Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Plans
RECEIVED 7650 SW Beveland St TM RIPPEY Suite loo JUN 27 2013 CONSULTING ENGINEERS Tigard,Oregon 97223 Phone: (503)443-3900 CITY OFTIGARD Fax: (503)443-3700BUILDINGDIVISION STRUCTURAL CALCULATIONS FOR SNYDER ROOFING ADDITION TMR # 13130 May 6,2013 PAGE DESIGN CRITERIA 1 FLOOR AND ROOF FRAMING 2-23 WALL FRAMING 24-33 LATERAL 34-70 FOUNDATION 71-87 MISCELLANEOUS 88-95 4,,, =E .„. 0, c . , 10 IP° �yPWA5 EXPIRES:4,-3U.-Z)/ 4 ( Z 13a ItAz OFFICE COPY -Feet Zvi=2, ---C101�� • CODE REOUIREMENTS: CONFORM TO THE 200 y INTERNATIONAL BUILDING CODE AS AMENDED BY THE 20?.' OREGON STRUCTURAL SPECIALTY CODE,REFERENCED HEREAFTER AS IBC. DESIGN CRITERIA: DESIGN WAS BASED ON THE STRENGTH AND DEFLECTION CRITERIA OF THE IBC. IN ADDITION TO THE DEAD LOADS,THE FOLLOWING LOADS WERE USED FOR DESIGN,WITH LIVE LOADS REDUCED PER IBC: FLOOR LIVE LOAD: 100 PSF GROUND SNOW LOAD Pg: 10 PSF FLAT-ROOF SNOW LOAD Pf 25 PSF BASIC WIND SPEED(FASTEST MILE 1997 UBC): 80 MPH WIND IMPORTANCE FACTOR Iw: 1 WIND EXPOSURE: B SEISMIC IMPORTANCE FACTOR le: 1 SITE CLASS: D SDS=0.705 SDI =0.379 SEISMIC DESIGN CATEGORY: D BASIC SEISMIC-FORCE-RESISTING SYSTEM: LIGHT FRAMED WALLS WITH STRUCTURAL PANELS AND ORDINARY STEEL BRACED FRAMES RESPONSE MODIFICATION FACTOR R: 3 1/4 SEISMIC RESPONSE COEFFICIENT Cs:0.217 ANALYSIS PROCEDURE USED: EQUIVALENT LATERAL FORCE ALLOWABLE SOIL BEARING PRESSURE:2000 PSF(TO BE VERIFIED BY TESTING AGENCY). Rh.) Av/Zoog egi P44%102. av & ' ,l3 ArP6 r.7 j '/ /3 e6,4' GyI ` • 3,0 pip y�lt� , 1. °,, ,UlG /• LG.Z5"- z$,,OC-17 FAX 7 -TT-M/ �,ZU� Garb 5 ) ./;., 6/(1 -z J /Pa M TM RIPPEY BY /2 4) DATE!D . CONSULTING ENGINEERS CHK BY �x DATE 7650 S.W.Beveland St, Suite 100 JOB NO eze/ Tigard,Oregon 97223 Phone(503)443-3900 SHEET 9 OF 3- j;• , /PAP'A), e> , sSSG 17-o_X5i g , � 'sue 11 4 !. 5 A95 / zr /6 • Lx. TM RIPPEY BY/2W DATFI_�/GG '' CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St,Suite 100 JOB NO OZ 7 Tigard, Oregon 97223 Phone(503)443-3900 SHEET Q 2 OF ■ eve • by Weyerhaeuser 14" TJI® 230 @ 16" o/c TJ-Beam®6.30 Serial Number: User:2 8/22/2008 4.33:54 PM THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN Pagel Engine Version:6.30.14 CONTROLS FOR THE APPLICATION AND LOADS LISTED J :© 15' Product Diagram is Conceptual. LOADS: Analysis is for a Joist Member. Primary Load Group-Office Bldgs-Offices(psf): 100.0 Live at 100%duration,28.0 Dead SUPPORTS: Input Bearing Vertical Reactions(Ibs) Detail Other Width Length Live/Dead/Uplift/Total 1 Plate on steel beam 3.50" 3.50" 1000/280/0/1280 Al:Blocking 1 Ply 14"TWO 230 2 Plate on steel beam 3.50" 3.50" 1000/280/0/1280 Al:Blocking 1 Ply 14"TJI®230 -See iLevel®Specifier's/Builder's Guide for detail(s):Al:Blocking DESIGN CONTROLS: Maximum Design Control Result Location Shear(Ibs) 1244 -1230 1945 Passed(63%) Rt. end Span 1 under Floor loading Vertical Reaction(Ibs) 1244 1244 1460 Passed(85%) Bearing 2 under Floor loading ?foment(Ft-Lbs) 4537 4537 4755 Passed(95%) MID Span 1 under Floor loading Live Load Defl(in) 0.300 0.365 Passed(L/584) MID Span 1 under Floor loading Total Load Defl(in) 0.384 0.729 Passed(L/456) MID Span 1 under Floor loading TJPro 50 30 Passed Span 1 -Deflection Criteria:STANDARD(LL:U480,TL:U240). -Deflection analysis is based on composite action with single layer of 19/32"Panels(20"Span Rating)GLUED&NAILED wood decking. -Bracing(Lu):All compression edges(top and bottom)must be braced at 3'7"o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. -2000 Ibs concentrated load requirements for standard non-residential floors have been considered for reaction and shear. TJ-Pro RATING SYSTEM -The TJ-Pro Rating System value provides additional floor performance information and is based on a GLUED&NAILED 19/32"Panels(20"Span Rating)decking. The controlling span is supported by beams. Additional considerations for this rating include:Ceiling-None. A structural analysis of the deck has not been performed by the program. Comparison Value: 1.53 ADDITIONAL NOTES: -IMPORTANT! The analysis presented is output from software developed by iLevel®. iLevel®warrants the sizing of its products by this software will be accomplished in accordance with iLevel®product design criteria and code accepted design values. The specific product application,input design loads,and stated dimensions have been provided by the software user. This output has not been reviewed by an iLevel®Associate. -Not all products are readily available. Check with your supplier or iLevel®technical representative for product availability. -THIS ANALYSIS FOR iLevel®PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. -Allowable Stress Design methodology was used for Building Code IBC analyzing the iLevel®Distribution product listed above. PROJECT R AT N: OPERATOR INFORMATION: Copyright 0 2007 by iLevel®, Federal Way, WA. TJI® and TS-Beam® are registered trademarks of iLevel®. e—I JoistTM,Pro”" and TJ-Pro"' are trademarks of iLevel®. gU by Weyerhaeuser 14" TJI® 230 @ 16" o/c TJ-Beam®6.30 Serial Number: User:2 8/22/2008 4:33:54 PM THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN Page 2 Engine Version:6.30.14 CONTROLS FOR THE APPLICATION AND LOADS LISTED Load Group: Primary Load Group 14' 7.00' Max. Vertical Reaction Total (lbs) 1280 1280 Max. Vertical Reaction Live (lbs) 1000 1000 Selected Bearing Length (in) 3.50(W) 3.50(W) Max. Unbraced Length (in) 43 Loading on all spans, LDF = 0.90 , 1.0 Dead Shear at Support (lbs) 269 -269 Max Shear at Support (lbs) 272 -272 Member Reaction (lbs) 272 272 Support Reaction (lbs) 280 280 Moment (Ft-Lbs) 992 Loading on all spans, LDF = 1.00 , 1.0 Dead + 1.0 Floor Shear at Support (lbs) 1230 -1230 Max Shear at Support (lbs) 1244 -1244 Member Reaction (lbs) 1244 1244 Support Reaction (lbs) 1280 1280 Moment (Ft-Lbs) 4537 Live Deflection (in) 0.300 Total Deflection (in) 0.384 • • PROJECT INFORMATION: OPERATOR INFORMATION: Copyright 0 2007 by iLevel®, Federal Way, WA. TJI® and TJ-Beam are registered trademarks of iLevel®. e-I Joist"',Pro'" and TJ-Pro"'are trademarks of iLevele. ■ 1- eve by Weye.h4euser 16" TJI® 360 @ 24" o/c TJ-Beam®6.30 Serial Number: „ User:2 8/26/2008 1:26:12 PM THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN Page 1 Engine Version:6.30.14 CONTROLS FOR THE APPLICATION AND LOADS LISTED /1 Member Slope:.25P12 Roof Slope.25112 a 30' All dimensions are horizontal. Product Diagram is Conceptual. LOADS: Analysis is for a Joist Member. Primary Load Group-Roof(psf):25.0 Live at 125%duration,16.0 Dead Wind Load Group- 15.1 Live, 16.0 Dead SUPPORTS: Input Bearing Vertical Reactions(Ibs) Detail Other Width Length Live/Dead/Uplift/Total 1 Plate on steel beam 3.50" 3.50" 746/477/-164/1223 End,TJI Blocking 1 Ply 16"TJI®360 2 Stud wall 5.50" 5.50" 754/483/-166/1237 End,TJI Blocking 1 Ply 16"TJI®360 DESIGN CONTROLS: Maximum Design Control Result Location Shear(Ibs) 1206 -1199 2738 Passed(44%) Rt.end Span 1 under Roof(Primary Load Group) loading Vertical Reaction(lbs) 1206 1206 1881 Passed(64%) Bearing 2 under Roof(Primary Load Group) loading Moment(Ft-Lbs) 8870 8870 10506 Passed(84%) MID Span 1 under Roof(Primary Load Group) loading Live Load Defl(in) 1.088 1.471 Passed(L/325) MID Span 1 under Roof(Primary Load Group) loading Total Load Defl(in) 1.784 1.962 Passed(L/198) MID Span 1 under Roof(Primary Load Group) loading -Deflection Criteria:STANDARD(LL:L/240,TL:L/180). -iLevel®maximum bearing length controls