503.246.1395 By ALB Ck'dM1 Date 02/18/2015 Page 28 of 32 www.miller-se.com ENGINEERS Steel Column/Beam Design-AISC 13th Addition Shape: PIPE Shape Capacity=0.29 <1.0 Size: 4 SCH40 ASD Axial Capacity,Chapter E Pr= 3.21 k,axial compression load Aeff= N/A in2 Mr„= 1.89 ft-k,strong axis moment Qa= 1 (Section E7,pg 16.1-43) Mry= 0.00 ft-k,weak axis moment Fe.= 283.25 ksi,(Section E3 pg 16.1-33) Vrx= 0.94 k,strong axis shear Fe = 283.25 ksi,(Section E3 pg 16.1-33) Vry= 0.00 k,weak axis shear Fcrx= 33.24 ksi,(Section E3 pg 16.1-33) Tr= 0.00 ft-k,torsional load Fcr = 33.24 ksi,(Section E3 pg 16.1-33) Kx= 1.00 (Table C-C2.2,pg 16.1-240) Pnx= 99 k,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Pn = 99 k,(Section E3 pg 16.1-33) Lx= 4.00 ft Moment Capacity,Chapter F Ly= 4.00 ft Seffx= N/A in3 Lv= 4.00 ft,(for round shapes) Seff = N/A in3 KUr x= 31.79 Mn.= 11.81 ft-k,(Section F8 pgs 16.1-56) KUr y= 31.79 Mny= 11.81 (ft-k,Section F8 pgs 16.1-56) E= 29000 ksi Shear Capacity:Chapter G Fy= 35 ksi kv= N/A (Section G5,pg 16.1-68) Ag= 2.97 In` Cvx= N/A (Section G2,pg 16.1-65) t= 0.221 in Cvy= N/A (Section G2,pg 16.1-65) Zx= 4.05 in' Awx= N/A in2,(Section G5,pg 16.1-68) Zy= 4.05 in' Aw = N/A in2,(Section G5,pg 16.1-68) Sx= 3.03 in Fcr= 21.00 ksi,(Section G6,pg 16.1-68) Sy= 3.03 in Vnx= 31.2 k,(Section G6,pg 16.1-68) Ix= 6.82 in4 Vny= 31.2 k,(Section G6,pg 16.1-68) ly= 6.82 in4 Torsional Capacity:Chapter H rx= 1.51 in Fcr= 21.00 ksi,(Section H3 pg 16.1-74) ry= 1.51 in C= 6.36 torsional shear constant Section is Compact for uniform compression Tn= 11.1 ft-k,(Section H3 pg 16.1-74) Section is Compact for flexure Allowable Capacties: Rn/12(ASD);Rn*4(LRFD) (ASD) Pc,k Mc,ft-k Vc,k Tc,ft-k x-axis 59.1 7.1 18.7 6.7 y-axis 7.1 18.7 Interaction Equations: Pr/Pc= 0.05 TrfTc= 0.29 <1.0 OK Equation H1-1b,AISC 13 ed.,pg 16.1-70 Use PIPE 4 SCH40 ' 9570 SW Barbur Blvd Swim Spa Support 141137 . Suite One Hundred Portland,OR 97219 Project Name Project# Location 13270 SW Nahcotia Dr.,Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 29 of 32 www.miller-se.com ENGINEERS Steel Column/Beam Design-AISC 13th Addition Shape: PIPE Shape Capacity=0.77 <1.0 Size: 4 SCH40 ASD Axial Capacity,Chapter E Pr= 9.41 k,axial compression load Aeff= N/A in2 Mrx= 4.87 ft-k,strong axis moment Oa= 1 (Section E7,pg 16.1-43) Mry= 0.00 ft-k,weak axis moment Fex= 283.25 ksi,(Section E3 pg 16.1-33) Vrx= 0.94 k,strong axis shear Fe = 283.25 ksi,(Section E3 pg 16.1-33) Vry= 0.00 k,weak axis shear Fcrx= 33.24 ksi,(Section E3 pg 16.1-33) Tr= 0.00 ft-k,torsional load Fcr.,= 33.24 ksi,(Section E3 pg 16.1-33) Kx= 1.00 (Table C-C2.2,pg 16.1-240) Pnx= 99 k,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Pny= 99 k,(Section E3 pg 16.1-33) Lx= 4.00 ft Moment Capacity,Chapter F Ly= 4.00 ft Seffx N/A in3 Lv= 4.00 ft,(for round shapes) Seffy= N/A in3 KL/r x= 31.79 Mnx= 11.81 ft-k,(Section F8 pgs 16.1-56) KUr y= 31.79 Mny= 11.81 (ft-k,Section F8 pgs 16.1-56) E= 29000 ksi Shear Capacity:Chapter G Fy= 35 ksi kv= N/A (Section 05,pg 16.1-68) Ag= 2.97 in` Cvx= N/A (Section G2,pg 16.1-65) t= 0.221 in Cvy= N/A (Section G2,pg 16.1-65) Z.= 4.05 in' Awx= N/A in2,(Section 65,pg 16.1-68) Zy= 4.05 ins Awy= N/A in2,(Section 65,pg 16.1-68) S.= 3.03 in3 Fcr= 21.00 ksi,(Section G6,pg 16.1-68) Sy= 3.03 in3 Vnx= 31.2 k,(Section G6,pg 16.1-68) Ix= 6.82 in4 Vny= 31.2 k,(Section 06,pg 16.1-68) ly= 6.82 in4 Torsional Capacity:Chapter H rx= 1.51 in Fcr= 21.00 ksi, (Section H3 pg 16.1-74) ry= 1.51 in C= 6.36 torsional shear constant Section is Compact for uniform compression Tn= 11.1 ft-k,(Section H3 pg 16.1-74) - Section is Compact for flexure Allowable Capacties: Rn/t1(ASD); Rn* (LRFD) (ASD) Pc,k Mc,ft-k Vc,k Tc,ft-k x-axis 59.1 7.1 18.7 6.7 y-axis 7.1 18.7 Interaction Equations: Pr/Pc= 0.16 Tr/Tc= 0.77 < 1.0 OK Equation H1-1b,AISC 13 ed.,pg 16.1-70 Use PIPE 4 SCH40 ' 9570 SW Barbur Blvd Swim Spa Support 141137- - Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 yr.. CONSULTING Fax 503.246.1395 By ALB Ck'd t V N-) Date 02/18/2015 Page 30 of 32 ENGINEERS www.miller-se.com Steel Column/Beam Design-AISC 13th Addition Shape: PIPE Shape Capacity=0.61 <1.0 Size: 4 SCH40 • ASD Axial Capacity,Chapter E Pr= 9.62 k,axial compression load Aeff= N/A in2 Mr„= 3.77 ft-k,strong axis