Loading...
Plans MS T-0 / 3 .- aci6�g A4 5-7-- 0/3-60l 0 / Structural Calculations RECEjVD APR 1 5 2013 for CITYOFTIGAR Full Lateral & Gravity Analysis of BLILDINGOIvis Plan B 1332 Lot 48, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 201 1 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. SZRucTURA4 3\,0 PROT `1 I NR c 2,320 !�f i 09 OREGON 2 ` �f- 15,19 P + EXPIRES. 2-31-2011 This Packet of Calculations is Null and Void it Signature above is not Original Harper ' : Houf Peterson Righellis Inc. 205 SE Spokane St.Suite 200 ♦ Portland,OR 97202 • [P] 503.221.1131 ♦ [F] 503.221.1171 1104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 ♦ [F] 360.750.1 141 1 133 NW Wall St.Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 ♦ [F] 541.318.1 141 Structural Calculations RECEIVE for APR 15 2013 Full Lateral & Gravity Analysis of �i DINGDIVISL: Plan B 1332 Lot 49, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. s1RUCTUR4L (o1 2,320 R O9 Lf) V OREGON ,) . �Y15,19 4 41 J. EN'S' (EXPIRES∎12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper HP Houf Peterson Righellis Inc. • 205 SE Spokane St.Suite 200 ♦ Portland, OR 97202 • [P] 503.221.1131 ♦ [F] 503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 ♦ [F] 360.750.1141 1 133 NW Wall St.Suite 201 ♦ Bend, CR 97701 ♦ [P] 541.318.1 161 ♦ [F] 541.318.1 141 RECEIVED APR 15 • GEO DESIGN\± Cny� 2013 BUILDhv plGARD • ►ON April 16, 2010 Centex Homes 1 1241 Slater Avenue NE, Suite 100 Kirkland,WA 98033 Attention: Mr.Tom Brown Report of Geotechnical Engineering Services and Reliance Letter Proposed Tigard Residential Development Tigard,Oregon GeoDesign Project:Centex-16-01 INTRODUCTION • This report presents the results of our geotechnical engineering services for the proposed residential development located at the southwest corner of the intersection of SW Scholls Ferry Road and SE 135t Avenue in Tigard,Oregon. We understand the site encompasses approximately 8.5 acres and includes 88 individual lots. The lots are currently vacant but are developed with utilities, curbs, and paved roadways for future residential development. GeoDesign assumed the role of geotechnical engineer of record for the project and provided construction observation services to Integrity Development during earthwork; our involvement began in July 2007 and continued until March 2008. A geotechnical report for the property was completed byGeoPacific Engineering, Inc.on January 13, 2006 entitled Preliminary Geotechnical Engineering Report,Scholls Ferry Townhomes, SW Barrows and SW Scholls Ferry Road, Washington County,Oregon. In addition, GeoDesign previously prepared supplemental recommendations for use in design of gravity retaining walls in a letter entitled Geotechnical Engineering Services, The Village at Summer Creek, SW Barrows Road and SW Scholls Ferry Road, Tigard, Oregon, dated June 6, 2007. The current plan is to construct residential structures on the 88 lots that have been prepared. Foundation loads were unknown at the time of this report;we have assumed that they will be • typical of one-to four-story,wood-frame residential structures. We further understand that some site grading will take place to accommodate design elevations. Cuts and fills are not expected to exceed 5 feet, respectively. A site plan showing existing improvements and our hand-auger explorations is shown on Figure 1. 15575 SW Sequoia Pkwy•Suite f 00 i Portland,OR 97224 I off S03.968.8787 i Fax 503.968.3068 SCOPE OF SERVICES The purpose of our work was to confirm that our previous work is in conformance with the geotechnical engineering report and to provide supplemental recommendations for use in design and construction of the proposed development. Specifically,we completed the following scope of services: • Reviewed in-house files for existing information on subsurface conditions in the site vicinity, prior earthwork, and the previous geotechnical report for the site. • Visited the site and completed a visual surface reconnaissance to confirm that no additional earthwork has been conducted since completion of the project. • Completed eight hand augers to a maximum depth of 7 feet below ground surface(BGS). • Prepared this report,which also serves as a reliance letter, that presents our findings and provides updates to the conclusions and recommendations provided in the previous geotechnical report. SITE CONDITIONS SURFACE CONDITIONS We completed a visual surface reconnaissance at the site. During our visit,we observed that the ground surface is slightly sloped down towards the south from the north. As discussed above, the lots have been developed with associated utilities, sidewalks,curbs, retaining walls, and asphalt-paved roadways to allow access to the lots. The lots are covered by grass,with small patches of blackberry brush near the proposed playground area at the east portion of the • property. Areas of ponded water were observed on Lots 5, 9, 10, 35, and 30 through 32. While on site,we observed the cracks in the asphalt roadway on SW Coriander lane. As noted in our field reports,the asphalt was reheated during placement using propane torches,which may have contributed to the cracking. SUBSURFACE CONDITIONS We completed eight shallow hand-auger borings (HA-1 through HA-8)at selected locations across the site. The approximate boring locations are shown on Figure 1. Based on our explorations, the shallow subsurface conditions in the area generally consist of compacted fill that is medium stiff to stiff silt with varying amounts of clay, sand, and gravel. The fill generally ranges in thickness from 0.2 foot to 2 feet BGS. The fill was encountered in most of the borings except for HA-5 and HA-6,which were completed near the proposed playground area at the east portion of the property. A thin layer of loose gravel with silt and sand was encountered at the surface in HA-6. Native alluvium consists of medium stiff silt with some clay and trace organics. In HA-2,we encountered loose sand with minor gravel and encountered refusal on concrete at approximately 6 inches BGS. We drilled four more borings within a 10-foot radius of HA-2 and encountered concrete at 3 to 6 inches BGS. The area of the sand fill over concrete appears to extend over Lots 47 through 49. The approximate area is shown on Figure 1. rM DESIGN= 2 Centex-16-01:041610 Based on our explorations,the average depth of stripping in lightly vegetated areas will be ' approximately 1 to 2 inches. Stripping activities should be completed as recommended in the previous geotechnical report. CONCLUSIONS AND RECOMMENDATIONS In general, we anticipate that the geotechnical recommendations provided in the previous geotechnical report are still applicable to the site with the exception of the additional 1 to 2 inches of stripping anticipated at the site and our revised shallow foundation recommendations. WET WEATHER/WET SOIL GRADING The silty soils at the site are easily disturbed during the wet season and when they are moist. If not carefully executed, site preparation, utility trench work, and roadway excavation can create extensive soft areas and significant subgrade repair costs can result. If construction is planned when the surficial soils are wet or may become wet,the construction methods and schedule should be carefully considered with respect to protecting the subgrade to reduce the need to over-excavate disturbed or softened soil. The project budget should reflect the recommendations below if construction is planned during wet weather or when the surficial soils are wet. If construction occurs when silty,wet soils are present, site preparation activities may need to be accomplished using track-mounted excavating equipment that loads removed material into ' trucks supported on granular haul roads. The thickness of the granular material for haul roads and staging areas will depend on the amount and type of construction traffic. Generally, a 12-to 18-inch-thick mat of imported granular material is sufficient for light staging areas and the basic building pad but is generally not expected to be adequate to support heavy equipment or truck traffic. The granular mat for haul roads and areas with repeated heavy construction traffic typically needs to be increased to between 18 to 24 inches. The actual thickness of haul roads and staging areas should be based on the contractor's approach to site development and the amount and type of construction traffic. The imported granular material should be placed in one lift over the prepared, undisturbed subgrade and compacted using a smooth-drum, non-vibratory roller. In addition, a geotextile fabric may be required as a barrier between the subgrade and imported granular material in areas of repeated construction traffic. The imported granular material should be pit-or quarry-run rock, crushed rock, or crushed gravel and sand and should meet the requirements set forth in the 2008 Oregon Standard Specifications for Construction (OSSC)00330.14 (Selected Granular Backfill) and OSSC 00330.15 (Selected Stone Backfill). The placement of the imported granular fill should be done in conformance with the specifications provided in OSSC 00331 (Subgrade Stabilization). The geotextile should meet the specifications provided in OSSC 02320.20 (Geotextile Property Values)for soil separation. The geotextile should be installed in conformance-with the specifications provided in OSSC 00350 (Geosynthetic Installation) material should be fairly well-graded between coarse and fine material and have less than 5 percent by dry weight passing the U.S. Standard No. 200 Sieve. G EODESIGN= 3 Centex-16-01:041610 • FOUNDATION SUPPORT Dimensions and Capacities Continuous footings for stud bearing walls should be at least 15 inches wide. The bottom of exterior footings should be at least 18 inches below the lowest adjacent exterior grade. The bottom of interior footings should be established at least 12 inches below grade. Footings bearing on subgrade prepared as recommended above should be sized based on an allowable bearing pressure of 2,500 pounds per square foot. This is a net bearing pressure;the weight of the footing and overlying backfill can be ignored in calculating footing sizes. The recommended allowable bearing pressure applies