reaction capacity. Limits: End supports, 3 1/2". Intermediate supports, 5 1/4". -Bracing(Lu):All compression edges(top and bottom)must be braced at 3'3"o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. [3'3"o/c due to Primary Application Loads;8' 10 7/16"o/c due to Wind Application Loads] ADDITIONAL NOTES: -IMPORTANT! The analysis presented is output from software developed by iLevel®. iLevel®warrants the sizing of its products by this software will be accomplished in accordance with iLevel®product design criteria and code accepted design values. The specific product application, input design loads,and stated dimensions have been provided by the software user. This output has not been reviewed by an iLevel®Associate. -Not all products are readily available. Check with your supplier or iLevel®technical representative for product availability. -THIS ANALYSIS FOR iLevel®PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. -Allowable Stress Design methodology was used for Building Code IBC analyzing the iLevel®Custom product listed above. -(Minimum cut length)=(Overall horizontal length)x 1.000+5/16" PROJECT INFORMATION: OPERATOR INFORMATION: Copyright 0 2007 by iLevelR, Federal Way, WA. TJI and TJ-Beame are registered trademarks of iLevelR. e-I Joist",Pro'" and TJ-Pro" are trademarks of iLevelR. C:\PROJECT FILES\2008 PROJECTS\8261 SNYDER ROOFING ADDITION\CALCULATIONS\TJI ROOF JOIST.sms = zs Psf" I f r- ' Z S)06/4, = lz p-eP & '5t5 z= 7z7 s--- 4/ I rte= g2PA /S /1 -7- Pz-%[l90X1i ---zt7_ is . i Gf pales o �.=ST 461-, ' V/e)Cz- ii-c) _— /lam / rvl GCS ‘ie T' A) - ZC/ f2S) = ez t?x, 6-F.# 1mb. TM RIPPEY BY/12/4) DATE j'4 / CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO /34?a Tigard, Oregon 97223 Phone(503)443-3900 SHEET G-/ OF DESIGN PROPERTIES • L 1 I lyx L� r21/26' + I I 25/6 i 1 �2sh6. + 1 r3,1„ i1/4._13/4" .. 1%" 136"� I 11/4"-11/2" 13 1316" ICI 9rf" 11 x 9 x T- IN. 111" 36 llr"' 3g 14" 3A"- 14" 3i6" 14" r/6"- - 14" 14" 16" 16" 16" 16" ___1- -1 IA ICI_I TJI® 110 Joists TJI®210 Joists TJI®230 Joists TJI® 360 Joists TJI®560 Joists Design Properties (100%Load Duration) Basic P_roperties Reaction Properties Maximum Maximum 354"Intermediate 5W Intermediate Depth The Joist Resistive Joist Only Vertical 13/+"End 3)/:"End Reaction(Ibs) Reaction(Ibs) Weight Moment)') El x 10 Shear Reaction Reaction (Ibs/ft) (ft Ibs) (in?-Ibs) (Ihs) (Ibs) (Ibs) No Web With Web No Web With Web Stiffeners Stiffeners(2) Stiffeners Stiffeners11) 110 2.3 2,500 157 1,220 910 1,220 1,935 N.A. 2,350 N.A. 91" 210 2.6 3,000 186 1,330 1,005 1,330 2,145 N.A. 2,565 N.A. 230 2.7 3,330 206 1,330 1,060 1,330 2,410 N.A. 2,790 N.A. 110 2.5 3,160 267 1,560 910 1,375 1,935 2,295 2,350 2,705 210 2.8 3,795 315 1,655 1,005 1,460 2,145 2,505 2,565 2,925 11W 230 3.0 4,215 341 1,655 1,060 1,485 2,410 2,765 2,790 3,150 360 3.0 6,180 419 1,705 1,080 1,505 2,460 2,815 3,000 3,360 560 4.0 9,500 636 2,050 1,265 1,725 3,000 3,475 3,455 3,930 110 2.8 3,740 392 1,860 910 1,375 1,935 2,295 2,350 2,705 210 3.1 4,490 462 1,945 1,005 1,460 2,145 2,505 2,565 2,925 14" 230 3.3 4,990 509 1,945 1,060 , 1,485 2,410 2,765 2,790 3,150 360 3.3 7,335 612 1,955 1,080 1,505 2,460 2,815 3,000 3,360 560 4.2 11,275 926 2,390 1,265 1,725 3,000 3,475 3,455 3,930 210 3.3 5,140 629 2,190 1,005 1,460 2,145 2,505 2,565 2,925 16" 230 3.5 5,710 691 2,190 1,060 1,485 2,410 2,765 2,790 3,150 360 3.5 8,405 830 2,190 1,080- 1,505 2,460 2,815 3,000 3,360 560 4.5 12,925 1,252 2,710 1,265 1,725 3,000 3,475 3,455 3,930 (1)Caution:Do not increase joist moment design properties by a repetitive member use factor. (2)See detail Won page 6 for web stiffener requirements and nailing information. General Notes • Design reaction includes all loads on the joist.Design shear is computed at • The following formulas approximate the uniform load deflection of A(inches): the inside face of supports and includes all loads on the span(s).Allowable For The 110,210,230,and 360 Joists For The 560 Joists shear may sometimes be increased at interior supports in accordance with ICC ES ESR-1153,and these increases are reflected in span tables. A= 22.5 wL^ + 2.67 wL2 A_ 22.5 wL° + 2.29 w12 El d x 105 El d x 105 w=uniform load in pounds per linear foot L =span in feet d =out-to-out depth of the joist in inches El=value from table above PRODUCT • • Protect product from sun and water STORAGE •• •%,• s • • • • • • • _ CAUTION: • •• Wrap is slippery when wet or icy % �' ,tr' Align stickers directly Ill®joists are intended ,�4. over support blocks • for dry-use applications ,i, i' Use support blocks at 10'on-center All to keep bundles out of mud and water • `,-1 f lir Trus Joists TJIe Joist Specifier's Guide TJ-4000 I January 2013 3 7t'rnR 2 -k S•W(.6 d }hf-- /J T 81' Titi R..r/'�'W i, L Z TJI® JOIST FLOOR FRAMING Ti l'joist floor framing does not require ® Joists must be laterally supported at cantilever bridging or mid-span blocking 1�Pr and end bearings by blocking panels,hangers,or _ , direct attachment to a rim board or rim joist 4— ■ % r H2�� ��� 1 Rim board joint between joists • \ 11 T Rim Board or SS �./ �' rk 1®R` ��`�� ly"TimbeimBoddLSL li `, 41 l0L L3 el 11111.16.. " 4 41*-sN ael lt.B4, I tl1, 10 5 ® �\ , / .i� III � ��'��� : Safety bracing(1x4 minimum)placed at h \ '� 1 8'on-center(6'on-center for M 110 I t r joists)and extended to a braced end I1 \�, � i wall.Fasten at each joist with two �\�\ -' �i./ 8d(0.113 x 234')nails minimum. (/( Structural sheathing Protect untreated wood See Exterior Deck with concrete from direct contact Attachment on WARNING 134"knockouts .. page 8 Joists are unstable until - at approximately 12"on center laterally braced. See Allowable Holes See Warning Notes on page 5. on page 9 TJI®Joist Nailing Requirements at Bearing Web Stiffener Attachment TJI®Joist to Bearing Plate Squash Blocks to TJI®Joist (Load bearing wall above) One 8d(0.113"x 212")nail each side. 11/2"Ti®Rim Board or Drive nails at an angle at least lIh" Gap: One l (0.128"x 3") L� i.-1w minimum 11/4"TimberStrande LSL from end. nail into each flange 24"maximum =......—,....... (-T,—..— 1" 111� ` (1�4"for Nailing:ME A Tile 560 -----, See table below I"_.�_341 L77 ��C�" I joists) to j Web stiffener --i „,-.^.- - each side: PA"minimum bearing 3ii4'minimum intermediate 0 I See sizes below at end support bearing;5r/"may be required �`� F M\Tight fit for maximum capacity 4 Also see detail 82 Shear transfer nailing:Use connections equivalent to floor panel on page 7 nailing schedule Web Stiffener Requirements Rim to TJI®Joist Nailing rj 560 floor joist ® Min.Web g Requirements Til® Stiffener -_ 11 "T1®Rim Board, Size Type Quantity 14"TimberStrand®LSL Tll®560 rim joist: In--1 110 5 g•x new or T11®110 rim joist Toenail with 210 Ti"x 2shs"11) One lOd(0.131^x 3")nail 10d(0.128"x 3") --1, 8d(0.113"x2�') 3 into each flange nails,one each side 360 rk�x 2srfs"U) E-7------- ^, Tile 210,230,and 360 rim joist: of Ill®joist flange \�l r'"� � 560 2x4121 16d(0.135"x 31") 3 --►1 f�-- One 16d(0.135"x 3'�")nail E� � into each flange i ; (1)PSI orPS2sheathing,face grain vertical 13±'minimum Top View l_.l TJI®560 rim joist bearing (2) Construction grade or better Locate rim board joint between joists Trus Joists Tile Joist Specifier's Guide TJ-4000 I January 2013 6 File. ,reFdt'OvG.4e clvi J /� ,r row/ , y- i 6,3 7 JT y X9-7 /7G--eA' air �LG 4 3O y_ lemk, - 1/Z (3ytZ) f e. <Z D/ = es--?e) /S \7°.-TOT 3e} z. Md � /. ' L�01d5--) Ge is -t /g 4 . 