Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report
FOR OFFICE USE ONLY—SITE ADDRESS: 796`7 6_4 This form is recognized by most building departments in the Tri-County area for transmitting information. Please complete this form when submitting information for plan review responses and revisions. This form and the information it provides helps the review process and response to your project. City of Tigard • COMMUNITY DEVELOPMENT DEPARTMENT lig _ Transmittal Letter T[v A R D 13 SW Hall Blvd. • Tigard, Oregon 97223 • 503.718.2439 • www.tigard-or.gov TO: , i ATV: E O DEPT: BU ING DIVISION �( `J j'J I FEB 2 6 2015 FROM: Joseph Ledbetter crn oi rl(JARD COMPANY: Agilyx Corporation BUILDING DIVISION PHONE: 5035976420 / / _ B RE: 7904 SW HUNZI '► � BUP2014-00261 (Site Address) I� (Permit Number) Agilyx Nitrogen Ta k . (Project name or subdivision ,. e :`I of number) ATTACHED ARE THE FOLLOWIN l+ TEMS: Copies: I Description: Copies: Description: Additional set(s) of plans. Revisions: Cross section(s) and det, s. Wall bracing and/or lateral analysis. Floor/roof framing. Basement and retaining walls. Beam calculations. 2 Engineer's calculations. 2 Other(explain): U!i ated plans. Original plans submitted were incorrect. �s i yt �F'��I-.til_. REMARKS: f �—� 4-4--e_cc x-(---oa."_ — 0 • ....„..2J-71--t,_.-.4 ,e_ 444-‘ -71-- ar'-4-----zrew --11.#44:0 h15/16442) FOR OFFICE USE ONLY Routed to Permit T • • r: ate: Initials: Fees Due: ❑Y o / ee Description: Amount Due: $_--(9---- - Special Instructions: Reprint Permit(per PE): ❑ Yes lP No ❑ Done Applicant Notified: Date: i -f' InitialsE/7 1:\Building\Forms\TransmittalLetter-Revisions.doc 05/25/2012 it_ Q FOUNDATION INPUT DATA — — — — — — TANK FOUNDATION CALCULATIONS ProjectName:= "Agilyx" Buildingcode:= "OSSC-2010" U REVISION DATE 05/14/13 I 1/15/2015 3:42:46 PM ProjectNumber:= "201330" Address := "7904 Hunziker" Location:_ "Tigard,OR" Unit Reference: kip = 1000.1b cf=ft3 sf= ft2 psf = b psi = lb ksi = 1000 Ib ft2 in2 in2 I:_ "Non Essential Service" FOUNDATION PAD DIMENSIONS ALLOWABLE SOIL BEARING PRESSURE qa:= 1500psf Width B := 15•ft pads:= 1 Frostdepth Fd:= Oin Product:_ "NITROGEN" Length L= 10-ft Number of VesselsNaps: Ng:= 1 Capacity:= 3000 Thickness T:= 16.in Shear Key Depth Ld:= Oft Number of bolts Nbh:= 4 Bolt Spacing s1 := 18in s2:= 18in Bolt Circle Radius Lr:= 41.5•in Lr=41.5 in SELECT ATOP REBAR SIZE @ spt O.0 SPACING: tr:= 5 ENTERA WHOLE NUMBER. ENTER BETWEEN 4 THROUGH 6 spt:= 16in SELECT A BOTTOM REBAR SIZE @ spb O.0 SPACING:br:= 8 ENTER A WHOLE NUMBER. ENTER BETWEEN 6 THROUGH 11 spb:= 12in \c���('cal EF9 `r/O 2 Wind Speed V:= 100 mph fe:= 4000psi 59551PE 9r PrecastPad:= "Yes" Enter Yes or No Z N� y 'OT OREGON .el 9 Fi6/8ER22 Qr SEISMIC LOAD ��' Design Spectral response Spectral Acceleration Acceleration Sds 0.706 for short period SS:= 0.942 (for short period) Eq.16-39 Design Spectral response Spectral Acceleration Acceleration S 0.389 S1 0.338 Sat '= for 1-second period 1 '_ (for 1-sec period) Eq.16-40 0 FOUNDATION INPUT DATA 1/15/2015 A-1 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd 13 VERTICAL VESSEL INFORMATION VESSEL DIMENSIONS AND WEIGHTS Process Tanks ( 900 1500 3000 6000 9000 11000 13000 15000 "Capacity" 0\ Nitrogen:= 6.745Ib 60 78 96 96 120 120 120 120 "Diameter" 1 139 210.5 220 362 333.75 391.25 443 503 "Height" 2 Argon:= 11.631b 27.625 36 41.50 42 52 52 52 52 "BCR" 3 Oxygen:= 9.5271b 15 15 22 22 23 23 23 23 "Leg Plate Size" 4 CarbonDioxide:= 8.471b G'= Hydrogen := 0.5906Ib ^^^' 5.5 10.50 17.10 34.50 48.70 57.10 61.90 70.80 "Empty Wt" 5 16 28.30 52.050 103.10 153.40 185.00 210.54 240.50 "ARGON" 6 14 25.10 45.750 90.70 134.50 161.90 183.90 289.90 "OXYGEN" 7 12 20.850 37.40 74.30 109.45 131.35 148.30 169.30 "NITROGEN" 8 0 1 2 3 4 5 6 7 8 0) Capacity: j = 0 through 7 Product: i = 6 through 8 Capacity= 3000 Product = "NITROGEN" i := if(Product= "NITROGEN" ,8,if(Product = "ARGON",6,if(Product = "OXYGEN",7,if(Product= "HYDROGEN",9,"Error")))) j := 0 if Capacity =900 1 if Capacity = 1500 2 if Capacity =3000 3 if Capacity =6000 4 if Capacity=9000 5 if Capacity= 11000 i = 8 6 if Capacity = 13000 7 if Capacity = 15000 "Error" otherwise ` j = 2 • Capacity= 3000 Product = "NITROGEN" R VERTICAL VESSEL INFORMATION 1/15/2015 A-2 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd C ASCE LOAD CALCULATIONS Occupancy Importance Factor IE:= if(Product = "NITROGEN" ,1,if(Product = "ARGON" ,I,if(Product = "OXYGEN",1.25,if(Product = "HYDROGEN" ,1.25,1)))) IE = 1 = if(I = "Essential Service",1.5,1E) IE= 1 SeismicUseGroup := if OE = 1,"II" ,if OE = 1.25,"III" ,if OE = 1.5,"IV","I"))) SeismicUseGroup = "II" Response Modification R:= 2 Non Building Structures Factor Calculate Fundamental Period of Tank W ■ Tank Height H:= G •in H= 18.333 ft �� A NW l Tank Weight (empty) Wte:= G5 •kip Wte= 17100 lb H Tank Weight (full) Wtf:= G. .•kip Wtf= 37400 lb Tank Diameter W 1:= G •in W= 8 ft J TANK BOLT RADIUS Lr=41.5 in Lr=41.5 in TANK GRAVITY CENTROID TO Lg:= Lr Lg=20.75 in REAR ANCHOR DISTANCE 2 TANK Lg+Lr=Lc Lc := Lg+ Lr Lc =5.188 ft Tank Gravity Centroid to Rear Anchor Distance Lg=20.75 in Lg= 20.75 in Tank Wall thickness at Support tw:= 3 in 8 Uniform Weight Distribution Tank Weight (empty) we Wte we= 932.7 ft 1.0•lb H Tank Weight (full) wf := Wtf wf =2040 ft 1•lb H Wtf= 37400 lb 1/15/2015 A-3 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd Tank Period H= 18.333 ft we 2 W Empty Tank Te := 0.00000765•H lb •sec•I.4 Te= 0.027s W tw ft wf 2 Full Tank Tf:= 0.00000765. H 1 lb .sec•1.4 Tf = 0.041 s W tw ft Sds=0.706 R = 2 — 1 ASCE Eq. 12.8-2 Cs:= Sds•\R/ Cs =0.353 IE IE= I r — 1 ASCE Eq. 12.8-3 Empty Tank Csemx Shc'I R.Tel •sec Csemx= 7.077 E f — 1 Full Tank Csfmx Shc•1R•Tfl .sec Csfmx= 4.785 JJ Cmin l := 0.14Sd5•IE Cminl = 0.099 0.8S1 Cmin2 := Cmin2 =0.135 R•IE l 0.551 =0.085 S1 =0.338 R.IE t ASCE Eq. 15.4-2 