to the total of dead plus long-term live loads and can be increased by one-third for short-term loads (such as those resulting from wind or seismic forces). Based on our analysis and experience with similar soils,total post-construction settlement should be less than 1 inch,with differential settlement of less than%2 inch over a 50-foot span. Resistance to Sliding Lateral loads on footings can be resisted by passive earth pressure on the sides of the structures and by friction on the base of the footings. Our analysis indicates that the available passive earth pressure for footings confined by on-site soils and structural fills is 350 pounds per cubic foot, modeled as an equivalent fluid pressure. Adjacent concrete slabs, pavements, or the upper • 12-inch depth of adjacent, unpaved areas should not be considered when calculating passive resistance. In addition, in order to rely upon passive resistance, a minimum of 10 feet of horizontal clearance must exist between the face of the footings and adjacent down slopes. For footings in contact with the on-site native material, a coefficient of friction equal to 0.30 may be used when calculating resistance to sliding. This value should be increased to 0.40 for crushed rock or imported granular fill. Foundation Drains Foundation drains should be considered on the outside of the perimeter footings of all buildings and routed to a suitable discharge because of the potential for shallow groundwater. The foundation drains should consist of 4-inch-diameter, perforated drainpipe embedded in a minimum 2-foot-wide zone of drain rock. Drain rock should consist of angular, granular material with a maximum particle size of 2 inches and should meet OSSC 00430.11 (Granular Drain Backfill Material). The material should be free of roots, organic matter,and other unsuitable materials; have less than 2 percent by dry weight passing the U.S.Standard No. 200 Sieve (washed analysis); and have at least at least two mechanically fractured faces. Drain rock should be wrapped in a geotextile fabric that meets the specifications provided in OSSC 00350 (Geosynthetic Installation) and OSSC 02320(Geosynthetics)for drainage geotextiles. CONSTRUCTION CONSIDERATIONS • All footing and floor subgrades should be evaluated by the project geotechnical engineer or their representative to confirm suitable bearing conditions. Observations should also confirm that all GEODESIGN= 4 Centex-16-01:041610 loose or soft material, organics, unsuitable fill, prior topsoil zones, and softened subgrades(if present) have been removed. Localized deepening of footing excavations may be required to penetrate deleterious materials. If footing excavations are conducted during wet weather conditions,we recommend that a minimum of 3 inches of granular material be placed and compacted until well-keyed at the base of the excavations. The granular material reduces subgrade disturbance during placement of forms and reinforcement and provides clean conditions for the reinforcing steel. ♦ a . We appreciate the opportunity to be of continued service to you. Please call if you have questions concerning this report or if we can provide additional services. Sincerely, GeoDesign, Inc. G fe PROPpri • Viola C.Lai, P.E., G.E. 400011riAIH'" et:0 -7 Project Engineer ;fr, t •R>G!id O Brett A.Shipton, P.E.,G.E. FTT A SH1Qt Principal Engineer EXPIFIES:6..-3e7 2c7/D VCL'6As:kr Attachments Two copies submitted Document ID:Centex-16-01-041610-geolr.doc O 2010 GeoDesign,Inc. All rights reserved. G EO DES I G N? 5 Centex-16-01:041610 • FIGURES . . ',Wed i9:cdrels I hint Dale 4/16/11:10 1:55:19 PM Mc Name\\Oeadngn.onANnyabS\k-0\CCmca\Gems.-+6KCMes-1601\NpweMGD\CMCea•16-014P01.M0 1 I+9a":AALU6 I II '1 I I J 7 ...� 5„. , r /i. 4, / a d s,I ■ i / / Da 1/1 of % • �/ ,• • i > 4� .•if v o ,,, ,., i k :: / el Ze /0414 f I / /"..''''''\./' ':'.7 c' , ••• :.,f 0 / ei i i, ...iii--..” f# .' ..." ;,' ,- 4 / J 'j , /�1 n' 4.' R,/ *4'I a �// 441 . ''',:' .''';'. : / r •. n ' �'_'C'``•4q ' i`• as �, // r IIP'/4, \„„...........a ). L b fs or 11N �`" / n,... . ..... 20> �. / a .lam/Z X %l�lil B= -5 ,' /l-0-10 voc o 7 - ado ti P1 N 4^f n Q e�, x X zi a T P 8 s ,y fn m 9 :4 — O z 7 O N n n o" D 5x0 A O p O 'o m O m c `I . G EC DESIG Nx CENTIX-1491 SITE PLAN r{Slf 1m SeewY e.Avry•S,b.IM "'n'dusnn APRIL 2010 PROPOSED TIGARD RESIDENTIAL DEVELOPMENT FIGURE I ere Ma10.041 sa,s6l.aaWal TIGARO,OR ATTACHMENT ATTACHMENT FIELD EXPLORATIONS GENERAL We explored subsurface conditions by performing eight hand-auger borings(HA-1 through HA-8) to depths ranging from 0.5 foot to 7.0 feet BGS on April 9, 2010. We obtained representative samples of the various soils encountered in the exploration. Classifications and sampling intervals are presented on the exploration logs included in this attachment. The approximate locations of our explorations are shown on Figure 1. The locations of the explorations were determined in the field by pacing from existing site features. This information should be considered accurate only to the degree implied by the methods used. SOIL CLASSIFICATION The soil samples were classified in accordance with the"Exploration Key'(Table A-1) and"Soil Classification System"(Table A-2),which are included in this attachment. The exploration logs indicate the depths at which the soils or their characteristics change, although the change could be gradual. A horizontal line between soil types indicates an observed (visual or drill action) change. If the change occurred between sample locations and was not observed or obvious,the depth was interpreted and the change is indicated using a dashed line. Classifications and sampling intervals are presented on the exploration logs included in this attachment. G EO DESIGN= A-1 Centex-16-01:041610 SYMBOL SAMPLING DESCRIPTION Location of sample obtained in general accordance with ASTM D 1586 Standard Penetration Test • with recovery Location of sample obtained using thin-wall Shelby tube or Geoprobe®sampler in general accordance with ASTM D 1587 with recovery Location of sample obtained using Dames& Moore sampler and 300-pound hammer or pushed with recovery Location of sample obtained using Dames & Moore or 3-inch-O.D. split-spoon sampler and 140- pound hammer or pushed with recovery Graphic Log of Soil and Rock Types Location of grab sample . Observed contact between soil or rock units (at depth indicated) Rock coring interval Inferred contact between Water level during soil or rock units 9 9 (at approximate depths • —- indicated) Water level taken on date shown GEOTECHNICAL TESTING EXPLANATIONS ATT Atterberg Limits P Pushed Sample CBR California Bearing Ratio PP Pocket Penetrometer CON Consolidation P200 Percent Passing U.S.Standard No. 200 Sieve DD Dry Density RES Resilient Modulus DS Direct Shear SIEV Sieve Gradation HYD Hydrometer Gradation TOR Torvane MC Moisture Content UC Unconfined Compressive Strength MD Moisture-Density Relationship VS Vane Shear OC Organic Content kPa Kilopascal ENVIRONMENTAL TESTING EXPLANATIONS CA Sample Submitted for Chemical Analysis NO Not Detected P Pushed Sample NS No Visible Sheen PID Photoionization Detector Headspace SS Slight Sheen Analysis MS Moderate Sheen ppm Parts per Million HS Heavy Sheen GEODESIGN? EXPLORATION KEY TABLE A-1 1 5575 SW Sequw Parkway•Surte 100 Paffaad CA 97224 Off 503 968.8797 Fax 503 968 3068 RELATIVE DENSITY-COARSE-GRAINED SOILS Relative Density Standard Penetration Dames & Moore Sampler Dames& Moore Sampler Resistance (140-pound hammer) (300-pound hammer) Very Loose 0-4 0- 11 0 -4 Loose 4- 10 11 -26 4- 10 Medium Dense 10- 30 26- 74 10- 30 Dense 30- 50 74- 120 30-47 Very Dense More than 50 More than 120 More than 47 CONSISTENCY- FINE-GRAINED SOILS Consistency Standard Penetration Dames& Moore Sampler Dames&Moore Sampler Unconfined Compressive Resistance (140-pound hammer) (300-pound hammer) Strength (tsf) Very Soft Less than 2 Less than 3 Less than 2 Less than 0.25 Soft 2-4 3 -6 2 -5 0.25 -0.50 Medium Stiff 4-8 6- 12 5-9 0.50- 1.0 Stiff 8- 15 12 -25 9- 19 1.0- 2.0 Very Stiff 15 - 30 25 -65 19-31 2.0- 4.0 Hard More than 30 More than 65 More than 31 More than 4.0 PRIMARY SOIL DIVISIONS GROUP SYMBOL GROUP NAME CLEAN GRAVELS GW or GP GRAVEL GRAVEL (< 5%fines) (more than 50%of GRAVEL WITH FINES GW-GM or GP-GM GRAVEL with silt coarse fraction (a 5%and 5 12%fines) GW-GC or GP-GC GRAVEL with clay COARSE GRAINED retained on GRAVELS WITH FINES GM silty GRAVEL SOILS No. 4 sieve) (> 12%fines) GC clayey GRAVEL GC-GM silty, clayey GRAVEL (more than 50% CLEAN SANDS retained on SW or SP SAND SAND (<5%fines) No. 200 sieve) (50%or more of SANDS WITH FINES SW-SM or SP-SM SAND with silt coarse fraction 5%and _< 12%fines) SW-SC or SP-SC SAND with clay passing SM silty SAND SANDS WITH FINES No. 4 sieve) (> 12%fines) SC clayey SAND SC-SM silty,clayey SAND ML SILT FINE-GRAINED CL CLAY SOILS Liquid limit less than 50 CL-ML silty CLAY (50%or more SILT AND CLAY OL ORGANIC SILT or ORGANIC CLAY passing MH SILT No. 200 sieve) Liquid limit 50 or CH CLAY greater OH ORGANIC SILT or ORGANIC CLAY HIGHLY ORGANIC SOILS PT PEAT MOISTURE ADDITIONAL CONSTITUENTS CLASSIFICATION Secondary granular components or other materials " Term Field Test such as organics,man-made debris,etc. Silt and Clay In: Sand and Gravel In: Percent Percent dry very low moisture, Fine Grained Coarse- Fine-Grained Coarse- - dry to touch Soils Grained Soils Soils Grained Soils moist damp,without < 5 trace trace <5 trace trace visible moisture 5 - 12 minor with 5 - 15 minor minor wet visible free water, > 12 some silty/clayey 15- 30 with with usually saturated > 30 sandy/gravelly sandy/gravelly GEODESIGN? SOIL CLASSIFICATION SYSTEM TABLE A-2 105/0 SW 5.4..aP,0w,y-Sm"300 Portland OR 97224 Off 503 968 8737 Fax 303 958.3068 Z o A BLOW COUNT DEPTH Q a — J. • MOISTURE COMMENTS FEET a MATERIAL DESCRIPTION w o I- Q CONTENT% u' h N U HA-1 O 50 10o _ 0.0 Medium stiff to stiff, light brown with - orange and gray mottled SILT(ML), some clay, trace gravel, milled wood, red plastic fragments, organics - (rootlets), and charcoal; moist (1-inch- 7\thick root zone)- FILL. J� 1.8 2.5— Medium stiff, light brown SILT(ML), some clay, trace organics (rootlets); moist (alluvium). becomes stiff at 3.5 feet stiff to very stiff, orange mottles at 4.0 Surface elevation was not \feet r 4.5 Measured at the time of 5.0— Exploration completed at a depth of 4.5 exploration. feet. 7.5-- o 50 10o HA-2 O so 100 0.0 Loose, gray-brown SAND(SP), trace to augerea rout borings wrtntn • a 10-foot radius of HA-2 and minor gravel;wet FILL. o.s encountered concrete at 0.25 to Exploration terminated due to refusal 0.5 foot. on concrete at 0.5 foot. Surface elevation was not measured at the time of exploration. O 2.5- z Z K 0 L p 5.0 u • 7.5— F 2 U U tt 0 s0 100 0 O � DRILLED BY:GeoDes'gn,Inc.staff LOGGED BY:JPW COMPLETED:04l09l10 3 BORING METHOD:hand-auger(see report teal) BORING SIT DIAMETER:3-Inch 3 10 GEODESIGN? CENTEX-16-01 HAND AUGER 'a• 15575 SW Sequoia Parkway-suite 100 PROPOSED TIGARD RESIDENTIAL DEVELOPMENT = Portland Off 503.968.8787 7 Fau ray 524 APRIL 2010 FIGURE A-1 503.9E8.3068 TIGARD,OR • J X L) w • BLOW COUNT DEPTH u ~a Z ii •MOISTURE FEET a MATERIAL DESCRIPTION >d w Q CONTENT% COMMENTS F- V HA-3 0 so 100 0.0 Stiff, brown SILT(ML), some clay,trace - organics (rootlets)and gravel; moist -- -,(1-inch-thick root zone)-FILL. ,,- 1.0 Soft to medium stiff,brown SILT(ML), - --I trace clay and organics (roots and r 1.8 \rootlets); moist(buried topsoil). 