Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Plans (3)
./146/ O 13 COO 9(a Structural CalculationsCEI\JFr for APR 15 20i,-) Full Lateral & Gravity Analysis afi�YG�1V���1 Plan B 1332 Lot 47, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. SZituCTUR44 3‘,11 PROF 001N/cis, 12,320 ,A OREGON 44: 15,Ac3v Sr N ,1. ENS EXPIRES*12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original 0Harper HP Houf Peterson Righellis Inc. .f 4} 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St.Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 ♦ [F] 541.318.1 141 I � Structural CalculatiorbU APR 15 2013 for CITYOFTIGARD `' "ING DIVISION Full Lateral & Gravity Analysis of Plan B 1332 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP'- Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 ♦ Portland, OR 97202 • [P] 503.221.1131 ♦ [F] 503.221.1171 1 104 Main St. Suite 100 ♦ Vancouver, WA 98660 • [P] 360.450.1 141 ♦ [F] 360.750.1 141 1 133 NW Wall St. Suite 201 ♦ Bend, OR 97701 ♦ [P] 541.318.1 161 ♦ [F] 541.318.1 141 r � Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, l : 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch. 20 Importance, 1E: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S 1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength, fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x &4x Wood Beams& Posts: DF-L#2 6x &Greater Wood Beams &Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams•u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works-Sizer version 2002 Bently RAM Advanse t Harper Project: Summer Creek Townhomes UNIT B tr Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# ANUS:AY. AH! 1 E("`.•+t H.I r..t_- DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5•psf Plywood RRF:= 5.psf Roofing RME:= I.5•psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5•psf Ceiling RIN:= 1•psf Insulation RDL = 15•psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4.psf Sheathing FME:= 1.5•psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5•psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX_Wallwt:= 12•psf INT_Wallwt:= 10•psf Roof Live Load RLL:= 25•psf Floor Live Load FLL:= 40•psf .6—L\ Harper Project: Summer Creek Townhomes UNIT B .' Hoof Peterson Client: Pulte Group Job# CEN-090 _ Righcllis Inc. Designer: AMC Date: June 2010 Pg.# .ANc5; -r APO':i1EC ::�_'J FVEVORE Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748•ft2.1.12 RFWT:= RDL•Roof Area RFwT= 12566•lb Floor Weight Floor Area2nd:= 605•ft2 FLRWT2nd := FDL•Floor_Area2nd FLRWT2nd = 7865•Ib Floor_Area3rd:= 600•ft2 FLRwT3rd:= FDL•Floor_Area3rd FLRwT3rd = 7800-lb Wall Weight EX Wall Area:= (2203)•ft2 INT_Wall_Area:= (906)-ft2 WALLWT:= EX_WallN,t-EX_Wall_Area + INT_Wa11t INT_Wall_Area WALLwT= 35496•lb WTTOTAL= 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) a.,:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) • Period Ta:= Ct•(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) F":= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) 23—LI 4 1 jeHarper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. --- - ENGINEERS••LANNERS Designer: AMC Date: June 2010 Pg.# LANDSCAPE ARCNI TEC T8•8URVE YORE Ph SMS:= Fa-Ss SMS = 1.058 (EQU 11.41,ASCE 7-05) - Sms Sds:= 2 3 Sds= 0.705 (EQU 11.4-3,ASCE 7-05) SMl FvS1 SM1 = 0.584 (EQU 11.4-2,ASCE 7-05) Sdl •= 2.3M1 Shc = 0.389 (EQU 11.44,ASCE 7-05) Cst:= Sds Ie Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Csn, := Shc'Ie Csmax =0.223 (EQU 12.8-3,ASCE 7-05) Ta R ...and shall not be less then... C1 := if 0.044•Sds Ie<0.01,0.01,0.044-Sds-le) ( 0.5 Si-le (EQU 12.8-5&6,ASCE 7-05) C2:= if l SI <0.6,0.01, R J Cs := if(Ci >C2,CI,C2) Csmin=0.031 Cs:= if(Cst<Csmm,Csmm,if(Cst<Csmax,Cst,Csmax)) Cs =0.108 - ,4:= Cs-WTTOTAL V= 6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E =4840 lb (Allowable Stress) 6- Lt 6 Harper Project: Summer Creek Townhomes UNIT B ' ' Hoff Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# H CS�a nE l.R�N.iE *<♦::A.:[vORS Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure: B Building Occupancy Category: II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.16.ft Zone A&B Horizontal Length Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) or a2= .4hn2 ft a2 = 25.6ft but not less than... a2min 3.2.ft a2mm = 6ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2.psf Pnetzonec 14.4-psf PnetzoneD:= 3.3•:6f Vertical PnetzoneE 8.8•psf PnetzoneF 12•psf PnetzoneG 6.4•psf PnetzoneH -9.7•psf Basic Wind Force PA:= PnetzoneA'Iw'X PA = 19.9.psf Wall HWC PB:= PnetzoneB'lw.X Pg=3.2.psf Roof HWC PC:= PnetzoneC-lw.X Pc= 14.4•psf Wall Typical PD:= PnetzoneD'Iw.X PD=3.3-psf Roof Typical PE := PnetzoneE-Iw'X PE =-8.8.psf PF:= PnetzoneF'lw'X PF =-12•psf PG:= PnetzoneG'Iw•X PG =-6.4.psf PH:= PnetzoneH'Iw'X PH =-9.7•psf —L'.\ r Harper Project: Summer Creek Townhomes UNIT B 4. Houf Peterson Righellis Inc. Client: Pulte Group Job# CEN-090 ENCINEENS•PLANNERS Designer: AMC Date: June 2010 Pg.# LANDSCAPE ANCNIrFC1S•SI;R.IVORS IS Determine Wind Sail In Transverse Direction WSAIL neA:= (55 + 59+ 29)•ft 2 WSAILZoneB (6 + 0 +23).ft2 WSAILz„eC:= (429+ 355 + 339)•ft2 WSAZoneD (0 + 0 + 4)•ft 2 WA:= WSAILZoneA'PA WA = 2846 lb WB WSAILZoneB'PB WB =93 lb WC:= WSA1LZoneC•PC WC= 16171 lb WD:= WSAILZoneD'PD WD= 13 lb Wind_Force:= WA+ WB+ WC+ WD Wind_Forcemm:= 10•psf•(WSAILZoneA + WSAILZoneB + WSAILZonec + WSAI-ZoneD) Wind Force= 19123 lb M Wind Forcem;n = 12990 lb WSAILZ e$:= 43•ft2 W SAILZoneF= 43.ft2 WSAILZoneG:= 334•ft2 WSAILZoneB 327•ft2 WE:= WSAILZoneE•PE WE =—378 lb WF WSAILZoneF'PF WF=—516 lb WG WSAILZoneG'PG WG =—2138 lb WH:= WSAILZoneH'PH WH=—3172 lb UPliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneB+ (WSAILZoneE + WSAILZoneG)]'.6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 6- L3 1 f Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Righellis Inc. Client: Pulse Group Job# CEN-090 EN6ik FEES..LAHNEPS Designer: AMC Date: June 2010 Pg.# LANDSCAPE ARC.4IrECTS•S i`:E•') Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft2 RFC:= RDL•Roof Area RFWrr = 12566.lb Floor Weight Floor_Area2nd =605 ft 2 F jK 0,:= FDL•Floor_Area2nd FLRWT2nd = 7865'lb Floor_Area3rd =600 ft2 = FDL.Floor_Area3rd FLRWT3rd = 7800.1b Wall Weight .l 2 ..W..I1.AINA.:= (2203).ft2 INT Wall Area=906 ft 2 EX_Wallwt•EX_Wall_Area+ INT_Wallw,t•1NT_Wall_Area WALLW-r•=35496-lb WTTOTAL =63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) h„=32 Mean Height Of Roof = 1 Component Importance Factor (11.5,ASCE 7-05) &:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period 20„:= Ct•(hn)x Ta= 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 = 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Ace-based site coefficient @ .3 s-period (Table 11.4-1, ASCE 7-05) F,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) leHarper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Puke Group Job# CEN-090 Righellis Inc. ENGINEER.♦PLANNERS --- Designer: AMC Date: June 2010 Pg.# LANDSCAPE ARCNITECTS•SUNVE VOSS := Fa Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2•SMS , „:= 3 Sds = 0.705 (EQU 11.4-3,ASCE 7-05) = Fv.Si SM1 =0.584 (EQU 11.4-2,ASCE 7-05) 2•SM1 := 3 Sd1 = 0.389 (EQU 11.4-4,ASCE 7-05) Sds.le s := Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... ,�= Shc Ta•R Csn, =0.223 (EQU 12.8-3,ASCE 7-05) ...and shall not be less then... if 0.044•Sds• e<0.01,0.01,0.044•Sds•1e) 0.5•Si•leJ (EQU 12.8-5&6,ASCE 7-05) := if C Si <0.6,0.01, R if(Ci >C2,C1,C2) Csmin =0.031 = if(Cst<Cs,a,Cs ,if(Cst<Csmax,Cst,Csm )) Cs = 0.108 V:= Cs'WTTOTAL V=69141b (EQU 12.8-1,ASCE 7-05) A:= V.0.7 E =4840 lb (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis In c. T^^ ENGINEERS•PLANNERS - Designer: AMC Date: June 2010 Pg.# ♦ANOECAPE ARCNITECTE•SuRVE,ORE - Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II IN,= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) — 2•.1.16.ft Zone A&B Horizontal Length Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) or ,:= .4•hR 2•ft a2=25.6 ft but not less than... , := 3.2•ft a2min= 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB =3.2•psf PnetzoneC = 14.4•psf PnetzoneD=3.3•psf Vertical PnetzoneE=—8.8•psf PnetzoneF=—12•psf PnetZOneG=—6.4•psf PnetzoneH=—9.71psf Basic Wind Force PnetwneA'Iw.X PA= 19.9.psf Wall HWC , = Pnet1OneB'Iw'X Pg=3.2.psf Roof HWC := Pnet2onec'Iw'X Pc= 14.4•psf Wall Typical PnetzoneD'Iw'X PD=3.3•psf Roof Typical • = PnettoneE•Iw X PE=—8.8•psf r := PnetzoneF'Iw'X PF=—12•psf := PnetzoneG'Iw X PG=—6.4•psf ,:= PnetZOneH'Iw'X PH=—9.7.psf Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# a Determine Wind Sail In Longitudinal Direction W A wA:_ (58+ 59+ 21)•112 W AIL :_ (0 + 0 + 51)•112 ,SA p:= (98 + 99+ 34)412 tivASALzowjA:= (0 + 0 + 114).ft2 Wes= WSAILZoneA'PA WA=2746 lb Wes:= WSAILZoneB'PB WB= 163 lb Wes:= WSAILZoneC'PC WC=332616 Wes,:= WSAILZoneD-PD WD=376 lb Wind WA + WB+ WC+ WD Wind Fo'c = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=6612 lb Wind_Forcenin = 5340 lb § L mt = 151.ft2 W AIL := 138.112 WSANK := 242.ft2 W AIL := 216.112 WSAILZoneE'PE WE =-1329 lb Wes= WSAILZoneF'PF WF=-1656 lb Wes;= WSAILZoneG'PG WG =-1549 lb Wes;= WSAILZoneH-PH WH=-2095 lb Uplift := WF + WH + (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE + WSAILZoneG)]'.6.1.12 Upliftnet=901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION t9\ Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 • Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail Net Design Wind Pressure(psf) (ft2) Pressure (Ibs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone . Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force= 19123 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E= 1313 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D M Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm.Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Ibs Diaphragm Diaphragm Width(ft) ( ) Width(ft) (lbs) Width(ft) N (Ibs) A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 Z= 50.75 7291 41 6286 42.67 5546 g ,t_\Ts) Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 i Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ts)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS= 1.06 Equ. 11.4-1,ASCE 7-05 SMm= 0.58 Equ. 11.4-2,ASCE 7-05 SOS"' 0.71 Equ. 11.4-3,ASCE 7-05 Soi= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5 Sr 6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(Ib)= 7800 Roof Wt(lb)= 12566 Wall Wt(lb)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(lb)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(Ibs) l to shearwalls Req'd? Vnoor2(lb)= 711 100.0% Yes Vnoor 3(lb)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 _ 711 1595 2534 Total Base Shear= ( 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. g.— Lo.k Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 ' Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 lw= 1.00 Wind Sail Wind Net Design Wind Pressure(psf) ( ) Pressure(Ibs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E= -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force= 6612 lbs Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs • E= 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D 1 Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm Width(ft) ( ) Width(ft) ( ) Width(ft) (lbs) 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 Z= 16 2565 16 2600 16 1447 B - L\L Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution • Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(T,)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 Sm.= 1.06 Equ. 11.4-1,ASCE 7-05 %M,= 0.58 Equ. 11.4-2,ASCE 7-05 SDS= 0.71 Equ. 11.4-3,ASCE 7-05 Sol= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(Ib)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces %total of base shear Rho Check to Shearwalls(Ibs) 1Cumulative to shearwalls Req'd7 Vfioor 2(Ib)= 711 100.0% Yes V„o,,3(Ib)= 1595 85.3% Yes Vroo,(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 . Total Base Shear*= I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. E 2 V 6 Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Fir. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klt) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 ox 8.00 2.28 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 ox 8.00 2.80 8.00 0.00 723 Single 1.40 IV 103 8 4.58 . 8.58 1.75 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 4.58 13.08 1.75 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 109 8 3.88 3.88 2.06 OK 8.00 2.80 723 Single 1.40 IV 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG III 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79 1.33 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 202 9 3.00 9.79 3.00 ox 9.00 3.14 18.00 2.77 - 604 Single 1.40 III 203 9 _ 5.00 5.00 _ 1.80 OK _ 9.00 3.14 18.00 2.77 _ 1183 Double 1.40 VII 204 Not Used 205 Not Used _ 206 Not Used 301 8 6.88 10.08 1.16 OK _ 8.00 2.77 275 Single 1.40 1 302 8 3.21 10.08 2.49 OK _ 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 ox 8.00 2.77 277 Single 1.40 1 304 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single _ 1.40 I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 . Mo(Overturning Moment).-Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) g.....tiv..4 Harper Houf Peterson Righellis rg s: Shearwall Analysis Based on the ASCE 7-05 rransvere Shearwalls Line Load Controlled By: Seismic _ Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift • Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 '1.52 OK 8.00 0.15 A 18.00 0.80 27.00 1.26 419 545 0.30 1.31 Single 1.00 - IV * 102 8 3.88 3.88_2.06 OK 8.00 0.33 8.00 0.00 0.00 _ 85 111 0.22 0.97 Single 0.97 1 103 8 4.58 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 II 104 8 4.00 8.58 2.00 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 _ 350 0.23 _ 1.00 _ Single 1.00 II 107 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 0.26 1.15 Single 1.00 I , 108 8 8.50 13.08 0.94 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 NA 2.13 Single 1.00 I 109 8 3.88 3.88 2.06 OK 8.00 0.33 0.00 85 111 0.22 0.97 Single 0.97 I 110 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 , Double 0.31 NG 111 8 2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NG 112 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 - 1.28 513 667 0.07 0.31 Double 0.31 NG 201 9 6.79 959 1.33 OK 9.00 0.28 18.00 1.26 157 205 0.46 1.51 Single 1.00 I 202 9 3.00_ 9.79 3.00 OK 9.00 _0.28 18.00 1.26 157 205 0.20 0.67 Single 0.67 II 203 9 5.00 5.00 1.80 oK _ 9.00 0.55 18.00 1.28 366 476 0.34 1.11 Single 1.00 IV 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 ok 8.00 1.26 125 162 0.34 1.72 Single 1.00 I 302 8 3.21 10.08 2.49 oK _8.00 1.26 125 162 0.16 0.80 Single 0.80 I 303 8 5.00 10.00 1.60 ok 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 - 0.63 Single 0.63 11 305 8 2.50 10.00 3.20 oK 8.00 1.28 128 _ 166 0.12 0.63 Single 0.63 _ 11 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 17.7, Total#1st Floor Bays= 4.43 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 14.79 Total#2nd Floor Bays= a - Are 2 bays minimum present along each wall line? No 2nd Floor Rho= u Total 3rd Floor Wall Length= 20.05 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1a Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H!L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) 8 Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L'-"0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) ss 'L(it Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V ; Panel Shear Panel Mo MR Uplift . Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pIf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 _27.00' 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 207 9 11.50 11.50_0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 1 24.71 49.73 -0.47 208 9 11.50 11.50 0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 I306 8 10.00 10.00 0.80 ox _ 8.00 0.72 0.29 72 Single 1.40 1 5.78 14.40 -0.30 307 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 1 5.78 14.40 -0.30 Spreadsheet Column Definitions& Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear'Shear Application ht Mr(Resisting Moment)=Dead Load'L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 8 .... Loa Harper Houf Peterson Righellis Pg# Shearwall Analysis Based on the ASCE 7-05 _,ongitudinal Shearwalls Line Load Controlled By: Seismic J Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift . Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (pl1) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 . 106 8 12.75 12.75 0.63 OK 1 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 - Single 1.00 I 55.17 96.89 -0.24 I207 9 11.50 11.50 0.78 OK 9.00 0.72 18.00 1.22 0.81, 169_ 169 - NA 2.56 Single 1.00 I 28.42 53.69 -0.34 208 9 11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 I 31.56 53.69 -0.06 I306 8 10.00 10.00 0.80_OK _ 8.00 1.22 0.35 122 122 _ NA 2.50 Single 1.00 1 9.76 17.40 -0.07 307 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 1 9.76 17.40 -0.07 Rho Calculation Does the Ist floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 15.50 Total#1st Floor Bays= 6.38 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= i.e Total 2nd Floor Wall Length= 15.50 Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 14 Total 3rd Floor Wall Length= 20.50 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= t.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load•Rho/Total L 5'.Story Strength=L/Total Story L (Required for walls with I{/L>1.0.for use in Rho check) #Bays=2•L/H - Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear'Shear Application ht Mr(Resistingyoment)=Dead Load•L'•0.5•(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) I S....