Csmin Cmin2 if I S1 ?0.6 Csmin =0.135 Cmin2 >_Cminl CminI otherwise 1/15/2015 A-4 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd Seismic Response Coefficient Empty Tank C C if C C used for Seismic force calculation p y se semx s > semx Csmin if Cs<Csmin Cs otherwise Cse= 0.353 Full Tank Csf Csfmx if Cs >Csfmx Csmin if Cs<Csmin Cs otherwise Csf= 0.353 Seismic Base Shear Empty Tank Vse:= CSe•Wte Vse= 6.036 kip Full Tank Vs:= Csf•Wtf Vs= 13.202 kip Seismic Use Group Calculation Sds=0.706 Table 11.6-1 ASCE 7-05 SeismicDesignCategory:_ "A" if Sds < .167 "B" if Sds>_ .167 "C" if Sds>_ .33 "D" if Sds? .5 "E" if Si >_ .75 SeismicDesignCategory= "D" Table 11.6-2 ASCE 7-05 SeismicDesi nCate o = "A" if Sdt < .067 "B" if Sdi >_ .067 "C" if Sdi ? .133 • "D" if Sdi >_ .2 "E" if Si ? .75 • SeismicDesignCategory= "D" 1/15/2015 A-5 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd Table 11.6-1 ASCE 7-05 FOR ESSENTIAL SERVICE SeismicDesi nCate o := if(I = "Essential Service", "A" if Sds < .167 ,SeismicDesignCategoryy "C" if Sds? .167 "D" if Sds? .33 "D" if Sds? .5 "F" if SI ? .75 Table 11.6-2 ASCE 7-05 Seismic Desi nCate or := if(I = "Essential Service", "A" if Sdi < .067 ,SeismicDesignCategory\ "C" if Shc >_ .067 "D" if Sdi >_ .133 "F" if Si >_ .75 SeismicDesignCategory= "D" WIND LOADS Base Equation: P = qZ x G x Cf x At ASCE eq. 6-28 . Gust Effect Factor(for rigid structure, sect. 6.5.8) Gg:= 0.85 Velocity Pressure q = 0.00256 x KZ x KZt x Kd x V2 x Iw(psf) ASCE Eq. 6-15 Exposure Coefficient (Table 6-3, Exposure "C") /"H" „C" "B" EXPOSURE:= "C" 15 .85 .7 20 .9 .7 KZ:= 25 .94 .7 i := if(H S 15ft,1 ,if(H<_ 20ft,2,if(H<_25ft,3,if(H <_ 30ft,4,if(H<_ 40ft,5,5))))) 30 .98 .76 40 1.04 .81 := if(EXPOSURE = "C" ,1,2) I = 1 i = 2 50 1.13 .85 • EXPOSURE = K,0,1 ▪ HEIGHT:= KZ HEIGHT= 20 1,o KZ = 0.9 1,1 1/15/2015 A-6 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd Exposure Coefficient K,:= K1 (Exposure "C") ' • at 30 feet. Table 6-3 Direction Factor Kt=0.9 Kd:= 0.95 Topographic Factor Kit:= 1 K11= 1 1 = ' 5 (ESSENTIAL FACILITIES) 1 for 1N,:= if(I = "Essential Service",1.15,1) 1W= 1 Non Essential Facilities Velocity Pressure q:= 0.00256•KZ•lc,•Kid. •IWpsf q =21.888 psf W q = 37.428 H =2.292 ft psf W C f:_ .7 IT ARO 4 Fs FLEXIBLE VESSEL T>.06 SEC Wind Pressure P:= q•Gg•Cf P= 13.023 psf Object Area A:= W•H A= 146.667 ft2 W= 8 ft Total Base Shear by Wind Vw := P•A Vw = 1.9 kip H = 18.333 ft 1/15/2015 A-7 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd MOMENT ARM LENGTH SEISMIC WIND (H- 1.5•ft)2 H ARMs:_ + 1.5•ft ARMw:_ — 3 2 ARMs = 12.7 ft ARMw =9.2 ft ANCHOR BOLT LOADS MOMENT ARM (ARM) RESISTING MOMENT SEISMIC ARMs = 12.72ft SEISMIC Mrs:= Lg•Wtf Mrs = 65kip•ft WIND ARMw = 9.17 ft WIND Mrw:= Lg•Wte Mrw= 30kip•ft OVERTURNING MOMENT (Mot) Vse=6036.3 lb ARMs = 12.722 ft ll H= 18.33311 Vs= 13202.2 lb SEISMIC Mots:= Vse•ARMs +[(H- 1.5•ft)1 + 1.5•ft]•(Vs- Vse) Mots = 148 kip.ft 2 PerASCE 05, 15.7.10.2 vessels containing liquids, lateral load is located at the volumetric centroid. ARMw = 9.167 ft Vw = 1910.093 lb WIND Motw:= Vw.ARMw Motw= 18 kip.ft LEG TENSION (T) (Resisted by one member) Mots = 147.857 kip•ft Mrs = 64.671 kip.ft Lc = 5.188ft Sds =0.706 Mots..? - .6Mrs Wtf•.7 SEISMIC Ts:= Lc + .2•Sds• 3 .7 Ts= 13.704 kip = if(Ts <Okip,Okip,Ts) Mots - .9Mrs Wtf Seismic Ultimate Ten Load Tsu := Lc + .2•Sd 3 Tsu:= if(Tsu <Okip,Okip,Tsu) Tsu = 19.043 kip Lc = 5.188ft Motw= 210.11 kip•in Mrw= 354.825 kip•in Seismic Ultimate Ten Load in Orthoganal Direction Mots - .9•Mrs Wtf + .2•Sds•— = 16.727 kip ((Lr•sin(60•deg)))2.2 3 Lr sin(60•deg) 1/15/2015 A-8 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd WIND Tw Motw — Mrw .6 Tw= —0.045kip Tw:= if(Tw <Okip,Okip,Tw) Lc Motw-I.6— Mrw•.9 Wind Ultimate Load Twu:= Twu =0.27 kip Twu:= if(Twu < Okip,Okip,Twu) Lc nnvww Twu = 0.27 kip V Spread sheet anchor loads verified with Hilti Computer program on 12/06/11 Lr Lc LEG COMPRESSION (C) (Resisted by one member) • Lg Mots-.7 + Mrs •2'Sds'Wtf•.7 SEISMIC Cs:_ + Cs= 33.651 kip Mots= 147.857 kip•ft Lc 3 Seismic Ultimate Compressive Load Mrs=64.671 kip.ft Wtf= 37.4 kip Mots + Mrs-1.2 .2•Sds'Wtf Csu:_ + Csu=45.223 kip Sds= 0.706 Lc 3 Lc = 5.188ft Seismic Ultimate Compressive Load in Orthogonal Direction Mots + Mrs-1.2 + 2 Sds Wtf = 39.4 ki (Mr-sin(60•deg)))2.2 3 p Lr•sin(60•deg) WIND Cam,:= Motw + Mrs Cw= 16 kip Lc Motw-1.6+ Mrs-1.2 Cwu:= Cwu=20.36 kip Lc LEG SHEAR (S) (Assuming three legs) LIMO SEISMIC Ss:= Vs Ss=4.401 kip 3 Ts Cs WIND Sw:= Vw Sw= I kip 3 0 ASCE LOAD CALCULATIONS 1/15/2015 A-9 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd FOUNDATION CALCULATIONS FOUNDATION DESIGN Vs•Neq Vw•Neq Vs:= Vw := Neq = 1 pads = 1 pads "^""^ pads FOUNDATION PAD: Concrete Strength: f',=4000 psi Vessel Bearing Plate: Bearing Plate Size: BP:= G4 J•in BP = 22 in Csu=45.223 kip Maximum Compression Force: C := Csu C =45.223 kip .85•.65 =0.553 Maximum Bearing Stress: - =93.436 psi section 10.14 BP2 Allowable Bearing Stress BSa := C if BSa > —,"OK","NG" = "OK" BSa= 2210 psi BP2 Foundation Slab Punching Shear: be l.5 Effective Depth de:= T– 3•in–—•in br= 8 8 de= 11.5 in T= 1.333ft Punching Shear Area: Aps:= (BP + de)•4•de Aps = 1541 in2 BP=22 in Punching Shear Stress: PS := C C = 45.223 kip Aps PS = 29.346 psi fc= 4000 psi Allowable Shear Stress: PSallow := .75.4• psi Eq (11-33) psi PSallow = 189.737 psi if(PSallow > PS,"OK" ,"NG") = "OK" 1/15/2015 A-10 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd FOUNDATION WEIGHT (Wf) Wf := B•L T 150 —lb Wf =30 kip T= 1.333ft cf L = 10ft Wtf•Neq GRAVITY LOADS (P) SEISMIC Ps:_ + Wf Ps=67.4 kip B = 15 ft pads pads = 1 Wte•Neq SEISMIC EMPTY TANK: Pse:_ + Wf Pse=47.1 kip Neq = 1 pads Wte = 17100 lb Wte•Neq WIND Pw :_ + Wf Pw = 47.1 kip Wtf= 37400 lb pads FOUNDATION/TANK STABILITY CHECK OVERTURNING MOMENTS (Mot) SIESMIC Mots:= Vse.