moment Qa= 1 (Section E7,pg 16.1-43) Mry= 0.00 ft-k,weak axis moment Fe„= 283.25 ksi,(Section E3 pg 16.1-33) Vr„= 1.89 k,strong axis shear Fe = 283.25 ksi,(Section E3 pg 16.1-33) Vry= 0.00 k,weak axis shear Fcr„= 33.24 ksi,(Section E3 pg 16.1-33) Tr= 0.00 ft-k,torsional load Fcr,= 33.24 ksi,(Section E3 pg 16.1-33) K„= 1.00 (Table C-C2.2,pg 16.1-240) Pn„= 99 k,(Section E3 pg 16.1-33) Ky= 1.00 (Table C-C2.2,pg 16.1-240) Pny= 99 k,(Section E3 pg 16.1-33) L„= 4.00 ft Moment Capacity,Chapter F Ly= 4.00 ft Seffx= N/A ins Lv= 4.00 ft,(for round shapes) Seff = N/A ha KUr x= 31.79 Mn„= 11.81 ft-k,(Section F8 pgs 16.1-56) KUr y= 31.79 Mny= 11.81 (ft-k,Section F8 pgs 16.1-56) E= 29000 ksi Shear Capacity:Chapter G Fy= 35 ksi kv= N/A (Section G5,pg 16.1-68) Ag= 2.97 ins Cv„= N/A (Section G2,pg 16.1-65) t= 0.221 in Cvy= N/A (Section G2,pg 16.1-65) Z„= 4.05 in ' Aw„= N/A in2,(Section 05,pg 16.1-68) Zy= 4.05 in' Awy= N/A in2,(Section G5,pg 16.1-68) S„= 3.03 in Fcr= 21.00 ksi,(Section G6,pg 16.1-68) Sy= 3.03 in'' Vn„= 31.2 k,(Section G6,pg 16.1-68) I„= 6.82 in4 Vny= 31.2 k,(Section G6,pg 16.1-68) ly= 6.82 in4 Torsional Capacity:Chapter H r„= 1.51 in Fcr= 21.00 ksi,(Section H3 pg 16.1-74) ry= 1.51 in C= 6.36 torsional shear constant • Section is Compact for uniform compression Tn= 11.1 ft-k, (Section 1-13 pg 16.1-74) Section is Compact for flexure Allowable Capacties: Rn/Q(ASD);Rn* (LRFD) (ASD) Pc,k Mc,ft-k Vc,k Tc,ft-k x-axis 59.1 7.1 18.7 6.7 y-axis 7.1 18.7 Interaction Equations: Pr/Pc= 0.16 Tr/Tc= 0.61 <1.0 OK Equation H1-1b,AISC 13 ed.,pg 16.1-70 Use PIPE 4 SCH40 9570 SW Barbur Blvd Swim Spa Support 141137 - Suite One Hundred Project Name Project# Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 31 of 32 www.miller-se.com ENGINEERS Steel Fastener Design -AISC 13th Addition Type: Bolt Grade: A307 Threads are included in the shear plane Diameter: 1 in Loading: ASD T= 0.00 k, tension V= 7.74 k,shear A= 0.785 in2 dr= 0.865 in ft= 0 ksi =0/0.785 N= 9.9 ksi =7.74/0.785 n= 0.5 Fastener Capacity Summary: Fnt= 45 ksi, Table J3.2 Fnv=_ 24 ksi, Table J3.2 Tc= 17.66 k=45 *0.785* 0.5 Vc= 9.42 k=24 *0.785* 0.5 ft/(Fnt*0.5)= 0.00 <20%, effects of combined stresses need not be investigated fv/(Fnv*0.5)= 0.83 < 1.0 OK Combined effects are not applicable. F'nt= N/A ksi, Eq. J3-3, page 16.1-109 T'c= N/A k, reduced tension capacity rU—se 1" diameter A307 bolt Bearing Strength at Fastener Holes: (J3.10, pg 16.1-111) t=I 0.250 (in2 Deformation at hole is not acceptable at service load Standard hole size Box or HSS member? No Fu = 58 ksi Fy=_ 36 ksi Lc= 1 in Rn = 17.40 k Rc= 8.70 k = 17.4*0.5 7.74k< 8.7k OK . 9570 SW Barbur Blvd Swim Spa Support Project# 141137 . suite One Hundred Project Name Portland,OR 97219 Location 13270 SW Nahcotia Dr., Tigard, OR MILLER Client Mitchell NW Phone 503.246.1250 CONSULTING Fax 503.246.1395 By ALB Ck'd Date 02/18/2015 Page 32 of 32 ENGINEERS www.miller-se.com RECEIVED - - GeoPaclflc MAR 3 2015 Engineering.Inc. CITY OF TIGARD Real-World Geotechnical Solutions BUILDING DIVISstigation • Design • Construction Support February 12, 2015 GeoPacific Project No. 15-3665 Chuck Mitchell Mitchell NW General Contracting, Inc. 1000 E 2nd Street Yamhill, OR 97148 Phone: (503) 502-3111 Via email with hard copies mailed SUBJECT: GEOTECHNICAL ENGINEERING REPORT 13270 SW NAHCOTTA DRIVE TIGARD, OREGON This report presents the results of a geotechnical exploration conducted by GeoPacific Engineering, Inc. (GeoPacific) for the above-referenced project. The purpose of our work was to evaluate subsurface conditions at the site and provide recommendations for construction. This geotechnical study was performed in accordance with GeoPacific Proposal No. P-5064 dated January 6, 2015, and your subsequent authorization of our proposals and General Conditions for Geotechnical Services. SITE DESCRIPTION AND BACKGROUND The subject site is approximately 9,600 square feet in size and is located on the north side of SW Nahcotta Drive in the City of Tigard, Washington County, Oregon. A single family residence is present in the south and central portions of the site, with a two-level deck on the north side of the residence. The first floor level of the deck has recently been extended to the north and is supported