4, k7:0-2 7- TM RIPPEY BY DATE ]]]LLL CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO Tigard, Oregon 97223 Phone (503)443-3900 SHEET OF Gyp-Crete®Flooring Underlayment- Maxxon Page 1 of 1 Level-Right®Wearton • Level-Right®WearTop provides a durable wear surface. project 5170tlieht Library Maxxon® f Gypsum Underlayments Self-Leveling Floors I q y Sound Control Systems Specialty Products I Go'Green' 1 Data Sheet Gypsum Underlayments>Gyp-Crete®>Data Specifications Fire Ratings/Detail Drawings Gyp-Crete® Data Sheet Sound Ratings Finished Floor Support Downloads 55,2.•3.,3 u....a.w Manufacturer: Maxxon®Corporation 6 f 4 920 Hamel Road P.O.Box 253 Hamel,MN 55340 • ,;+• Phone:1-800-356-7887 or(763)478-9600 Fax:(763)478-2431 Product Description: Gyp-Crete®Floor Underlayment is one of the most efficient fire and sound control products available for multifamily construction. Standing the test of I .....- time since 1972,Gyp-Crete makes for safer,quieter living,and has become a standard in apartments,condominiums,townhomes,hotels and motels nationwide and abroad. Technical Data: !Compressive Strength: 11Up to 2000 psi(14 MPa) Factor: 114.75 Btu/(h•ft,•OF)(.6840 W/[m•oC)) 1 Specific Heat: .223 Btu/(lb•oF)at 850F (.9343 k][kg•oC)at 29.440C) Weight: At 3/4",less than 6.5 lbs./sq.ft. (At 19 mm,less than 31.8 kg/m=) !Dry Density: 11100 lbs./ft.3(1600 kg/m3) Point Loading: Minimum loading of 550 lbs.on a 1"(250 kg on a 25.4 mm)diameter disc Surface Burning Characteristics: Flame spread:0 Fuel contributed:0 Smoke density:0 IVOC: 110.12 mg/m3 Code Listings: • ER-3433 • ER 90-31 • HUD951h • City of Los Angeles • ESR-1153 • ESR-1774 • State of Rhode Island • City of San Francisco • Metro Dade Co.FL(NOA 05-0706.02) • GREENGUARD Indoor Air Quality Maxxon provides underlayment,gyperete,gypsum concrete and other flooring underlayment products for construction,remodeling and renovation. This site and all contents copyright©2001-2008 MAXXON Inc.All rights reserved. Home J Canada J en francais J en espanol r>7 ,7,7,-p?,,--�- . f'G64 p/o/fifl.7-7-4 e6,€)7rlz; go,F-rig � _ /: ' �5 16 zeo w1)1 = ze G/6-) f /4/ p 4, 65.2. 7.4 .4\ /a ) 13 4J - /'/ Z. Pte' /07.p if. , Z= 6-0/ 9y sS, 'eiv /z�G 6'0,a ) Z /. v.3 /3 V G� w/z14ZG „S.= , v YYY K TM RIPPEY BY Rev DATE_ CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO ej/ Tigard, Oregon 97223 Phone(503)443-3900 SHEET OF 4r nk Steel l�[,� Simple Beam ZODIRM L:= 16-ft DL := 28-psf E := 29000•ksi ,s:= 15•ft LL := 100•psf Fb := 50•ksi•0.66 wbm := 26•plf KLL := 2 W12x26 lb := 204•in4 AT := L•s AT = 240ft 2 Sb := 33.4•in3 F2:= 0.25 + 15 ft R = 0.935 KLL•AT WLL := s•LL•R wLL = 1402 plf WDL := s•DL +wbm WDL = 446p1f w := WDL + wLL IN = 1848 plf M := 8 •w•L2 M = 59.14 kip ft Sreq := M Sreq = 21.504in3 b V:= 2 — •w•L V = 14/8 kip Ireq 5 L W L4 Ireq = 117.455 in4 RDL 2'WDL'L RDL = 3.568 kip 384 E'240 1 I — 5 wLL L4 Ifeq = 133.662 in4 RLL 2'wLL•L RLL = 11.216 kip '— L 384•E 5 4 360 ATL b 384•E•I w L ATL = 0.461 in L = 416.84 OTL 5 4 ALL •— 384•E•Ib wLL'L ALL = 0.349in - 1=-.. = 549.446 ALL 5 4 AOL 384 E•lb w0L L ADL = 0.111 in L = 1727.158 ODL 4 b-:= M fb = 21.2 ksi f b = 0.644 Sb Fb GiC / ed(--L , .ap-,x ir' P� ���• (/ _)= /2e,0/.4 jhl i.y7 rZ ]4., 3,13 !/ 14.17 /266 x 3.13 41a.61 ..is IMI\ TM RIPPEY BY Re-'"' DATE /,A40 CONSULTING ENGIN EERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NOS Tigard, Oregon 97223 SHEET 7 OF Phone(503)443-3900 .) /Favea-- .0 Z►1►.7 32 y i/ b &I,) -, C3a, 1G,,) t //�/2/ r) - zG =- oy L = /g,- '-r Ot s *1 7-L = q -g p—/ /2?-tsLt- 1<-17-4. _ / ' Z p— ' 141 69C-4) /4)1. .9‘f/ 'fI.'i %I'd. x Z f d Gz.5 A 04,4, "' ,/d, 3 Sy 409 g -40 c' `/ �GU TM RIPPEY BY/2 V DATE/7_`_ CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 SOB NO .5g6/ Tigard, Oregon 97223 Phone(503)443-3900 SHEET 17 of f - fl- //2G P f=474r-44 5 fr ,a!,)6/.*) ` /36 , �'u�94Li beGd 8.Fr{.fre w41./L- 193. r6 /--ef Z/i/r4)60) :=". geod cc =, 5- r aG �(/ %09' /41,• 1 i 1 1 %1 RIPPEY BY 0,04, DATE /OA 1 JJJ...YYY CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO � 0 Tigard,Oregon 97223 Phone(503) 443-3900 SHEET`Z. OF j�Per 4)/0410 _ x �. «, y s7 S^ �.� Cw'G.t G�rsag.Gl,. w 2436 00iu`. ' / 4. p5" 3 747) G 2' 3 z s- ;Fez- G-`i . zie9 ,+ 6 . = 72 . 6 = G/�''d 9�P � � 6-1, 3 G U Pte` /4` 41 4-#.4 E, 4i 3 05 42133.eif)et)Z = 44'9Z 7 ></z z 9/ /4.. V/ 24. 7 1M lb? TM RIPPEY BY get" DATE 0.91/410; CONSULTING ENGINEERS CHIC BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO gi" ./ Tigard, Oregon 97223 ! Phone(503)443-3900 SHEET!3 OF • / eat) . AA,--4 4/z • k'r ZED -/ p 6'0 - aG a l 3 F- els 9G Z.3)/ G r�t3 t2 - 6"(4.36 `� . 3 ' ,use, 7.33 /39.5" TM RIPPEY BY/F et) DATE ID/00.6 hei CONSULTING ENGINEERS CHK BY ��}} DATE 7650 S.W.Beveland St,Suite 100 SOB NO e%6/ Tigard, Oregon 97223 Phone(503)443-3900 SHEET i if OF G'oG�ii���vs /9- = /a-' = zU �� .714),7- , 0 k``= y /6 — cs. f3 4- / 66 ) x/5 A¢7, r,>/2 e� G ine L'1v al = zO 10'5 — 1 Ter /7g.s vicNA04 • // % y 1./z V /g r d = Z O./Z Cn%rp,f-ter" = 9 �Z — (/• sr/ V 1z)/6Z 7-Altre/Q. e,4Gl' iO 9 eeri 0.4* ,✓ 7T;fr.T-aJ� E"elZ ft i) ftss 1h H.h TM RIPPEY BY de DATE LD 1 111\YY/11 .41. CONSULTING ENGINEERS CHK BY eel/ 7650 S.W.Beveland St, Suite 100 loBNo ee / Tigard, Oregon 97223 SHEET�6 OF Phone(503)443-3900 Structural Steel Column 2002 RPW DL := 28•psf s := 15.ft h := 9-ft A:= 2.58.in2 F Y := 46.ksi LL := 73•psf := 16.ft max IbX := h S:= 3.10.in3 Q := 1 LL = 73 psf 12 := 16.ft min ,e:= 2.5•in r := 1.55-in K:= 1 Fbx := 0.6.46•ksi Cmx := 0.6 Load Case 1 Load Case 2 Fa = 19.796 ksi Unbalanced Full load Unbalanced partial load Fbx = 27.6 ksi = 24.24 kip PTL2 = 15.48 kip - = Okip.ft M2 = 1.83 kip-ft H111 = 0.475 H112 = 0.494 H 12 1 = 0.34 H122 = 0.473 fat = 9.395ksi fat = 6ksi fbx1 = 0 ksi fbx2 = 7.065 ksi 1G „Irm:k. Structural Steel Column zIE RPW DL := 28 psf s:= 15 ft h := 9-ft A:= 2.58 in2 Fy := 46.ksi LL := 93-psf I1 := 16-ft max Ibx := h S:= 3.10•in3 Q := 1 LL = 93psf 12 := 0-ft min a:= 1.5•in r := 1.55-in K:= 1 Fbx := 0.6.46.ksi Cmx := 0.6 0 Load Case 1 Load Case 2 Fa = 19.796 ksi Unbalanced Full load Unbalanced partial load Fbx = 27.6 ksi PTL1 = 14.52 kip PTL2 = 14.52 kip _M1 = 1,81 kip-ft M2 = 1.81 kip•ft H111 = 0.471 H112 = 0.471 H121 = 0.458 H122 = 0.458 fat = 5.628 ksi fat = 5.628 ksi fbxl = 7.026 ksi fbx2 = 7.026 ksi I? diXGei. .v, 3 p/va,e- eodtiq Ax '-'E / aC) e/i '` /C = / 4 4- /1/&) a Rz- &-06- '67 y�cta 5 R-7/ sg'e) p-1 Xo 7-X/2 Zelic c •',efl k -DT io 0, 7-5" /� 1/4/74---o x` 75 -- F9 7-T-(3. 6- 6-e.;) 11\SA i M RIPPE Y BY , & _DATE,�0,CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO ei Tigard,Oregon 97223 Phone(503)443-3900 SHEET f OF 4KStructural Steel Column zooz Raw DL := 608.psf h := 9.ft A:= 2.58•in2 F Y := 46.ksi Ibx := h S:= 3.10•in3 Q := 1 LL := 795.4•psf e := 2.5•in r := 1.55•in K:= 1 s = 1-ft Fbx := 0.6.46•ksi Cmx := 0.6 := 18-ft max 12 := 16-ft min I7 Load Case 1 Load Case 2 Fa = 19.796 ksi Unbalanced Full load Unbalanced partial load Fbx = 27.6 ksi PTL1 = 23.86 kip PTu = 17.49 kip _M1 = 0.29 kip.ft M2 = 1.62 kip-ft H111 = 0.502 H112 = 0.517 H121 = 0.376 H122 = 0.473 fat = 9.247 ksi fat = 6.781 ksi fbx9 = 1.132 ksi fbx2 = 6.263 ksi / Structural Steel Column zoos flPW DL := 608•psf h := 9.ft A:= 2.58•in2 F Y := 46•ksi Ibx := h S:= 3.10.in3 Q := 1 LL := 843.75•psf e:= 1.5•in r := 1.55•in K:= 1 s := 1 •ft Fbx := 0.6.46•ksi Cmx := 0.6 := 16.ft max 12 := 0•ft min Load Case 1 Load Case 2 Fa = 19.796 ksi Unbalanced Full load Unbalanced partial load Fbx = 27.6 ksi PTL1 = 11.61 kip PTL2 = 11.61 kip M1 = 1.45kip•ft M2 = 1.45kip•ft H111 = 0.371 H112 = 0.371 H121 = 0.367 H122 = 0.367 fat = 4.502ksi 1a2 = 4.502ksi fbxl = 5.62ksi fbx2 = 5.62ksi Z© QGrza/i& --7 ,- ,0-t/ 132.