2.5— Medium stiff, light brown with orange mottled SILT(ML),some clay,trace organics (rootlets); moist (alluvium). becomes stiff at 3.5 feet . stiff, light brown mottles at 4.0 feet ® Surface elevation was not - Exploration completed at a depth of 4.5 4.5 measu at the time of 5.0— feet. exploraa td tion. 7.5— HA-4 o 50 100 o s0 100 0.0 Stiff, brown SILT(ML), trace clay, t organics (rootlets),gravel, and asphalt O - N fragments; moist(1-inch-thick root zone) - FILL. sr stiff to medium stiff,light brown at 1.5 N - feet o 2.5— a 3.0 Stiff, gray SILT(ML),trace fine sand, El I- - organics (rootlets),and gravel; moist, L3 - low plasticity-FILL. z u _ g grades to gray and light brown at 4.5 O 5.0— feet u _..1 with orange mottles at 5.0 feet ,- s.s a Stiff to medium stiff, light brown SILT (ML), some clay, trace organics Ei { (rootlets); moist(alluvium). Surface elevation was not 74 , measured at the time of 7.0 Exploration completed at a depth of 7.0 exploration. 7.5— feet. l- - z - W U W U t a - re w a 0 SO 100 z 0 O DRILLED BY:GeoDesign,Inc.staff LOGGED BY:JPW COMPLETED:04/09/10 3 0 as BORING METHOD:hand-auger(see report text) BORING BIT DIAMETER:3dnch 3 _ 3 GEODESIGN? CENTEx160 1 HAND AUGER a 15575 SW Sequoia Parkway-Suite 100 PROPOSED TIGARD RESIDENTIAL DEVELOPMENT = Portland OR 97224 APRIL 2010 FIGURE A-2 Off 503.963.8787 Fax 503.968.3068 TIGARD,OR o U w A SLOW COUNT z –f •MOISTURE DEPTH a zro MATERIAL DESCRIPTION >w CONTENT% COMMENTS U w to HA-5 O 50 100 0,0 _ Medium stiff to stiff, brown SILT(ML), minor clay,trace organics(rootlets); moist(27inch-thick root zone). • 2.5— Surface elevation was not a.o measured at the time of Exploration completed at a depth of 4.0 exploration. feet. 5.0- 7.5— o so 100 O 50 100 0.0 d-1 Loose GRAVEL with silt and fine sand ! 0.2 • t(GP)(2 inches)- FILL. Stiff, light brown SILT(ML), some clay, trace organics (rootlets); moist. P with orange and gray mottles at 2.0 • 2.5— feet Surface elevation was not Exploration completed at a depth of 3.0 3.0 measured at the time of feet. exploration. - z u _ 0 5.0— W U m Q o - 7.5— 2 _ - U u a• - 6 N F o 50 100 z 8 DRILLED BY:GeaDesign,Inc.staff LOGGED BY:JPW COMPLETED:04/09/10 BORING METHOD:hand-auger(see report text) BORING BIT DIAMETER:3-inch HAND AUGER G ED D ES I G N? CENTER-16-01 (continued) Q 15575 SW Sequoia Parkway-Suite 100 PROPOSED TIGARD RESIDENTIAL DEVELOPMENT = Portland OR 97224 APRIL 2010 FIGURE A-3 Off 503.968.8787 fax 503.968.3058 TIGARD,OR Z . -a = v w • BLOW COUNT DEPTH v <a.. - oJ.. •MOISTURE COMMENTS FEET a MATERIAL DESCRIPTION o I Q CONTENT% I— VI U HA-7 0 so 100 0'0 Medium stiff to stiff,brown SILT(ML), • - some clay,trace organics (rootlets), El - gravel,and concrete fragments; moist (1-inch-thick root zone)-FILL. Very stiff, light brown-gray with 2.0 2.5-- orange mottled SILT(ML), some clay, El - trace gravel; moist-FILL. • - Stiff, light brown with gray mottled SILT — 3•3 (ML),some clay, trace organics (roots); • moist(alluvium). 5.0 ® measured at the time of not sand at 5.0 feet l 5.o - Exploration completed at a depth of 5.0 exploration. feet. 7.5— . - HA-8 0 50 100 • 0.0 0 50 100 Stiff,brown SILT(ML),minor clay,trace b - organics (rootlets)and gravel; moist El (1-inch-thick root zone)- FILL. o Medium stiff to stiff,light brown with r 2.0 2.5— orange and gray mottled SILT(ML), a El - some clay,trace organics (rootlets); moist(alluvium). a z W Surface elevation was not °0 5.0 ® measured at the time of Exploration completed at a depth of 5.0 5.0 exploration. — - feet. u w - 4 - �S 7.5— r - z W V W V ' ax . W 0. - na ul z - 0 SO too 0 0 DRILLED BY:GeoDesign,Inc.Blatt LOGGED BY:JPW COMPLETED:04/09/10 3 0 ro BORING METHOD:hand-auger(see report taxi) BORING BIT DIAMETER:3-inch 3 CS G u CENTEX-16.01 HAND AUGER a V EU ES I G N? (continued) 0 e 15575 SW Sequoia Parkway-Suite too PROPOSED TIGARD RESIDENTIAL DEVELOPMENT Portland OR97224 APRIL 2010 FIGURE A-4 OH 503.968.8787 Fax 503.968.3068 TIGARD,OR Structural CalculationECEIVEp for APR Y 5 2013 s rvi Full Lateral & Gravity Analysis d��ruhvGG D1V► D ►ON Plan B 1332 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP • Houf Peterson Rii hcllis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC /2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch.20 Importance, 1E: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength, fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x&4x Wood Beams & Posts: DF-L#2 6x &Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams-u.n.o.shall be designed by others. Structural Analysis Software Used: • Mathcad 1 1 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. - ENGINEERS•PLANNERS - Designer: AMC Date: June 2010 Pg.# 1 ANGSCAV ARCR:TEC!_•SOR'.F?(*RS DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5•psf Plywood RRF:= 5•psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1•psf Misc RCG := 2.5•psf Ceiling RIN:= 1•psf Insulation RDL = 15•psf Floor Dead Load FFR:= 3-psf Framing FPL:= 4-psf Sheathing FME:= 1.5•psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5•psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13-psf Wall Dead Load WOOD EX_Wallwt:= 12-psf INT_Wallwi:= 10•psf Roof Live Load RLL:= 25.psf _ Floor Live Load FLL:= 40.psf .6—U\ Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righcllis Inc. ENGINEERS•PLANNERS --- - Designer: AMC Date: June 2010 Pg.# tANC 6CRPE ARCNITEC TS•S LFVE YORE Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748.112.1.12 RFWT:= RDL-Roof Area RFWT= 12566-lb Floor Weight Floor_Area2nd:= 605.ft2 FLRWT2nd := FDL•Floor Area2nd FLRWT2nd= 7865.1b Floor_Area3rd 600.ft2 FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 7800-lb Wall Weight EX Wall Area:= (2203).ft2 INT_Wall_Area:= (906)•ft2 WALLWT:= EX_Wallwl•EX_Wall_Area+ INT Wallwt•INT_Wall_Area WALLWr= 35496.1b WTTOTAL= 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof := 1 Component Importance Factor (1 1.5,ASCE 7-05) Rw:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period T a•= C (h n)a T a= 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) •— t S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) F�:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT B . ' Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# SMS= Fa•Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2•SMS Sds 3 Sds=0.705 (EQU 11.4-3,ASCE 7-05) SMr := Fv-Si SM1 =0.584 (EQU 11.4-2,ASCE 7-05) 2•SMI Sd1 := 3 Shc = 0.389 (EQU 11.4-4,ASCE 7-05) Cst:= Sds*le Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Scir le E U 12.8-3,ASCE 7-05 Csmax Csmax =0.223 ( Q 7-05) Ta•R ...and shall not be less then... C1 := if 0.044 Sds.le <0.01,0.01,0.044•Sds•le) ( 0.5•S1•Iel (EQU 12.8-5&6,ASCE 7-05) C2 := if l Sr <0.6,0.01, I - R J Csmin if(CI >C2,C1,C2) Csmin =0.031 Cs:= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs =0.108 V:= Cs•WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E =4840 lb (Allowable Stress) 6— L9) 46 Hager Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. a MGINEERb•Pl AN9ERE Designer: AMC Date: June 2010 Pg.# LANDSCAPE ARCNITECTS•S URVETORS Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure: B Building Occupancy Category:II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller of... a2:= 2•.1.16-ft Zone A& B Horizontal Length (Fig 6-2 note 10,ASCE 7-05) a2=3.2ft or w= .4h�2ft a2= 25.6 ft but not less than... a2min 3.2-ft a2min = 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.9•psf PnetzoneB:= 3.2•psf Pnetzonec:= 14.4•psf PnetzoneD:= 3.3•psf Vertical PnetzoneE 8.8-psf PnetzoneF:= —12•psf PnetzoneG:= —6.4•psf PnetzoneH:= —9.7•psf Basic Wind Force PA:= PnetzoneA'Iw'X PA = 19.9-psf Wall HWC PB:= PnetzoneB'Iw'X PB=3.2•psf Roof HWC PC:= PnetzoneC'Iw.X PC= 14.4.psf Wall Typical PD:= PnetzoneD'Iw.X PD =3.3-psf Roof Typical • PE := PnetzoneE-Iw'X PE = —8.8.psf PF:= PnetzoneF'II'X PF = —12•psf PG:= PnetzoneG'Iw.X PG = —6.4•psf PH:= PnetzoneH'Iw'X PH =—9.7•psf ��t� 1 ifeHarper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. 611011411R;•PLANNERS ----_.- Designer: AMC Date: June 2010 Pg.# I ARC S CA PF AR OIYITPCfB•I URVF YORK • Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59+ 29)• 12 WSAILZoneB:= (6 + 0 +23)•ft2 WSAILzenec:= (429+ 355 + 339)412 WSAILzoneD (0 + 0 + 4)•ft2 WA WSAZoneA'PA WA=2846 lb WB WSAII-ZoneB'PB WB=93 lb WC WSAII-ZoneC.PC WC= 16171 lb WD:= WSAILZoneD•PD WD= 13 lb Wind_Force:= WA+ WB+ We+ WD Wind Forcen,;n:= 1010sf•(WSAILZoneA + WSAILZoneB + WSAILZonec + WSAILZoneD) Wind_Force= 19123 lb Wind Forcemtn= 12990 lb WSAILZoneE 43•ft2 W SAILZoneF 43-112 WSAILZoneG 334412 WSAILZoneH 327•$2 WE := WSAILZoneE'PE WE = —378 lb WF:= WSAILZoneF'PF WF=-516 lb WG:= WSAILZoneG•PG WG = —2138 lb 1 WH:= WSAILZoneH.PH WH =—3172 lb Upliftnet:= WF+ WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)}.6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCCULATION 6- L5 Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEERS•PLANNERS - - Designer: AMC Date: June 2010 Pg.