by wood columns bearing on shallow foundations. Topography on the site generally slopes down to the north at grades of less than about 25 percent. However, topography to the north of the existing deck slopes down at grades of up to about 40 percent. It is our understanding that plans for project development involve the construction of a new metal frame to support a swim spa on the north side of the existing deck. The swim spa is to be elevated to the level of the existing deck. Based on consultation with the structural engineer and the earthwork subcontractor, we assume that the structure supporting the swim spa will incorporate piles foundation elements. We understand that the swim spa weighs 3,800 pounds and holds 2,300 gallons of water (19,000 pounds). Based on information provided by the structural engineer, the total weight to be supported by the piles is approximately 24,000 pounds. 14835 SW 72"d Avenue Tel (503) 598-8445 Portland, Oregon 97224 Fax (503) 941-9281 February 12, 2015 GeoPacific Project No. 15-3665 REGIONAL GEOLOGY Regionally, the subject site lies within the Willamette Valley/Puget Sound lowland, a broad structural depression situated between the Coast Range on the west and the Cascade Range on the east. A series of discontinuous faults subdivide the Willamette Valley into a mosaic of fault- bounded, structural blocks (Yeats et al., 1996). Uplifted structural blocks form bedrock highlands, while down-warped structural blocks form sedimentary basins. Regional geologic information for the site area indicates that the ground surface is underlain by wind-blown loess of the middle Pliocene age (about 2 to 12 million years ago) identified as the Portland Hills Silt. This unit generally consists of massive, structureless, quartzo-feldspathic silt that mantles the Portland Hills and surrounding area (Phillips, 1987). Underlying the Portland Hills Silt is Miocene age (about 14.5 to 16.5 million years ago) Columbia River Basalt (Madin, 1990; Beeson et al., 1989). The subject site is located on the northeastern flank of Bull Mountain, which was formed by uplifted Columbia River Basalt of Miocene age. The Columbia River Basalt is a thick sequence of lava flows that form a dense, finely crystalline rock commonly fractured along blocky and columnar vertical joints. Individual basalt flow units typically range from 25 to 125 feet thick and interflow zones are typically vesicular, scoriaceous, and brecciated, and sometimes include sedimentary rock. REGIONAL SEISMIC SETTING At least three major fault zones capable of generating damaging earthquakes are thought to exist in the vicinity of the subject site. These include the Portland Hills Fault Zone, the Gales Creek- Newberg-Mt. Angel Structural Zone, and the Cascadia Subduction Zone. Portland Hills Fault Zone The Portland Hills Fault Zone is a series of NW-trending faults that include the central Portland Hills Fault, the western Oatfield Fault, and the eastern East Bank Fault. These faults occur in a northwest-trending zone that varies in width between 3.5 and 5.0 miles. The Portland Hills Fault occurs along the Willamette River at the base of the Portland Hills, and is about 13 miles northeast of the site. The Oatfield Fault, as mapped in the literature (see Figure 1), is located about 7 miles northeast of the site; however, the accuracy of the fault mapping is stated to be within 500 meters (Wong, et al, 2000). The combined three faults vertically displace the Columbia River Basalt by 1,130 feet and appear to control thickness changes in late Pleistocene (approx. 780,000 years) sediment (Madin, 1990). Geomorphic lineaments suggestive of Pleistocene deformation have been identified within the fault zone, but none of the fault segments have been shown to cut Holocene (last 10,000 years) deposits (Balsillie and Benson, 1971; Cornforth and Geomatrix Consultants, 1992). No historical seismicity is correlated with the mapped portion of the Portland Hills Fault Zone, but in 1991 a M3.5 earthquake occurred on a NW-trending shear plane located 1.3 miles east of the fault (Yelin, 1992). Although there is no definitive evidence of recent activity, the Portland Hills Fault Zone is judged to be potentially active (Geomatrix Consultants, 