-7 /v1 / /re= Z1?& A. A. 7,4 7T..S jtr 1,- ,?(..26-- 3208, / ,cli_/d 44 = 30t3 X12%. f A- /6, /!r es tr _ ---t., ,Aix/ .7' 2.h M ezio . z, ,?.s x.,x,, MA/ S� = G � � 73.* ' /6',1G /e4 c.� /A,4.X ,i. ,C/ x 21°44 t✓E& ,vp.72p5 ev .,_ 6_5/5— i4.17-4 . /i 945- F-e--,, Wt/' `� ' /- 75L7'�,,e ) e?_> =g/,C., i iTM RIPPEY BY!" DATE(544 CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 SOB NO 676.-- Tigard,Oregon 97223 'ohnne(503)443-3900 SHEETA/ OF eerie .6.1(4).rilf / C..c)&-r -1 z,?6--4)(gS)Z /` 3 !2 + $ ) /2 x z. 2 z,z / s 2,2 //z.z. 4:4,. 4? F G yz// a ee — '� ' �L•v �J 1 TM RIPPEY BY 04 DATEIGr/�' CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO eZ Tigard,Oregon 97223 Phone(503)443-3900 SHEETZZ_OF - ....iT �1�(1�. Structural Steel Column Interaction 2001 RPW P := 25-kip A:= 4.30•in2 rx := 1.93•in SIF := 1.0 E := 29000•ksi Mx := 5187.5•Ib•ft Sx := 6.41•in3 ry := 1.93-in Q := 1 F Y := 46 ksi My := 3283•lb•ft Sy .= 6.41-in3 • fa := A fa = 5.814ksi Fa := 21.4•SIF•ksi Ibx := 7.5-ft K:= 1.0 M fbx Sx fbx = 9.711 ksi Fbx := 30.36•SIF•ksi Iby := 7.5•ft x fby := SY fby = 6.146ksi Fby := 30.36•ksi•SIF Y 12.7r 2-E 12•7r 2•E Fex := 2•SIF Fey := 2 •SIF (K.lbx 23 K•Iby 23 rx ry Cmx := 1.0 Cmy := 1.0 F'ex = 68.672 ksi F'ey = 68.672 ksi F + C f fbx + C f fby = 0.842 H1-1 Fa 1 — a •Fbx 1 — a Fby FeX Fey r fa fbx fby + + = 0.733 H1-2 Q-0.6•Fy•SIF Fbx Fby - fa + fbx + fby = 0.794 H1-3 Fa Fbx Fby Zj .11 w's� /4Z tel/ACGZ /G4 //4-' .t>,m7=e _ $ fob Fv /06) /-FGVyc. G� IS` v G'o=- z L- Goa =-/,4 itoJ_'g;p .iar r•,v" �7 1,3 F y �fGj�sr- AG��-rc� 1-r2 °- 41 /44- Czfd.#7d. z/G) 'iz Z9.G , )�z) — �s p 77 J S �1li/es:-wk4.� � a 4.:14•P' Mk/G.' 7,Z V1 /17' X z = /41'; 3 ,/N z,1::: D-7` I_ /mil D,.P, � 0./ G P _ /"F46.-C3 Gh = U, G ` 6,1 -7c14/ / �y 'y4 r 1E/11\ 'I'M RIPPEY BY24 DATE ZO CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 1.00 Tigard, Oregon 97223 l06 NO ,c�/ Phone(S03)443-3900 SHEET�1 OF Wood . d'ILlik Stud Wall 2004 RPW L:= 8•ft+ O.in b := 1.5•in PDL := 745.3.psf Fb := 900.psi Ke := 1.0 d := 5.5•in PLL := 1031.25.psf Fv := 180.psi Fc := 1350.psi Strib := .75•ft Axial load trib width q := 14..75.psf E' := 16.00000 psi ,s�,,,:= 16.in Stud spacing Ex := E' CD := 1.6 c = 0.8 for sawn lumber CFa := 1.1 c = 0.85 for round timber piles CFb := 1.3 c = 0.9 for glued-laminated timbers Kf:= 1 KcE = 0.3 for visually graded lumber KcE = 0.418 for machine stress-rated and ,c := 0.8 glued-laminated timber KcE := 0.3 Pa = 1776.55 lb M = 112 ft.lb Vd = 49.58 lb R = 56 lb Wiat = 14 plf f c = 0.17 fbx = 0.09 f v = 0.05 fc = 215.34 psi F' = 1278 psi F'c F'bx Fv fbx = 177.72 psi F'bx = 1872 psi FcEx := cE E2 FcEx = 1575.521 psi FcEx d 2 Fc + - f c fbx _ = 0.138 NDS Eq. 3.9-3 ,c F'bx• 1 — KcE.E x Le 2 (7) A Lat := 5 Wlat'1 L4 SLat = 0.039 in - = 2475.818 384•E'•I ALat if r r I'm 4 ,e)41-Z_ e zZD G I{ fia jr—soil i fi • /7" • Z.(zi.,t it /4.-9) --. 4)40 % 61y) /,--1=9 Jam"%-7 p10 s P 91 c. /,4 r-r - ea A1Ps = .. 7:4_re • 71e/r = G • �/ . g 0- '� t/'% / (4_4 r�&. /94 2 1MKTM RIPPEY BY /24, DATE 41/1e CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St,Suite 100 )OB NO 4 4 7 Tigard, Oregon 97223 SHEETzjG of nh,-na(5031 443-3900 ��� Wood Stud Wall 2004 RPW L:= 9•ft+ 2.in b := 1.5-in PDL := 349•psf Fb := 900-psi Ke := 1.0 d := 3.5•in PLL := 375-psf Fv := 180-psi Fc := 1350-psi strap 1 -ft Axial load trib width q := 0.psf E' := 1600000 psi ,s := 16.in Stud spacing E'x E' CD := 1.0 c = 0.8 for sawn lumber CFa 1.15 c = 0.85 for round timber piles CFb ;— 1.5 c = 0.9 for glued-laminated timbers Kf := 1 KcE = 0.3 for visually graded lumber KcE = 0.418 for machine stress-rated and ,N:= 0.8 glued-laminated timber KcE := 0.3 cL Pa = 965.331b M = 0 Vd = 0 R = 0 wiat = 0plf fc 0.41 Fbx = 0 fv — 0 fc = 183.87 psi F'c = 449.3 psi c bx Fv fbx = Opsi F'bx = 1350 psi KcE•E'x fc FcEx FcEx = 485.95 psi = 0.38 fv = 0 psi F'v = 180 psi (l_de)2FcEx 2 Fc + f fbx _ = 0.167 NDS Eq. 3.9-3 c c F bx• 1 — KcE•E x Le 2 (7) _ SLat 3$4 E'•l wlat•I-4 ALat= 0 in Q� = 1 Lat 2, ' ��� Wood Stud Wall 2004 RPW L:= 9.ft+2.in b := 1.5•in PDL := 349.psf Fb := 900•psi Ke := 1.0 d := 3.5-in PLL := 375.psf..75 Fv := 180-psi Fc := 1350.psi 5trib 1 •ft Axial load trib width q := 14•psf•.75 E' := 1600000•psi ,s:= 16•in Stud spacing Ex : E' CD := 1.0 c = 0.8 for sawn lumber CFa 1.15 c = 0.85 for round timber piles C := 1.5 c = 0.9 for glued-laminated timbers Fb Kf := 1 KcE = 0.3 for visually graded lumber KcE = 0.418 for machine stress-rated and ,c,:= 0.8 glued-laminated timber KcE := 0.3 Pa = 840.33 lb M = 147.05 ft.lb Vd = 60.08 lb R = 64.17 lb wiat = 14 plf fc fbx fv fc = 160.06 psi F' = 449.3 psi = 0.36 = 0.43 — = 0.1 F'c F'bx Fv fbx = 576.19 psi F'bx = 1350 psi FcEx := KcE Ex FcEx = 485.95 psi c = 0.33 fv = 17.17 psi F'v = 180 psi L 2 FcEx d e 2 fc + - fbx _ = 0.763 NDS Eq. 3.9-3 Fie F'bx- 1 - fc K E cE x Le 2 E kLat 384 E' l wiat•L4 dLat = 0.259in L = 424.102 - Lat 2� 11VI : - Wood Stud Wall 2004 Raw L := 9•ft+2•in b := 1.5•in PDL := 349•psf Fb := 900-psi Ke := 1.0 d := 3.5•in PLL := 375•psf•0 Fv := 180-psi Fc := 1350-psi stab 1-ft Axial load trib width q := 14•psf E' := 1600000-psi ,s := 16.in Stud spacing Ex E CD := 1.0 c = 0.8 for sawn lumber CFa 1.15 c = 0.85 for round timber piles C 1.5 c = 0.9 for glued-laminated timbers Fb Kf := 1 KcE = 0.3 for visually graded lumber - KcE = 0.418 for machine stress-rated and ,c := 0.8 glued-laminated timber KcE := 0.3 IR- Pa = 465.331b M = 196.06ft•Ib Vd = 80.11 lb R = 85.561b wlat = 18.67plf Fc = 0.2 fbx = 0.57 F = 0.13 fc = 88.63 psi F' = 449.3 psi c bx v fbx = 768.25 psi F'bx = 1350 psi F KcE E'x F 485.95 psi fc = 0.18 f 22.89 psi F' 180 psi cEx �= FcEx = p v = p v = p 2 FcEx e d 2 f c + - fbx _ = 0.735 NDS Eq. 3.9-3 F F bx• 1 — KcECE'x L 2 6e d ALat 384 E'•I O 5 •wlat•L4 OLat = 0.346in L = 318.077 Lat Zr { = 6c?Z1 ) 4#1e/Z. ZOB fret/ 6 )XZ6.-) b77‘--/9/e/ i3ze !3z Pi, 4 y 9 e/32.dX40 ---�- //2 W?/��As) 3-��GG� � -s f/6r 1Ma14. TM RIPPEY BY 24) DATE 40 CONSULTING ENGINEERS CI-11(BY DATE 7650 S.W.Beveland St,Suite 100 JOB No i./ Tigard, Oregon 97223 SHEET�J�of Uhnna(503)443-3900 ( ( I f) -AC:4 }2, _ /3ze r.‘ k/<,/,c., + /3L C 4 - z / ?‘0 8 I 3 Atom./ /.?2e 2e &,) lr-- 4/X h.4p Z 3/6 X//r 4,4p = /P / / /6" ZEAA T M RIPPEY BY/Z DATE i' CONSULTING ENGINEERS CHK BY DATE__, 7650 S.W.Beveland St,Suite 100 JOB NO8W O Tigard,Oregon 97223 � �. ^'-� /col)443-3900 SHEE ___ OF ' *G =- /-Lit'.Z/G.)" 0 Ii'-- 2 4,, if7.,,, ..-: /;, 4 420) i'l-: S?,. ,/,S r 4- Pry 11g(s?-?a) seei/s �'°`t - &416>) . fa) /6 1z-9,0rraz - n J 2 4 // 41'. ..