# LANDSCAPE ARCM TECTS*SURVE•ORS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 Nt := RDL•Roof Area RFwT = 12566-lb Floor Weight Floor_Area2nd= 605 ft2 F R,yo ;ii,:= FDL•Floor_Area2rd FLRWT2nd = 7865-lb Floor_Area3rd=600 ft2 J� N � = FDL•Floor Area3rd FLRWT3rd = 7800-lb Wall Weight CNAIL ANA.= (2203)-ft 2 INT Wall Area= 906 ft2 aalow= EX_Wallwt•EX_Wall_Area + INT_Wallwt-INT_Wall_Area WALLw-r= 35496-lb WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn= 32 Mean Height Of Roof le = 1 Component Importance Factor (11.5,ASCE 7-05) ARM,:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period ,L:= Ct.(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) F„= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) U Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEER!•PLANNERS Designer: AMC Date: June 2010 Pg.# nN[ ARCNITECTS•SIIRVEYARS • 5 ,:= Fa•Ss Sms= 1.058 (EQU 11.4-1,ASCE 7-05) 2 SMg AS‘ „:— Sds=0.705 (EQU 11.4-3,ASCE 7-05) 3 SA := Si SM1 =0.584 (EQU 11.4-2,ASCE 7-05) 2 SM1 Sd =0.389 (EQU 11.4-4, ASCE 7-05) Sds.le ACA:= Cst= 0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Shc'I Cam- Csmax =0.223 (EQU 12.8-3,ASCE 7-05) Te It ...and shall not be less then... ,j:= if(0.044•Sds•Ie<0.01,0.01,0.044•Sds•Ie) r 0.5 S1 Ie (EQU 12.8-5&6,ASCE 7-05) - Ac2,:= ifl S1 <0.6,0.01, R if(C1 >C2,C1,C2) Csmin=0.031 g,V= if(Cst<Csmin,Csmin,if(Cst<CsmaX,Cst,Csmax)) Cs =0.108 V:= CS'WTTOTAL V= 6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) S Lf Harper Project: Summer Creek Townhomes UNIT B !. P Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEERS•PLANNERS Designer: AMC Date: June 2010 Pg.# -,^+C57.APE ARCNITECTE•EURVEYORS Longitudinal Wind Forces (Method l -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure: B Building Occupancy Category:II Iw= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) 2•.1.16.ft Zone A&B Horizontal Length Smaller of... "' a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) Sv:= .4•hn 2•ft a2 = 25.6 ft but not less than... aN2vv:= 3.2•ft a2min = 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB =3.2•psf PnetzoneC = 14.4•psf PnetzoneD= 3.3•psf Vertical =—8.8•psf PnetzoneE PnetzoneF=—12•psf PnetzoneG=—6.4.psf PnetzoneH=—9.7•psf Basic Wind Force Pte:= PnetzoneA'lw.X PA = 19.9•psf Wall HWC Pte:= PnetzoneB'lw'X PE;=3.2.psf Roof HWC Pte:= PnetzoneC'IAA/X PC= 14.4•psf Wall Typical PQ,:= PnetzoneD'Iw.X PD= 3.3•psf Roof Typical PnetzoneE'Iw'X PE =—8.8•psf := PnetzoneF'Iw.X PF =—12•psf Pte:= PnetzoneG'Iw.X PG =—6.4.psf := PnetzoneH'Iw'X PH =—9.7•psf -1 sI' Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# a Np S[t.E .ik CMFE.'.T>�SUk.[+OkS Determine Wind Sail In Longitudinal Direction WMw� := (58+ 59+ 21).ft2 W AIL :_ (0 + 0 + 51)•ft 2 W := (98 + 99+ 34).ft2 W AIL :_ (0 + 0 + 114)412 W,= WSAILZoneA'PA WA =2746 lb Wes:= WSAILZo„B.PB WB= 163 lb NWT:= WSAILZoneC'Pc WC=3326 lb HW ,:= WSAILZoneD'PD WD=376 lb Wind Nw = WA + WB+ We+ WD Winw,�= 10.psf•(WSAILZoneA+ WSAILZoneB + WSAILZonec + WSAILZoneD) Wind Force= 6612 lb Wind_Forcemin = 5340 lb At§a7444A:= 151.ft2 W+n ,:= 138•ft2 WNwaimiryGh:= 242.ft2 W AI := 216.ft2 WgA:= WSAILZoneE-PE WE =-1329 lb Wes:= WSAILZoneF'PF WF= -1656 lb W = WSAILZoneG'PG WG = -1549 lb W14%,:= WSAILZoneH'PH WH=-2095 lb aiNc4,,:= WF+ WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE + WSAILZoneG)]'.6-1.12 Upliftnet= 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION L9\ Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail Wind Net Design Wind Pressure(psf) (ft2) Pressure(lbs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone . Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force= 19123 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E= 1313 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D I Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm.Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm Diaphragm Width(ft) ( ) Width(ft) ( Width(ft (lbs) A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 1 -t.... VYD Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II - Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMa= 1.06 Equ. 11.4-1,ASCE 7-05 SM1= 0.58 Equ. 11.4-2,ASCE 7-05 Sos= 0.71 Equ. 11.4-3,ASCE 7-05 Sol= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(lb)= 19665 Vertical Dist of Seismic Forces Cumulative%total of base shear Rho Check to Shearwalls(lbs) l to shearwalls I Req'd7 VHoor 2(Ib)= 711 100.0% Yes Vfloor 3(Ib)= 1595 85.3% Yes Vroof(Ib)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear*= [ 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. g°— L,\ Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph - Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A,= 1.00 Iw= 1.00 Wind Sail ftZ Wind Net Design Wind Pressure(psf) ( ) Pressure(lbs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E= -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force= 6612 lbs Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 Ibs Resisting Dead Load= 10160 lbs E= 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): _ Zone A Zone B Zone C Zone D I Main Floor 58 0 98 0 Upper Floor 59 0 99 _ 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Ibs Diaphragm Ibs Diaphragm Width(ft) ( ) Width(ft) ( ) Width(ft) (Ibs) III 4 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 g,- k,,,.\L...; Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(T,)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMs= 1.06 Equ. 11.4-1,ASCE 7-05 SM1= 0.58 Equ. 11.4-2,ASCE 7-05 See= 0.71 Equ. 11.4-3,ASCE 7-05 Sol= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(Ib)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(lb)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls Os) to shearwalls Req'd? Vf100r2(lb)= 711 100.0% Yes Vnoor 3(lb)= 1595 85.3% Yes Vrod(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear*_ I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 16 ^1 1' Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 _ Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/I. Line Load Line Load T. Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht ' k ht k ht k (klf) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 ox 8.00 2.28 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 ox 8.00 2.80 8.00 0.00 723 Single 1.40 IV 103 , 8 4.58 8.58 1.75 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 4.58 13.08 1.75 ox 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III ■ 109 8 3.88 3.88 2.06 ox 8.00 2.80 723 Single 1.40 IV 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG III 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79 1.33 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III • 202 9 3.00 9.79 3.00 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 5.00 5.00 1.80_ ox _ 9.00 _ 3.14 _ 18.00 2.77 1183 Double 1.40 VII _ 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OK , 8.00 2.77 _ 275 Single 1.40 302 8 3.21 10.08 2.49 ox 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 ox 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 ox 8.00 2.77 277 Single 1.40 1 305 , 8 2.50 10.00 3.20 ox 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions& Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear'Shear Application ht Mr(Resisting Moment)=Dead Load•L2'0.5'(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) g__ L\t-k Harper Houf Peterson Righellis rg w: Shearwall Analysis Based on the ASCE 7-05 I'ransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho'V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kIt) (phf) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1.26 419 545 0.30 1.31 Single 1.00 IV 102 8 3.88 3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 III 0.22 0.97 Single 0.97 I 103 8 4.58 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 II 104 8 4.00 8.58 2.00 OK 8.00 0.23 8.00_ 0.80 8.00 1.28 269 350 0.23 _ 1.00 _ Single 1.00 11 _ 107 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 0.26 1.15 Single 1.00 I 108 8 8.50 13.08 0.94 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 NA 2.13 Single 1.00 1 109 8 3.88 3.88 2.06 OK 8.00 0.33 0.00 85 III 0.22 0.97 Single 0.97 1 110 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG Ill 8 2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NG 112 8 1.25 4.50 _6.40 8.00 0.23 8.00_ 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG _ 201 9 6.79 9.79 1.33 OK 9.00 0.28 18.00 1.26 157 205 0.46 1.51 Single 1.00 I 202 9 3.00 9.79 3.00 oK 9.00 0.28 18.00 1.26 157 205 0.20 0.67 Single 0.67 11 203 9 5.00 5.00 1.80_ OK 9.00 0.55 18.00_ 1.28 366 476 0.34 1.11 Single 1.00 IV 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OA 8.00 1.26 125 162 0.34 1.72 Single 1.00 1 302 8 3.21 10.08 2.49 OK 8.00 1.26 125 162 0.16 0.80 Single 0.80 I 303 8 5.00 10.00 1.60 oK 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 oK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II 305 8 2.50 10.00 3.20 OK _ 8.00 1.28 128 _ 166 0.12 0.63 Single 0.63 II Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 17.71 Total#1st Floor Bays= 4.43 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 total 2nd Floor Wall Length= 14.79 - Total#2nd Floor Bays= 3 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= 20.05 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.3 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load'Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2•L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear'Shear Application ht Mr(Resisting Moment)=Dead Load'L2•0.5•(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) B ._1,..,...1,5 Harper Houf Peterson Righellis Pg#: Shearwall Analysis • Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Fir. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 _ 8 12.75. 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00_ 0.72 1.13 _ 259 Single 1.40 I 55.75 92.01 0.03 I 207 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 208 9 11.50_ 11.50 0.78 v OK r . 9.00 _ 1.30 _18.00 0.72 0.75 _ 176 Single 1.40 I 24.71 49.73 -0.47 306 li 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 1 5.78 14.40 -0.30 I 307 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions& Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear•Shear Application ht Mr(Resisting Moment)=Dead Load•L2•0.5•(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 8 .... (_i.