1995). Gales Creek-Newberg-Mt. Angel Structural Zone The Gales Creek-Newberg-Mt. Angel Structural Zone is a 50-mile-long zone of discontinuous, NW- trending faults that lies about 12 miles southwest of the subject site. These faults are recognized in the subsurface by vertical separation of the Columbia River Basalt and offset seismic reflectors in 15-3665-Nahcotta Drive GR 2 GEOPACIFIC ENGINEERING, INC. February 12, 2015 GeoPacific Project No. 15-3665 the overlying basin sediment (Yeats et al., 1996; Werner et al., 1992). A recent geologic reconnaissance and photogeologic analysis study conducted for the Scoggins Dam site in the Tualatin Basin revealed no evidence of deformed geomorphic surfaces along the structural zone (Unruh et al., 1994). No seismicity has been recorded on the Gales Creek or Newberg Faults (the faults closest to the subject site); however, these faults are considered to be potentially active because they may connect with the seismically active Mount Angel Fault and the rupture plane of the 1993 M5.6 Scotts Mills earthquake (Werner et al. 1992; Geomatrix Consultants, 1995). Cascadia Subduction Zone The Cascadia Subduction Zone is a 680-mile-long zone of active tectonic convergence where oceanic crust of the Juan de Fuca Plate is subducting beneath the North American continent at a rate of 4 cm per year (Goldfinger et al., 1996). Very little seismicity has occurred on the plate interface in historic time, and as a result, the seismic potential of the Cascadia Subduction Zone is a subject of scientific controversy. The lack of seismicity may be interpreted as a period of quiescent stress buildup between large magnitude earthquakes or as being characteristic of the long-term behavior of the subduction zone. A growing body of geologic evidence, however, strongly suggests that prehistoric subduction zone earthquakes have occurred (Atwater, 1992; Carver, 1992; Peterson et al., 1993; Geomatrix Consultants, 1995). This evidence includes: (1) buried tidal marshes recording episodic, sudden subsidence along the coast of northern California, Oregon, and Washington, (2) burial of subsided tidal marshes by tsunami wave deposits, (3) paleoliquefaction features, and (4) geodetic uplift patterns on the Oregon coast. Radiocarbon dates on buried tidal marshes indicate a recurrence interval for major subduction zone earthquakes of 250 to 650 years with the last event occurring 300 years ago (Atwater, 1992; Carver, 1992; Peterson et al., 1993; Geomatrix Consultants, 1995). The inferred seismogenic portion of the plate interface lies 50 to 75 miles offshore or the Oregon coast, at depths of between 20 and 40 miles below the surface. SUBSURFACE CONDITIONS Our site-specific exploration for this report was conducted on January 15, 2015 by excavating one hand auger boring, designated HA-1, to a depth of 13 feet. The approximate location of the hand auger boring is shown on the attached Site Plan (Figure 2). It should be noted that boring locations were located in the field by pacing or taping distances from apparent property corners and other site features shown on the plans provided. As such, the locations of the explorations should be considered approximate. A GeoPacific geotechnical engineer observed field conditions and logged the hand auger boring. Soils observed in the explorations were classified in general accordance with the Unified Soil Classification System. During exploration, our engineer also noted geotechnical conditions such as soil consistency, moisture and groundwater conditions. A log of the hand auger boring is attached to this report. The following report sections summarize subsurface conditions encountered at the site. Undocumented Fill: Underlying the ground surface in hand auger boring HA-1 we observed undocumented fill material. The fill material generally consisted of soft to medium stiff silt with some organic debris and occasional gravel. Fill material extended to a depth of 2 feet in hand auger boring HA-1. Loess: Underlying the fill we encountered SILT (ML) loess (windblown silt) deposit, that blankets older rocks throughout the Portland Hills. The loess encountered in our geotechnical explorations 15-3665- Nahcotta Drive GR 3 GEOPACIFIC ENGINEERING, INC. February 