--- fel floe_ 4-61.0. ' -,fig ,8/�� il, C" -2 h'//y , .24/d / 7 e .6:Yr. .r / Lp2 5 �p3 1::.4 11 ,4 W 1 14,- 77 1 4/.../ �P� Z. -3/ 74,z, 7,7.3 G// -^ 7 r G , 0, ,? r /&5 3£) 7.6*J?" = -/_& 1m bit, . TM RIPPEY BY/�w DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St,Suite 100 Tigard,Oregon 97223 loervo Phone(503)443-3900 SHEET OF Wood Stud Wall 2004 RPW L:= 9•ft+ 1-in b := 1.5•in PDL := 68.52•psf Fb := 900•psi Ke := 1.0 d := 5.5.in PLL := 107•psf F„ := 180-psi Fc := 1350-psi strip 1•ft Axial load trib width q := 14•psf E' := 1600000•psi — 4•ft+ 8.in Stud spacing E'x E' CD := 1.0 c= 0.8 for sawn lumber CFa 1.15 c= 0.85 for round timber piles C 1.5 c= 0.9 for glued-laminated timbers Fb Kf := I KcE = 0.3 for visually graded lumber KcE = 0.418 for machine stress-rated and ,c := 0.8 glued-laminated timber KcE := 0.3 Pa = 819.09 lb M = 673.81 ft.lb Vd = 266.78 lb R = 296.72 lb Wiat = 65.33 plf f c = 0.11 fbx= 0.79 F = 0.27 fc = 99.28 psi F' = 936.9 psi F c bx v fbx = 1069.18 psi F'bx = 1350 psi F KcE•Ex F 1222.119 psi f c = 0.08 f„ = 48.51 psi F'v = 180 psi cEx := cEx = p FcEx (Lde)2 2 fc + fbx , = 0.873 NDS Eq. 3.9-3 F c F bx 1 —KcEcE 'x L 2 e d 5 kLat := 384-E-1 � wiat•�-4 OLat= 0.301 in L = 362.448 Lat 5, r 4417,41.4 . - as/o.r,�..)4,-r' a-, e-s- ,8.12.efe, .2 it PO'' TM RI PE 1 BY, DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St,Suite 100 JOB NO je�� Tigard,Oregon 97223 /.503) 443-3900 SHEET 3e OF Conterminous 48 States 2003 NEHRP Seismic Design Provisions Zip Code = 97218 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Centroid Sa (sec) (g) 0.2 0.941 (Ss, Site Class B) 1.0 0.324 (S1, Site Class B) Period Maximum Sa (sec) (g) 0.2 0.957 (Ss, Site Class B) 1.0 0.330 (S1, Site Class B) Period Minimum Sa (sec) (g) 0.2 0.907 (Ss, Site Class B) 1.0 0.315 (S1, Site Class B) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Zip Code = 97218 Spectral Response Accelerations SMs and SM1 SMs = FaSs and SM1 = FvS1 Site Class D - Fa = 1.123 ,Fv = 1.751 Period Sa (sec) (g) 0.2 1.057 (SMs, Site Class D) 1.0 0.568 (SM1, Site Class D) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Zip Code = 97218 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.123 ,Fv = 1.751 35 (sec) (g) 0.2 0.705 (SDs, Site Class D) 1.0 0.379 (SD1, Site Class D) 3G NQ = Oa ")a ) f /e 241 (/iZ 5') - 0:5;Ze ' ,tJ.= 60 /4 H GTYL .>t / 7(l 2 `9 -') 5o+ “ ( imTM RIP PEY BY/G DATE 47/i; 4)CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St,Suite 100 10S NO Cfr�✓�� Tigard,Oregon 97223 SHEET OF Phone(503)443-3900 � K Analysis - Seismic Vertical Distribution Z058 11 RPM n := 2 x := 1 n Sips := 0.705 R:= 3.25 IE := 1.0 p := 1.3 k := 1.0 SDS 9.5.ft 2nd (58.35-kip) 2nd Cs R Cs= 0.217 h := w := 19.75-ft Roof 41.27-kip Roof IE Cs-0.7 = 0.1518 n W 1 w i W = 99.62 kip i = 1 ASD USD V:= p •Cs•W0.7 V = 19.66kip V•017 = 28.09kip Primary System ASD USD F V.wx'(hx) 7.96 2nd 1137175 2nd ^"` n Cw i'(hi)� F = kip F 1- = . Ib 11.7 Roof 0.7 16721.09 Roof i = 1 Diaphragm n ASD USD I F i i = x 1 ( 8.861 2nd 1 12.66 2nd Fpx := n •wx•- F = kip Fp•- = kip P 9 j Roof 0.7 12.86 Roof xwi i = x 5.76 2nd 1 8.23 2nd Fpminx := 0.2•SDS•IE•wx•0.7 Fpmin = kip Fpmin•- = kip 4.07 Roof 0.7 5.82 Roof 11.52 2nd 1 16.45 2nd Fpmax := 0.4•Sps•IE•wx-0.7 Fpmax = kip Fpmax -= kip 8.15 Roof 0.7 11.64 Roof gg G-UZ,IJI� 5' "Pb'• b--292 3 Z/?9,;_3 �' �. �=r197%�`7 1#1.7-71,,e) 1:1.471,164) 'WO/4- A .7 4 ::/v3 F . z345- Z5,2-4) zata 11.v M "5F 1 � 10. 5" ,IZ i;f 75 5 = 13,2Z,PSP — 11..75' fy Z Ark 13/• • TM RIPPEY BY 04-) DATE/e1/4 CONSULTING ENGINEERS CHK BY DATE ��}�� 7650 S.W.Beveland St,Suite 100 JOB NO �X�i/." Tigard, Oregon 97223 Phone(503)443-3900 SHEETS r OF gyp# 6:/P d (P4 T//,T- /7f0 2 _ .yi 6- 7/ C/G-y ' >C/.d� /.a. I'l i 1 K TM RIPPEY BY /24 DATE/a/GVag YY CONSULTING ENGINEERS / CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO Tigard, Oregon 97223 ic(v♦ A AO onnn SHEET OF Analysis 4r\ilk Wind Pressure 2008 RPW 0 .62" lw := 1.00 15 .62 qs := 16.4 20 .67 Cq := 1.3 i := 1 .. 7 T:= 25 .72 vyi := Ti,2 30 .76 vx; := T;,1 40 .84 h := 0,1 .. 51 51.5 .90j Ce(h) := Iinterp(vx,vy,h) P(h) := Ce(h)•Cq•gs•lw 23.25 := P(h) dh F4 = 268.3 3.5 P(23.25) = 14.977 [1.23.25 P(23.25) = 14.977 F3 := P(h) dh F3 = 74 18.125 P(23.25) = 14.977 [118.125 P(23.25) = 14.977 F2 := P(h) dh F2 = 131.6 8.25 P(20) = 14.284 8.25 P(15) = 13.218 F1 := P(h) dh F1 = 62.8 3.5 o 0 Fopi A w =0/50x = Z3 3e? „<< , 4-- 79,p / , v 44 = Big o f 1.1)4.� / • ria' I P r1M;//- // 'R /ori- /ifs ra eesv / (/‘5..= ow) c 46144 P.)67 V)4: e re/S /kL:. V40 /3 ;e g �-,� k, " )/714) sir iXP717- 3e Zz' ej z zw_ (-{"; .= 416? / • y�- / . x 5,0) y-' Vic) --II . . c3c') 4) = //#'a4 4; a 1///�,Cr? e0'1e.) 1/74 / `//l /`=- • TM RIPPEY BYI &) DATE jd 1 YYY CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 SOB NO e5.1•6/ Tigard, Oregon 97223 Phone(503)443-3900 SHEET ___OF L ofrj x. G Td GET / gy0- / 1A / im D. /111,0 "e 2'4 G A1,4 .Shf? �v � *5 .1 TU cry d ThiF " tAp = 2/6 p-v zify 5 V12,40 P 1P1-4-7741 /Uri 0,11,ZX 3 " J// (44) .:7 /o g v v /1/4� e. f Ae0 °/"/, 1-°>. 1. G =� /z ECG Z,Z) 45rA-L/• T.gy -= !Z� TM RIPPEY BY/2 DATE/000v79 M CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 SOB NO T�s Tigard, Oregon 97223 ///�����, Phone(503)443-3900 SHEET (3 of ■ p, , yhL 4 'DQS 11"FP 6 J-)> > T=r (63.Xe..0)44 .‘72- A. r /5 /7 49 A. ,L7/g vrr&t,✓trt e (()‘ 4) / 6--e . /4/ GAS th S 16-‘. 9/ / /-0 "°/e. TM RIPPEY By/24) DATE/04010.g CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO IJZG! Tigard,Oregon 97223 SHEET OF Phone(503)443-3900 i 1 i , I 0 PM",- P4617 2G z1'6.3 frf 0 ack, .dam s,€2 (00 °) M: 141 3' 1/' VW = /Z zG 41-.4-p-) j 3 J G,) f�a /4i �,�-� �� - % /9 v4.= zeoa��) #.za Gs �� _ by 4)64e): i9 x7v �s P- '6oSP-� '�,,, = 04. 5- Pte/\'44- TM RIPPEY BY /24.1 DATE 6b/l j • M CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO ,006/ Tigard, Oregon 97223 Phone(503)443-3900 SHEET.y6„ OF r fyaa/r Vx47 *.#4409 /1 ray e/iip..? efri-4a z 1,-- PofajL- P, //i6-4) ifa.a V �� Mitt TM RIPPEY BY/241 DATE Z240041 CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO Tigard, Oregon 97223 SHEET of Phone(503)443-3900 /.0/_ 6f}l-v-iZ Gvi4-y 1S M,7 7F P-use' I-•k // rz, d 2 All) -&, 32 " '01 447 /1 c h /3/ )1 z%Z• = /5/1=,4. mat. : 9 )1 /zpsp /0"0 P7 Z;ey ca ar) /3. 4 6.‘ )? / )66,24, - 4.4 AID) Yi1Z- 7466Z/.44,7( /9 4-45 77- g Fr G RrIllrl2 5 i p- T^ /T TM RIPPEY BY/6 4) DATE CO/�Vg 1\Y/JI. CONSULTING ENGINEERS CHK BY p DATE 7650 S.W.Beveland St, Suite 100 JOB NO ill Tigard, Oregon 97223 SHEET //Z OF Phone(503)443-3900 ______ 5b*'A k1�L�5 • , 7 ..= £.thK fa zs+13 /'-X = 3c' p--� 7T dG — (g /0 Pey f✓ �-�. r�.r &r-/a /21"Ps 5 /// y3!> 8G ZG /S .q • /6 G / /G/ f Z ' 2 i /S 11 ' 9 /6-94 l / 3 ' '52 Z.� I t 5z 1p 1- ,r.4.• . 4"/ 4f ';�rLL 7, - 04 11 7G04_, / -;e, TM RI PEY BY R� DATE/ YYY CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 JOB NO g:& Tigard, Oregon 97223 Phone(503)443-3900 SHEET 44E OF Aterf4OP /1, way = Ggo� cV.L7$ 4f • / 4•'F� = �s-o /17"-`1 ,z/11.3n -IL /4_ 7z/) /1-1. 1G F 4b02 .7Z40P -ZeIL4 . ' gf3EANI 12?. -r-/grq L � z, 7. (8,Vz 6 ,_. /S,/ 6 r7 _ / 5r; NA.4 �•1 � V � 11$,O/2>/ /4.°'/2 Ld GsG4/ V g/41 = /G N.<. /x`65 ! /4 Ave ///24,' fag tz. Air'ire 0s;; = 0. 6/4)63_37) -=7- 39. c k A TM RIPPEY BY�� DATE YYY CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO Tigard, Oregon 97223 Phone (503)443-3900 SHEET OF . _ • re-.v ,•s- 111(4/ X4 rn = F7,. z 14- a ,C • e.0".41 T o d (') 76 -- / v &4)6.3 F) 0 7r et„ ?4 2)&c-)& 'GXPe) = O. f (9. X4/4.A4 04- 0- 77f /44)::. (o-7-, )o, aye .ey,74,) /e/z4) Eic) ; �.V$1-. F'. =7 7G/r c✓r-G u4 if if TMTM RIPPEY BY 2 DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO ( Tigard, Oregon 97223 Phone (503)443-3900 SHEET6'2 OF /4144057- wit) Dia, /V- I$4171€- 0AA 7X46` w/.=4') csk- = G L % °--7 to/ y .0f= ^ /� ---- - 3. 6z5 5 90o,, e) F-u�r 9 (/ : q ey-p -7. J.