-- tiPic Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V(pat) (p11) unmoral 101 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 102 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 103 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 107 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 108 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 202 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. -L v1b Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V(plf) (p10 (lb) (lb) 105 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 207 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 4.742 Simpson None 0 I 208 191 1/2" APA Rated Plyw'd w/8d Nails @ 6/12 242 14,t, Simpson None 0 306 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 'late Simpson None 0 307 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 '"-z12 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. r 8 -U,9 Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.93 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0 1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3,14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8.14 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0 1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201 L 201 R 6.71 6.71 12.65 12.72 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 01 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 23.30 111 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112_ 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 21.99 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39.13 9.72 5.02 4.90 5.32 301 L 301R 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 3021 302r 1.67 1.72 6.77 7.24 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303L 303R 1.61 1.32 12.13 12.12 301 8 6.88 10.09 2 77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 1.45 1.40 1.45 1.40 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53. 1.67 1.72 1.67 1.72 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44 1.61 1.32 1.61 1.32 304 8 2.5 10 2.77 2.77 277_ 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 2.13 305 8 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions& Formulas O L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 1 Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k MI kft kfl k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 I.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201 L 201 (part) 1.17 0.34 2.46 1.75 l 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 9.87 7.32 11 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 203R,304L -2.99 2.91 5.74 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 13.83 9.72 5.02 0.75 1.37 301L 301 R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 1.35 203 9 1.1667 5.00 5.00 0.8 1.297_ 2.077 415 0.172 0.848 0.385 20.18 6.39 4.08 2.89 3.30 303L 303R 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.20 302 8 3.21 10.09 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 0.21 0.29 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.32 304 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.72 0.90 0.72 0.90 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 _ 0.90 0.55 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line t V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k ■ 101 Wind 14.54 Holdown HD12 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50,HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HDUI4 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76_ None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 _ 8.11 202 Wind 6.77 Strap MST60x2 8.11, Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMSTI2x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 2.88 f � - 6 sCQ . . ' By \ ^ ^ DATE L-1`1 (D,0\k0 JOB NO C ` Oct OF" I PROJECT: RE: D\5-1 V-kilcirt010 OF SHEML IIP1SEI ON 5T1TTK/ES . W z itSIGIQ SHEA'..= 6.3F)b �Ips . O w W Axca\ ►.,mod■ WALL ttO : 2 (115)(0 9,SN.0.o,s/fi(2.4/0.o17.)}r (( s.s>(o.ols> 42,-)>co.o4(.'IZ> = 1.1-O Y.;ps jL 0.t. ((tq,S(o•n.s -1-(CIq,s7(o.oLs-x;lz)r 1.34 k SL °� 0 orals 3.04-'4.+?S 0 W WALL 1\\ Id a (19.0to.o1Sl(a.Sc64- t-y(oo►L.(o,$)t (m.$)(o,o\s1It) -1- (at aXo.°' 1-"Iz\ Z t(tS40.o11,1z(z) '- 0'I2.)(0.01A91)(0_ a.al aNs;ps oL 0 17 (vq.5Ao,oz5>(0.$) i-Ckq.s.)(o.oZS)( 1z' = a.vb\ kips s■_ z ("I-zl(o.o4o)(f) = o.ti 4 ti ps LL D TO-a\ S,333 V- 2 0 " w0.\\ 112 : E (19.5>(o.otc °12 )i-(2t�to.o12X(2.F04 ( " 2)(oo3YZ/z�?2 _ 'd;aS 'c- �- ( ° C))(0.0ZS�jOI2y v .`13�5 V-13.5 SL o Li- Z W ("�z�aO�tU� � = U.44 K� psLL -- - 1 Tok-al 5.12:1S 1- 54i Gone fZe1 5. (Frt s S WALL T`I t"C. Ps1\uw407\c Shtor. Dc i c4 K=S'r'e(r o"P+- V-ik' k(u., t10 5Sw1s'x't 18100 0.35 5S1it,* Cl \83 - l11 SSw24x--4. 5)-1GI# a.31 \v 4 st- o•e77`-' i\2 SSW 1S x-1' 1$1.0 # 0.35- 531 Ct 0415")3 . :.1. rtci- `N LL sA-. S\ner' o c \\Co 1,512.14- < V-. 10 its u. \\\ syas . ( 51sos a ' \\2 1S1")-'. ( 1S"'rot* 3 o y C� .��/ • iF Ili = SC SW lx�- x 4.-1 ■11 GHou.)Shear Dr i F i- S'IiC__ Q.el Sk r esi D i s-1-V 110 1$60 '$ "1.(0 51(4S4' ©,' 2a1 \.531.44 wv-4h‘ns% 10 44 0# 0,2,4 1305?) ' o.S4b 4cas 1t , -Cox. \12 klb bo - 04") G 51 (9 O. aal \ail - c Q''D3°Cr g ; W3 ) 0 0 108 ._. • I T ©--- A 110 t1 t, Z 6 - 0\14 (fg.J3Ni 1.uac;‘) ON1 15{ F L009-. Sw A'‘IUL i ❑ 0 101 . 102 T 0 - 143 104 0 `:J 2 (LERi2, Lori-0" 1 11 N 1'- ?Di - 15r- 1 LUGR s\&) L P\I O U; zo i aoa 0 --- 1 Q I immommir 0 i ao3 I - ao(t, UNIT PD - a vo o2 Sw L 'YOU-n 30 - cD 0 .9- O l - In IP I W IL �- 1i 0 -- 2121SEiniainF 303 ANNE 3o1.i .>- B1X _ UN()NT - 39-0 LEVEL S L_A '/O Lir-" 1 , , BY ..j.,:\A r DATE. -. kl -\( JOB NO r 0 +,1 PROJECT: • RE: Dee iQf� oc r,C�t`, l V1 .;4,i'rt @ So f S J OPTION 1. O ~ '`wwrri o f TRiz WshoTh or.) 1 0=! F.F. 1q'- + Ia -- S o 1 r i 1 = 9r 977" tab- TOP Pt_R S 1bi-5 0 a Mx 5 r A i'l`Qev-ta J- - o W %S.-3" d U 0 z DEE51(n .J LultJ) PCessLce Z = -ao,of psc ° i----.�. qt-3'Ifl" Des‘op 910\;k e 5 C o 7..o r'. 1 ,.,:i i., To??LAI ES BI-i la" 2 t T R,=14crki Rz'- t4` I # ©-01 z it o Z N1,mo x =la"- _ I°1 L 5.355' 51-21- #.ct t0- a V rr„ = t 4-6V1 ik _ i:(3.5 52.5 j ! ►..M,.- - -- 611.2i.2i irlwz 1-3 s--i Sy; 1 = !i° # _ co2tti,o- C - F . . • (850psc.)0,0(I .5)(1.1s)= a'6'ic„ps4 c X412- . - , e3 O _ _ ii 0 _ N -\ \(- 0c) .--i 2 8 - L -2?) N .-z-• 4.`c, t 4 VNti 8e1'e ka-1 L ly� 4'o) y _ 'S i•\ fs 7;•S Z sc1/4sri/`1/ 5 I) S t-37 7.1 vr41 se'9 '£SLiX ) = °l511 =?� 1 (i ;18 giob k.0 A)(p.1x�.‘)<0.1 0,17o.,X411XlsdO5 ) = a� �.�: �1' Z. ( s€ 17 )(,:3 h ti t hh = -�`f\r 4^" c -•k 'hk„ . 4-6,6')* 4 O +cit' S -4. S4. C) 5' ',r + 51,'(, -+ `5tg'O)S'+,l° -} St., = 4 - 1_ A '1 di _ CAO\ cock \C\OL Ur) p00-1 scl Qp'o - = au•SSaac� 'Ju\c-rl V,FGaz 1,0-,21 C., ,P'J O J 0-kS j ar'f o\ is-OW kb-;SCI = 1Nya too ol.p.cri �Orn± cr -a\„1,1,0 Joo\\'DC3/4 acn kj dr) 1'ry nOLLdQ 3d :173road ON 3NOHd I 1:N1133W n MVO 3NOHd 2 = 7 = PM CD A 'j 0 3 0 I 13lld Ol 01413104 NOIIVDINf IN 03 oN eor o\ -Z \ -9 .0 -)\1\1 A9 WoodWorrks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load W ood W orks©Sizsr 7.1 June 20,2010 10:02:00 COMPANY I PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF i Trusses a.....................designed by request ..............__:._.......... 4. Mnf Tru (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 208 By Others Not designed by request 121 2x10 Lumber n-ply D.Fir-L No.2 2-2510 12) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 204 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 816.0 Typ Well 2x4 Lumber Stud Hem-Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jet Not designed by request landing Lumber-soft D.Fir-L No.2 2x6 616.0 4x6 Lumber-soft D.Fir-L No.2 406 (2) 208 Lumber n-ply D.Fir-L No.2 1-208 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2-2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 256 13) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 204 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 2x6 P16.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 204 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR ':..::................ Mnf Trusses Not designed by request deck joists Lumber-soft D.Fir-L No.2 208 016.0 Mnf Jet Not designed by request 3.125x14 LSL L5L 1.55E 2325Fb 3.5x14 4x8 Lumber-soft D.Fir-L No.2 408 3.125x10.5 Glulam-Unbalan. Nest Species 24F-V4 OF 3.125x10.5 5.125x16.5 GL Glulam-Balanced West Species 20F-V7 DF 5.125x16.5 (2) 2x10 Lumber n-ply D.Fir-L No.2 2-2x10 4x12 Lumber-soft D.Fir-L No.2 4a12 3.1250141) LSL 1.55E 2325Fb 3.5x14 (2) 206 Lumber n-ply Hem-Fir No.2 3-2x6 (31 2x6 Lumber n-ply Hem-Fir No.2 9- 2x6 606 Timber-soft Hem-Fir No.2 6x6 (2) 204 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Well Lumber Stud Hem-Fir Stud 2x6 616.