12, 2015 GeoPacific Project No. 15-3665 were generally characterized by a uniform texture and a stiff consistency. Loess extended to a depth of 9.5 feet in hand auger boring HA-1. Residual Soil: Underlying the Loess at a depth below 9. feet, we encountered residual soil derived from in-place weathering of the underlying Columbia River Basalt Formation. The residual soil generally consisted of clay and exhibited a stiff consistency from 9.5 to 12 feet, and a hard consistency below 12 feet. Residual soil extended beyond the maximum depth of our exploration in hand auger boring HA-1 (13 feet). Soil Moisture and Groundwater On January 15, 2015, no groundwater seepage or static groundwater was encountered in our explorations. The fill material and native soils were generally moist. However, experience has shown that temporary storm related perched groundwater within surface soils often occur over native deposits such as those beneath the site, particularly during the wet season. It is anticipated that groundwater conditions will vary depending on the season, local subsurface conditions, changes in site utilization, and other factors. CONCLUSIONS AND RECOMMENDATIONS Our investigation indicates that the proposed construction is geotechnically feasible, provided that the recommendations of this report are incorporated into the design and construction phases of the project. The results of our analyses indicate that the proposed structure can be supported by helical piles embedded at least 7 feet into the residual soil layer. 18 inch diameter pile caps are required to 4 feet below the ground surface to resist lateral loads at each pile location. Helical Piles We recommend that the proposed structure be supported on helical piles. Helical piles should consist of Foundation Supportworks' HA-287 type(or approved equivalent) with 8-10 helices and a yield strength of 60 ksi. The piles should be embedded at least 7 feet into very stiff residual soils, or refusal, whichever is shallower. Residual soil was encountered at a depth of 9.5 feet in hand auger boring, indicating that helical piles will need to extend to at least 16.5 feet beneath the ground surface. Battered piles on the downslope side of the proposed structure will need to extend further to achieve the recommended embedment depth. Actual pile depths will be determined by GeoPacific in the field based on torque resistance during installation. Based on the attached preliminary drawings provided by the structural engineer, we understand that 9 piles are proposed and that piles are to be spaced at distances of about 3 feet within rows and at 10 feet between rows. We also understand that the piles at the end of each row are to be battered at 15 degrees from vertical. Helical piles, embedded as recommended herein, may be designed using an allowable compressive capacity of at least 15 kips per pile. An allowable uplift capacity of 10 kips may be used. Allowable compressive capacity incorporates a factor of safety of 2 and the allowable uplift capacity incorporates a factor of safety of 3. Pile design calculations are attached to this report. Maximum anticipated vertical pile settlement due to allowable loads is 1/2 inch. Slip-type couplers are not recommended to connect lengths of pile and top plates. Welds for top plates should be designed and/or approved by the project structural engineer. 15-3665- Nahcotta Drive GR 4 GEOPACIFIC ENGINEERING, INC. February 12, 2015 GeoPacific Project No. 15-3665 Helical piles should not be assumed to carry lateral loads below the ground surface. Lateral forces • should be resisted by 18 inch diameter pile caps, as recommended in a subsequent report section. Piles encountering obstructions such as large rocks may need to be repositioned or the obstruction drilled through and the pile re-driven until refusal is achieved. The connections and above ground elements should be designed by the project structural engineer in accordance with applicable building codes. GeoPacific should observe pile driving to verify installation in accordance with our recommendations. Pile Installation and Load Testing We recommend that GeoPacific monitor pile installation operations to verify that construction is performed in