- Z•570 d.e.4.41:, .34 12 1) 44.004z) 5.:;4,Ch8:1_,.69)` eG IK TM RIPPEY BY/Z*) DATE ONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 JOB NO 9j z l Tigard, Oregon 97223 Phone(503) 443-3900 sHEET5/___OF Structural Steel Gusset Plate - Uniform Force Method 2001 RPW eb := 12.2•in One-half the beam depth SIF := 1.2 Allowable stress increasc factor ec := 2—4 -in One-half the column depth £:_ .5-in Clearance between column and beam Fy := 36•ksi Steel properties 0 := atan 16 Angle between brace and column Fu := 58•ksi 8.427 0 = 62.225 deg E := 29000 ksi P := 31.8-kip Brace axial load (3 := 3•in Distance from the face of the beam flange to the centroid of the gusset-to-column connection a := eb•tan(0) — eb + 13 •tan(0) a = 15.278 in Distance from the face of the column flange to the centroid of the gusset-to-beam connection lb := 2.(a —g) lb = 29.556 in Length of gusset connected to beam lc := 2-p Ic = 6 in Length of gusset connected to column r := J(a + ec)2 + ((3 +eb)2 r = 19.528in Design forces at the face of the column Vc := R •P VG = 4.885 kip Hb := ec P Hc = 3.257 kip Rb jVC2 + Hc2 Rb = 5.871 kip Design forces at the face of the beam eb Vb :_ —•P Vb = 9.934 kip Hb :_ °—` •P Hb = 24.879 kip Rb :_ JVb2 + Hb2 Rb = 26.789 kip tg := 0.625•in Gusset thickness . Iv„ := 4-in Length of weld: brace to gusset n := 50•in by := 4.in Width of brace Gusset yield and fracture \ I ;"/ f tg = 0.228 \ / Ft i ' Gusset block shear \ ;' P = 0.166 Pps ' , Gusset buckling \ Imax = 27.725 in \ P = 1.12 ' Pb - / , / — , ,/ ,/ , /1 , ,/ , ,/ ,/ ,,/, , / , ' I I 5:3 - tg := 0.625-in Gusset thickness IW := 4-in Length of weld: brace to gusset n := 50-in bb := 4.in Width of brace Gusset yield and fracture F = 0.159 \� \ ,I ' Gusset block shear = 0.116 , , Pbs \ , Gusset buckling Imax = 27.725 in , / ; � = 0.784 Pb b / , /, '/ ,/ / ,/ ,/ ' �' Fp Structural Steel Gusset Plate - Uniform Force Methoal_ 2001 RPW eb := 188•in One-half the beam depth 2 SIF := 1.2 Allowable stress increasf factor ec := 2—4 -in One-half the column depth , ,:_ .5.in Clearance between column and beam F Y •= 36.ksi Steel properties 8 := atan 16 Angle between brace and column Fu := 58.ksi 8.1875 8 = 62.9 deg E := 29000•ksi P := 31.8•.7•kip Brace axial load R := 3.5•in Distance from the face of the beam flange to the centroid of the gusset-to-column connection a := eb•tan(0) — ec + -tan(0) a = 22.427 in Distance from the face of the column flange to the centroid of the gusset-to-beam connection lb := 2.(a — g) lb = 43.855in Length of gusset connected to beam lc := 2.13 lc = Tin Length of gusset connected to column r := J(a + ec�2 + ((3 + eb)2 r = 27.44 in Design forces at the face of the column Vc := •P Vc = 2.839 kip ec He := —•P He = 1.622kip R jvc2 + H2 R 3.27ki c == c c —— P • Design forces at the face of the beam eb Vb :_ -•P Vb = 7.301 kip a Hb :_ •P Hb = 18.194kip Rb := Vb2+ Hb2 Rb = 19.604 kip - tg := 0.625•in Gusset thickness IW := 6•in Length of weld: brace to gusset n := 50.in bb := 4•in Width of brace i Gusset yield and fracture f tg = 0.126 \ Ft \ \ ' Gusset block shear -\ , P \ \\ P = 0.091 \ \ \ ; / bs \�/ Gusset buckling \ : / \ ,' Ai* Imax = 40.872 in \ , „...4444411144444--... / Ai* P — = 1.344 — Pb , ./ ./ ,/ ,11/ ,/ ./ II/ ,/ I: FL . ,xIGrD • i 4fij Avalo,4 1,00 'cpvy �k AV (9 l< xz a0. l< S Tke , 1/17, __O e I o I 0 ,)• Tier / /2a/j 2/l-3 /,ts" /UG 6.c 11�y.)) " ,y 3400 = 31 5 /< /4P ^ zrzs c 11) = , ze 1-11z /If -7- 6/Z/ze .)\/ go:e = ze/. 9 Use c y /yX6 ) /r [/ 3/4 rr ,r'AL, 7.I) r / /‹., Y M TM RIPPEY BY a w DATE CONSULTING ENGINEERS CHK BY DATE Q 7650 S.W. Beveland St,Suite 100 JOB NO Q Tigard, Oregon 97223 sHEEr OF Phone(503) 443-3900 ei'ZGF /Y_ S0-/-11 L 6� �D6 (j/. 33) &) - //z. )64.) 71 /y e.izPs ) w �G�'•� f'� A /44 '33 0 (E)I2 ) 1% 6 " 41 c! rz. &/-6p emvz) GJ yD pnz,tof' ®r • '0/Z 7- /j 3 S 4'O > ,vaz 7 • 5P�'GTr13 (5 TAY 4.) lei i5") 3 1, • TEAKTM RIPPEY BY 124) DATEf CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 JOB NO Tigard, Oregon 97223 Phone(503)443-3900 SHEET OF • Wood Design Glulam Beam Design ' 2001 RPW DL := 202.6•psf Dead load LL := 91.5•psf Live load L:= 16-ft Member length b := 5.125-in Member width s:= 1 -ft + 0-in Tributary width dinput 12-in Member depth lu := 1 -ft Unbraced length ATL 240 Allowable total CD := 1.15 Duration factor load deflection ALL 360 Allowable live load deflection TOL :_ .95 Allowable stress ratio NJJNNV� Fb := 2400-psi Tabulated allowable bending stress E := 1.8.106-psi Modulus of elasticity Fv := 190-psi Tabulated allowable shear stress E'y := 1.6-106-psi Modulus of elasticity Fcperp 650-psi Tabulated allowable bearing stress Beam section properties Stress ratios Applied loads Calculated factors b = 5.125 in fb o WDL = 202.6 plf Cv = 1 Volume d = 12in Fib = 33.3 /o 2 WLL = 91.5 plf CL = 0.998 Stability A = 61.5in f„ 4 = = 23% w1L = 294.1 plf I = 738in F'v R = 1138ft Reactions Moment and shear Deflection Camber Rdi = 1620.8 Jb Mb = 9411 Ib•ft ADL = 0.225 in Camber = 0.337 in R11 = 732 lb Vd = 2059lb L C80o = 0.48 in — 2352.8 lb — 1890 Rti — ALL 01200 = 0.32 in 01600 = 0.24 in Required bearing length Stresses L = 588 C = 0.19 in Ibrg = 0.7 in fb = 918.2 psi ATL 2000 = C2400 = 0.16 in - / 7 // _ /z, �2 44. s® Z STer « 4.17;•' r C raz) //� T.�/ 9 7Z#. /4 «< Z4yr47 /'0,9 "-I 47/Z, f7N = a OGZ)/3 Z/ 1, 14'7711 (24.02 L7). .Z G 7P :fys'F' ,mow /.9 � 4)1404 Am 0 TEATM RIPPEY BY R*, DATE!_�� CONSULTING ENGINEERS CHKBY {� DATE 7650 S.W.Beveland St, Suite 100 JOB NO !/�L/ Tigard, Oregon 97223 Phone(503)443-3900 SHEET4 OF �r �K Wood 1�[1 Horizontal diaphragm deflection 2004 RPW y 47 v := 214.37 A:= 8.25 Adlnonu 1.0 Cd := 3.25 I := 1.0 ,L,:= 64.67 19 t := b := 30 32 ,,:= 6 E := 1400000 E = 1400000 G := 88500 G = 149052.6 t LPN := v LPN = 107.185 12 s LPN 3.018 en_apa_DD 1.0• 79 en_apa_DD = 0.00261 APA Eqn Dry/Dry 2.41f:= en_apa_DD•Adinonu en = 0.00261 3 5 v•L = 0.10458 y L = 0.03916 0.188•L•en = 0.03177 8•E•A•b 4•G•t 3 A 5•v L + v•L + 0.188•L•en A = 0.176 8•E•A•b 4•G•t := Cd a •2.5 A = 1.426 A G!/))/> C./-i P Gl Sh'l•.!� lvlt-k4. l•� ,*" ' GTT�� P i.f* 1' Sr-fre►,•-► 314 1 ter- - 9 k' 3 D 4- - r-A-6 4 1 �- ��h ey ��- d°°�SG o — ash GP,/ Z 71r ----- /gy /s/J4-2 4 1 A.63 gLz 6.0 4 o o3 z ,.G�GZ,a.396v) bY? Z4) e .O L O Z. a,7-00.. ‘) 0- Z35 ode = a- 76. " TM RIPPEY BY ie& DATE_____ YYY CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 JOB NO �.�/ Tigard, Oregon 97223 Phone(503) 443-3900 SHEET Z. OF /v/zi D �,e��'y!G LEG Tom, /4.SS 44X9x 141 4x e x 3/L e. 4 -- 3. i77" z_c8 4 = O, Z76- Xdoe prF3It jc o Rooic Q , z. 41 3 '. c5,y0A"z. • die = o- 4' /�'-'W:O �' w • 64PA- A7 I r \/ l� t'/fir�''� GVVV�__ pk./No p- GIB 7 rEAKTM RIPPEY BY/2�f DATE/04* CONSULTING ENGINEERS /�'• CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO Tigard,Oregon 97223 � r� Phone(503)443-3900 SHEET/ S OF G rL > •it �= �z (1Z,G G // y,)?e = 2 3 x. Y/4 T,4 .„ 3 F5-.. -L; —3L.G7 X 37'6-9.3~ - ,4 ._- 7. 294- x w = /,.39�GPO) s' 7}o).i O & 3 Fr) Z 4 f 'F.--L/• Tt-A.)s..ro/t) L. 1. • 4zLK I __ ._..a . ,., � / "WA-= of-/S j r / 7 _ `g �- ,. T-G y i �� J/ T/'1 /' 4 a. �? ���3�? z� = �/t/ o� MKTMRIPPEY BY/2'V DATElD��-"'(/ CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO eZL1 Tigard, Oregon 97223 Phone(S03)443-3900 SHEET G G' OF � 1 �✓,._ ,�Gx Gdb ail//P. A. G L Z a o &,iu/rwA/ Foe ��r, -/-f'' 4-.4c> T = /z, Z?S 5rze. 7 9( /f-3Z4--.4/ JAp1 /e/E4,176, 774 x-r'! 