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR • aLFnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values . deck joists j42 Bending 0.41 Mnf Jet Mnf Jst Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 2x8 b7 Bending 0.21 1.75014 LSL b14 Bending 0.57 3.125014 LSL b21 Shear 0.41 408 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125x16.5 GL b26 Bending 0.21 12) 2x10 b15 Bending 0.93 4x12 b22 Sheer 0.16 3.125x141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 c2 Axial 0.34 (3) 2x6 064 Axial 0.59 6x6 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 13) 2x4 044 Axial 0.84 Typ Wall w15 Axial 0.28 Fnd Fnd Not designed by request Typ Wall 2x4 w40 Axial 0.33 DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate fox your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. • 3. ROOF LIVE LOAD: treated as snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd a actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions . of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. B. BUILT-UP BEAMS: it is a s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection 1s for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. E.-61 111 Li WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 28, 2010 10:56:39 Concept b24Dde : Beam View Floor 8 ' - • 49'6 1050 4o-o IU4 4t-0 I USA 40-0 . I IUt 45-0 1 u b25 4- ar _ 4U Jb 3y-'0 V4 SO-O- _ if-0 V 3 3b 3 yG 33--b Vt.! SS-b 00 JG-b -- - - - - - - -- 31-b Sr _. _ 3U-b 00 00 Ly b 00 L0-b t54 -- G! b 61 20-0 1. 0U 24-b 4.5-0 r`1 ... ... ... - - GL-b 2I-0 GU-0 r0 - - -- - - __ -- - - IV-0 r5 Itl-b (4. .. r 3 I f-0 lb-U IL_ .. - 10-0 f i - ...... 14-b ru_ ._� s3 c by ,Z 0r I I-'J 00 lu-b 00 b y b 04)_ - b21 u-b r-b 0 b6 b26 4-] bu; b20ib22a�tb23 3.-b.. I-0 wl U-b BB1B B BCCCCC CCC}CCC CC CCCC C CCC CCtiCC CD DDDD DD DI.CDD CD DD DD D D DD CD\DD DE.E E E E EE EtEEEEEIEE EEEEEE1EEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32 34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64 66'68'70'72'74'76' 0'1 2`3'4'5'6'7'6'91t1 I:1"1,1!111'111'2(222'24'2(2'2!243(33:3 ,3'3'.33t3:4t44:4:4•4'4fd'4:415155:5:5,5'5(5'515''.6(66;6:6,6'6(6'616i7C'7:77,7X7177'-6' eg.— eq., WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28, 2010 10:04:32 Concept b24Dde: Beam View Floor 2 : s; ' ■ • 49'-6„ ,t.,4;:: 40-0 41-0 40-0 40-0 b1 .. 44-0 4i-0 44-0 41-0 4U-0 .5V-b 30-0 3f-b 50-0 .- _ - 00-b , L .. :i 34-0 33^0 - - 5t-b St-b -5U-0 20-b G/-b G0-0 { L0-0 A L4-b LS-0 GL-0 11 -t? : Lt./ ``3-0 10-b 11 -0 10-0 10-0 • '4-0 .)-0 a - It-e, i 3-fir IJ-b b21 n. 6 1-0 0-b b26 0-b b20 b 1.22 b23 i u ii ar 1 G-0 -b U-0 BB4BBBCCCCCCCCICCC�.�LCC,;CCCCCC\GCGDuuLD:... .;1Li.iL3LI):.2CDDUDDL 3'DUDE,EEEE-EEEEE EEEEE.EEEEEEUEEEEZ 2 4 6' 8' 10'12'14' 1.6'18'20.22'24'26'28'30'32'34'36 38'40'42'44'46'48'50'52'54'56'58'60 62'64'66'68'70'72'74'70 0'1'2 3'4.56'7'8'6?11 11:1,1:1;1'1112:2 2:2 2,2212.21213133.3:3,3!3E3'33 A(.4 4•4.4+4'414 5.515,55{5'5i561€ 7:7 -- '414.5,5 6:6:6�'616'61b.� 1 7:77,77'77 13— CP13 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28, 2010 10:04:34 Co:c60ept Mode: Ccc59imn View Floor 2 : 8 ' . 49,-6» 425-0 4/-0 40 b 4 40-b ■JU° c57 c1 c2 c46 c58 44-0 F.J. 43-b JO ...■ ■ ■ _ ■.. 4 1-0 ti 4U-0 is-b 30-0 3t-b y 30-0 G JO-b y1 34-0 0 c 33-0 _ --:• C47 - 31.-0 J1-b 11 - - JU-0 Gy-0 04 c55 - . - ... c48 ii ti iSJ H ! -. - 40-0 c63 G4-0 !I ■ c49 GJ-b LL-0 I c50 G1-G c54 1 c68 y-b - c53 !; :3 0 b-b c52 c51 0-0 4-b 1 c7 IIc56 - J-c G-0 ■ ''b !I.)-0 -0 U-0 0-4) _ - J-0 ?J, b-o 040 064 c36 4-0 i 1:I 3-b G-b' c39 ra 1-0 V-0 BE3166 E3 CCC C C CCCtCCC CC CCCC C C CC CC1CC CD ODD D DD DIDDD CD DD DD D D DD CDDD DEE E E E EEEFEEE:EEE EEEEEEEIEEEEZ ` 0' 2' 4' 6' 8 10'12'14'16'18'20'22 24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64'66'68'70'72'74'76' 0`1 2'.3.'45'6'7'851'1 1:1:1"1'1+1.1:11122.2:222(2212'323'.•.3:3.3:3t3 Si24:44:4.44;4F4'4<445t55:5:5.5'.5(5'5.56(66:6:6"6.'6(6.61667(77,7:7, (77'- 8_ (o,\L.61\\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:29 - Concept Mode : Beam View Floor 3 : 17 ' 4, 40-0 n b7 44-0 ■1100 iitsfa=gbwma . 43-0 44-0 41-0 4U-0 . da t 30-0 30-.0 34-0 33-0 _ - - 3L-0 Si-b ,30-b c_ 1V-0 - b12 zb-u bg Lo-n 15-n b25 14 - 14-0 LS LL-0 11 -0 '6-0 b13 1: -b I b11 tn-0 10-0 4-b 3-0 -@ -b V-0 i4, __ 6-0 03s a 1-s-, 0t: b: .. .. -. 0-0 ,.-q ot!) ■ ®v b10 b9 * - _ 4 411=1110111=111• . -z'-b •J J BBI B G BBCCCCCCCCFCCCCCCCCCCCCCCt CCCDDDDDDDC'CDDCDDDD DDDDDCDI DDDEEEEEEEEtEEEiEEEEEEEEEiE iEEZ - 0' 2' 4' 6' 8' 1 0'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58 60'62'64'66'68'70 72'74'76' 3' `2'3'4'5'6'7'8'91111.1:1.1;11'1;1'2'222:2.22'.2-212s3t33:33336 334t44:4:44;414'4415!55:5:5=5!5(5.55166-6:6:6,5:6:6'627(7 7:7:'-7'7f.7-6" 8___6 5--- _ l WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:27 Concept Mode: Column View Floor 3 : 17 ' 1U40 ... - 4!-b IUS0 40-b l U 4 IUL 40 b • IUVb c14 c15 • 44-0 44-0 V/ 41-0 `J! 4U-b 70 S -b V4 .30-0 -b V.3 S0-0 1 �JL 60-0. au ss 4 a6 - c38 ..L b• or 11 iu_b !30 - Ly-t5 c25 c16 r6 ti 23.5 1 1 _.. 10-0 01 c61 -- 14-b LS-b r-o i H 1 C17 - 11-b 1 L1-b r c43 - LU-b ' c22 c67 ts-b t ; c24 c26 u u tv I I • 11 _ _ -_ 14-b I, -c `7S 'L-b 00 II-b er _ IU-b IL 0-0 0.3 - /-0 Ot _ et" O_0. r=� c45 c44 `4+ o• bus . ' c21 •c20c19 08 c_0 -'b Be\Li 6 E C CC C C CC C iCCC CC C C CC C C CC CO CC CD DOD D DD DODD CD DD DD D D DD COTO DEE E E E E E EFEEE,EE'.E EIEEEEF EEEEZ 0 2 4 6' 8 '0'12'14'16'13'20'22'24'2 26'33'32''4 36 33'43'42'44'46`48'53'52'54'56'53 60'62'64'66'63'70'72'74'76' 0 1.2 3 4.5 6'7'3'5'•. :1:1.1:10'1,1'22 2.2,2-2.2i2723(3 5,.3:3,3:043-334(4 4.4:4.21414'4541315 5:5:5.5'5(5.5i5s6i6-5B:6,6!616'5t67C'777,7'7E7-6 S— (n Co WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Wood Works®Sizer 7.1 June 28,2010 10:04:23 Concept Mode : Beam View Roof : 25 ' ps45,0 b15 mom :‘■•• b16 cz 3 b27 •Di b18 • ot,f 1111 r WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28, 2010 10:04:25 Concept Mode : Column View Roof: 25 ' 49'-6" 050 40-0 U3 40-0 ■ ULO 4n-o - ' va9 c27 c28 44-0 43-b . - �� ... - .. 43-b `.iC - 41-0 y!_ _ 4U-b Jo -b ab. ._ 3y `J4 36-o J1 0 3 _ 30-0 33-b •.!U 3.i-0 00 _ - -- :.L-o 0o c29 - J1-b t3! ❑ . _ .. 30-0 00 IV-0 04 L23-0 04 __ - - LI-b •04 •. _ - c30 - - Lo-b 01 ,0 - - L4-0 tSU ra cl-b ,r c66 Lv-b ;0 i c65 ;K o (4/3 t 0-0 I2.. i^-0 r 1 4-b !U ■3-0 05 1 1-0 Cr ' iU-C 03 u-C b43 _. - 7-0 03; b-b OL; _ o-b C) 1) c34 c35 4 b ...'1 ■ _ _. -._ 4-0 U-b BB'IB.B BC CCCCCCCICCC CC CCCC C C CC CC1CC CD DDD D DD MOOD CD DD.DD D D DD CD�DD DE.E E EE E EEFEEE.EE�E EEEEEEHEEEE Z - 0' 2 4 5 8' 10'12'14'16'18'20 22'2 26'28'30'32'34'36'38 40'42'44'46'48'50'52'54'56'58'60`62'64'60 68'70'72'74'76' 0' 2'3 78'51 1 '� '2 .3.,:3'414 4;4'4.44X;'4!4'5'5 5.53,51515-5&6t6-6,6:6-6!6i6-6(677 7.777,7.7‘77,7.7177 6" (82.-- (2:fib 1 S'� '4�'6'. � s 1:1:��ltiii-.1C1 l(2�2:22�2.2E2 X2`3_ ..�:3'3G COMPANY PROJECT 1 WoodWorks° SOF1WARf FOR WOOD DESIGN June 28,2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3_c14 Dead Point 1074 2.50 lbs 4 c14 Rf.Live Point 1601 2.50 lbs 5_j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL _ 160.0 plf MAXIMUM R .sr " ' ? r f3r'ii , u * rip !-0;. d s tya tk B r ",,,;47;)44 p 3 a mf f •+#,t a.� xr.a£� ��'�t hrsM.•_ra. -'MSS,!` �a�� ♦ T�.+, L 02Ftea-Y I 0' 31 Dead 1048 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length _ 1.21 1.93 Lumber n-ply, D.Fir-L, No.2,2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 127 Fv' = 207 fv*/Fv' = 0.62 Bending(+) fb = 581 Fb' = 1138 fb/Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 3627, V design* - 2356 lbs Bending(+): LC #2 = D+L, M 2073 lbs-ft ^ Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L-live S=snow W=wind I-impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 1 COMPANY PROJECT I WoodWorks® SOi 1NNH1 Mk 240)1)1)1 S1). June 28,2010 10:45 b7 - Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10 Dead 54 59 Live 120 120 Total 174 174 Bearing: #2 Load Comb #2 Length 0.50* _ 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 180 fv/Fv' = 0.05 Bending(+) fb = 120 Fb' = 1080 fb/Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 174, V design = 139 lbs Bending(+) : LC #2 = D+L, M = 262 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely - at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded, special fastening details may be required. S- (110 COMPANY PROJECT di WoodWorks° SOFTWART FOR WOOD DESIGN June 28,2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c30 Dead Point 59 3.50 lbs 2_c30 Snow Point 75 3.50 lbs 3 w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9-b12 Live Point 469 5.50 lbs MAXIMUM REACTIONS lbs and BEARING LENGTHS in : • 44 K 4 .. e7 x eN rh1Kx"' _ 10' 61 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length 0.69 0.93 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 180 fv*/Fv' = 0.37 Bending(+) fb = 556 Fb' = 990 fb/Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 - L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1744, V design* = 1232 lbs Bending(+): LC #2 = D+L, M = 1984 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT i I WoodWorks SW-MARE FOR WOOD DESIGN June 28,2010 10:33 b9 - Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 lbs 3_c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REA T'nr.Ie /11•4,••I ....A D ADIAL ' r GMIl-TUQ in- • R ( 10, 3 Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 0.5#2 Length 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys . Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports, Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 12 Fv' = 207 fv/Fv' = 0.06 Bending(+) fb = 82 Fb' = 1242 fb/Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 - 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 256, V design = 169 lbs .. Bending(+) : LC #2 = D+L, M = 179 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) _ (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 13- (14 0---- • COMPANY PROJECT i 1 WoodWorks' SOEEWARE FOR WOOD DESIGN June 28, 2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf MAXIMUM REAnTIA rc III- - •••••••••1 QC ADIAIf' I CIAIf'TLI E:••1 • IO' 34 Dead 196 63 Live 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 207 fv/Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb/Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 229, V design = 148 lbs Bending(+) : LC #3 = D+.75(L+S), M = 157 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded, special fastening details may be required. C V") COMPANY PROJECT di WoodWorks' SOFTWARE FOR WOOD DEaG.h' June 28,2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9_b25 Dead Point 409 5.00 lbs 10 b25 _Live Point 1080 5.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : j fir. -,L-'.•'; .'_ _-- _'.�- . , , �--__ .�'- �� 10' 8'-6'1 Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: -- Load Comb #2 #2 _ Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1-314x14" - Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 126 Fv' = 310 fv/Fv' = 0.41 Bending(+) fb = 1324 Fb' = 2325 fb/Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L/750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' B00 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 2563, V design = 2064 lbs - Bending(+) : LC #2 = D+L, M = 6308 lbs-ft Deflection: LC #2 = D+L EI- 620e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W--wind I=impact C=construction CLd=concentrated) - (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 8-Ce\ \\k • COMPANY PROJECT i 1 WoodWorks`' SO,IWAAF FOR WOOD DESM,N June 28, 2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 61 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 1.34 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 101 Fv' = 207 fv/Fv' = 0.49 Bending(+) fb = 1055 Fb' = 1138 fb/Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 ' - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2508, V design = 1864 lbs Bending(+) : LC #2 = D+L, M = 3762 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded, special fastening details may be required. COMPANY PROJECT i 1 Wood Works® SOFT WARE FOR WOOL)!)I SIGN June 28,2010 10:46 b20 - Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REPrrinstc ""1 --`1 pcAntArr I ckrrrue r:..x • TA 10' gl Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 0.502 Length 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 4x8" - Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 180 fv/Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 162, V design = 99 lbs Bending(+) : LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. _ (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 6.---6Altie COMPANY PROJECT i I WoodWorks® sofrwnRf foR WOOD DfsIGN June28,2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location (ft) Pat- Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2 w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3-w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w- 62 Live Partial UD 320.0 320.0 2.00 6.00 No 5.w- 32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 c44 Dead Point 1940 1.50 No 8-c44 Snow Point 2853 1.50 No 9-j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14 j22 Live Partial UD 320.0 320.0 2.00 2.50 No • 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16_j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 658 0.00 No i 20-b23 Snow Point 195 0.00 No MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ....�r�,.4m. �..., .--_*.,rte'-----.rr.�n•s„vae *..-,ye- -..--�'r'�r.,r• `� ���e=�'-"eer.i „te -...� .` 0' 2' 101 Dead 5581 1311 Live 5266 2508 Total 10847 3819 Bearing: - • Load Comb 00 #3 #2 - Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 139 Fv' = 356 fv`/Fv' = 0.39 Bending(+) fb = 717 Fb' = 2325 fb/Fb' = 0.31 Bending(-) fb = 600 Fb' = 2632 fb/Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L/180 0.26 Total -0.03 = L/788 0.20 - L/120 0.15 The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCB Fv' 310 1.15 - 1.09 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - . E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 - Shear : LC #4 = D+S, V = 7237, V design* = 4536 lbs Bending(+): LC #2 = D+L, M = 6833 lbs-ft Bending(-): LC 04 = D+S, M = 5720 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only For final member design contact your local SCL manufacturer 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 4.The critical deflection value has been determined using maximum back-span deflection.Cantilever deflections do not govern design. COMPANY PROJECT i Wood Works® S(7t(Sb SRI(()N lWS III)DI 5ll,ti June 28,2010 10.35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : - Load Type Distribution Magnitude Location Ift] Units Start End Start End 1 w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2_w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3_j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4_j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5_j47 Dead Full UDL 42.5 plf 6_j47 Live Full UDL 62.5 plf 7 b23 Dead Point 700 1.00 lbs 8-b23 Snow Point 195 1.00 lbs I 0' 2-61 Dead 683 Live 341 572 Total 1024 1379 Bearing: #3 0.63 Load Comb #3 Length 0.50* , `Min.bearing length for beams is 112"for exterior supports Lumber-soft, D.Fir-L, No.2, 4x12" Self-weight of 9 35 plf included in loads, Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 30 Fv' - 207 fv/Fv' = 0.14 Bending(+) fb = 159 Fb' = 1138 fb/Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 1024, V design = 778 lbs Bending(+): LC #3 = D+.75(L+S), M = 978 lbs-ft Deflection: LC #3 - D+,75(L+S) EI= 664e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L.-dive S=snow W-wind I=impact C=construction CLd=concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8- C1\ve3 COMPANY PROJECT fil WoodWorks' SOFTWARE FOR WOOD DESIGN June 28,2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End l_w33 Dead Partial UD 204.0 204..0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6_w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7_c20 Dead Point 59 6.50 lbs 8_c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 1-0- 0_c21 Rf.Live Point 110 9.50 lbs 11-w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 'ms, s.-ate .ii r_____ .'may: 1 ~" T . rte. .ems i.�:.' .d - ` ..- r.yam ■�„- JM-: r :�-4S'■-..�'"'va-- `--fir _-r"' _. �-.... _ _ -.. -L 10' 114 Dead 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* _ 0.50* *Min.bearing length for beams is 1/2"for exterior supports LSL, 1.55E, 2325Fb, 3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 356 fv/Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb/Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 - Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending(+) : LC #2 = D+L, M = 2028 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 8...._0 t‘ok COMPANY PROJECT d I WoodWorks® SOFIWARF FOR WOOD D[N4.N June 28,2010 10:47 b24 - Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 pif 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7 345 Dead Partial UD 47.7 47.7 , 13.00 16.00 plf 8 j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0y 164 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: --- - Load Comb #2 #2 Length 0.85 -- 0.85 Glulam-Unbal., West Species, 24F-V4 DF, 3-118x10-1/2" Self-weight of 7.55 pif included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 67-60 COMPANY PROJECT Wood Wo rks® SOnWARE FOR WOOD DCSOGN June 28,2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS llbsl and BFARING LENGTHS lin) 10 4 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 _ 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT di WoodWorks surrwAKe roe wuou ourcH June 28,2010 10:57 b25 Design Check Calculation Sheet - Sizer 7.1 LOADS (Ibs,psi,or ptt) ' - Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_w72 Dead Partial UD ' 539.7 539.7 13.00 14.50 plf 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6-c14 Rf.Live Point 1601 7.00 lbs 7-c15 Dead Point 1074 13.00 lbs 8-c15 Rf.Live Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12-w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13w_ 75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14_w75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_144 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26-j47 Live Partial UD 160.0 160.0 14.50 16.00 plf MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in): _ E- - 17S Dead 4328 4101 Live 5296 5376 Total 9624 9477 _ Bearing: Load Comb #2 #2 Length 2.89 2.84 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full.bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 305 fv/Fv' = 0.52 Bending(+l fb = 2301 4b' = 2760 fb/Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 412 = D+L, V - 9624, V design = 8063 lbs Bending(+): LC #2 = D+L, M = 36854 lbs-ft Deflection: LC #2 = D+L EI' 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L-live S-snow W=wind I=impact C-construction CLd=concentrated) (All LC's are listed in the Analysis output) _ Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 - 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM.bearing length based on smaller of Fcp(tension),Fcp(comp'n) ../3•--6.11.;„,,,_ COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DFSK.N June 28,2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 pif 6-w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* _ 1.33 'Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 305 fv/Fv' = 0.18 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+S, V = 4441, V design = 3070 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Deflection: LC #2 = D+S EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6 COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD OCSIGN June 28,2010 10•50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 4 .