(„ Harper Houf Peterson Righellis Ng it Shearwall Analysis Based on the ASCE 7-05 . ..ongitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr. -From 3rd Fir. From Roof Load Strength Bays Sides Factor Type T - (ft) (ft) (ft) ht k ht k ht k (kit) (plt) (p10 (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 . NA 3.19 Single 1.00 - 1 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 oh: 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 ,. 202 , NA 3.19 Single 1.00 1 J 55.17 96.89 -0.24 207 ' 9 11.50 11.50 0.78 ok 9.00 0.72 1 18.00 1.22 0.81 169 169 NA 2.56 Single 1.00 1 28.42 53.69 -0.34 208 9 11.50 11.50 0.78 . OK - 9.00 0.88 1 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 1 31.56 53.69 -0.06 306 8 I 10.00 10.00 0.80 ok _8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 I 9.76 _17.40 -0.07 307 8 10.00 10.00 0.80 OK _ 8.00 1.22 0.35 _ 122 122 NA 2.50 Single 1.00 1 9.76 17.40 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25_40 Total#1st Floor Bays= iA Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= i.s Total 2nd Floor Wall Length= 23.00 Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= is Total 3rd Floor Wall Length= sow Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= i.s Spreadsheet Column Definitions&Formulas L=Shear Panel Length H_Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load'Rho/Total L Story Strength=L/Total Story L (Required for wails with H/L>1.0,for use in Rho check) #Bays=2•11H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear•Shear Application ht Mr(Resisting Moment)=Dead Load•L'•0.5•(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) So.- IA)1c, Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V(pH) (PM 101 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 102 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 103 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 107 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 108 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 202 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 204 Not Used 205 Not Used - 206 Not Used 301 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#:_ SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V(p11) (PI) (lb) (lb) 105 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 _ Simpson None 0 207 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 -345 Simpson None 0 208 191 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 _ -59 Simpson None 0 306 122 1/2" APA Rated Plyw'd w/8d Nails @ 6/12 242 -72 Simpson None 0 307 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 -72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. -Uoi Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.93 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22,40 10.13 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8.14 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201 L 201R 6.71 6.71 12.65 12.72 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 23.30 1 11 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 21.99 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39.13 9.72 5.02 4.90 5.32 301L 301R 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 3021 302r 1.67 1.72 6.77 7.24 , 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303E 303R 1.61 1.32 12.13 12.12 301 8 6.88 10.09 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 1.45 1.40 1.45 1.40 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 ' 1.72 _ 1.67 1.72 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44 1.61 1.32 _ - 1.61 1.32 304 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 2.13 305 8 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 2.13 1.90 2.13j 1.90 Spreadsheet Column Definitions& Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load•L2*0.5•(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 9.87 7.32 I I I 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 203R,304L -2.99 2.91 5.74 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513_ 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 _ 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 1 3.83 9.72 5.02 0.75 1.37 301 L 301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 ' 1.66 3021 302r 0.11 -0.32 1.15 1.35 203 9 1.1667 5.00 5.00 0.8 1.277 2.077k 415 0.172 0.848 0.385 20.18 6.39 4.08 2.89 3.30 303L 303R 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.20 302 8 3.21 10.09 1.257 1.257 125, 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 0.21 0.29 303 8 5.00 10.00 1.277, 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.32 304 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.72 0.90 0.72 0.90 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line (fin V (Panel Shear)=Sum of Line Load/Total L may{ Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift® or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HDI2 w DF 15.51 Wind 14.93 HDI2 w DF 15.51 102 Wind 4.83 Holdown HDQS w 3HF 6.65 Wind 6.50 I IDQ8 w 311F 6.65 _ 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HDI2 w DF 15.51 Wind 12.72 HDI2 w DF 15.51 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 HDUI4 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 _ 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 2.88 rs \ BY [4(........„ DATE ""5)\..t.....) (;(3\0 J 0 B NC Ctji ...0 Ct 0 0 F PROJECT RE: 1)\ 1 ttEtUrtOt•-) 0C- SI*Ft9.... IIPTc,, i.•., °NJ 5T■T'fNE..sS D w ESIGN.) E S)-4A9.--z.. 8.asb v-:,pc-, Cm O W 1- W O 2 AXOL\ 1.4:10a: \14FIA-1. 110 ; 2 Lil (12.5YOR,SN.0.0‘41 (,,,,(1Ci5NO.015) t(n)(0.0 4( i 7) .:_- *1-.0 Y.-; Dt. J (1.2 )U1c1,5Y0•07.S. 401,S-X0.02.5--)X_410—V' ‘•'64 0 J ce 6 TOtCA t 4.1 1,0 14-Y..i i?,5 o w \MAU. 11\ : o z . , 0 ea.-+-)(0011)(0.5s) .1- 6'146,0\5)(1i:1z)+ (al Q.X°.°1S i 11 i 2), z t(1t40.01-a212) l' ("11)(0.013N tiz-)(2.)z:-. a.a a ps ot_ 0 17 < CA.O.oiots--`)(o,$) -t-(■ci.s (o.o.2.s-)C'efz) = a.Lib I V-ips SL U ps LL 7 x 0 U Wa‘k IV2. : E (I 9.5 (0.0t S'l(1°1-4)i.(2.1;')(0.012-XZF ) 4"(1111)(0,011)(217,,)(2) -7 •a..a6 1-■c'S DI- x ' 0 , E 0 (lc\r")(0.0Z0e°12, a AS v-i:s 5L LL- Z Lu 0.4 4. V-1 ps LL n g O / Tokul = 5.11:1 S V- _ I- 0- 5'qcp.ss R.e.A Sk;Ccn-es 5 \NALL 'PIK Pr\\Qu'oAk S\Acor Dc,cl- 1143 SSNN\SI(1" )S60 11 0.105 5S1zt -* O. \33 la c3Sw VS xl* kt.60 4 0.35- S7_?1 ci_, AA' 0 4 I i)3 -_-.1• \NIN IA_ Nsir. 9A-ear = o c.3 110 1.5-k- .4" < ca = e. 5"'f10 ifF . a) "'• a) .4 > 0., 3 o 0 . SSw a tx"- - : wow shoo"- pf ic i-- \v 0 MIA t' -67--- -. S+1c-crtss eel sacmi D is'r V 5--t L,I, 0 e-aa.-1 vt, 1 11 wri6Ks% ki 1 4-4 4i 0 Ak 0.2,4 130ST2 '. 0.5*St) (•.?_ ° D ❑ 11 I octlt n2_ 11\:) \\ LI D 2 6- ONL-t (ft.olli t uPrxj) ONI 1T - 15.1 Lc�oi2. Sw L A�I C i ❑ ❑ 101 mw- \02 - � v 103 LoPf7) 1) N - ask- ¶Looks L M nu= � Y 20 a0 C.) — (- Y Q E; - r 3j 1 0 _ mutionsir aim 0 a0 ao� aos- a06 8 U N i b. - am 0 - 5w L}io u-r 30 \ 302 I aL V # I I M 303 3 B Lf UNIT 15 — 39_-'c LEVEL Sw 1.A‘/Our" By ) ' DATE „ kl1 �, ' ` Joe No A , -- ��r 1l v C !V o PROJECT: . Roof, -*'-8}18• RE: Desier of c , 1'o oc.,_ .r q 5 4,-o r 5 w OPTION 1. 0 w � ,,, ,. 1-- W M.%t3 JMDrkt ON ►�! F,F• ta'-'+'14" - SO 1 r 1 T = 91-97z" i -roc. pLPrT-e 18'-5" 0 U Z a Dc,.-51c.-11,J .J!:J'r) P(ess cE Z = -ato. CI) psc o r.F• q' -3'i1?:;, Des =o 1 p\oA 'S to ;pu rti c',J,k te.tY,,ii`l Tov vJviE,S 51-Ile o 2 tu; h vitYNCI, 100 C. of 1°( iyLc f U 11/4 1 R It-MC‘ igz=t4 VI ilk 0:o�, m w z Z $ I- a S _ L . 5� Jr,(3.5 5.251 �L --t — 6 g t Z c/ z 1-3s.--1 A - ssizs 6 = F1 (14c) =($5-0?$,:XI.0(1 .5 (1.xs)= a3L p c ‘Li • r1r-i 4, C.1. •o I , ' - - 150 PSI. (t•� = aUQ p5L- ) es,. . ov _ _ ad 0 __ N C-N V( o U o`r12 et -L.:2?) BY. AAA L DATE C \ 1_ \ JOB NO CJJ Ki _ 0 Ct 0 C PROJECT: RE: QpTI0f•J 2. w - Zuil up f►rr1 e 2. C.LOO 2 E • W \OCA\IoOC\ c n- e ' D Two?... F- W O f lii ❑ i updth ©C\ 3OINT - 131.-q" o 3 Mo x 1oJ.ie r ci-a tr ©?�rl,t\g = t2`-o,‘ O w , tJt Slgr\ W tr\6 presS,..xe = _a0.0eb T-›s Fs , Loo d. cr, \:x1,1 vv, bl0 c = al"p oA.F 0 z T T f 0 - ?.) Ft, NM T-s" f Ld 7 IC'ti,v. = ( S IS5\)-3 S.34 1µ4 . z`si _ C0. 3.5. = a.tot ,N* rt.. Y A 3,s.:, : 5.'2s taz Q.t„d a •.1.41- o ._ i = 6.a5 t- arts(0,511) +- 6.7.. • + a4 ,c Co,b}s) • s .3e+ o �- �.ta t 0 S 1 y.135 tNI' , S v v b = T,,Co C N,C}.CLC F C.��,Ci.Cr A - - ''' psi. p - C$50 ps,.1L,0(1,o1 .011.6-X∎. t.Q)(.t.O-)C►. S) Vi-- b' =Ca3as s _L ,0)(. o kc.).c∎Y1.111.0(1,0) LsL. © 8- L2 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN _ Unit B-Front Load WOodWorluM9 Sizer 7.1 June 26,2010 10:62:60 -- -- COMPANY ) PROJECT RESULTS by GROUP- NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF .-. Mn!Trusses .>�...:........ Not designed by request (2) 208 Lumber n-ply D.Fir-L No.2 1- 208 By Others Not designed by request (21 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (21 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 204 (3) 204 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 206 016.0 Typ Wall 204 Lumber Stud Hem-Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR -. .. ................. .N - - -.. . ....-.--- Mn!Mnf Jet Not designed by request landing Lumber-soft D.Fir-L No.2 2x6 016.0 4x6 Lumber-soft D.Fir-L No.2 406 (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 208 1.75x14 LSL 151 1.55E 2325Fb 1.75x14 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 206 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (21 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 2x6 816.0 Typ Wall 204 Lumber Stud Hem-Fir Stud 204 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR .. - - - --- ------------- . •==== ....--__--- Not Tru es Not designed by request deck joists Lumber-soft D.Fir-L No.2 2x8 816.0 Mnf Jet Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5x14 4x8 Lumber-soft D.Fir-L No.2 408 3.125x10.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.125x16.5 GL Glulam-Balanced West species 20F-V7 DF 5.125x16.5 (2) 2=10 Lumber n-ply D.Fir-L No.2 2- 2x10 4012 Lumber-soft D.Fir-L No.2 4=12 3.125x141) LSL 1.55E 2325Fb 3.5014 (2) 2x6 Lumber n-ply Hem-Fir No.2 3- 206 • (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2n6 6x6 Timber-soft Hem-Fir No.2 6x6 (21 204 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 204 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Nall Lumber Stud Hem-Fir Stud 2x6 016.0 • SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR ....a . -= Not designed by request ....................... - - ......-......