131dS174 • pGHT %U d- , /Y/ 6-4X"'A' <4 = ifs A. >a./ TM RIPPEY By/Z14, DATE/( CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO ejz‘/ Tigard, Oregon 97223 SHEET ' OF Phone(503) 443-3900 Analysis Braced Frame Deflection 2003 RPW H:= 8•ft+6•in Ab := 3.37•in2 E := 29000 ksi L:= 15•ft+ 0•in A c := 2.58•in2 Fx := 14.047-kip a := atan(L a = 29.539deg B := _/H2 + L2 B = 206.891in Single Brace A := Fx3L + Fx3L A = 0.225005 in cosIa) •Ab•E tan(a) •Ac•E k_ := Fx k = 749.158 kip A ft k = 62.43kip in /21 so4Z e / aiiG047.0e Grzz / , S z 41.5/L yr/I 4717( e-) / � TM 1\ TM RIPPEY BY/U' DATE��%� CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 JOB NO �ZG/ Tigard, Oregon 97223 SHEET 49 ; of Phone(503)443-3900 __ • ors GFI27S 1 f v� = of p5 44 /#' '/ /6 ' • a /PW of F. f✓ F`'^/- v P-14-7 //,3. 7= 73 - G /`-; / TM RIPPEY BY/240 DATE .L l CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO f Tigard,Oregon 97223 Phone(503)443-3900 SHEET of t 1 /4/1 -,00,14,- I'4 I=Ir4-71 /> G- Z 9 I V, — gG 74` 1 t,.,/ � e / -," /‘ /-- 4 j. Tz� = 7 377, E Z i M 1\ TM RIPPEY BY 4) DATF,02 CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO 0li/ Tigard, Oregon 97223 Phone (503) 443-3900 SHEET 4 ! OF 1 i 10.4-14 b61/0"1-‘ • T . ,44 4r� ws,U9 — �•� emu, = /C�9/7f .e5- Z 4. 12/- /77 57047 & 7.5/Z T..cP = Yl✓ /s 4,577r Z TG,�, p ZO P ?i- �c7Y-':'!' jr-4c),/ 0}-1-1eiowa s 1144-•;1' 4 f-)071) jr." (g 1-11P1' �� 7 �G,� /9/ (i �O•c � _. /6%/s" CQ., TM RIPPEY BY RA) DATEE YY 11.. CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO t'G Tigard,Oregon 97223 Phone(503)443-3900 SHEET 717 OF F2.,ar_rie s /57, • atZ/ /G)- /2,aeAr, , ,x:7,47 a -c , -/ /34. .:: , e�e7 1S /34 Z/e)a s') 3e Pa Go4-.n S . e_r27 - 3 AL R., _ '464067-5-6 p 4 G - & 1, — 7 6.8X7* 334 // im 1-h, TM RIPPEY BY/7 L!> DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO 0�,/ Tigard,Oregon 97223 SHEEW____OF Phone(503)443-3900 FRAME FOUNDATION.cpt-10/9/2008 Mesh Input: Standard Plan Mesh Input: Beams; Beam Priori les; a• • • , • - - • . . . .ncrete Models;Slab Area PH. 'es Dratl0 ij Import. User Notes; User Lines; User Dimensions; KFz=100 Scale=1:48 t=24 3000 psi Priority=l 3.5 t=24 3000 psi 0 Priority=l • Mesh Input:Standard Plan-1 FRAME FOUNDATION.cpt-10/9/2008 Soil Bearing Design: Max Soil Bearing Pressure Plan Soil Bearing Design: User Lines; User Notes; User Dimensions; Latitude Span Designs; Longitude Span Designs; Latitude Drawing Import: User Lines; User Notes; User Dimensions; Element:Wall Elements Below;Wall Elements Above;Wall Element Outline Only; Column Elements Below; Column Eleme Scale=1:48 Soil Bearing Design -Area Spring Vertical Reactions Plot(Maximum Values) One Contour= 50 psf Min Value= 134.6 psf @(30,38) Max Value= 1977 psf @(18.65,30.03) X1500=1500 1250=1250` 1500= 5 250 1000 — �1250_1250� —�-1000 750750 1000�_ 1000 X500 ■ 750 " - :750 500--- �� 500—� 250— - X500 - pre - lllllllll� 5110 151l00 �Illl�ll1/0r00 1250f R Oa 750 111 500 250 1000 1000 500 1111111 i . 500 250 II 710 100 - 1 500 . il,„„„, Soil Bearing Design:Max Soil Bearing Pressure Plan-1 /-3 FRAME FOUNDATION.cpt-10/9/2008 Soil Bearing Design: Min Soil Bearing Pressure Plan Soil Bearing Design: User Lines; User Notes; User Dimensions; Latitude Span Designs; Longitude Span Designs; Latitude Drawing Import: User Lines; User Notes; User Dimensions; Element:Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Eleme Scale= 1:48 Soil Bearing Design -Area Spring Vertical Reactions Plot(Minimum Values) One Contour= 10 psf Min Value=-0.0002654 psf @(22.15,30.03) Max Value=437.9 psf @(30.33,41) 50— x-200=x`350✓4002501501000 100��=250`\x =000 i1uu- '� 100�2 `2501 100 o , 150 X150 /-0 ,0 0-1 vv X150 .00� 0, --∎ - ° 50 - \i..1 0 50 2 iiLl ,5"100\ \goo\\�\ \\�����\1 50 \\�2\\\ 0 350\\\\\)\1\010 U3/5°� 4 0 ��/ � 100 250 20/11 ff' 100 r 50/ 2.0/ rnu 00 iiiio/50 _J tif . 00 la 50 _ J Soil Bearing Design:Min Soil Bearing Pressure Plan-1 FRAME FOUNDATION.cpt-10/9/2008 Service LC: D + L: Std Soil Bearing Pressure Plan Service LC: D + L: User Lines; User Notes; User Dimensions; Drawing Import: User Lines; User Notes; User Dimensions; Element: Wall Elements Below;Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elemt Scale= 1:48 Service LC: D + L-Area Spring Vertical Reactions Plot One Contour= 50 psf Min Value=0.0003 psf @(24,38) Max Value=1641 psf @(18.65,10.03) =_1250 f 1250 'X1250 1000_ 1000 1000_ 1000-- -----1250 =750 750=750 750 750 500 500 500 250 250 250 250 500 500 flllllllllll 5a 1250 1111111 I100 /11/10 250 1111111 250 1000 IIIIIIIIIII 1000 IIIIIIIIIII 1000 111 1111 750 250 750 50 1000 I 5 111111 II 1250, 250 I 750 1000 1111111 250 750 Service LC:D+L:Std Soil Bearing Pressure Plan-1 FRAME FOUNDATION.cpt-10/9/2008 Other Dead Loading: All Loads Plan Other Dead Loading: User Lines; User Notes; User Dimensions; Point Loads; Point Load Icons; Point Load Values; Line L Drawing Import: User Lines; User Notes; User Dimensions; Element:Wall Elements Below;Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elemc Scale= 1:48 /► Fz=5.5 Fz=5.5 ear Fz=4.9 Fz=5 Other Dead Loading:All Loads Plan-1 FRAME FOUNDATION.cpt-10/9/2008 Live (Unreducible) Loading: All Loads Plan Live(Unreducible) Loading: User Lines; User Notes; User Dimensions; Point Loads; Point Load Icons; Point Load Values; Drawing Import: User Lines; User Notes; User Dimensions; Element:Wall Elements Below;Wall Elements Above;Wall Element Outline Only; Column Elements Below; Column Elemt Scale=1:48 Fz=6.75 Fz=6.75 Fz=6 Fz=12 Live(Unreducible)Loading:All Loads Plan-1 FRAME FOUNDATION.cpt-10/9/2008 Live (Roof) Loading: All Loads Plan Live(Roof) Loading: User Lines; User Notes; User Dimensions; Point Loads; Point Load Icons; Point Load Values; Line Li Drawing Import:l User Lines; User Notes; User Dimensions; Element:Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elem< Scale= 1:48 111111MU Fz=3.4 Fz=3.4 Fz=3 • Live(Roof)Loading:All Loads Plan- 1 FRAME FOUNDATION.cpt- 10/9/2008 Ultimate Seismic East Loading: All Loads Plan Ultimate Seismic East Loading: User Lines; User Notes; User Dimensions; Point Loads; Point Load Icons; Point Load Valt Drawing Import: User Lines; User Notes; User Dimensions; Element:Wall Elements Below;Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Eleni Scale=1:48 " Fz=-7.4 - .' Fz=7.4 • Ultimate Seismic East Loading:All Loads Plan- 1 2 09 FRAME FOUNDATION.cpt-10/9/2008 Ultimate Seismic North Loading: All Loads Plan Ultimate Seismic North Loading: User Lines; User Notes; User Dimensions; Point Loads; Point Load Icons; Point Load Va Drawing Import: User Lines; User Notes; User Dimensions; Element:Wall Elements Below;Wall Elements Above;Wall Element Outline Only;Column Elements Below; Column EIem( Scale=1:48 e/► Fz=7.9 Fz=-7.9 - - I Ultimate Seismic North Loading:All Loads Plan-1 reom)i a — = . 6a0) = /J, 3 3 G X �y= /? eF.c.oJ 2l376—) = 6. 3 7S , 2 t'..‘$ ? G 5 d3), — /7?-/ 1`t _ r 2 'r' ) 3 • - P-2: Z/0, 37) r sZ/,,-; �J �- •/:9d ,€mot,= 10.c,y.r r 6 y 77:.?))44,e)!..",(3\& — //f-I,7 3/r tie/ rf - zte__ I M TM RIPPEY _.__ By/2 k) DATE�d��O1 CONSULTING ENGINEERS CHK BY 'DAATTE 7650 S.W.Beveland St, Suite 100 JOB NO Tigard, Oregon 97223 Phone (503) 443-3900 SHEET I/ OF • /AI)P17.rD') • ,r.vrog7ele C sti Wit) • /L. - /G)4'/5 Z8p5142) - ify= l4 X'r / ?3 '0 a) / , c-40 /d °-4 x 4i,C ///--e" Gam/ y ` • • !f l i\ TM RIPPEY BYJ' 4) DATE/� ]]YYYGG CONSULTING ENGINEERS CHK BY gy�pp,, DATE 7650 S.W. Beveland St, Suite 100 • JOB NO ez4/ Tigard, Oregon 97223 Phone(503) 443-3900 SHEET e Z OF Foundation Column Spread Footing Design 2003 RN Design Parameters P„ = 39.192 kip PDT =6.72 kip Column dead load ye= 150 pcf Concrete unit weight Pt t = 17.52 kip Column live load ys= Opcf Soil unit weight PTL =24.24 kip Total load apit= 10 in Base plate dimension fc=2500psi Concrete compressive strength act)! =4 in Column dimension fy=60000psi Steel yield stress Footing dimensions Required reinforcing h= 12 in thickness NUM=5 Bar size b=4.5ft length,width n=4 Number of bars each way d=8.062 in effective depth Bending Soil bearing ¢:_ .9 q= 1347psf q =0.898 (I)-Mn =43kip•ft Mu = 1500psf qail =0.39 Mu = 17kip•ft (1)•Mn Punching shear Beam shear At= .85 Vup ,L= .85 Vup= 36143 lb Vc1- =0.438 Vub = 11204 lb Vub =0.303 Vcb =82580 lb •Vcb = 37007 lb •Vcb Viip .