*t.4i. Mart°d�iTi .a ?'�Sis`+;, .. �7 4yls~�7, 0' 8' Lumber n-ply, Hem-Fir, No.2,2x6",2-Plys Self-weight of 3.41 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails; Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 221 Fc' = 980 fc/Fc' = 0.23 Axial Bearing fc = 221 Fc = 1644 fc/Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3655 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. S.— 61 a ti • COMPANY PROJECT WoodWorks' ti(11 F11 Nf tOieW June 28, 2010 10:52 c25 Design Check Calculation Sheet Sizer 7 1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2—b12 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): A 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base; Loadface=depth(d); Built-up fastener:nails; Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 Fc' = 380 fc/Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1942 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i I WoodWorks® SOFT WARE FOR WOOD MPG?: June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2—b21 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base;Loadface=depth(d); Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 12705 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT di WoodWorks® cOFFWARE FOR WOOD DESIGN June 28,2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 306 Fc' = 363 fc/Fc' = 0.84 Axial Bearing fc = 306 _ Fc* = 1719 fc/Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 4823 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1144 WoodWorks° SOFTWARE FOR WOOD DFSIGN June 28,2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf Load Type Distribution Magnitude Location [ftl Units Start End Start End 1_c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3 b22 Dead Axial 807 (Eccentricity = 0.00 in) 4—b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n-ply, Hem-Fir, No.2,2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 259 Fc' = 439 fc/Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc/Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6404 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 2b BY DnrE � Joe No 0 to C t= h.S -t}ct 0 PROJECT RE art w I Lakex+DA R•eackian5 L Z beam cab -5 U \\ aU 3 M *C a\e'r wa 11 ao‘ . ao — � J X O W JI f(-e X1.)\ lU > Se i Sr i'\l L 0"c:fi( pcpr • 0 ia u1/401 1)6-- oe rcticukakok 7 F f O f ¢ O LL Z w ❑ z O H a O CA O 26 • • • m" G 00 • xxcc LZ,- -IA COMPANY PROJECT lit WoodWorks' surcivnwc roe u()cal nc sin\ June 28.2010 10 19 b25 LC1 Design Check Calculation Sheet S(zer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location (ft1 Units - Start End Start End 1_w72 Dead Partial UD 539.7 539.7 ' 13.00 14.50 plf 2_w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4_w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7-c15 Dead Point 1074 13.00 lbs 8_c15 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 1.171_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 1l_w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12_w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial Ub 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26_j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 2038.2 Wind _ Point -7960 16.00 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in) : -1 lo. _ 161 Dead ' 4328 4101 ' Live 7703 4096 Uplift 2458 Total 1203I 8197 Bearing: Load Comb #4 66 Length 3.61 2.46 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads. Lateral support:top=full,bottom=at supports: Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 1986 Fb' = 2760 fb/Fb' - 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 0.80 = L/240 D.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCN Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 06 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC 06 = D+S, M = 31814 lbs-ft Deflection: LC 03 = 0+.75(L+S) EI- 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application 2 Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM.bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3 3 3 5.GLUTAM.bearing length based on smaller of Fcp(tension),Fcp(compn) 8...-6.1"2„jj COMPANY PROJECT dl WoodWorks® SOFTWARE FOR WOOD DESK:h: June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ins,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf IT w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17-j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25-j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 0' 161 Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27 1.23 Glulam-Bal.,West Species, 24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 978 Fb' = 2160 fb/Fb' = 0.45 Live Defl'n -0.30 - L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design - 3577 lbs Bending(+): LC #1 = D only, M - 15667 lbs-ft Deflection: LC #2 = .6D+W ES= 2594e06 lb-in2 Total Deflection - 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L-live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® 1 t SOfriVARE CUR WOOD onrr:ti June 28,2010 10:20 b25 LC2 • ( Design Check Calculation Sheet ' Sizer 7.1 LOADS (Ibis,Pst.or Of) Load Type Distribution Magnitude Location (ft] Units - Start End _Start End 1_w72 Dead Partial UD r-539.7 539.7 13.00 14.50 plf ' 2_w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 6_c14 Snow Point 1601 7.00 lbs 7_c15 Dead Point 1074 13.00 lbs 8_c15 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11_w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12_w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15_342 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_342 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_343 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_143 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_344 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_344 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_345 Dead Partial UD 47.7 47.7 5.50 7.50 pit 22_145 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_346 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_346 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_347 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26_347 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 2030.1 Wind Point -7960 13.00 lbs _2030.2 Wind _ Point 7960 16.00 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in) : Itr 161 - Dead 4328 4101 Live 4016 7763 Uplift 2321 Total 8344 11664 Bearing: _ _ Load Comb 86 04 Length _ 2.50 3.56 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 2949 Fb' = 3840 fb/Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC4 Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending)+): LC 44 = D+.75(L+S+W), M = 47228 lbs-ft Deflection: LC 84 = D+.75(L+S+W) EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Seams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 8-- 6132-- COMPANY PROJECT i! WoodWorks® OFT SWARE OR WOOD DESIGN June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pit) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13-w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : IO' 161 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 -.23 Glulam-Bal.,West Species,24F-V8 DF, 5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 1905 Fb' = 3840 fb/Fb' 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L/525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #2 = .6D+W, M = 30517 lbs-ft Deflection: LC #2 = .6D+W EI- 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). S 6.1 COMPANY PROJECT ea woodworks® +l./!N Akf Mk N,l(li∎Ili,",, June 28,2010 10:25 b26 LC1 . Design Check Calculation Sheet Sizer 7.1 LOADS (Ibis,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2-w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ,L____'_ 10' 15'-6'1 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length _ 1.41 3.24 Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" _ Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC #4 = .6D+W, M = 48956 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) - (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8...._ci,;(-1 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS (in) : I0' 15'-6'l Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; - Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC'#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 8._ 6.14;5.