accordance with our recommendations and confirm suitability for foundation support. Pile depths will be determined by GeoPacific in the field based on torque resistance during installation. We recommend that a least one pile be compression tested to 150 percent of the allowable design load. Load testing should be performed in accordance with ASTM method D1143 (quick method). The load testing settlement acceptance criteria shall be no greater than 0.3 inches. Passive Resistance - Pile Caps Based on information provided by the structural engineer, we anticipate lateral loads of up to 1.5 kips on the helical piles. Piles caps are required at the ground surface at each pile location to resist lateral loads. Lateral forces from wind and seismic forces, and from pile battering may be resisted utilizing passive resistance on pile caps. Prior to installing helical piles, an 18 inch diameter hole should be excavated at each pile location to at least 4 feet beneath the ground surface. The minimum depth of 4 feet should be measured from the ground surface on the downhill side of the pile cap. After the helical pile is installed at the bottom of the excavated hole, concrete should be poured in the remaining annular area surrounding the pile. This concrete should have a compressive strength of at least 4,000 psi. For battered piles, the excavated hole for the pile cap should also be inclined at 15 degrees from vertical. If this is not feasible, a 24 inch diameter hole may be drilled vertically at the pile location to the same depth of 4 feet beneath the ground surface. Calculations for passive resistance are attached to this report. For passive pressure calculations, the upper 1 foot of embedment was ignored. Based on our current understanding of the anticipated lateral loads, the proposed pile caps will have adequate factors of safety for passive resistance. Slope Stability - General The results of our geotechnical investigation indicate that the site is underlain by stiff loess and very stiff to hard residual soil. It is our opinion that on-site slopes in the vicinity of the proposed structure have adequate overall stability. Construction of the proposed structure should not adversely impact slope stability in a significant way, because the helical pile foundation elements will transfer the anticipated loads to at least 10 feet beneath the existing ground surface. UNCERTAINTIES AND LIMITATIONS We have prepared this report for the owner and their consultants for use in design of this project only. This report should be provided in its entirety to prospective contractors for bidding and 15-3665- Nahcotta Drive GR 5 GEOPACIFIC ENGINEERING, INC. February 12, 2015 GeoPacific Project No. 15-3665 estimating purposes; however, the conclusions and interpretations presented in this report should not be construed as a warranty of the subsurface conditions. Experience has shown that soil and groundwater conditions can vary significantly over small distances. Inconsistent conditions can occur between explorations that may not be detected by a geotechnical study. If, during future site operations, subsurface conditions are encountered which vary appreciably from those described herein, GeoPacific should be notified for review of the recommendations of this report, and revision of such if necessary. Sufficient geotechnical monitoring, testing and consultation should be provided during construction to confirm that the conditions encountered are consistent with those indicated by explorations. The checklist attached to this report outlines recommended geotechnical observations and testing for the project. Recommendations for design changes will be provided should conditions revealed during construction differ from those anticipated, and to verify that the geotechnical aspects of construction comply with the contract plans and specifications. Within the limitations of scope, schedule and budget, GeoPacific attempted to execute these services in accordance with generally accepted professional principles and practices in the fields of geotechnical engineering and engineering geology at the time the report was prepared. No warranty, expressed or implied, is made. The scope of our work did not include environmental