•Vc2 = 151797 lb •V- = 0.238 �' c2 Baseplate bearing = 0.7 (I)•Pbrg =297.5 kip pU = 0.132 Pu = 39.192 kip (0'Pbrg �3 WA-�L )4.41. :-.41 / yr 6/6".3 ? :1.-)) 9 a / / 4 — - z,,ye,,,,f„. 4.;)6 _ ,,y,) ve/z.x z P P /*re & 4 ------ )ze Az A/ a) 1 m b TM RIPPEY BY w DATEfd7GVag CONSULTING ONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO "le' Tigard, Oregon 97223 V /�� Phone(503)443-3900 SHEET OF �- q x z .C.. tGo/s CSU �- : ✓ yJ = e c` L-6� Z$/w = F6 F 'ILA -s 3 6- e,,;) --- 7 P-6"-e ra" -1533.751b -1533.751b -1533.751b -6901b -690Ib _ 323.7 170.3 i b/ft 151.4 'Is/ft ` 8 -278.9 ii;.•".51b/ft iw�2.5Ib/ft .�r`• -102.4 i 0 M.rn I . r4.9 M t 7 ma m NM 278.9 Mil 851.9 8 ► 1005.3 2 631.8 1j, 679.1 6 MR 1 ' u 17 -1533.8 'No 3 6065lb/ft fb 4 ` -3F§I 5 -1924§a.8 � 69� � - 2Ib/ft -690 _. -690 -1533.8 690 -1533.7 -1533.8 690 1533.8 1533.8 1533.8 Fp=O-3 .i,3 33', /b- P � Qoo - Loads: LC 1, !t Results for LC 1, P r Z ?6-42",5— ` Member z Bets(Ib-ft) F Reaction units are nding Ib Momen and Ib-ft «/f / TM Rippey Consulting Engineers Tim Rippey Oct 2, 2008 at 2:56 PM - retaining wall.r3d . ge r*-,vim,i> cthi-r z- 42 A I A 1 "G I 4,,p,..= /Ze3e r4,�s.r- -, Z5.' — /21-7*t- .4,70,ap 112.63-) 2g?'.& 4 Zia LFr. sr, X 3 S per, ad.VT' za x /� p5F z�� ,sie,= .1. t.A.M. - G 9O , pA rrov O. C. /94-sszv,- s Ax, te.,)4 ::: //5)6Pa p.v) r:-. 75-G pf w 74 UX2.') : 3 7 "1 ,, 74 • o-7 ti 4 7i- '-24 $ A-) ©.?-f" &ham) a, 3 F.:) - 0 .1. � K TM RIPPEY BY)DATE IO ]YYL CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO f / Tigard, Oregon 97723 Phone(503)443-3900 SHEETI _of xyZ.e,° 4a) = ‘3,IA a ,,f-ve) 177 GJ'769eL 19-771= -5 AT G-.-,v ,e15 TMKi M R IPPEY BY 2 DATE/d CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO i>314 Tigard, Oregon 97223 Phone(503)443-3900 SHEET of 0 11-044 61,1040 .4),eXp-7- 1Q , br%y3j _ 9,e) //g vav2W,r-eP 1pPT hr =1-/-33 ' 13., _ ? • � l-- 4 �. 0 Gtr /! 4 -70 f'�' h,- _ 43 4/ 3 .1Gs' A," z7 . . "S G.� dew • 1EAKTM RI PPEY BY DATE___CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St,Suite 100 JOB NO AZ Tigard,Oregon 97223 Phone(503)443-3900 SHEET OF Analysis cvs 1Z*1IV j> P27" 110.11k- Snow drift NOS MW lu := 54.ft Pmin 25•psf hr := 4.33•ft DM := .75 Parapet or Drift Height Modifier Pg := 10.psf projection height 0.75 for roof projection or parapet D := 0.13•ft•Pg + 14•pcf P D = 15.3pcf Pg = 0.654 ft Pf := 0.7•Pg D Pf = 7psf P f hb := p hb = 0.458 ft hc := hr— hb lib = 3.872ft he = 8.464 Drift to be considered when greater than 0.2 hb 7 — 1 f:d := ft6 Ib 4 0.43 3 u �Pg + 10 psf — 1.5 ft hd = 1.937 ft , ,:= hd•DM Drift Modifier Ihd = 1.453 ft Pd := hd.D Pd = 22.228 psf Pd + Pf = 29.228 psf P1 := if[Pf+ Pd < D•(hc + hb) ,Pf+ Pd,D.(hc+ hb)] D•(hc + hb) = 66.249psf ;Pm = 29.228 psf w := 4•hd if hd <— he 4•hd = 5.811 ft w = 5.811 ft 4•hd2 2 if hd > he 4•hd he = 2.18 ft Pm — Pmin he wd '_ pm_pf Wd = 1.105 ft 2 8•hc if 4h d > 8•hc 8.hc = 30.98 ft W c P d := if d < w P Pm — Pmin d P P(0•ft) = 29.228 psf P(2 ft) = 25psf ( ) d� m — min wd P(0.969.ft) = 25.522psf P(6.ft) = 25psf P(6.927.ft) = 25psf P(12.ft) = 25psf 9,r Analysis e`'' ecA tD-P7-- 4M1k- Snow drift ZOOS paw lu := 54•ft Pmin 25-psf hr := 15-ft DM :_ .75 Parapet or Drift Height Modifier Pg := 10-psf projection height 0.75 for roof projection or parapet D := 0.13•ft•Pg P+ 14•pcf D = 15.3pcf 9 = 0.654 ft Pf := 0.7-Pg D Pf = 7psf Pf hb : D lib = 0.458 ft he := hr- hb he = 14.542 ft he = 31.786 Drift to be considered when greater than 0.2 hb 7 - 1 hd := ft •Ib 4 •0.43.3 lu•4VPg + 10-psf - 1.5-ft hd = 1.937 ft , ,:= hd-DM Drift Modifier hd = 1.453 ft Pd ' hd D Pd = 22.228 psf Pd+ Pf = 29.228 psf Pm := if[Pf+ Pd < D•(hc+ hb) ,Pf+ Pd,D•(hc+ hb)] D•(hc + hb) = 229.5 psf 'Pm = 29.228 psf w := 4-ha if hd5hc 4•hd = 5.811 ft w = 5.811 ft 4•hd2 2 if hd > he 4•hd he = 0.581 ft Pm - Pmin he wd •_ Pm-Pf wd = 1.105 ft 2 8•hc if 4h d > 8•hc 8•hc = 116.34 ft W c P d d � m:= if d < w P Pm - Pmin d P P(0•ft) = 29.228psf P(2 ft) = 25psf — min wd P(0.969•ft) = 25.522 psf P(6•ft) = 25 psf P(6.927•ft) = 25psf P(12•ft) = 25psf fed 4MK Snow drift Grr ZMDS RPW lu := 135.ft Pmin 25.psf hr := 4.33•ft DM := 1 Parapet or Drift Height Modifier Pg := 10•psf projection height 0.75 for roof projection or parapet D := 0.13•ft•Pg + 14•pcf P D = 15.3pcf Pa = 0.654 ft Pf := 0.7•Pg D Pf = 7 psf Pf hb := D hb = 0.458 ft he := hr- hb he = 3.872 ft he = 8.464 Drift to be considered when greater than 0.2 hb 7 -1 hd := ft6•Ib 4 •0.43.3 lu•l/Pg+ 10•psf - 1.5•ft hd = 3.165 ft , ,:= hd•DM Drift Modifier hd = 3.165 ft Pd hd D Pd = 48.422 psf Pd+ Pf = 55.422 psf Pm := if[Pf+ Pd < D.(hc + hb) ,Pf+ Pd,D•(hc+ hb)] D.(hc + hb) = 66.249 psf Pm = 55.422 psf w := 4-hd if hd 5 he 4-hd = 12.659 ft w = 12.659 ft 4•hd2 2 if hd > he 4•hd he = 10.346 ft Pm - Pmin he Wd '__ pm_pf Wd = 7.953 ft 2 8•hc if 4h d > 8•hc 8•hc = 30.98 ft w c P d := if d < w P Pm - Pmin P(0•ft) = 55.422 psf P(2•ft) = 47.772 psf _( ) d, m - •d ,Pmin wd P(0.969•ft) = 51.716psf P(6•ft) = 32.472psf - P(6.927.ft) = 28.926psf P(12.ft) = 25psf Il yss 4MKSnow drift . 21105 RPW lu := 135-ft Pmin 25-psf hr := 15•ft DM := 1 Parapet or Drift Height Modifier Pg := 1O•psf projection height 0.75 for roof projection or parapet D := O.13•ft•Pg Pa D = 15.3 pcf 9 = 0.654 ft Pf := O.7•Pg D P 7 psf Pf — p Pf hb := — D hb = O.458ft he := hr- hb he = 14.542ft he h = 31.786 Drift to be considered when greater than 0.2 b 7 -1 h-d := ft-6--lb•Ib 4 -0.43 �•4�Pg + 10-psf - 1.5•ft hd = 3.165ft ,ham:= hd-DM Drift Modifier hd = 3.165ft Pd := hd.D Pd = 48.422 psf Pd + Pf = 55.422 psf Pm := if[Pf+ Pd < D•(hc + hb) ,Pf+ Pd,D•(hc+ hb)] D.(hc + hb) = 229.5 psf Pm = 55.422 psf w := 4•hd if hd < he 4 hd2 4-hd = 12.659ft w = 12.659ft if hd > he 4.hd2 he = 2.755ft Pm - Pmin he wd __ Pm—rf Wd = 7.953 ft 42 8•hc if -h d > 8•hc 8•hc = 116.34 ft W c PO) := if d < wd,Pm - Wd Pm - Pmin d P min P(0•ft) = 55.422 psf P(2 ft) = 47.772 psf P(O.969•ft) = 51.716psf P(6•ft) = 32.472psf ' P(6.927•ft) = 28.926psf P(12•ft) = 25psf 92- 17. "- O• el SPA `rf 17 6. L'�U.�-)�. 6--) = 7/• /h l76 4-- ✓ p p r4r'r• I-10•--7-W3-14).?./4:36 Y.16) .4416 P e./. .- / ,c'-7' (47-1,011,607„...0.)•/Iv r•- P i e./)& )2 -- 3 34 s FA6-4,6 3I7 �`�' . 3305" 1/Ze3) /F 9/Ad e At G/ ♦ GGzi";•00 (i4 •IZ P.>� i.:G ti.I F-.) - ;' ..7- ' � e ` 3. 57 %pA-,v0.4- . / i Y H" 41/1. /y 5_ L. r a V 7,;: .J I M K TM RIPPEY BY/ /0 DATEl r CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 JOB NO Tigard, Oregon 97223 SHEET OF Phone(503) 443-3900 T�Gs �P/ra3,� ��`f f•r irlegr • /%60v zb) -- /9./ Y4. 617X/i) 9 2* S'-i2 �. /iz 60 t z4) /& pi/ o 1 ozail) ? /s UGC = /Ge o� f 41//0 W37' ')/vrm TM RIPPEY BY/h DATE____ ]YYG 4.)CONSULTING ENGINEERS �' "'� CHK BY DATE 7650 S.W.Beveland St,Suite 100 JOB NO eu/ Tigard, Oregon 97223 Phone(503)443-3900 SHEET re OF A/ 6 ' ' ' /6 • th *"/r/ X 4 41• 5- D 7 -• s�l;fd t�f fr��A • I1vf p TM RIPPEY BY DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 JOB NO I9 Tigard, Oregon 97223 /% Phone (503)443-3900 SHEET OcOF