(ARMs + T) + [(H– 1.5401 + 1.5•ft + TJ•(Vs– Vse) 2 Mots = 165.46kip•ft Vs= 13202.2 lb SEISMIC EMPTY TANK: Motse:= Vse.(ARMs + T) Motse= 84.844 kip-ft Vse=6036.3 lb WIND Motw:= Vw.(ARMw + T) Motw= 20.056kip•ft T= 1.333 ft iwHnMnn RESISTING MOMENTS (Mr) SEISMIC Mrs:= Ps•= Mrs= 337 kip•ft H= 18.333 ft 2 WIND Mrw:= Pw.—L Mrw= 235.5kip•ft L = 10ft iwwvw 2 SEISMIC EMPTY TANK: Mrse:= Pse•L Mrse =235.5 kip ft 2 OVERTURNING SAFETY FACTOR SEISMIC FULL FSs := Mrs .6 FSs = 1.75 if(FSs > I ,"OK" ,"NG") = "OK" Mots•.7 EMPTY FSse:- Mrse .6 FSse= 2.38 if(FSse> 1 ,"OK" ,"NG") = "OK" Motse-.7 WIND FSw Mrw.0.6 FSw = 7.05 if(FSw > 1,"OK" ,"NG") = "OK" Motw 1/15/2015 A-11 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd SLIDING SAFETY FACTOR LATERAL BEARING (Lb)=A*P Vs - T A1=FOUNDATION EDGE AREA, Mots EXCLUDE TOP 6 INCHES OF Al := L•(T— 2.in) Al = 11.667ft2 FOUNDATION DEPTH A2=SHEAR LUG AREA, FOUNDATION WIDTH/2xLUG Ld= 0 A2:= L.Ld A2 =0 DEPTH,Ld. IF NO LUG A2=0 griaxs A=TOTAL BEARING AREA AI„g:= Al + A2 Ai„g= 11.667112 xs SRsf P=LATERAL BEARING PRESSURE. P 150 sf•�T- 2 in + Ldl p 175 sf soil := P ft J soil = p Psoii + 150psf 2 Psoil = 162.5 ft—2•Ib 1A:4190. = if(PrecastPad= "Yes",Opsf,P_so,i) PrecastPad= "Yes" Psoil =0 psf Lb=TOTAL LATERAL RESISTANCE Lb:= Alug'Psoil Lb=0 kip FRICTION RESISTANCE (SR) = 0.25xP (FROM IBC TABLE 1804.2) SEISMIC FULL TANK SRsf:= .25•Ps•.6 SRsf= 10.11 kip SEISMIC EMPTY TANK SRse:= .25•Pse•.6 SRse =7.065 kip WIND SRw:= .25•Pw•.6 SRw=7.065 kip Vs•.7 =9241.54 lb Lateral Resistance for Clay soils L•B•I30psf = 19.5 kip 1/15/2015 A-12 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd ADD LATERAL BEARING TO FRICTION RESISTANCE TO DETERMINE TOTAL RESISTANCE TO SLIDING Tank Full Seismic if[(SRsf + Lb) > Vs•.7,"OK" ,"NG"] = "OK" Tank Empty Seismic if[(SRse + Lb) > Vse•.7,"OK" ,"NG"] = "OK" Wind Tank Empty if[(SRw+ Lb) > Vw,"OK" ,"NG"] = "OK" SOIL PRESSURE ALLOWABLE SOIL BEARING PRESSURE qa= 1500psf ifl l qa> Ps "OK" 'LNG" = "OK" B•L J ECCENTRICITY=E SEISMIC Mots = 165.46kip•ft Mots•.7 • Ps= 67.4 kip Es:= Es = 34.369 in Ps..6 EFFECTIVE FOOTING LENGHT (Le) Les:= (—L – Es)•3 Les = 6.408 ft L = 10ft 2 Xs:= L – Es •3 Xs= 6.408 ft Ps =449.333 psf 2 B•L Maximum Soil Bearing Pressure: qmaxs:= 2•Ps .6 Pw := Ps B•Xs qmaxs = 841.466 psf if(ga>qmaxs,"OK" ,"NG") = "OK" ECCENTRICITY=E KERN:= L KERN= 20 in 6 SEISMIC Mots = 165.46kip•ft Mots•.7 Ps= 67.4 kip rm s:= Es= 20.621 in Ps 1/15/2015 A-13 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd EFFECTIVE FOOTING LENGHT (Le) Les:= L - Es I.3 Les =9.845 ft L = 10 ft 2 J Xs:= I L -Es).3 Xs= 9.845 ft Ps =449.333 psf 2 B•L Maximum Soil Bearing Pressure: cm 2 Ps P N:= Ps B Xs qmaxs =912.841 psf if(ga>qmaxs,"OK","NG") = "OK" WIND Pw = 67400 lb Ew:= Motw Ew= 3.571 in KERN= 20 in Pw Vs Mots Pw r 6-Ew) Pw ( 6-Ew Q1 := B-LII + L J Q2:= B—LI1 - L Ql = 529.557 psf Q2 = 369.109 psf if(ga> Q1,"OK" ,"NG") = "OK" ,iu1 qmaxs XS MOMENTS AND SHEARS AT CRITICAL SECTIONS SRsf SEISMIC Distance from edge to critical section : L,:= 2 - T L = 10ft L�= 3.667 ft de=0.958 ft (Xs - LO Shear at Critical Section: qatLc := qmaxs• qatLc = 572.853 psf Xs Lc Vcs:= gatLc•Le + (qmaxs -gatLc)•- 2 Vcs=2.724—kip ft gatLc•Lc2 (Le)2 Moment at Critical Section: Mcs:= + (qmaxs - gatLc)• 2 3 Mcs= 5.374kip•—ft ft 1/15/2015 A-14 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd WIND - Shear at Critical Section: aNC l.m.mx ::= Q2 + QI L- Q2•(L - Lc) Lc • Vcw:= gatLc•L,+ (Q1 - gatLc)•- 2 Vcw= 1.834 kip ft gatLc•Lc2 (Lc)2 Moment at Critical Section: Mcw := + (Q1 - gatLc)• 2 3 Mcw = 3.428 kip.—ft ft Reinforcement Design: Vu:= 1.5 max(Vcs,Vcw)•12in Vu =4.086 kip lb Mu:= 1.5 max(Mcs,Mcw)•l2in Mu = 8.062kip•ft ksi = 1000— m 2 - GUESS INITIAL As As:= I•in2 d := T- 3.5•in d = 12.5 in Fc:= fT Fy:= 60ksi BASE EQUATION FMu=Fy*As(D-A/2) ( As•Fy .85•Fc•l2in) 2 a:= root Mu - .9•FrAs• d - ,As a=0.145 in =AS 2 a rhoact := rhoact =0.0009637 12in•d REINFORCEMENT BOTTOM BAR SELECTION Re bar Mu Quick Check kip•ft pmin:= .0018 pmax:= .0214.12in•T d = 0.161 in A2 ft2 pmax= 0.029 4.— in AREA OF ONE BOTTOM BAR IS: AREA OF REQ. FLEXURAL MINIMUM AREA OF REBAR REQ. STEEL . b 2 � 2 2 .0018•d 12 in=0.135 in2 C g in) •-71- =0.785 in a =0.145 in 2 1/15/2015 A-15 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd /h 2 BottomRebarBending:= if in I 12in > a,"OK" ,"NG" BottomRebarBending= "OK" • g \8 J 4 spb AREA OF ONE TOP BAR IS: AREA OF REQ. MINIMUM STEEL Cll2 8 inJ •4 = 0.307 in2 As:=:= .0018•l 2in•T As= 0.346 in2 2 2 ll 12in br . 7r l2 in "OK" MinSteel:= if -t-r-inJ •— — + — in — > As, OK NG MinSteel = OK 8 4 spy 8 4 Spb 2 2 tr . 11 •Tr 12•in br . •Tt• 12• in 2 I — tnl — + — m — = 1.015in 8 4 spi 8 4 Spb MAXIMUM TOP BAR SPACING=3XT AND LESS THAN 18 INCHES. CHECK SHEAR BASIC EQUATION .85.2. fc 12in•d kip lIVn := in ShearCheck:= if(4?Vn > Vu,"OK" ,"NG") ShearCheck= "OK" 1000 cl3Vn = 16.128 kip > Vu = 4.086 kip O.K. • pads Vw•pads Vas:= Vs. Vw:_ Ne9 Neq • R. FOUNDATION CALCULATIONS 1/15/2015 A-16 Mathcad-201330 Agilyx 3k LIN EZ Pad.mcd G FOUNDATION INPUT DATA VAPORIZER FOUNDATION CALCULATIONS Buildingcode:= "OSSC-2010" REVISION DATE 05/14/13 ProjectName:_ "Agilyx" f 1/15/2015 3:44:11 PM ProjectNumber:_ "201330" Address:= "7904 Hunziker" Location:= "Tigard,OR" Unit Reference: kip = 1000.1b cf = 1i 3 sf= ft2 psf= 16 psi= ]b ksi = 1000—lb ft2 in2 in2 I:_ "Non-Essential Service" FOUNDATION PAD DIMENSIONS ALLOWABLE SOIL BEARING PRESSURE qa:= 1500psf Width B:= 15.ft pads:= 1 Frostdepth Fd:= Oin Product:= "NITROGEN" Length L:= 10.ft Number of Vaps: Neq := 2 Thickness T:= 16•in Shear Key Depth Ld:= Oft Number of bolts Nbh:= 1 SELECT A TOP REBAR SIZE @ 16" O.0 SPACING: tr:= 5 ENTER A WHOLE NUMBER. ENTER BETWEEN 4 THROUGH 6 spt:= 16in SELECT A BOTTOM REBAR SIZE @ 12" O.0 SPACING: bi:= 8 ENTER A WHOLE NUMBER. ENTER BETWEEN 6 THROUGH 11 spb = l2in Wind Speed V:= 100 mph fe:= 4000psi PrecastPad:= "Yes" Enter Yes or No SEISMIC LOAD Design Spectral Sds:= .706 Spectral Acceleration Ss:= .942 Response Acceleration for short period (for short period) Eq.16-39 Design Spectral Sat :_ .389 Spectral Acceleration St := .338 Response Acceleration for 1-second period (for 1-sec period) Eq.16-40 FOUNDATION INPUT DATA 1/15/2015 B-1 Mathcad-201330 Agilyx TF1215HF-SG .Q ASCE-VAPS LOAD CALLS ASCE 05 STANDARD VAPORIZER LOAD CALCULATIONS REFERENCE INFORMATION '"TF1215HF-SG" "Model" ON 46.375 "Width" 1 222.875 "Height" 2 18ft=216 in 33.375 "Dist.Bet.Bits" 3 .75 "Bolt hole Dia." 4 1 "#of Bolts" 5 i := 8 4.75 "Leg Plate Size" 6 0.545 "Empty Wt" 7 3.399 "Half Ice Wt" 8 6.253 "Full Ice Wt" 9 1 5 0 j := 0 Bh:= G4 din Model:= GOB. Model = "TF1215HF-SG" Nbh:= G5 � Nbh= 1 Bh = 0.75 in G •in 32.