assessments or evaluations regarding the presence or absence of wetlands or hazardous or toxic substances in the soil, surface water, or groundwater at this site. We appreciate this opportunity to be of service. Sincerely, GEOPACIFIC ENGINEERING, INC. ��cZ,�C QROFFSiSj 14 • t•EGON VA? NcRti �MEs D. EXPIRES:06/30120 L5 Benjamin G. Anderson, E.I.T James D. Imbrie, G.E., C.E.G. Geotechnical Staff Principal Geotechnical Engineer Attachments: References Figure 1 — Vicinity Map Figure 2 — Site Plan Hand Auger Boring Log (HA-1) Photo Log Pile Design Calculations (2 Pages) 15-3665- Nahcotta Drive GR 6 GEOPACIFIC ENGINEERING, INC. February 12, 2015 GeoPacific Project No. 15-3665 REFERENCES Atwater, B.F., 1992, Geologic evidence for earthquakes during the past 2,000 years along the Copalis River, southern coastal Washington: Journal of Geophysical Research, v. 97, p. 1901-1919. Beeson, M.H., Tolan, T.L., and Madin, I.P., 1991, Geologic map of the Portland Quadrangle, Multnomah, and Washington Counties, Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-75, scale 1:24,000. Carver, G.A., 1992, Late Cenozoic tectonics of coastal northern California: American Association of Petroleum Geologists-SEPM Field Trip Guidebook, May, 1992. Geomatrix Consultants, 1995, Seismic Design Mapping, State of Oregon: unpublished report prepared for Oregon Department of Transportation, Personal Services Contract 11688, January 1995. Goldfinger, C., KuIm, L.D., Yeats, R.S., Appelgate, B, MacKay, M.E., and Cochrane, G.R., 1996, Active strike-slip faulting and folding of the Cascadia Subduction-Zone plate boundary and forearc in central and northern Oregon: in Assessing earthquake hazards and reducing risk in the Pacific Northwest, v. 1: U.S. Geological Survey Professional Paper 1560, P. 223-256. Madin, I.P. and Mabey, M.A., 1996, Earthquake Hazard Maps for Oregon, Oregon: Oregon Department of Geology and Mineral Industries GMS-100. Madin, I.P., 1990, Earthquake hazard geology maps of the Portland metropolitan area, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-90-2, scale 1:24,000, 22 p. Peterson, C.D., Darioenzo, M.E., Burns, S.F., and Burris, W.K., 1993, Field trip guide to Cascadia paleoseismic evidence along the northern California coast: evidence of subduction zone seismicity in the central Cascadia margin: Oregon Geology, v. 55, p. 99-144. Trimble, D.E., 1963, Geology of Portland, Oregon and adjacent areas: U.S. Geological Survey Bulletin 1119, 119p., 1 plate, scale 1:62,500. Unruh, J.R., Wong, I.G., Bott, J.D., Silva, W.J., and Lettis, W.R., 1994, Seismotectonic evaluation: Scoggins Dam, Tualatin Project, Northwest Oregon: unpublished report by William Lettis and Associates and Woodward Clyde Federal Services, Oakland, CA, for U. S. Bureau of Reclamation, Denver CO (in Geomatrix Consultants, 1995). Werner, K.S., Nabelek, J., Yeats, R.S., Malone, S., 1992, The Mount Angel fault: implications of seismic- reflection data and the Woodburn, Oregon, earthquake sequence of August, 1990: Oregon Geology, v. 54, p. 112-117. Wong, I. Silva, W., Bott, J., Wright, D., Thomas, P., Gregor, N., Li., S., Mabey, M., Sojourner, A., and Wang, Y., 2000, Earthquake Scenario and Probabilistic Ground Shaking Maps for the Portland, Oregon, Metropolitan Area; State of Oregon Department of Geology and Mineral Industries; Interpretative Map Series IMS-16. Yeats, R.S., Graven, E.P., Werner, K.S., Goldfinger, C., and Popowski, T., 1996, Tectonics of the Willamette Valley, Oregon: in Assessing earthquake hazards and reducing risk in the Pacific Northwest, v. 1: U.S. Geological Survey Professional Paper 1560, P. 183-222, 5 plates, scale 1:100,000. Yelin, T.S., 1992, An earthquake swarm in the north Portland Hills (Oregon): More speculations on the seismotectonics of the Portland Basin: Geological Society of America, Programs with Abstracts, v. 24, no. 5, p. 92. 15-3665 -Nahcotta Drive GR 7 GEOPACIFIC ENGINEERING, INC. 14835 SW 72nd Avenue Geofel. Portland, Oregon 97224 VICINITY MAP Enginee:nng,mc. Tel: (503)598-8445 Fax: (503)941-9281 tellsifire.dre. ' _ *ow. 'lid Mir lip '"0 — . Mr' .,.- . O 41 w c\ .._.,,,,\_).• ,-. , in. IP. I J � s q ' II ;. : - / i L 'r� ..� • 11,—. -i1. -... A _.,.,,, , ::. --. , ' . • r• EL OM —/ 1. l� ,; { ,,,,.e.,, 4 /...."