-- COMPANY PROJECT 1 WoodWorks SOf7W4Rf fOR WO011(f51G,: June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w- 37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w- 38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS (in) : 10. _ 15'-61 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* - 1.33 'Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads, Lateral support:top=full,bottom=at supports, Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' - 424 fv/Fv' = 0.32 Bending(+) fb = 488 Fb' = 2297 fb/Fb' - 0.21 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 7647, V design = 7647 lbs Bending(+): LC #2 = D+S, M = 9454 lbs-ft Bending(-): LC #4 = .6D+W, M - 42496 lbs-ft Deflection: LC #4 = .6D+W EI- 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live 5-snow W=wind I-impact C-construction CLd-concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2 Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3 GLULAM:bxd=actual breadth x actual depth. 4 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT II WoodWorks® SOFTWARE FOR WOOD DEUGM June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS (in) : 10' 15.-64 Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: - Load Comb #1 #1 Length 0.50* 0.72 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion !Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 267 Fb' = 1797 fb/Fb' = 0.15 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 7647, V design = 7647 lbs Bending(+) : LC #1 = D only, M = 5167 lbs-ft Bending(-) : LC #2 = .6D+W, M = 42496 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). Hat per Project: Houf Peterson Job# Client: Righellis Inc. ENGINEERS•C RS Designer: Date: Pg.# LANDSCAPE ANGNIIFC FSSS tiRYFYORR pec,k.. 1 Cyr WdI•= 10 lb 8•ft-20•ft Wdl= 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp Wdl IP:= 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa'-= 1.123 Am-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv•= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Sml := FvSi 2-S ms Sds Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp := 2.5 (Table 13.5-1, ASCE 7-05) Fp = .4apRSds In Cl + 2•h I•Wp EQU. 13.3-1 I` J Fpmax:= 1.6-Sds.1p.Wp EQU. 13.3-2 FPmin:= •3•Sds•lp•Wp EQU. 13.3-3 F4,:= if(Fp > Fpmax,Fpmax,if(Fp < Fpmim FPmim Fp)) F = 338.5171•Ib Miniumum Vertical Force 0.2•Sds.Wdl=225.6781-lb 1/45— (1 Harper Project: .` .• Houf Peterson Client: Job# Righellis Inc. ENGINEERS N •R LAN HENS Designer: Date: Pg.# I.AN09(:ApE ARCiIfEC t9•SlIH`JF YQR9 Wdl 10• b •8•ft•20•ft Wdl = 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp Wdl 1p — 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Styli := FvS1 2•Sms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 Rp := 2.5 (Table 13.5-1, ASCE 7-05) .4ap•Sds• FP := R (l + 2•z hl•Wp EQU. 13.3-1 •RP J Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3.Sds•Ip•Wp EQU. 13.3-3 es:= if(Fp > FPmax,FPmax,if(Fp <Fpmin,Fpmin,Fp)) F =338.5171•Ib Miniumum Vertical Force 0.2•Sds•WdI =225.6781.lb 3- 29 114.41}"AL P HoufPeterson COMMUNICATION RECORD Righellis Inc. To❑ FROM❑ MEMO To FILE H PHONE NO.: PHONE CALL.❑ MEETING.[_ m m. 0 m m lb. E —I-1 n s ( ii (-__T V '' 0, Y � p m C 1 It A Q i 0 ■ �� I 0 . . I J ' 9 °m o e N. 6 ...z> 0 . . . , , 0 ' BY. Arct V�W.\ DATE: 7{ 1� a of o JOB NO.:0 CO90 VVV PROJECT: RE D e c`h 1)1 C- P'2-f=,IA C ✓;2 r`t•_\"i '� [2x.. ❑ ❑ __ __ _•.. _ f_ . .. _ _ L J Z - / tr.O W x N�kL. C ptpgc t-E- , (I bd C-m-,,ri:,sn> i W ❑ I ct j O.333)(laa,'. Irua' i) — Ica.b�� #/vto�! ��IL___, r- r p w 1 U Z Z C A(ar�C1 IT' 2 ,_� o =1 �n a. b� l�p;+ J1�2 IN (Z boQf�_S Q 1 b %N \ F� / I U Z \_-so\sT--5 `1-1 pL g ,1 1 m , i E 52a c+n,\ 1c A-U.}e? r 6.0-' \S = `' l o,c. --1- f W ❑ o 1 i 1 F a LA.) AC T( ),?• 1 tG.c15 P� 1 i + _ r el. e L - 1 ice,. rJ; S'..c-�-,f..J 0 U s- CO S\rn c,. �rr s -). , ; x 40, d .�� o ..- (417_ )(-z �`,(. 7 2-j) ) _ --.5;, , /F ! 4t ,=`�` C. T : xa a x C"Mrca.\J 1' h 1-0& = 3o°t i4 (\111L) = a3► #11-t- . \Y\t\?scrn 30`3U x41 -2! @- 1Z" o,C , CA- 6- 64 BY: pcifsNxi Nis) DATEU.L.5 NI 0 JOB NO• C E kl -Ocf0 PROJECT: RE: --De ***'ki IDOC.)4.' C C.)fOe C !.L:1ii., LIE -1 0 ir. z Loi '',73 Cc -1. e i--- 0 w - a I- w O 2 2 e e 4--. ZOO* Lij 0 LI (\1\ — 20 0 46.t( 4 " ) , < 0 0 u 41 0 X iX O. z T=C _-. 61-100-tho aoo 3101, 0 --.--- < u_ _,..e....._ z use_ 51rn?coor\ 4-1Du4 To 11 2 5 > 1. 0 J El m 0 w 6 b.. z Lu 0 6 O i 1-01-) Cc I- Q. i V\-Z;- a000 (ziico 2oa #7 _ Bow t-I N .....7r3,. i - T-= C ::_- g000 stiki a-100 . 14-D04 If 3L 00 a) *-0 ..- eu •—, - , ,... - va 0 Ao R,iti.t, • 8- Cl Li' Harper HP HoufPeterson COMMUNICATION RECORD • Righellis Inc. To❑ FROM 0 MEMO TO FILE❑ ENGINEE;" •PLAI:::E 1.1':Gi.:AP ARCHITECT •SLI-VC V.,F PHONE NO PHONE CALL:❑ MEETING:❑ 23 -a co �II m JS ^ 0 n i::: rf3 co 9. d __,- L ..c � v _ o O O 6 .1 it T N_ d Ai 6 Fri SR 1 = + -C'- n -1 `S T C ! a I f co • • E (l 1 0 2• p* ) a DATE 10k JOB BY oev,...i6:3„ .„ 0(0 NO ce PROJECT: RE D N5ear0 I PoT -I 0 Lz 0 W M 0 a. Poi 1- 1— z 0 *Sui 5T-5 X 2 0 U LII • 0 •• c D 6 0 = Dec. LA‘/ou r- c GUN WO CAM- = o 0 .,.., g 12.4 • COMPANY PROJECT •••°% WoodWorks® • SOFTWARE ION WOOD DRI(M June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports, bottom=at supports: Analysis vs. Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 _ 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. \ ('° C COMPANY PROJECT dr . WoodWorks® • 50FTWARF FOR WOOD OFSICN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location (ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 _ 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : .,..,..,t,,,,,,..,,,„,_ ...,,_,„,,,-, -,,,,';-. •'.7.*1.-- •'.'%••=:',.,•,'':,";:.f.'1,..t.,.V4-i,k-", ,...,,!•-•,.,' tLt--1*-ef'X' .-::,7:.=•,-;...•::. A A. 1, 5i Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs. Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1 8- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN J Unit B-Front Load WoodWorks®Sizer 7.1 June 22,2010 14:13:51 Concept Mode : Reactions at Base of Structure View Roof: 25 ' • • 1 050 1280 L 1280 L 49'-6" 1 � 442 D 442 D 40=� 11)2? 40-0 7U(0 49-0 ivy 44-0 a9 43-0 W5/ 12272089 L 1601 L 41-0 0 10481539 D 1074 D 4u- b 30-0 :d3 3 t-0 �L 30-0 b I . 30-0 44-0 JL-0 J'. 0 cs:; 75 L to-a zs4 59 D Z0-0 0 L1-0 a i 1408 L 1232 L 40-a av 514 D 556 D - Z4-0 ';d U .S-0 t, 1080 L 640E cz-a 409 D 792 L'1 Lu-a assn 1 99 DJ t a-t " 1522 L " . 553 D 99 D in o 98D - 14-0 225 75L ti-t) 73D 94n i ,.- 2192 L tv-b 1311 D ts Oa' t - - - - - - _ ;-0.. 01) 1220 L 0-0 wi L 55L i-0 109 58.13_ . 021 L L e 2 1 D 450 X581 D - u-0 BBIBSBCCCC CCCICCCCCCCCCCCCCCOCCCD.DDDDDDDIDDDCDDDDDDDDDCD\ODDE.EEEE'E.E'EIEEEIEEEEfEEEEHEEEEZ 0' 2' 4' 6' 8 10'12'14'16 18'20'22'24'25'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64'66'68'70'72'74'76' r 0'1'2'3'4'5'6'7'8' 111 1:1.1.1!11 '11122 2:2:2,2!2(2"212:3{3'3 3:3,3`3:3 313£4(4 4:4:44'4f4'4t4t 515 5:515,5!5(5"5I5!6165:6:6,6'6E6'61677 77:7.7!7f7 7'-6 3L)LL I. FCDO-7 ‘NI c ‘ Locr -F Zo, T. UDPt g._ .i . \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 Concept Mode : Reactions at Base of Structure View Floor 3 : 17 ' • • 1280 L 1280 L 442 D 442 D /:#1 L 376L D 4101 D -0 75L .,..