—lb Half Ice Weight. G1,j•in• 12 1+ 12•in • G2,j•in–34in) 2 • 3 + G7 ..kip=3.399kip 2 / ft G1, .in Full Ice Weight: G1,j•in• + 12.in •(G2 j•in–34in� 32 13 + G7j•kip=6.253 kip `` ft Unit Reference: kip = 1000 Ib cf=ft3 sf= ft 2 psf= lb psi E_ Ib ksi = 1000 b ft2 in2 in2 1/15/2015 B-2 Mathcad-201330 Agilyx TF1215HF-SG SEISMIC LOAD Design Spectral response Acceleration - (for short period) Eq.16-40 Sds= 0.706 Design Spectral response Acceleration Sd = 0.389 (for 1-sec period) IE := I if Product = "NITROGEN" 1 if Product = "ARGON" 1.25 if Product= "OXYGEN" 1.25 if Product = "HYDROGEN" 1.5 if I = "Essential Service" IE= 1 SeismicUseGroup:= if(IE = I,"II" ,if(IE = 1.25,"III",if(IE = 1.5,"1V","I"))) SeismicUseGroup = "II" w Vaporizer Height Am/H:= G -in H= 18.573 ft J • oi A Vaporizer Weight (Dry) Wte:= G7 J-kip Wte = 545 lb Vaporizer Weight (Iced) Wtf:= G. -kip Wtf=3399 lb H ��J Vaporizer Diameter W= G •in W=46.375 in Awv J Vaporizer Bolt Radius Lr:= G3 J•in Lr= 33.375 in Vaporizer Gravity Centroid to Rear Anchor Distance Lg:= 1=r Lg= 16.688 in 2 Vaporizer Bolt Distance Lc := Lr Lc = 2.781 ft ASCE 7-05 Equation 13.3-1 IP:_ [E RP:= 1.5 z:= Oin h := Oin Table 13.6-1 heat exchangers and evaporators. aP:= 2.5 IP= 1 1/15/2015 8-3 Mathcad-201330 Agilyx TF1215HF-SG r Z .4•ap•Sds.I 1 + 2-h • Seismic Response Coefficient Cs \\ R Cs = 0.471 p Ip 1.6.Sds•Ip= 1.13 Max .3•Sds'Ip= 0.212 Min Min. Seismic Response Csmin •3-Sds•Ip Csmin = 0.212 Seismic Response Coefficient Dry Vaporizer C C C. 0.471 used for Seismic force calculation ry p Se'= S se=— Iced Vaporizer Csf:= Cs Csr= 0.471 Seismic Base Shear Dry Vaporizer Vse:= CSe•Wte Vse=0.257 kip Iced Vaporizer Vs:= Csf•Wtf Vs= 1.6kip Table 1613.5.6 (1) SeismicDesignCategory:_ "A" if Sds < .167 "B" if Sds>_ .167 "C" if Sds>_ .33 "D" if Sds>_ .5 "E" if Sds >_ .75 SeismicDesignCategory= "D" Table 1613.5.6 (2) SeismicDesi nCate o := if(1 = "Essential Service", "A" if Sds < .167 ,SeismicDesignCategory" "C" if Sds ? .167 "D" if Sds ? .33 "D" if Sds ? .5 "F" if Shc >_ .75 SeismicDesignCategory= "D" 1/15/2015 B-4 Mathcad-201330 Agilyx TF1215HF-SG WIND LOADS (ASCE-05) Base Equation: P = qz x G x Cf x Af (Eq. 6-25) Per Fig. 6-19 v:_ — v= 4.806 Cf:= 1.4 EXPOSURE:_ "C" W Gust Effect Factor(for rigid structure) Gg:= 0.85 Velocity Pressure q = 0.00256 x K x K x Kd x V2 x 1 (psf)zt d w p ) (Eq. 6-13) /,,t3,, "C." "B" 15 .85 .7 EXP := "C" 20 .9 .7 K.,:= 25 .94 .7 = if(H<_ I5ft,1,if(H_< 20ft,2,if(H<_25ft,3,if(H 5 30ft,4,if(H 5 4011,5,5))))) 30 .98 .76 40 1.04 .81 if(EXPOSURE = "C" ,1,2) I = 1 i =2 50 1.13 .85 EXPOSURE:= o,1 HEIGHT:= KZ HEIGHT=20 .,o KZ =0.9 �,1 Exposure Coefficient Kz:= Kz KZ= 0.9 1,1 (Exposure "C") at 30 feet. Table 6-3 Direction Factor Kd:= 0.95 Kd = 0.95 (Table 6-4) Topographic Factor Kzt:= I Kzt= 1 (Figure 6-2) Wind Speed V= 100 mph Iw=1.15 (ESSENTIAL FACILITIES 1 for Non Essential Facilities) IW:= I if I = "Non-Essential Service" 1.15 if I = "Essential Service" = 1 1/15/2015 8-5 Mathcad-201330 Agilyx TF1215HF-SG Velocity Pressure q := 0.00256•Kz•K �•Kd•V2.c.psf q = 21.888psf Wind Pressure P:= q•Gg•Cf P= 26.047psf Wind Area A:= H•W A= 71.777 ft2 Total Base Shear by Wind Vw:= P•A Vw = 1869.5 lb FOUNDATION PAD AND ANCHOR DIMENSIONS MOMENT ARM LENGTH SEISMIC WIND ARMs := H 32in + 32in ARMw:= H— 2 2 ARMw =9.3ft ANCHOR BOLT LOADS • MOMENT ARM (ARM) RESISTING MOMENT SIESMIC ARMs = 10.62ft SIESMIC Mrs:= LgWtf Mrs = 5 kip•ft WIND ARMw= 9.29 ft WIND Mrw:= Lg•Wte Mrw = 1 kip-ft OVERTURNING MOMENT (Mot) SIESMIC Mots:= Vs•ARMs Mots = 17kip•ft WIND Motw:= Vw•ARMw Motw= 17kip•ft LEG TENSION (T) (Resisted by two members) Mots-.7 - Mrs•0.6 •2'Sds'Wtf•.7 SEISMIC Ts:_ + Ts= 1.7I2kip 2Lc 4 Ts:= if(Ts <Okip,Okip,Ts) Is= Ts•1.3 Anchors in concrete design to support non-structural components in accordance with ASCE 7 Section 13.4.2 Ts= 2.226 kip need not satisfy ACI D3.3.4 1/15/2015 8-6 Mathcad-201330 Agilyx TF1215HF-SG Mots – Mrs•0.9 .2•Sds•Wtf SEISMIC Tsu :_ + Tsu =2.41 kip Tsu := Tsu-1.3 • 2Lc 4 T�= if(Tsu <Okip,Okip,Tsu) Tsu = 3.132 kip Anchor bolt Tension design load Vsieg:= Vs—•1.3 Vsieg= 0.52 kip ASCE 13.4.2 Anchor bolt Shear design load 4 Motw – WIND Mrw .6 Tw:= Tw= 3.039 kip Tw:= if(Tw<Okip,Okip,Tw) 2Lc Motw.1.6 –Mrw•.9 Twu:= Twu=4.871 kip Twu := if(Twu <Okip,Okip,Twu) 2Lc Twu =4.871 kip Wind Tension design load Vwieg:= Vw—•1.6 Vwieg= 747.818 lb ASCE 13.4.2 Anchor bolt Wind Shear design load 4 LEG COMPRESSION (C) (Resisted by two members) Mots + Mrs .2'Sds'Wtf•.7 SEISMIC Cs:_ + Cs = 3.988 kip 2Lc 4 Mots + Mrs.1.2 .2•Sds•Wtf Csu:_ + Csu=4.194 kip 2Lc 4 WIND Motw+ Mrs Cw:= Cw =4 kip 2Lc Motw-1.6 + Mrs•I.2 Cwu:= Cwu= 12.027 kip Lc 0 ASCE VAPS LOAD CALCS 1/15/2015 8-7 Mathcad-201330 Agilyx TF1215HF-SG G FOUNDATION CALCULATIONS FOUNDATION DESIGN • Vs•Neq Vw•Ne Vs_ = q Neq =2 pads= 1 . pads pads FOUNDATION PAD: Concrete Strength: fc=4000 psi Vessel Bearing Plate: Bearing Plate Size: BP:= 06 j•in BP =4.75 in Csu=4.194 kip Maximum Compression Force: C:= Csu .85•.65 =0.553 C =4.194 kip Maximum Bearing Stress: c = 185.883 psi section 10.14 BP2 Allowable Bearing Stress BSa:_ if BSa > —,"OK" ,"NG" = "OK" BSa = 2210 psi BP 2 Foundation Slab Punching Shear: Effective Depth b�= 8 P de T- 3•in - •in 8 de= 11.5 in T= 1.333 ft Punching Shear Area: Aps:= (BP+ de)•4•de Aps= 747.5 in2 BP =4.75 in Punching Shear Stress: PS := C = 4.194 kip Aps PS = 5.611 psi fe= 4000 psi Allowable Shear Stress: PSallow:_ .75.4. —c-r psi Eq (11-33) psi PSallow = 189.737 psi if(PSallow > PS,"OK" ,"NG") = "OK" 1/15/2015 8-8 Mathcad-201330 Agilyx TF1215HF-SG FOUNDATION WEIGHT (Wf) Wf := B•L•T•150• ]b Wf =30 kip T= 1.33311 cf L = 10ft W tf•Neq GRAVITY LOADS (P) SEISMIC Ps:_ + Wf Ps=36.798 kip B = 15 ft pads Wte•Neq SEISMIC EMPTY TANK: Pse:_ + Wf Pse= 31.09 kip pads = 1 pads Neq = 2 Wte•Neq WIND Pw:_ + Wf Pw=31.09 kip Wte = 545 lb pads Wtf= 3399 lb FOUNDATION/TANK STABILITY CHECK Vs= 3199.592 lb OVERTURNING MOMENTS (Mot) SIESMIC Mme= Vs•(ARMs + T) Mots= 38.245 kip-ft SEISMIC EMPTY TANK: Motse:= Vse.(ARMs + T) Motse = 3.066kip•ft Vs= 3199.592 lb WIND Motw:= Vw•(ARMw + T) Motw= 39.708 kip-ft Vse= 256.513 lb T= 1.333ft RESISTING MOMENTS (Mr) SEISMIC Mrs = Ps Mrs = 183.99kip•ft H= 18.573 ft 2 WIND Mrw:= Pw.L Mrw= 155.45 kip-ft L = 1011 2 SEISMIC EMPTY TANK: Mrse:= Pse--L Mrse= 155.45 kip-ft 2 1/15/2015 8-9 Mathcad-201330 Agilyx TF1215HF-SG OVERTURNING SAFETY FACTOR SEISMIC FULL Mrs .6 FSs := FSs =4.12 if(FSs > 1,"OK' ,"NG") = "OK" Mots•.7 Mrse•.6 EMPTY FSse:= FSse= 43.46 if(FSse> 1,"OK" ,"NG") = "OK" Motse•.7 WIND Mrw•0.6 FSw:= FSw = 2.35 if(FSw > 1,"OK" ,"NG") = "OK" Motw SLIDING SAFETY FACTOR LATERAL BEARING (Lb)=A*P Vs A1=FOUNDATION EDGE AREA, Mots . EXCLUDE TOP 6 INCHES OF Al := L•(T—2-in) Al = 11.667112 FOUNDATION DEPTH A2=SHEAR LUG AREA, FOUNDATION WIDTH/2xLUG Ld= 0 A2:= L.Ld A2 =0 �`��� DEPTH,Ld. IF NO LUG A2=0 1,i cmaxs A=TOTAL BEARING AREA Aiug:— Al + A2 AIUg = 11.667 ft2 xs SRsf P=LATERAL BEARING PRESSURE. p 150 sf•(T — 2-in + Ldl soil == P ft /J Pso;l = 175 psf Psod + 150psf 2 13,0,1 = 162.5 ft 2.lb XwiAA:= if(PrecastPad= "Yes",Opsf,Psoil) PrecastPad= "Yes" Psal = 0 psf 1/15/2015 B-10 Mathcad-201330 Agilyx TF1215HF-SG Lb=TOTAL LATERAL RESISTANCE Lb:= Al„g Psoi� Lb= 0 kip FRICTION RESISTANCE (SR) = 0.25xP (FROM IBC TABLE 1804.2) • SEISMIC FULL TANK SRsf:= .25•Ps•.6 SRsf= 5.52 kip SEISMIC EMPTY TANK SRse:= .25•Pse•.6 SRse =4.663 kip WIND SRw:= .25•Pw•.6 SRw=4.663kip Lateral Resistance for Clay soils L•B•130psf = 19.5 kip ADD LATERAL BEARING TO FRICTION RESISTANCE TO DETERMINE TOTAL RESISTANCE TO SLIDING Tank Full Seismic if[(SRsf + Lb) > Vs•.7,"OK" ,"NG"] = "OK" Tank Empty Seismic if[(SRse + Lb) > Vse•.7,"OK" ,"NG"] = "OK" Wind Tank Empty if[(SRw + Lb) > Vw,"OK","NG"] = "OK" SOIL PRESSURE ALLOWABLE SOIL BEARING PRESSURE qa= 1500 psf if(qa> Ps "OK" ,"NG" "OK" B•L ) ECCENTRICITY=E SEISMIC Mots = 38.245 kip•ft Mots•.7 Ps=36.798 kip Es:= Es = 14.551 in Ps•.6 EFFECTIVE FOOTING LENGHT (Le) l ( ) Les:= — – EsJ• Les = 11.362 ft L = 10 ft 2 Xs:= I – EsJ•3 Xs= 11.362 ft Ps = 245.32 psf 2 B•L Maximum Soil Bearing Pressure: 2 Ps .6 9 qmaxs:_ non Pw Ps B•Xs qmaxs = 259.087 psf if(ga> qmaxs,"OK" ,"NG") = "OK" 1/15/2015 B-11 Mathcad-201330 Agilyx TF1215HF-SG ECCENTRICITY=E KERN:= L KERN=20 in 6 Mots•.7 SEISMIC Mots = 38.245 kip.ft Es:= Es = 8.73 in Ps Ps=36.798 kip EFFECTIVE FOOTING LENGHT (Le) Les := CL – Es)•3 Les = 12.817 ft L = 10ft 2 Xs – Es)-3 Xs= 12.817 ft Ps = 245.32 psf ss 2 B•L Maximum Soil Bearing Pressure: ms:= 2 Ps ax Pw:= Ps B•Xs qmaxs= 382.792 psf if(ga> qmaxs,"OK" ,"NG") = "OK" WIND Pw = 36798 lb Ew:= Motw Ew= 12.949 in KERN= 20 in Pw Vs P w ( 6•Ew �= Q1 := —• 1 + --) ?v13 6 Ew Mots B•L L Q2 := B•L I – L ) MN Q I =404.153 psf Q2 = 86.487 psf if(qa> Q1,"OK" ,"NG") = "OK" rnimmuu gmaxs MOMENTS AND SHEARS AT CRITICAL SECTIONS xs SEISMIC SRsf T Distance from edge to critical section : Lc:= L – 2 L = 10 ft Lc= 3.609 ft de=0.958 ft (Xs– Lc) Shear at Critical Section: qatLc := qmaxs. qatLc = 274.998 psf Xs Vcs:= gatLc•Lc+ (qmaxs –qatLc)- L— Vcs = 1.187 kip 2 ft qatLc-L,2 (02 Moment at Critical Section: Mcs:= + (qmaxs –gatLc)• 2 3 Mcs= 2.259 kip•ft ft 1/15/2015 B-12 Mathcad-201330 Agilyx TF1215HF-SG WIND - L c Shear at Critical Section: ac tNLc := Q2 + Q1 L Q2•(L - Lc) Vcw:= gatLc•Lc+ (Q1 - gatLc)• 2 Vcw= 1.252 kip ft gatLc•Lc2 (Lc`2 Moment at Critical Section: Mcw:= + (Q1 -gatLc)• 2 l 3 Mcw =2.384kip•—ft ft Reinforcement Design: Vu:= 1.5 max(Vcs,Vcw)•12in Vu = 1.878 kip Mu:= 1.5 max(Mcs,Mcw)•12in Mu= 3.575 kip-ft ksi = 1000 lb m 2 GUESS INITIAL As As:= 1•in2 d := T - 3.5•in d = 12.5 in Fc:= fc Fy:= 60ksi BASE EQUATION FMu=Fy*As(D-A/2) As•Fy ..85•Fc•12in) 2 a:= root Mu 9•Fy As d - ,As a=0.064 in =As 2 rhoact:= a rhoact = 0.0004254 12in•d REINFORCEMENT BOTTOM BAR SELECTION Mu Re-bar kip•ft pmin:_ .0018 pmax:_ .0214.12in• T Amax= 0.029 Quick Check = 0.072 in A 2 ft 2 4. in 1/15/2015 B-13 Mathcad-201330 Agilyx TF1215HF-SG AREA OF ONE BOTTOM BAR IS: AREA OF REQ. FLEXURAL MINIMUM AREA OF REBAR REQ. STEEL j -2 2 8 in = 0. 785 in2 a = 0.064 in2 .0018•d•12 in = 0A35 in2 2 _ 2 BottomRebarBending:= if brin • 12m 8 4 b > a,"OK" ,"NG" BottomRebarBending= "OK" ) s _ P AREA OF ONE TOP BAR IS: AREA OF REQ. MINIMUM STEEL 2 tr—in = 0.307 in2 8 4 As.= .0018.12in•T As=0.346 in2 2 2 tr . 12in br . 7[ —12s MinSteel := if —m — - + - m --z-t- > As,"OK","NG" MinSteel = "OK" 8 4 st (8 ) sb P p 2 2 tr 7i 12•in br in 7r 12-in in — in + — = 1.015 in2 8 4 spi (8 ) 4 s b P MAXIMUM TOP BAR SPACING=3XT AND LESS THAN 18 INCHES. CHECK SHEAR BASIC EQUATION .85.2• 12in•d ki• psi m 2 P 43Vn := ShearCheck:= if(4Vn > Vu,"OK" ,"NG") ShearCheck = "OK" 1000 (Min = 16.128 kip > Vu = 1.878 kip O.K. pads Vw-pads Vs:= Vs Vw:_ - nnnnnn Neq Neq 0 FOUNDATION CALCULATIONS 1/15/2015 B-14 Mathcad-201330 Agilyx TF1215HF-SG 1416111.1r1 • www.hilti.us Profis Anchor 2.4.9 Company: Page: 1 • Specifier: Project: TF1215HF-SG Vap • Address: Sub-Project I Pos.No.: 201330 Phone I Fax: I Date: 1/15/2015 E-Mail: Specifiers comments: 1 Input data Anchor type and diameter: HDA-P M12x125l5O Effective embedment depth: hef=4.921 in.,hnom=5.236 in. Material: 8.8 Evaluation Service Report: ESR-1546 Issued I Valid: 2/1/2014 1 3/1/2016 Proof: design method ACI 318/AC193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.375 in. Anchor plate: Ix x ly x t=4.000 in.x 4.750 in.x 0.375 in.;(Recommended plate thickness:not calculated) Profile: S shape(AISC);(L x W x Tx FT)=3.000 in.x 2.330 in.x 0.170 in.x 0.260 in. Base material: cracked concrete,4000,V=4000 psi;h=16.