„...'HT...„... ,.___77......,,,i.)7_,,,,,,,, :of ii,,4 . ,.,7 1,..._-,;‘,..._.,,_.-'''40,e".:111: .:.;' '-' .rtr'.4.1. ' 6.,'.• > ' 1SUBJECTSITE f'f , s iff / .(.1 - t Tay 4_. 0^ • � - ; . . fop Ilia I . ' ,: ..,"-..:... , . . ° 4, 2,,. , ' y , i d,. J .: ap : , • ,, f' � y• •V'J Bull bMQtintain Rd - s -Q y-- sm. a� - .tia a y r < • • . • NORTH ..n EMI -te • • ' • 'n n-.' n— CP .. .41i : 1 , - r 'A r d (%.,.,e.A' i . .U77-7-77---- ----.\-- . .,' -. 'j.--.:, ,'? '.x . , . . y -ri -rt■ Date: 02/12/15 Legend Approximate Scale 1 in = 1,400 ft Drawn by: BGA Base maps: National Geographic TOPO!,Tele Atlas,Oregon, 1990. Project: 13270 SW Nahcotta Drive Project No. 15-3665 I FIGURE 1 Tigard, Oregon \`_ - 14835 SW 72nd Avenue SITE PLAN AND GeoPaclflc Portland, Oregon 97224 Engineering.Inc . Tel: (503)598-8445 Fax: (503)941-9281 HAND AUGER LOCATIONS • te F , SW O'TA I . A. Approximate Location - of Extended Deck -- ,: , w 1 ./• 'r` 64. H . �, ':.4M s. ,. *_ 1 k. b ,,, ' IN N't^ L * ► ......,„4"wr / Ski/ H ode, II i '. It le 6 .--s-- ,..•. ti North ', ': '•r�� Aerial Photo Obtained from Portlandmaps.com Legend Date: 02/12/15 HA-1 0 40. Drawn by BGA f i Hand Auger Boring Designation and Approximate Location APPROXIMATE SCALE 1"=40' Project. 13270 SW Nahcotta Drive Project No: 15-3665 FIGURE 2 Tigard, Oregon � 14835 SW 72nd Avenue GeoP crtIC Portland, Oregon 97224 HAND AUGER LOG tngineering.Inc- Tel: (503)598-8445 Fax: (503)941-9281 Project: 13270 SW Nahcotta Drive Tigard, Oregon Project No. 15-3665 Boring No. HA- 1 H ' y N o O °o) a 1 tTigE Material Description a ,,c ` v 25 40 a co ° U m Soft to medium stiff, SILT(ML), brown, with some organic debris and 1 _ occasional gravel, moist(Fill) 2— Stiff, SILT(ML), brown, with trace amounts of organic material in the upper 6 3— inches, moist(Loess) 4— Grades to with orange and gray mottling 5- 6- 7- 8- 9- 10— Very stiff, CLAY(CL), reddish brown, moist(Residual Soil) 11— 12 Grades to hard below 12 feet 13 Boring terminated at 13 feet 14- 15— Note: No seepage or groundwater encountered 16- 17— LEGEND Date Excavated: 01/15/15 —5 Gal 100 to ucket — A ® Logged By: BGA 1,000 g Surface Elevation: Bag Sample Bucket Sample Shelby Tube Sample Seepage Water Bearing Zone Water Level at Abandonment 1 Ceoracific Engineering,Inc. Real-World Geotechnical Solutions Investigation • Design • Construction Support PHOTO LOG 14835 SW 72nd Avenue Tel (503) 598-8445 Portland, Oregon 97224 Fax(503) 941-9281 GeoPiffc Engineering,Inc. Real-World Geotechnical Solutions Investigation • Design • Construction Support 13270 SW NAHCOTTA DRIVE GEOTECHNICAL SITE INVESTIGATION PHOTO LOG • • . 4,•• ,7:0,00.*--. - t- . 1 fiatit ff , 'w -♦ . t ..LU f A. ii- Location of Hand Auger Boring HA-1 --------14 `g.. _ - Y :l f�L.•' ,•Z r 1: .11 - :ice • 14 ';'• ,s �r. „r f `:_alp • •'. Yom; �- ‘.�.••t a- - ,.c4- - L-!):-5. '* _ gi g' - '74.i7 - ` �-r . -0:-:..�� t ' ^Jr . .i-' -.i,'ti : .;;elf*,S.w,4-:.. q. .[r te`f'' - ._iltSr• View from SW Catalina Drive (NW Corner Property) looking southeast Page 1 GEOPACIFIC ENGINEERING,INC. 14835 SW 72nd Avenue 6eQP if a Portland, Oregon 97224 Engineerinalnc. Tel: (503)598-8445 Fax:(503)941-9281 l2 ° J,r, C 4 s c , Q_s_ 1ddk caio_ S'>— (atirr t ig 1 kg,. 0,336 447- r 5 1.s:1,�� kok i0 D Jt ,Pr !C)" [Ad.( (?`j Z! Z 96(11S) 4. 14(124 z ),570 pC 'z z ' P t96t1S) 7(1zo) 1930 r(... )�k Nt:r za -far rsfS�aLA( $O',1 cp. -2 Yo° 0336 (193o)(42...S) + (2,531 (t5-70�(7-7-5) z 114160 +- 1&1306 33,,-too )6 X05 ci.nores sap" ► y _ �,a— Z 111 100 ).� 0.54 p 1 V P5 Project: Job No. Drawn By: Date: ��nv,�o-��, �� I `r ��c �� l 02/12 /c5 GEOPACIFIC ENGINEERING,INC. �e C 14835 SW 72nd Avenue Portland,, Oregon 97224 Engineeriny.Inc. Tel: (503)598-8445 Fax: (503)941-9281 • PC,S5,./e. ...e.,S;647/tv1CC. C.f" (Apc . G to✓`�,'Jw/�s,Gn- 4s 115, 4, its- .J3 e.. )4‘ 4 rf,I 267rz. cp 14\ s� 1,7s f'k ZIVec,(- • • / f 4:61"+".47-- ve. 1'5 S .L c8 G4.-v e i rS F . y2.061)( 00,5 � ?�1e �.� 1(z) I3` Pt.= 16I (3)0,6 e3e ci a...�(Z) I I L ca I)„ P3 2. I61 (a)(is (z) -a 16 '6 e I �� = 1'4,( )(z)(z)(i.S.Ct- ? lc Z)^ 1,2.6o 1 141 A 1b1'....I 1" �s ;e cc,r e = ,9 P.1 -3-` a Z.6 7 Z Lgg14.�1 1, 590 • �tsrcG S fI� Project: ti o, Job No. , w3g I0r awn By: 66 A. Date: 2/)-4/15 I