_.... CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values d ck joists j42 Bending 0.41 Jst Mnf Jet Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (21 208 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.57 3.125014 LSL b21 Shear 0.41 4x8 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125=16.5 GL b26 Bending 0.21 (2) 2x10 615 Bending 0.93 4x12 b22 Shear 0.16 3.1250141) b23 Deflection 0.09 Ftg Ftq Not designed by request (2) 2x6 02 Axial 0.34 (3) 206 c64 Axial 0.59 6x6 c36 Axial 0.77 (21 204 025 Axial 0.35 13) 2x4 044 Axial 0.84 Typ Well w15 Axial 0.28 Fnd Fnd Not designed by request Typ Wall 2x4 w40 Axial 0.33 .-.....................-........ve M..••.... ........_'___..- DESIGN NOTES ' - a a ------- verify that the default deflection limits are appropriate 1. Please your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as snow load with corresponding duration • factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULRM: bxd. actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member (that is no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS. nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 257''''61 li l WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 28,2010 10:56:39 _ Concept b24Dde : Beam View Floor 2 : 8 ' • •1050 - - 49'-6” " IU4 4 -b 1Ua 0 . __. _ 4/-b 4 40-0 40-b 1U 0 b25 4.45-b V9. _ 43-b :.10 • 4l-b J/ 4U-0 yn is-b 0 . .3 V .1l-b - - if b yL .... .. - -. - - SD-b V t -. .- - 34-b VU - is-b 00 .)L-b Of • 3 1-b 00 3U-b 00 4?-b 04 20-b 05 �� - ■ _ Lb-b tSL.. - - _ - 0 L'3-b 4 L4-b /V' 43-b !b ._. .. - - -. - 4I-0 tO 10 :• — - -- YS-b f4 _' ' - f -b b-b /4 -- - - _ -- - .. - - --- a-p 1 4-b (L/ • . ... .... . . ..U 3 OV L-b 00 • - - 1-b b/ .0 b bb _. .. ... ... y..b b21 0 0 , b33- 1-0 s oi - b6 b26 __ . . - -: _� .. - u; b20111b22 b23'1 3-e. ill ii 1 - _ _ _. .. ..._. _ - - - I-b ' v, U b BB\BBBCCCCCCCCiCCCCCCCCCCCCCCCtCCCL:t D D uD MONIED DDDDDDDDCD'•DDDEEEEE'EEEtEEEEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32`34'36'38'40'42'44'46'48'50'52'54'56'55'60'62'64 66'68'70'72'74'76' 0'1 2'3'4'5 6'7 8'91(1 1:"'1,1:1 r 1 i1°2Q 2;2;2,21E2'212013 3:3:3,3'.3E3'3t3E4(4 4:4:44'.4+4'4 14515 E;5:5.5t5(5'5i51616 E:6:6,6'6t6'6617f 7'7:7:7,7!7477-6' tg- CP\'7,..- rWoodWorks® Sizer SOFTWARE FOR WOOD DESIGN - Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:32 Conceptb24ode: Beam View Floor 2 : - • • 49,-6" R..4: 40-0 i U.::: - - 41-0 1LL' 40-0 lUi 40-0 1VUb b1 44-0 `JJ 43-0 V0 42-0 L'/ /1 1-0 bb 4U-0 y0 iv-b 4 30-0 `J3 _._ 31-0 VZ 30-0 eI 30-b U 34-0 Gy 33-0 00-.. - 31-0 01 3 1-b 010 - 3U-0 00 13-0 04 - _. _ Z0-0 03 Z/-0 23 • .: Lb-b 231J - 24-0 lb • L3-0 7 23. .. - - L2-0 H( 41--0 10 . . - - ' !-U-0 10 !`J-0 /4 - .. _ - 1b-0 3 !!-0 i2.. . .- 10-0 fl IiD-0 (U '4-0 0V 1 3-0 00 le.-0 01 ._'3 00 IJ-b 04- b21 is-G O3 , GLS 0-0 b26 4-G b20 b22-b23 1 L-b . t:-0 BB438BCCCCCCCCiCCCCCCCCCCCCCCCtCCCDDDDDDDDEDDDCDDDDDDDDDCD!DDDEEEEEEE•EFEEE!EEEEEEEEEE(EEEEZ - 0' 2' 4' 6' 8' 10'12'14'15'18'20'22'24'26'28'30'32'34'36 38'40'42 4 4'4 6'4 8'5 V 5 7 5 4'5 6'5 8'6 0'6 7 5 4 6 6'6 8'-:0'7 2'7 4'7 6 0'1'2 314'5'6'7'8',c1 i 1 1;1:1- "11.1(1!2(2 2;2:2,2'.242'21243(33'3:3 3 jE3'313/4t4 4A.4.41414'4(415'S 5:F:5,515(5:5(5k6t5^o:6+'5,5 .:6"6;r.,',7 7:7'7'7+77j..= 5- Ci. . r WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN 1 Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:34 _ Co:c60ept Mode: Ccc591mn View Floor 2 . 8 ' 49'-6" - 405-0 4I- 40-0 40-0 • c57 c1 c2 c46 c58 o • • — • .. - 4.4-0 41-0 40-0 30-0 3/-0 30-0 30-0 54-0 , 53-0 .... c47 • - 3L-0 51-0 11 - 3U-0 L -0 c55 . c48 . .. L6 5 z�, I I i I Lo n c63 L4-0 H • C49 LL O 11c50 z; -n LU-�� C54 IIC68 -n is-0 Q c53 I 1 ,-0 u-L e c52 c51 0 47•11 c7 I I c56 4-o 3-0 L-0 ■ -0 'U-b -0 0-0 -0 c40 c64 c36 • . ... 4-o • i 1:I 5-0 L-b c39 eA' i -0 IS ■_ U-0 FS\BBBCCCCCCCCI CCCCCCCCCCCCCCCCCCCDDDDDODDI DDDCDDDDDDDDDCDI DDDEEEEEEEE I-EEEEEIEEEEEEEElEEEEZ - 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64'66'68'70'72'74'76' 0' '2.3'4 5'678'G-1(1 1:1:1,1:111'1 11:2(2 22:22'.212.2=Z3t3.3:3:3,3'.3(3 32!4t4 4:4.4V414'44155 5:5:5.5!5(5'51^!6166:6:6,6.'6E6766 7t7 77:7,77(77-6' I • B.-•-• (1,"\L.)\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:29 Concept Mode : Beam View Floor 3 : 17 ' 1050 Wi 1UL� vti b7 a9 vr. 5>d J4 JL �U isV zs r bb u,►..__�_. b12 ns _ or- .: , b8 u1 b25q�4 oU - /4- . ■ /a b13 r1 ru.. .t Cy CIS _ 7C C4• C33 uL. uu —11 b10 b9 V L-C U-C BB\BB BC CCC C CC MCC ICCC CC CCCC C C CC CCICCCDDDD D DD DFDDD DD DD DD D D DD CD'DD DEE E E EE E Et_EE EE'E E EEEEEEWEEEEZ 0' 2' 4' 6' 6' 10'12'14'16'13'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50 52'54'56'58'60'62'64'66'68'70 72'74'76' 0'1'2'3'4'5'6'7'3'9111 '2222:2,22(2'.203(31:33,3!3(3•3 -t4 h •7; :;'u:'8.,�+? 1. :1�1:'i?�i1; t 34;�a:aa:ar4'a-4�5'S5S:5.5:5t5'.5t5`c16B.F:6�;6:6Ft6i:G',7. x.74?%._6.' • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:27 Concept Mode: Column View Floor 3 : 17 ' 1i t9'-6° . 46.0 i i4:�, - - --- 4 r -b 'U::" - 40-0 3 UGC R.'1:,v44-y1- 43-0 c14 c15 43_b 4L-0 :1C 41-0 -/ 4u-0 jU .3 -0 30-0 ti 3/-b 30-0 33-b 34-0 33-0 b;6 c38 31-r; ID - -. .__ 3l.1-0 d0 4v-0 04 c25 c16 _ -.- ��0• 153 1 rl ... L0-0 C,G LJ 0 n i c61 - L4-u LS-0 I I c17 - Le-0 c43 L■ -0 c23 1 -0 c67 in-0 c22 I t :u-u c24 c26 Io I1 II 14 b 13-0 IL-U -0 I J 0 6-0 :)c" -. _ __ 7 b 0c; c45 c44 4-0 ■ �� c21 c217.c19 X18 3-b -1/3•• 011.LF` L`b i -r • v-'3 6 8‘6 BCCCCCCCCFCCCCCCCCCCCCCCC\CCCDDDDDDDDODDODDDDDDDDDCD1DDDEEEE E EEEFEEEIEEIEE$EEEEEfEEEEZ 0' 2 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56 58 60'62 64'66'68'70'72'74'76' 0 1'2 34'567'8'51(1 11:1:1,1?1:1'11 i1'2Q 2:2,2,2 2(2'2124313 3,3:3,3:34313131414 4A.44!4'414l 415;5 5'5:5.515(51515h165:6:6,6!6t6-6e7C7 7:7.7,7t7f77'6" • • 'E.- (dt.1(4 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:23 Concept Mode : Beam View Roof : 25 ' b15 b16 b27 b18 ■ . 0 • fl L WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:25 Concept Mode : Column View Roof: 25 ' 050 - u. - - - - 41 -0 L1L _ .- ... .._ 40-0 JL 40-U Ui - - 44-U uy9 c27 c28 44-0 4L-0 `V0 41-0 . _ - 4U-U V0 3y-U V4 3!-0 V - - 30 U 7L 30-0 0U .3.".-0 0`J -- - .L-e 00 .0! 3U-0 00 © L b-0 00 LZS-0 tli (- - z4-v t�U - 43-0 � 1`: - . . -. LL-0 LI -0 C66 Lu-13 c65 ',-.)0 'I-0 U-0 -0 4-0 - 3_C J7 _ L 0 05 1I-0 Ili-0 _0 I :i-0 30 0-r.: Dµ; .. 1-r• 0... U-U 3L.' • _ '0 0-0 ') c34 c35 4-L' �i; -II NMI _ ._ 3-0 is DENNEMICI is' 4-0 I-O BB'B.6 BC CC C C CC CICCC CC CCCC C C CC CC'C C CD DD D D DO DIODDCD DD DD DO DD CD(D D DE.E E FEE E EEIE EEEEIE EEEEEEEIEEEEZ 0' 2 4' 5 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64'66'68'70'72'74'76' r-1'2'3'4'5'6'7'8'91(1 1:1:1411(11H 62(222;2,2'2(2.22„t3 3,3,33:3(3 313'.414 4;4:44W4.44(.5(5 5:5:5∎5:5(5 5t516t66:6:6,6'6t6-6e7(7 777,7767 6" s..._ (.._:\?:3, COMPANY PROJECT fit WoodWorks® SOFtWARt FOR WOOD DFSK:N June 28,2010 1034 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End _ 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2_w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3 c14 Dead Point 1074 2.50 lbs 41C14 Rf.Live Point 1601 2.50 lbs 5_j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL 160.0 plf MAXIMUM RE I 0' 31 Dead 1048 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys Self-weight of 6.59 plf included in loads: Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 127 Fv' = 207 fv•/Fv' = 0.62 Bending(+) fb = 581 Fb' - 1138 fb/Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 'The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V - 3627, V design* = 2356 lbs Bending(+): LC #2 = D+L, M = 2073 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C-construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. 3 BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required 8- 9 COMPANY PROJECT I 411 WoodWorks`H' .S O1 lWAR?If)R WI10I1 Of 111,,, June 28,2010 10:45 b7 Design Check Calculation Sheet Sizer 7-1 LOADS (Ibs, psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS in : IO 64 Dead 54 54 120 Live 120 Total 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* "Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 180 fv/Fv' = 0.05 Bending(+) fb = 120 Fb' = 1080 fb/Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 _ 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 174, V design = 139 lbs Bending(+) : LC #2 = D+L, M = 262 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: - 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. ,8- NO COMPANY PROJECT tit WoodWorks° SOFTW4rr EON WOOD)DESIGN June 28,2010 10.33 08 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c30 Dead Point 59 3.50 lbs 2 c30 Snow Point 75 3.50 lbs 3_w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9-b12 Live Point 469 5.50 lbs • MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS (in) : • 0' 61 Dead 531 556 Live 761 1189, Total 1292 174 • Bearing: Load Comb #2 #2 Length 0.69 0.93 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 180 fv*/Fv' = 0.37 Bending(+) fb = 556 Fb' 990 fb/Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 - D+L, V = 1744, V design* = 1232 lbs Bending(+): LC #2 = D+L, M = 1984 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS.it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT 1 WoodWorks® SOF 114 ARt Mil WOOD OF,,,, June 28,2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End l w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 lbs 3_c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM RE' . . - . . - IA 10, 34 Dead 63 146 110 Live 85 Total 148 256 Bearing: #2 Load Comb #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports, Analysis vs. Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 12 Fv' = 207 fv/Fv' = 0.06 Bending(+) fb = 82 Fb' = 1242 fb/Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 256, V design = 169 lbs Bending(+) : LC #2 = D+L, M = 179 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. g OA 12--- COMPANY PROJECT tfl WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REPITlnwle QC Milan I Cmr.-ruC E...