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) no Geometry[in.]&Loading[lb,in.lb] Z A4 v IY� 7 0 Co +' 111_7- \ x .375 ir►'' ---- .A 75 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilt AG,FL-9494 Schaan HIM is a registered Trademark of Hilti AG,Schaan • www.hilti.us Profis Anchor 2.4.9 Company: Page: 2 • Specifier: Project: TF1215HF-SG Vap Address: Sub-Project I Pos.No.: 201330 Phone I Fax: I Date: 1/15/2015 E-Mail: 2 Proof I Utilization (Governing Cases) Design values[lb] Utilization Loading Proof Load Capacity 131,I/ tv[%] Status Tension Pullout Strength 4871 9241 53/- OK Shear Steel Strength 748 4735 -/16 OK Loading fiv Utilization v[%] Status Combined tension and shear loads 0.527 0.158 5/3 40 OK 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti Is a registered Trademark of Hilti AG,Schaan AUTO—SWITCHING TIMER/ACTUATOR WIRING DIAGRAM GROUND ill. G l U 0 _ FINAL DESIGN ❑6 TIMER ❑H VESSEL NOZZLE LEGEND TYPICAL VESSELS AS SUPPUED BY MANUFACTURER ❑5 A BOTTOM Fla THERE MAY BE SOME DIFFERENCES N TIE VESSELS + fi B VENT RPNG ARRANGOHVNT DUE TO THE CHOICE OF COMILI ❑4 MANUFACTURERS, HOWEVER, AS A SEL-PAGE-11-23.1 C TOP FILL MINNUM, V1 SHALL HAVE DUAL SAFETIES AND RUPTURE DISCS. ❑3 D UOUID PHASE CONTENTS GAUGE E VAPOR PHASE CONTENTS GAUGE ® o ❑2 • DESIGN CONDMONS • SITE SPECIFICSETTINGS F FULL TRYCOCK G LIQUID USE (CAPPED) PSE3 NO❑ ❑ \ • EQUIPMENT SPECIFICATIONS L UOUID WITHDRAWAL I t _l 1 COM) • EIS UST N VAPOR RETURN (CAPPED) • MATERIAL GENERAL NOTES — INTERMATIC WORCESTER MFR Model T1975R 2075 NEA/A 4 E C B N\ Grainger(temp. 4•27 Electric Timor Electric Actuator F 115 230 VAC V1 1"–N-102–L1 ® ® GALLO PPM A� l''–N-100–L1 1"–N-101–L1 ® P$Yl PSV2 ® PRODUCT TEMPERATURE:AMBIENT PSE1 PSE2 D A G L ® r S ANSI 300/RF FLANGE FLANGES. PRESSURE: > 250 P•W 1.AND r ARE MUELLER 7 FIV12 7 PSV100 OTHER: r cortoa •wI schedule 40 TTT ,� [4-0028' WALL N&NCB ?.--)i L v f �APORaER I �•• ►1 V X14 1„–N-103–L1 �VnVnV�V/1 I HV740A P[V74O HV141A . 1i HV13 LIQUID TRAP PSV121 HV19 ET 00A PI ~' > PSV120 Al 141 ® PSV3A T _ _ LTP120 — ,�,u ■ A4 �41 HV5 = HV18 0 ►• Hv121 '•4 11a. P. PIN NOS■ HV2 C ► 4 TNER © =4 eel ��• Psv123 VI F20 FN122 ii.„14o NV1409 PCV141 HV141B CV140i HV200 c•HV6 O HV120 . FC1 CV1 n ► ® O o r_ g ® ® 9 I C2 • ►• .: . HV9 VAPORIZER 0120 X12' COURTESY VALVE ASSEMBLY T HV16 PS. o.u0s• ` - r X= T D+� I yI ' I�►//�\/A,/A`//�`1'I 2 F120 MICRON State , _ W , .aa 5 HV3 STR1 LIQUID TRAP • • • • El 00B • i 1 I 1 114 A4 El ; Ail L i J 0 Concrete and Reinforcing Steel gg ►. � t� CLASS C — INERT — LOW TEMP. MANIFOLD its Installed in Concrete (b-- , PSV3B PCV1 PSV3C ANTENNA 1 SENSOR City of Tigard ❑ Special Moment-Resisting Concrete Frame al P HV21 .°' !V-d Plans ❑ Reinforcing Steel&Prestressing Steel Tendons LPCV2 CV2 B dillei N► Date I r� ❑ Structural Welding —DATAQUEST UNIT' 4 s IF P.2-C cr 26�4ftVlit, r —— ❑ High-Strenght Bolting PCV3 ❑ Structural Masonry DATAQUEST REVIS_ION ❑ Reinforced Gypsum Concrete 0 ❑ Insulating Concrete Fill OFFICE COPY ❑ Spray Applied Fire-Resistive Materials • ❑ Pilings,Drilled Piers and Caissons ❑ Shotcrete , ❑ Special Grading,Excavation and Filling RV PAN -DM ON AP* RV DAR DM OR MRD RV- DAl• ow.HI•t ua DMr•1 Hrr T_1 Cmor -' Ott. .AM RV.119.5/13/2013 J. RYAN CONFIDENTIAL - uqu1DE PROCESS AND INSTRUMENT DIAGRAM 2 OF 2 0 °”` °�° 3,000 GALLON NITROGEN 0*■. A/A6 nti .." F BAIR LIQ�IID TE, t, --.r 0 5/13/13 DRAWING CREATION JAR Tit-simmaw 3. RYAN • " ------- NOUIRON. TEXAS -"' EGON SSA-241832 Fume=PrrIr 1 SITE SPECIFIC SETTINGS LEAK TEST TABLE TELEMETRY COMPONENTS PRESSURE RELIEF DEVICES PRESSURE CONTROL VALVES EQUIPMENT SELECTION DATE: TESTER: TEST FLUID: TELEFLO - DATA-ON-LINE PSV1/2 - 250 PSIG SET POINT SPRING RANGE V1 - S/N (MAWP ■ XXX PSIG) DRAWING LINE ID VISUAL 25 PSIG 100 PSIG 200 PSIG 300 PSIG 385 PSIG 350 PSIG SPARE PSE1/2 - 375 PSIG (140 TO 150% INITIALS INITIALS INITIALS INITIALS INITIALS INITIALS INITIALS INITIALS DPT1 — 0' — 600" MAWP) PCV1 — 130 PSIG 100 — 225 PSIG E100A,B — THERMAX TF1215HF—SG 1'—N-100—L1 PSV3X — 350 PSIG PCV2 — 150 PSIG 151 — 250 PSIG LOW TEMP SHUTDOWN MANIFOLD: N-302777 1'—N-101—L1 PSV100, 101 — 350 PSIG PCV3 — 200 PSIG 151 — 250 PSIG PRESSURE CONTROL MANIFOLD: N-200882 1•—N-102—L1 PCV 140 — 100 PSIG 50 — 135 PSIG PCV 140. 141 — GENERANT, 1" 1'—N-103—L1 PCV 141 — 95 PSIG 50 — 135 PSIG PSV100, 101: r GENERANT HPRV-750B-350X SPARE N-331528 ELEMENTS IMPORTANT FOR SAFETY (EIS) LOX, LIN, LAR P&ID TAG DESCRIPTION VERIFICATION SIGNATURE VERIFICATION DATE DESIGN CONDITIONS PSE-1 MAIN BURST DISC OVERALL SYSTEM - 2000 SCFH NOMINAL AT 100 PSIG. OVERALL SYSTEM - 2000 SCFH MAXIMUM AT 100 PSIG. PSE-2 MAIN BURST DISC UTILIZATION - 24 HR. PER DAY/ 7 DAYS PER WEEK FINAL DESIGN PSV-1 MAIN VESSEL PSV GAS STORAGE VOLUME (ESTIMATED) PSV-2 MAIN VESSEL PSV OVERALL SYSTEM - 279,300 Sc.E , PSE-3 VESSEL LIFT PLATE REFERENCES PSV-3A FILL UNE THERMAL PSV STX 1000 STANDARD SYMBOLS LEGEND PROCESS FLOW DIAGRAM . FC-1 CGA FILL CONNECTION CV-1 ALL UNE CHECK VALVE PSV-100 VAPORIZER PSV LEAK,TEST PROCEDURE MATERIAL GENERAL 1. OXYGEN SYSTEM COMPONENTS AND INTERCONNECTING EQUIPMENT SHALL 1. REFER TO PRESSURE TEST TABLE FOR THE UNES THAT ARE TO BE BE SUITABLE FOR AND COMPATIBLE WITH OXYGEN UNDER THE CONDTITONS PSV-100 VAPORIZER PSV Iti D AND TO WHAT PRESSURES. REMOVE PRESSURE RELIEF VALVES OF TEAPERATURE