-e�' n-0 59D '/-n ,_o-n 1036 L 65 t 483 D - L4_n 77 D ==-0 LL-O D 640E Ct-u 08 774 L i y 99 DJ ,t5^n 1020 L 99D ;a-0 -n 368 D 14.0 25 98 D`/f, 75L ie-n Cr 3 \ 3 y 94 n - iu-0 ne '0 2186 L 1) !7Q 1298 D -o n-n I0 vas 186 n-nnG \Dui _ 4 L 084 L µ-n s-0 4 L. / 306 Ln D_ 4 062 L a-n ti-n 3 137E2515 D5 D 5647 D 4) v En'336CC:CCCCCCtCCCCCCCCCCCCCCC\CCCDDOD DOD D1DDDDODD'DDDDODCDODDE.EEEEEEEFEEEEEEE-EEEEEEIC[CEZ - 0' 2 4' 6' 8' 10'12'14'16'18'20'22'24'26'26'30'32'34'36'38'40'42'44'46'48 50'52'54'56'5E60'62'64'66'68'70 72'74'76' 0'1 2'3'4'56`7'8'91(1 1:1'1,1!1(1.1e1 22 222.2.'2E2'22:3(33:3:3,3'-'.3'3(3(4(44Y 4:4,4'4i444f5(55.5'5.5:5(55,56t€6;6:6,65(6'66(7,777,7'7(77-6' V o o- ‘,,red, LPN 1i OuT - Re:i LO Psi) '2., Plain Concrete Isolated Square Footing Design: Fl fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity "Yconc 150-pcf Concrete density 'Ysoil 100•pcf Soil density an 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 5647-lb Pdl:= Totaldi Totalll:= 7062-lb P11:= Totalll Pt1:= Pdl+ Pll Pr'= 12709-lb Footing Dimensions tf:= 12-in Footing thickness Width := 42-in Footing width A:= Width2 Footing Area net gall —tf'1'conc qnet= 1350-psf Ptl Aregd quo A red = Areqd ft 2 < A= 12.25 ft2 GOOD Widthregd Aregd Widthregd=3.07-ft < Width = 3.50 ft GOOD Ultimate Loads , := Pdl+ tf'A'"'Iconc Pu:= 1.4-P,2+ 1.7-Pp Pu= 22.48-kips Pu qu A qu= 1.84-ksf Beam Shear bco1:= 5.5•in (4x4 post) d := tf-2-in := 0.85 b:= Width b =42-in V11:= 0 3 4 fc•psi•b•d V,= 23.8-kips Vu:= qu'(13 - Vu=9.77-kips < Vn=23.8-kips GOOD 2 bell) Two-Way Shear bg:= 5.5-in Short side column width bL:= 5.5-in Long side column width bo:= 2-(bg + d) + 2-(bL+ d) bo=62-in (3c:= 1.0 X44,:= 4 + 8 1 fc psi b d Vu= 71.4-kips 3 3•(3cJ Vnmax := 4.2.66- fc•psi-b-d Vnmax =47.48-kips qu•[b2 -(bcoi+ d)21 Vu= 19.42-kips < Vnmax=47.48-kips GOOD Flexure rb -bcol 2 r11 Mu qu' ( I'b Mu= 7.43-ft-kips I - 2 2 At:= 0.65 _ b d 2 S =0.405•ft3 ' 6 Ft:= 5.0• fc psi Ft= 162.5-psi Mu ft:= — ft = 127.36-psi< Ft= 162.5-psi GOOD !Use a 3'-6" x 3'-6"x 12" plain concrete footing I Plain Concrete Isolated Square Footing Design: F2 fc:= 2500•psi Concrete strength fy:= 60000•psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density -/soil 100-pcf Soil density gall 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 4101-lb Pdi:= Total dl Total11:= 5376.lb P11:= Totalll Ptl Pd1+ p11 Ptl =9477-lb Footing Dimensions tf:= 10.in Footing thickness Width:= 36-in Footing width A:= Width2 Footing Area gnet gall —tf'1'conc net= 1375•psf Ptl Areqd gnet A red q = 6.892-ft2 < A=9 ft2 GOOD Widthreqd Areqd Widthreqd =2.63.ft < Width = 3.00 ft GOOD Ultimate Loads ,Pdy,:= Pdl+ tf'A''Yconc Pu:= 1.4-Pd1+ 1.7•P11 Pu= 16.46-kips Pu qu A qu= 1.83-ksf Beam Shear bc01 5.5•in (4x4 post) d := tf–2-in 4 := 0.85 b:= Width b =36•in V,t:= t) 3 4• fc•psi•b•d V„= 16.32•kips Vu qu•I(b 2bco11 b Vu=6.97-kips < V = 16.32•kips GOOD Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5-in Long side column width b0:= 2.(bs + d) + 2•(bL+ d) bo= 54.in �3c:= 1.0 _ 0)•(4 + 8 )• fc•psi•b•d Vu= 48.96•kips 3 3.0c Vmnax := 2.66 fc psi b d Vmnax =32.56.kips ,V,R,,:= qu.[b2 –�bc01+ d}2] Vu= 14.14•kips < Vtunax = 32.56-kips GOOD Flexure 2 Mu qu rb -bcoll r 1} b Mu=4.43-ft-kips I\ 2 /I 1\21 it:= 0.65 2 b d 6 S =0.222-ft 3 Ft:= 5.4 fc•psi Ft= 162.5-psi Mu ft:_ — ft= 138.42•psi< Ft= 162.5-psi GOOD Pse a 3'-0"x 3'-0"x 10" plain concrete footing 5- 'V (e Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity "llconc 150•pcf Concrete density (soil 100•pcf Soil density gals:= 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 2515-lb Pd1:= Totaldl Totals] := 3606-lb P11 := Totals] Ptl Pd1 + Pll Pt'=6121-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area 9net 9aI1 —tf'"Yconc gnet= 1375'psf Pt1 Areqd net Areqd= q 4.452•ft2 < A= 6.25•ft2 GOOD Widthreqd Aregd Widthreqd = 2.11-ft < Width =2.50 ft GOOD Ultimate Loads Pd1+ tf'A''Yconc Pu:= 1.4•Pd1+ 1.7•Pll Pu= 10.74-kips Pu 9u A qu= 1.72-ksf Seam Shear bcol= 5.5-in (4x4 post) d := tf — 2•in •:0 := 0.85 b := Width b = 30-in V,:= 3 4 fc•psi•b•d V„= 13.6•kips rb — bc01\ Vu:= qu•I 2 b V„=4.39.kips < Vn= 13.6-kips GOOD i Two-Way Shear bs:= 5.5.in Short side column width bL:= 5.5-in Long side column width bo:= 2.(bs + d) + 2•(bL+ d) bo= 54•in ac = 1.0 MV,gA•= 9•(4 + 8 fc psi•b•d Vn=40.8•kips 3 343c V := 0-2.66-Jfc-psi-b-d Vntnax =27.13•kips q,-[b2 — (bc01 + d)2] Vu= 8.57-kips < Vnmax=27.13-kips GOOD Flexure `2 Mu 4u' b — bcol ��J M =2.24•ft•kips 2 � _ \2 A:= 0.65 2 „5y:=, b6 S=0.185413 Ft:= 5.4 fc psi Ft= 162.5-psi Mu ft:= S ft= 83.98-psi < Ft= 162.5-psi GOOD .Jse a 2'-6"x 2'-6" x 10" plain concrete footing jc. 5) . BY N4 C� DATE: 'S-L) a01'V\ JOB NO C { ` QC(O i �n1V'1 r . • S v- 4.ao5 PROJECT: .�s� s.s��� RE U Y1 �- - Frcn L Loac\ ,q.9104 31R-ita 11.1 l a's 31-1!! " _ 0 w F-• w 1 1 O c O w • 0 w a Cfc[. Ove1iu Alicj 0 MOT = t t ,cit4- 101 + 1 $ + 4l2v5 U C _ ��Jq.a 1 MR (0. \soXI.s q5-)05 1,9 }+ a,45C6) i-cp,-1- 1Cc.5> 4-s .sbdt-r) o ao (3,5 it i, ( r ,'45( +�x, 31( tk.5)}s .s-b\ (6 MRS _ s �C3,>>CX s� �) a ��-� te 0 S = a0(a I �I� \,S ©g■ .7 rrla o z X _ M a y a,bS" - \3q,a 1 cts- Q • o 1- d aV q3 43 MO\ (4 U Ca ,q 3.)-) 1.145 v_Sv --- 0 Y- LC5 Zc-) 3 C3.51 lb-a("4,t6 o � !U V �..E-r O .��// tA • W 8-c9 J Bentley Harper Houf Peterson Righellis Inc. P 9 Current Date:6/22/2010 10:48 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load.etz\ M33=81.13[Kip`ft] M33=-23.24[Kip`ft] 'r A X r $e' J Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:49 AM Units system: English File name:0:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load 2.etz\ M33=48.59(Kip'ft] • tfr Y M33=-54.65[Kip'ft] X • (8- 'V 11 By k 1 V'u DATE y 3 0 O JOB NO ( e:N -cf-A.0 . C PROJECT RE. Troll 1oal c 'f3 ' , Z `t{ F• W O f J " 1rYwx. = QN\ A -) 5 l A aL 3LC . ,i- o a vn�k C-, 83 4 r cr V w O O Z W O CC d Z N1, ,et^ z try k- A --) - .ai -y.k, %i- i -..) -S4,LS k-- ik C -> - 40.04 0+. D 21'1\, = 0.40 AS, j(c∎-af-z.) O a_ P,sS% lQ SLb f \/ l K• O � U. W a CO.t\(.140 003) 04A300o�4-k)_ 8,3\N • e • Z 0 = 0 Mr = GAO 1011. 60,00:065-1,�"O 3 z, } VVO 6 la ) 63.44 1• j ( s Q al Q,c. As= 1.O-lb ,t,�- • c C1,Ca+ . '0,�) /CU,e1 3 42. . : OF�42.►N tts'@iv - ziMn : 0.°lo(( a:-4'lrino 0 (L. +,�o0o (VT - . .Lq-I12 //�� ') --Ilk) S @ 10" C),c. Q (1 .2 C(O 000�/Co.47CO3xs� a--n = 0 tL81 J 0 M T. := O, 0 E .2°t . ; i(%5'- 0:1" )/) g cibs r-c-k >83, . ...0 L a = C\ecsxk g.e. mamerti z a _= Trc6 4 @ l'2" o is • As. 0."ths t ram 01 a CID. s`1.(o1a0a-) I4.bC3 =SCMZ) = 04�('-4 %N °' GSM�n� O•g0(0:iiS")(40,0 3�(t5" v,461t2,-) = 5- .C.,c.k 5-DX.(1.33 )= 6 .S2 014_ gy DATE JOB No PROJECT. RE UM IT C - Rear- Load . 54.5VA• 0 ICS! 0 20c)v 140.0 0 w — 0 0 � a u L ^ I i! W C Mor 54 ,53 kEt DL(c1) 4- a. (4, c4) X15.34 !Act - °lO\ k- a(_11,L0+ a6u ') = at�.S�l. (S4 ,s3) < aL.LL 'DL bL L . ■2 '\.1;)s Acra• = I�� x Z x = W / : LFc .' Mtq(8.1> _ q - - e = °°-n Ft ' d O. + L 4. Utz,11O fl') — a �s� 0. �a 3Z� (z)(.ii> a(tt)Y- 9-vn t r � tom' _ aso5 mot- ( (it' O C N 4 \? r, I to Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)10EN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN1Rear Load 2.etz\ M33=36.82(Kipit) M33=-50.22(Kip'ft] • 1 8— Irk ACI 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 17.00 inches he= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cm,n = 2.25 inches Cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor 41c,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor 4= 0.75 strength reduction factor Calculations Calculations ANc= 408 in AN= 1296 in ANo= 2601 in ANo= 1296 in` Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Wed,N— 1.00 Nth= 10,500 pounds Nth = 55,121 pounds +Ntb= 7,875 pounds 4,Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation 4INcb= 49,216 0.754,Ncb= 36,912 84 5 Concrete Side Face Blow Out Givens Abr9 = 2.75 m` fc = 3000 psi cm,„ = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4Nsb= 196,192 pounds Concrete Pullout Strength Givens Abr9 = 2.75 In` fc = 3000 psi = 0.75 strength reduction factor Calculations Np = 66,000 pounds SNP= 49,500 pounds Steel Yield Strength Givens = 58,000 psi A = 0.763 in2 cp = 0.80 strength reduction factor Calculations Ns = 44,254 pounds ( N9 = 35,403 pounds 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6` Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc = 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches cmin = 2.25 inches Cm;n = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k = 24 cast-in-place anchor k = 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact, Calculations Calculations ANc = 68 in` AN = 1296 in` ANo= 110.25 in` ANo = 1296 in' Nb= 8,607 pounds Nb = 55,121 pounds Wed,N= 0.8286 Wed,N= 1.00 No = 4,399 pounds No = 55,121 pounds •Ncb= 3,299 pounds 4NCb = 41,341 pounds Combined Capacity of Stem Wall and Foundation olcb= 44,640 0.754)Ncb = 33,480 --)c- V-)" Concrete Side Face Blow Out Givens Abrg= 2.15 in` fc= 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds 4>Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds 4)Np= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns = 35,148 pounds DNS = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks DATE T Q0,0 JOB NO ` 0 Oi PROJECT: RE: S\-e m Wall coohng ❑ ❑ Si des OF BVi lci rwjs 0 UL o asct(tt?&0. 300 Ui00) ❑ 8 cLC2 ievees`)(t3 sc' = .W a5 p� S Ioor cr 4o1N (t5opc��('1TZ.�/!tn�. '` 333 pt. Sk-ern Z C8hz)(ts0 pc.0(w~) = 100w PLC W D Z LL o 63c 6)(2 tev,e lSs-)C4o t�S>t a= ( O cAC Moot' O Q _ Taal } LUOw 'O\% Sbp= 1$00 psF = lc0 pc.F • W 0 tt/Si + isw c oow t5" & o Z e fit'-.C_ *, c-r urNE, Ci i ka‘f\ O a DLO asCtiz.1:-.. 300 pLF walk (11.levels)(t° cpsf a34 PLF S or- 4th N(1 50 cc F ebi tt) = 33'7 c.F 51 e 05112Y t50ws = MLA) <I6X 11 ,c 310 p c -00 LL 61)(2_14-6)7- p mot= C12;)(2.5) _ -Co PLF y TL b " N343 t IOU V...) a,3u3 i- 100W IS00(4.) - ,‘ e urn% A- = Savne ccs h lcxcd,s TL.4 -100w w 1.00 0%-e_ tS" e Po,cv..)u■ DI- p 3.5 C12.)(Z) = boo p - via i l 0 3)(2 x 13x�-�= LI I to QpC F S too`f"' 4()�Q(F`5o�t�C'ia)(81t-:y: 333pLc 5tfnr� ( h ( () u..) 100 w LL o (?) ,zC40Cz> = \zoo PLC ,3tco - Tt_ a ,a9 lOOw LA) = Use a4 IN