\ • 0' 34 Dead 146 63 Live 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full, bottom=at supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value :Analysis/Design Shear fv = 10 Fv' = 207 fv/Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb/Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 229, V design = 148 lbs Bending(+) : LC #3 = D+.75(L+S), M = 157 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded, special fastening details may be required. COMPANY PROJECT lit WoodWorks' SOFTWARE FOR wool)FIG' June 28,2010 10:36 b14 ' Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9_b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS (in) : �„ ....,-tea �--'�-_ -� ::�r� +sue.-- ''"T _'-Y-ra°.c.;:-"`s-� "'^`rJl:. gym."4,......._' _"'-". "- ." "'"`�! t.,_ •'.r^ a ii .�_ 'r -"fie-yam .....� c �-- .:.ir,.ei :rrw.�" '�-r` '-'tii �.'�-ad7-ti-�w.aK=s"r-"�� -�""..-, -...4:-.....7.. ....,-__- ,�•r.34.,- -�� [111 -- ` -- ..----.7.-..,- ------77- - z--- _ � -�,_--" 10' 8'-6'( . Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: _ Load Comb #2 #2 Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1-314x14" Self-weight of 7 66 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 126 Fv' = 310 fv/Fv' = 0.41 Bending(+) fb = 1324 Fb' = 2325 fb/Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L/750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 2563, V design = 2064 lbs Bending(+) : LC #2 = D+L, M = 6308 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 8-C.r\ \\4- COMPANY PROJECT di WoodWorks® ,011%5 our roe WOOD DESIGN June 28, 2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 64 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 1.34 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support: top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 101 Fv' = 207 fv/Fv' = 0.49 Bending(+) fb = 1055 Fb' = 1138 fb/Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 ` - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2508, V design = 1864 lbs Bending(+) : LC #2 = D+L, M = 3762 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC - DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS' it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT i 1 WoodWorkso SOFlWARE FOR WOOD DESIGN June 28,2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 _ 0.00 2.50 plf MAXIMUM REPrrrnme 116,A -...1 crwou.rr I rsir-rue r..,i • ZS 1 - -- 0, Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 0.502 Length 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 180 fv/Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 _ 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 162, V design = 99 lbs - Bending(+) : LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) - (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8..._6-1 \c, COMPANY PROJECT ifl WoodWorks® SOf/WARE FOR WOODOf4Gh June 28.2010 1034 b21 Design Check Calculation Sheet Sizer 7 1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location (ft) Pat- Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2_w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3_w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UD 320.0 320.0 2.00 6.00 No 57w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6_w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7_c44 Dead Point 1940 1.50 No 8_c44 Snow Point 2853 1.50 No 9 j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 1021 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16_j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17_j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18_j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19_b23 Dead Point 658 0.00 No 20 b23 Snow Point 195 0.00 No MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in) v..a..-,...."• __ .-••=z<-iadh. - -, -- ,._.� -="o-^,i, -,..._.ip�� - ..-j-.--,. jam., . ▪ -raa.�_ �--�.��.y� s., __ - --^.., - - _- 0' 2' 101 Dead 5581 1311 Live 5266 2508 Total 10847 3819 ' Bearing: - Load Comb #0 413 #2 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS zoos: Criterion Analysis Value Design Value Analysis/Design Shear fv = 139 Fv' = 356 fv•/Fv' = 0.39 Bending(+) fb = 717 Fb' = 2325 fb/Fb' = 0.31 Bending(-) fb = 600 Fb' = 2632 fb/Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L/1B0 0.26 Total -0.03 = L/788 0.20 = L/120 0.15 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.09 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 = Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC M4 = D+S, V = 7237, V design. = 4536 lbs . Bending(+): LC 82 = D+L, M = 6833 lbs-ft Bending(-): LC M4 = D+S, M = 5720 lbs-ft Deflection: LC M2 = D+L EI- 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 4.The critical deflection value has been determined using maximum back-span deflection.Cantilever deflections do not govern design. 8 CA V1--- COMPANY PROJECT tit WoodWorks® . SOHW4kl PP)k WOP1f)(11,1(.% June 28,2010 10:35 b22 Design Check Calculation Sheet _ Sizer 7 1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2-w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3_j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4_j413 Live Partial UD 220.0 220.0 1.00 2.50 plf 5_j47 Dead Full UDL 42.5 plf 6_j47 Live Full UDL 62.5 plf 7 b23 Dead Point 700 1.00 lbs 8-b23 Snow Point 195 1.00 lbs MAXIMUM RE, -- - ._ ... .----•-•- • -----.._ .. . 0' 2.61 Dead 683 60'7 572 Live 341 Total 1024 1379 Bearing: #3 Load Comb #3 Length 0.50* 0.63 "Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 4x12" Self-weight of 9 35 plf included in loads; Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 30 Fv' = 207 fv/Fv' = 0.19 Bending(+) fb - 159 Fb' = 1138 fb/Fb' = 0.14 Live Defl'n 0.00 - <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 _ 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 _ Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 1024, V design = 778 lbs . Bending(+): LC #3 = D+.75(L+S), M - 978 lbs-ft Deflection: LC #3 - D+.75(L+S) EI- 664e06 lb-in2 Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S-snow W-wind I-impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application 1 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4.1. 8,__ (1\b COMPANY PROJECT tit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3 c18 Rf.Live Point 110 1.50 lbs 4 c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6_w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7-c20 Dead Point 59 6.50 lbs 81c20 Rf.Live Point 85 6.50 lbs 9_c21 Dead Point 143 9.50 lbs lO c21 Rf.Live Point 110 9.50 lbs 11-w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ="�„+wil. fi^- ►� �„ +.�+r...+�+rry„ .•�..��.:y '2'�--` _.�r_ti+w.-trwmesWr.- �.r -��" ....�� .s. • _ ..,_.. - LC'l"'" - -- -a3e-�� N -.�_y y,`...,,.._'aii�.�m' - 10. 11( Dead 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min.bearing length for beams is 1/2"for exterior supports LSL, 1.55E, 2325Fb, 3-1!2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 356 fv/Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb/Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending(+) : LC #2 = D+L, M = 2028 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL-BEAMS(Structural Composite Lumber) the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT WoodWorks`K' SOFIN'ARF FOR WOOD DESIGN June 28,2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3-j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7 j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8-j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 164 Dead1,2 442 Live __ 1280 Total _ __ 1722 Bearing: Load Comb f= #2 Length 0.85 Glulam-Unbal.,West Species, 24F-V4 DF, 3-118x10-112" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8-6.1w COMPANY PROJECT. i i I WoodWorks� sOR7WARE FOR WOOD MICA( June 28,2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 _ plf MAXIMUM REACTIONS 11hs1 and RFARING LFNGTHS(inl ZI O 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ,g -Gai COMPANY PROJECT II i I WoodWorks® - u,r?,A$11 01{14,4,2101%1f.1 June 28.2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 - LOADS (lbs,psf,or ptf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5-c14 Dead Point 1074 7.00 lbs 6 c14 Rf.Live Point 1601 7.00 lbs 7-c15 Dead Point 1074 13.00 lbs 8-c15 Rf.Live Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 1-6_w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 121w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14_w75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial LID 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_545 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_546 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in) : 161 Dead 4328 4101 Live 5296 5376 Total 9624 9477 Bearing: - Load Comb 02 02 Length 2.89 -- 2.84 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17 7 plf included in loads. Lateral support top=full,bottom=at supports. Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 305 fv/Fv' = 0.52 Bending(*) fb = 2301 Fb' = 2760 fb/Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC0 Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D+L, V = 9624, V design - 8063 lbs Bending(+): LC 82 = D+L, M = 36854 lbs-ft Deflection: LC 02 = D+L EI- 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead I.-live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC . DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2 Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3 GLULAM bxd=actual breadth x actual depth. 4 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM bearing length based on smaller of Fcp(tension),Fcp(comp'n). 8.."