AND PRESSURE TO WHICH THE COMPONENTS MAY BE PRIOR AND INSTALL PIPE PLUGS. EXPOSED, LOW TEMPERATURE 2. PRIOR TO INTRODUCING ANY TEST NITROGEN, PERFORM A VISUAL LTP-120 / V-120 PROTECTION 2. NORMALLY, THE PIPING FROM THE STORAGE VESSEL TO THE VAPORIZER, INSPECTION OF ALL JOINTS INCLUDING THREADED, BRAZED, WELDED, OR FROM THE VAPORIZER TO THE PRESSURE REGULATION MANIFOLD, AND PSV-200 FINAL UNE PSV SWAGED. THEN PROCEED. OUS LEAKS OR POTENTIAL FAILED JOINTS ARE FROM THE MANIFOLD TO THE CUSTOMER CONNECTION POINT SHALL BE TYPE K OR L SEAMLESS HARD TEMPER COPPER TUBING WITH WROT NOT TO VENT IN CONFINED 3. AS REQUIRED BY ASME B31.3, SECTION 345, A PRESSURE REUEF VALVE COPPER FITTINGS. VESSEL VENT AREA SHALL BE PROVIDED ON THE TEST EQUIPMENT ON THE TEST OR SYSTEM 3. ALL BRAZING SHALL BE PERFORMED BY QUAUFIED OPERATORS, PER SCE OF THE ISOLATION VALVE DOWNSTREAM OF THE TEST GAS SECTION IX OF THE ASME CODE. ALL FILLER ALLOY TO COMPLY WITH REGULATOR. THE REUEF VALVE SHALL HAVE A SET PRESSURE NOT ANSI/AWS A5.8 BCuP SERIES, AND CONTAIN A MINIMUM OF 15% SILVER. HIGHER THAN THE TEST PRESSURE PLUS THE LESSER OF 50PSI OR 1076 OF THE TEST PRESSURE. FOR A TEST PRESSURE OF 385P51 THIS SET THE DIS-SIMILAR METALS TO BE BRAZED WITH 45% SILVER WHILE USING POINT MUST BE NO HIGHER THAN 423PSI THE APPROPRIATE FLUX. 4. PIPING SUPPORTS SHALL BE OF ALUMINUM OR STAINLESS STEEL 4. SLOWLY INTRODUCE NITROGEN TO THE FIRST STEP PRESSURE WHICH IS UNISTRUT CHANNEL AND COPPER, COPPER CLAD, OR INSULATED STEEL CLAMPS OF PROPER STRENGTH AND QUALITY. MAXIMUM DISTANCE THE LOWER OF 1/2 THE TEST PRESSURE OR 25 PSIG. HOLD THIS PRESSURE AND PERFORM A BUBBLE LEAK CHECK. IF ANY LEAKS ARE BETWEEN PIPE SUPPORTS UPPORTS SHALL BE E BET. UNE IDENTIFICATION CODING FOUND, DEPRESSURIZE THE SYSTEM AND REPAIR. IF THE SYSTEM IS 5. 11V-200 AND HV-201 ARE OWNED BY AUUS UNLESS OTHERWISE 2' - N - 212 - K1 LEAK FREE, PROCEED TO THE NEXT STEP PRESSURE. SPECIFIED. 5. PROCEED WITH STEP PRESSURE CHECKS UNTIL 110% OF THE DESIGN 6. PSE1 & PSE2 RUPTURE DISC PRESSURE RATING AT 70 F MUST BE LESS 4 PIPING wTERV� PRESSURE IS REACHED. FOR THE 110% OF DESIGN PRESSURE CHECK, THAN 150% BUT MORE THAN 140% OF VESSEL MAXIMUM ALLOWABLE UNE sieJ I CLASSIFICATION�� PRESSURIZE THE SYSTEM TO THE SPECIFIED VALUE AND HOLD THE WORKING PRESSURE. SERVICE Cone LHE KAMER OR ENTER THE AREA. REDUCE THE OPRESSURE�TO 100% OF THE DESIGN PRESSURE. 7. THIS DRAWING MUST BE PRINTED IN 11' X 17- FORMAT. SERVICE CODES PIPING MATERIAL A - ARGON B1 - YELLOW BRASS 6. PERFORM THE FINAL BUBBLE LEAK TEST AT 100X OF THE DESIGN 8. THE SET POINTS OF THE VESSEL PRESSURE BUILDER AND ECONOMIZER C - CARBON DIOXIDE B2 - RED BRASS PRESSURE. MAY BE FIELD ADJUSTED WITHOUT AN MOC WITHIN THE DOSING H - HYDROGEN Li - L COPPER REGULATOR SPRING RANGE AS LONG AS THE FINAL OPERATING PRESSURE - He - HEUUM K1 - K COPPER 7. REMOVE THE PRESSURE TEST APPARATUS AND REPLACE ALL PRESSURE OF THE VESSEL IS AT LEAST 10% LESS THAN THE SET POINT OF PSV1/2. N - NITROGEN K2 - COPPER REFRIGERATION TUBE R1.JEF VALVES. LEAK CHECK PRESSURE RELIEF VALVES AFTER 9. THE SET POINT OF THE FINAL UNE REGULATOR MAY BE FIELD ADJUSTED 0 - OXYGEN Si - 304 STAINLESS STEEL ** RE-INSTALUNG. X - OTHER S2 - 316 STAINLESS STEEL " WITHOUT AN M I L UN THE EXISTING RT LEAST 0%R LE RANGE AS ..INDICATE W�THICKNESS FOR HIGH PRESS.TUBING 8. RETURN THE COMPLETED PRESSURE TEST DOCUMENTATION TO THE POINT OF THE FINAL UNE SREUEF VALVE. 10% LESS THAN THE SET PIPING TO MEET SPECIFICATION:2e-4+ofST-boot-s ERGINEER OF RECORD. my °"" °W °`""�° °AE • °M °K AMC �v °." o� 5/13/2013 oJ. RYYAN PROCESS AND INSTRUMENT DIAGRAM �1 OF 2 I r 0 - /as Ma CFMCNED MY CONFIDENTIAL uR LAUDE 3,000 GALLON NITROGEN osa ma ,q.,sn. AIR LIQUIDE INDUSTRIAL U.S. LP COMM NE ARM./Ma ,� '1:'�� © HOUSTON. TExAS AGILYX 0 5/13/13_DRAWING CREATION MAR m��imnw J. RYAN TIGARD, OREGON GSA-241832 1 r V 6O'-D" BUILDING WALL 22" 15'-0" 15'-0" GENERAL NOTES: 2" 18" 2" 1. ALL PERMITS/APPROVALS AND FACILITY SPECIFIC DRAWINGS(i.e.FACILITY LAYOUT) AR UQUID -..-6"- T-0" T-0" 6"-- T NECESSARY FOR PERMIT(S)ARE THE RESPONSIBILITY OF THE CUSTOMER AND SHALL LOGO STAMPED ; •• T BE OBTAINED PRIOR TO INSTALLATION OF THE PRE-CAST FOUNDATION. INTO CONCRETE 3'-9" T-6" 3'-9' 2'-7"--+2'-10' 4'-Z•--�2'-10" 2'-7"- TYPICAL LOCATION OF HOLE 2I2, �ECEIVEI�4-1'-5$^ PICKUP POINTS 4 PLACES. BOLT HOLE 2. RESERVED. (TYP.) ri 18" 3. RESERVED. 6' • / Q Q $ . 4. SITE SELECTION SHALL INCLUDE CONSIDERATION OF WATER ACCUMULATION. 1.4_ 1"THICK . �„ O 7_6^ STEEL PLATE 1 5. SOIL MUST BE CAPABLE OF THE NET ALLOWABLE BEARING CAPACITY AT THE W-0"TANK \ RBa CONTROL I,ONiROL j 2-6. , •, FEB 2 6 2015 ENGINEERNFDOR SPECIFIC DESIGN RECOMMENDATIONS. CONSULT LOCAL PROFESSIONAL • / CIRCLE MANIFOLD IIirANIFOLO I 0 6. BULK STORAGE SYSTEM MUST BE SECURE. FENCING BY CUSTOMER. FENCE POST I-2' 816 - INSERTS ARE A STANDARD FEATURE. _ / © © 0 VESSEL LEG PLATE DETAIL 7. FIELD VERIFY THE LOCATION AND DEPTH (OR HEIGHT)OF ALL UTILITIES PRIOR TO 7 1 300 CAL. \ 0 Q AIR LIQUIDE STANGARD CITY OF TIGARD PAD INSTALLATION IN ORDER TO PROVIDE ADEQUATE CLEARANCES AND TO INSURE NO INTERRUPTION OF SERVICES. 1D'_0' 9'-0" - - TYPICAL THREE PLACES _ __ IF,715HF-5� BUILDING DIVISION VESSEL vAPDR12ER5 - =1 NOT TO SCALE 8. STORAGE VESSEL SHALL BE LOCATED AS SHOWN IN THE PLAN. VESSEL CAN BE �� '-����= ° ROTATED AS REWIRED TO ORIENT FILL CONNECTION. .. _. HEIT.19-]•2' 10 6"NI ' II ORY Wt-545 LBa i• -.' CTR Im 9. IF UNDERLYING SURFACE IS CONCRETE OR ASPHALT, ANY CRACKS THAT DEVELOP A 4NIOGE 1r \\,I MIN. !oi \\ GTR. A OVER TIME IN THE UNDERLYING SURFACE ARE NOT THE RESPONSIBILITY OF AIR \ A FRAME I�� 1 3'-0' % ►I TO 3.000 - LIN II� �,I ����II 4 NOS. 1"e HILTI HAS B7 THREADED ROD LIQUIDS AMERICA NOR FASC. ��sw•A�!�■! ,✓��i��i4 Vii?, I 2'-6" VESSEL LEG W/HILTI HIT-HY 150 MAX-SD EPDXY u - s'-o' CONSTRUCTION NOTES: 3'_1346" 3'-9],{I' I MI SYSTEM(ESR 3013) 4 6" 1-5Y2 FILL ON%. _ FRAME �_ I TIi. TD GTR.--I 10. MATERIAL AND WORKMANSHIP SHALL CONFORM WITH APPLICABLE BUILDING CODES I I T I 1� VESSEL BASE PLATE AND BE IN ACCORDANCE N1TH THE CURRENT EDITON OF THE FOLLOVANG STANDARDS: _ ��il �U� GROUT IF UN-LEVEL, AG 117 'STANDARD SPECIFICATIONS FOR TOLERANCE FOR CONCRETE 2'-0' 2'-0" I��iI/ i/�I��III 6' S'-0" 5'-0" 6" a'-0" T-0' 4'-0" ��, ��® USE STEEL SHIMS TO CONSTRUCTION AND MATERIALS" SUPPORT BASE PLATE AO 301 "SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS" TYPICAL PVC PIPE INSERT c< n• ACI 318 "BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE" 12" AWS 01.1 "STRUCTURAL WELDING COOS- STEEL" RECEIVE 3 PLACES.0 FENCE POSTS FOUNDATION PLAN VIEW ii 4 4 °O a EMBEDMENT (BY CUSTOMER)IF SITE < n �1 4 c' < 11. PLACE THE PRE-CAST FOUNDATION ONLY ON SCUD AND LEVEL SURFACE WITH IS NOT SECURE FROM �� a e 11 POSITIVE DRAINAGE. DO NOT INSTALL ON WET OR SOFT SOIL. MINIMUM ALLOWABLE OUTSIDE NOT PCURIC. ., " < SOIL BEARING PRESSURE IS 1500 PSF. IF COMPACTION IS REQUIRED, IT IS THE 1 FENCE LINE a CUSTOMER'S RESPONSIBIUTY. EXCAVATE ANY LOOSE AND UNSUITABLE SOILS UNDER - - ----- AND AROUND THE PAD. PROOF ROLL EXCAVATED AREA AND REPLACE LOOSE AND SOFT AREAS WITH SELECT FILL. PLACE SELECT FILL AS REQUIRED IN 8"MAX. LOOSE © 3.000 GAL. LIQUID NITROGEN VESSEL BE GRANULAR OMATERIAL WITH MINIMUM PII BETWEEN 98%8 AND 20 WITH LL 40.SEPERFORM SOIL )4"e HILTI HAS-R 304 S5 ROD DRILLED ANCHOR BOLT DETAIL EXCAVATION AND COMPACTION UNDER THE SUPERVISION OF A TESTING COMPANY. W/HILTI HIT-HY 150 MAX-SD EPDXY HILTI HIT-HY 150 MAX-SD EPDXY SYSTEM 12. CONCRETE: VAPORIZER LEG TF1215 SYSTEM(ONE REQUIRED PER LEG) -_-1_ HILTI STAINLESS STEEL (ESR 3013) 1 1 TYPICAL THREE PLACES 0.28 DAY ULTIMATE COMPRESSIVE STRENGTH OF 4.000 PSI.(SPECIAL INSPECTION SEE NOTE 13c S1 PER IBC). 4.'AUG' HOLE FOIL UNDER THE LEG PLATE VAPORIZER LEG PLATE / b.PORTLAND CEMENT: ASTM C 150, TYPE 1. (TYP. 4 PLUS.) MCMASTER CARR 3254522 NOT TO SCALE C.MAXIMUM WATER-CEMENT RATIO; 0.45. �^'-�• d.WATER-REDUCING ADMIXTURES: ASTM C494. (OPTIONAL) ,-..-.-,-,--- G ROUT IF REQUIRED e.NORMAL WEIGHT AGGREGATES: ASTM C33. ;; ',� I. AIR ENTRAIN ALL EXTERIOR CONCRETE ((ADMIXTURE: ASTM C260)5%VOIDS. 1'-4J¢" • 1-1Xt 9.DO NOT USE CALCIUM CHLORIDE ADMIXTURES UNDER ANY CIRCUMSTANCES. _ 3Y4" • 7" h.REINFORCING BARS: ASTM A 615 SPECIFICATIONS., GRADE 60,DEFORMED. L- EMBEDMENT BEND BARS COLD. 44'f 46.0 MT'G HOLE HILTI KWIK BOLT TZ i. LAP ALL BARS AT SPLICES IN ACCORDANCE WITH ACI 318, BUT NOT LESS (TYP. 4 PLUS.) 1 KB-TZ SS 304 WO" THAN 40 BAR DIAMETERS NOR LESS THAN 18" UNLESS OTHERWSE NOTED. • O 0© ITEM NO. 202883 J. ALL BAR STEEL SHALL BE PROPERLY SUPPORTED AND HELD ACCURATELY • THE ILLS TF1 Z1 SHF-SG VAPORIZER ii 1 " 0 WITH 2" EMBEDMENT IN PLACE AS RECOMMENDED BY THE CR51, EXCEPT THAT MAXIMUM SPACING C OF ANY BAR SUPPORT SHALL BE 3 FEET. DRILLED ANCHOR BOLT DETAIL 'Xs"_I* 0 (ESR 1917) A.ALL EXPOSED EDGES OF CONCRETE SHALL HAVE 3/4'45'CHAMFER. ▪ Ot VAPORIZER LEG PLATE DETAIL % '" MANIFOLD STAND LEG I. CONCRETE SURFACE TO BE BROOM FINISHED HILTI HIT-HY 150 MAX-SD EPDXY SYSTEM 0 % 1111 Oiiiii'•�������� 13. STEEL: TYPICAL FOUR PLACES PER VAPORIZER TYPICAL FOUR PLACES 7 C. STRUCTURAL STEEL: ASTM A36.PLATES AND SHAPES. • NOT TO SCALE SEE NOTE 13c T NOT TO SCALE O CONTROL MANIFOLD LEG PLATE DETAIL 2" b.RESERVED. TYPICAL TWO PLACES PER MANIFOLD EMBEDMENT NOT TO SCALE 11 c. POST INSTALLED ANCHORS: •HILTI HIT-HY 150 MAX-SD ADHESIVE ANCHORING SYSTEM WITH HILTI 'HAS-E'THREADED ROD. (1-800-879-8000). •PROPER ANCHORING SYSTEM COMPONENTS AND EQUIPMENT FOR GIVEN •All Ali,. ® CONTROL MANIFOLD ANCHOR BOLT DETAIL TANK MUST BE VERIFIED BY LOCAL AIR LIQUIDE REPRESENTATIVE. ANCHORS MUST BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS • DRILLED - HILTI EXPANSION ANCHOR TO ENSURE FULL LOAD STRENGTHS. 111 1 TYPICAL FOUR PLACES PER MANIFOLD STAND d. WELDING ELECTRODE- E70%X e.PAINT ALL EXPOSED ANCHOR BOLTS WITH ZINC VERTICAL VESSEL I �'� NOT TO SCALE COATING OR APPROVED EQUIVALENT. 14. RESERVED. • 96" I 18'-4' VAPi'IZER 18'_676• VAP:'IZER 15. SYSTEM TO BE GROUNDED,IF NECESSARY.PER LOCAL CODES. IIlliglill ills I�+I��I,I��I 16. PRE-CAST FOUNDATION IS OWNED BY AIR LIQUIDS AMERICA AND WILL BE REMOVED r:■I■ •■ ■u .I■ ■. .0 •I_ IF BULK GAS STORAGE SYSTEM IS REMOVED. y5 TOP REBAR %��� i��l���� (� Ti. ENGINEER IS RESPONSIBLE FOR THE FOUNDATION AND ANCHORING DESIGN ONLY. 0 16"O.C. E.W. \- \ /-/ #5 TOP REBAR _ __ p'4R,-/ 18. RESERVED.O 16. O.C. E.W. I 3•_2^ NC 2' CLR. �"CHAMFER cOj 19. RESERVED. jr I 1 / \ 1'-6" 20. SPECIAL INSPECTION OF ANCHOR BOLTS IS OWNER'S RESPONSIBILITY. ' 7`� --- _ -- __' - /4 U BARS O 12" � 16" 1 + �',� �� ' -r V-•• -----W -- O.C. ALL AROUND • i I wl ,I A� {G iTOM AGILYX _DESIGN CRITERIA CREATE A ROUGH FINISH /8 BOTTOM REBAR 3"CLR LIFT PINS 446" EXPOSE AGGREGATE 0 12"O.C. E.w. BUILDING DSSC-2010• 118 BOTTOM REBAR 4 PLACES. - 1]. DESIGN PARAMETERS- WAND EXISTING CONCRETE PAVEMENT 0 12" O.C. E.W. SEE DETAIL. IF THE SHIMS AND CIS NOT THE GAPS UNDER THE PAD PRECAST PAD 'As" �'� WIND(3 SEC GUST)V• 100 MPH, G9- 0.85, IOU= 1.0 2)Ss 146' • EXPOSURE C 1 4 N ,� DESIGN PARAMETERS- SEISMID • •145z' a LOAD RATED LIFTING PIN NEW VESSEL \ Q� SEISMIC USE GROUP II,SEISMIC DESIGN CATEGORY= D • DESIGN BY JENSON & VAPORIZER - Sde= 0.706 Sd1 = 0.389 IE• 1.0, R = 2 e PRE-CAST EZ PADS 9• 9, 24i" 3.000 GALLON UQUID NITROGEN STORAGE VESSEL VESSEL & VAPORIZER EZ-PAD SECTION A-A \ WEIGHT(FULL) = 37.400 LBS. HEIGHT= 18'-4" SITE PLAN ALLOWABLE SOIL BEARING PRESSURE • 1.500 PSF.DIM KY LIME REV wre 1e" 0"'1 05/15/13 (WENS DRAWING PREPARED FOR FASC INC 3,000 GAL. VERTICAL LIQUID NITROGEN TANK .NTS Ky 0 0 D5/15/13 DRAWING ORIGINATION / roe�, oca®BY PO BOX 11697 & VAPORIZERS ON EZ-PAD FOUNDTIONS 0..... / 201330 XX AIR LIQUIDS SPRING.2) 2 77391 AGILYX �mwu¢R.c .� y (832)sg2_D044 7904 HUNZIKER, TIGARD, OR 201330