-(Afave ..,...... COMPANY PROJECT 1 Wood Works° SOFTWARE FOR WOOD DESIGN June 28,2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6-w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 15'-61 Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 305 fv/Fv' = 0.18 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+S, V = 4441, V design = 3070 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Deflection: LC #2 = D+S EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). #-6.3 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 bl Dead Axial 1539 (Eccentricity = 0.00 in) 2-b1 Rf.Live_ Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 8 Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base; Loadface=depth(d); Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 221 Fc' = 980 fc/Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc/Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3655 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 6.1 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DFS1G.ti June 28,2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 b12 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d); Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 Fc' = 380 fc/Fc' = 0.49 Axial Bearing fc = 185 , Fc* = 1495 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 - Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1942 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. B- (i COMPANY PROJECT di WoodWorks® SOFTWARE FOR W000 OENGN June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 b21 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Timber-soft, Hem-Fir, No.2, 6x6" Self-weight of 6.25 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 12705 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT di WoodWorks' SOFTWARI FOR WOOD OFS5GN June 28, 2010 10:52 c44 Design Check Calculation Sheet Sizer 7 1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base; Loadface=depth(d); Built-up fastener: nails; Ke x Lb: 1.00 x 9.00=9.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 306 Fc' = 363 fc/Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc/Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 4823 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:51 c64 Design Check Calculation Sheet - Sizer 7.1 LOADS (ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(Ibs): 0, 8• Lumber n-ply, Hem-Fir, No.2,2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 259 Fc' = 439 fc/Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc/Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC M2 = D+L, P = 6404 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. J r r Jy- By DATE JOB No ti 7, aoto PROJECT: RE. 16e-am5 W! La \ ``ackic 1 1C ❑ •• Vx err% a.b 'kA\\ as 3 w z � F M ' eack,m aS -> wok it an l . ao a 0 C o W 51nc-e v�1 C1�, > a.5 Se c NiV arg C..*,t(1- 1 U Z • O 0. O _ z f O cc O li z Z O O 1- CI- 0 v c L r i .•-•• 6. an a- o • � = a COMPANY PROJECT ifi Woodworks® suit».ul 10,114'0011 VIsf.1 June 28.2010 10.19 b25 LC1 - Design Check Calculation Sheet Sizer 7-1 LOADS (lbs,psf,or plf) - Load Type Distribution Magnitude Location [ftl Units Start End Start End l w72 Dead Partial UD 539.7 539.7 13.00 14.50 pit 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5-c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7-c15 Dead Point 1074 13.00 lbs 8-c15 Snow Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 1(7_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14_w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22-345 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7,00 lbs 203B.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in) : • 10' - 161 Dead 4328 4101 Live 7703 4096 Uplift 2458 Total 12031 8197 Bearing: Load Comb 04 #6 Length 3.61 2.46 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads, Lateral support:top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' - 305 fv/Fv' - 0.45 Bending(+) fb = 1986 Flu' = 2760 fb/Fb' - 0.72 Live Defl'n 0.27 = L/704 0.53 - L/360 0.51 , Total Defl'n 0.68 : L/283 0.80 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCN Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 - Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 86 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC 116 = D+S, M = 31814 lbs-ft Deflection: LC 83 = D+.75lL+S) EI= 2594e06 lb-in2 _ Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. ()=dead L=live S=snow W=wind I-impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) I Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM.bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3 3 3 5.GLULAM.bearing length based on smaller of Fcp(tension),Fcp(comp'n). ZSI_.-6/1/2,3D COMPANY PROJECT ell WoodWorks® SOFIWARF FOR WOOD DFSK:k June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 .3.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf ll w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in) : 10' 16( Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27 1.23 Glulam-Bal.,West Species, 24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 978 Fb' = 2160 fb/Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #1 = D only, M = 15667 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® soFrW4NO FOR WOOD 0(01)9. June 28,2010 10:20 b25 LC2 Design Check Calculation Sheet Sizer 7.1 _ LOADS (lbs,psf,or pit) : Load Type Distribution Magnitude Location 1ft] Units Start End Start End 1_w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2_w72 Snow Partial 170 493.7 493.7 13.00 14.50 plf 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4_w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 6_c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8-c15 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11_w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12_w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14_w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_142 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26_147 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 2038.1 Wind Point -7960 13.00 lbs 2038.2 _Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in): LI- 1:` -... Dead 4328 4101 Live 4016 7763 Uplift 2321 Total 8344 11864 Bearing: Load Comb #6 #4 Length 2.50 3.56 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads, Lateral support-.top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 2949 Fb' = 3840 fb/Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1-00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 - Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D+S, V= 8344, V design = 6983 lbs Bending(+): LC 84 - D+.75(L+S+W), M = 47228 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 2594e06 lb-in2 - Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C-construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2.Gluiam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190 1-1992 3.GLULAM.bad=actual breadth x actual depth. 4 Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3 3.3. 5.GLULAM.bearing length based on smaller of Fcp(tension),Fcp(comp'n). g- 6132_ COMPANY PROJECT di WoodWorks® SOFIW4Rf FOR WOOD D(SK N June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or pit) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7-c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 137w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_343 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_344 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_345 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_346 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_347 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS (in) : 10' 164 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam-Bal.,West Species, 24F-V8 DF, 5-1/8x15" Self-weight of 17 7 plf included in loads; Lateral support:top=full,bottom=at supports. Analysis vs.Allowable Stress (psi)and Deflection(in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 1905 Fb' - 3840 fb/Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L/525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emir). 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #2 = .6D+W, M = 30517 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 11 WoodWorks® SOFIWARE FOR WOOD DES.LN _ June 28,2010 10:25 b26 LC1 Design Check Calculation Sheet _ Sizer 7,1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 , 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : i0' 15'-61 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 - Length _ 1.41 3.24 Glulam-Bal., West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion ,Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n - 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC #4 = .6D+W, M = 48956 lbs-ft _ Deflection: LC #4 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) _ Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 8 COMPANY PROJECT IN i 1 WoodWorks® SOFIWARF FOR WOOF)DESIGN June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : i ,L._ 10, 15-6 Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 _ 3.18 Glulam-Bal.,West Species,20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC•#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 - Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8-- (n 'D COMPANY PROJECT dt WoodWorks'' _ SOFFW4RF FOR WOOD DESIGN June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7 1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.- Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS (in) : I0 15-6'1 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* -_ 1.33, 'Min.bearing length for beams is 1/2"for exterior supports - Glulam-Bal.,West Species, 20F-V7 DF, 5-1!8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' - 424 fv/Fv' = 0.32 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Bending(-) fb = 2193 Fb' - 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 7647, V design = 7647 lbs Bending(+): LC #2 = D+S, M = 9454 lbs-ft Bending(-): LC #4 = .6D+W, M = 42496 lbs-ft Deflection: LC #4 = .6D+W EI- 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. _ (D=dead L=live S-snow W=wind I-impact C-construction CLd-concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 8.-61 COMPANY PROJECT di WoodWorks® Of1WARE FOR WOOD DESIGN June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : A 10' 15'-64 Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 Length 0.50* 0.72 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 267 Fb' = 1797 fb/Fb' = 0.15 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 7647, V design = 7647 lbs Bending(+) : LC #1 = D only, M = 5167 lbs-ft Bending(-) : LC #2 = .6D+W, M = 42496 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). Harper Project: , • Houf Peterson Client: Job# Righellis Inc. YN41NiF4a•✓I AN NY4! Designer: Date: Pg.# I AXX`i(;x V.. AX(_(1 'Y!' V♦-,t'R':t'I::^,R` pe6C h Wdl:= 10. lb•8•ft-20•ft Wdl = 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl IP:= 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms•= Fa•Ss Smi :° FvSi 2•Sms Sds := Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) 4a •Sds• ( zl FP:= PR •( l + 2 hJ WP EQU. 13.3-1 Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3•Sds•Ip-Wp EQU. 13.3-3 F,p:= if(FP > Fpmax,FPmax,if(Fp < Fpmin,Fpmin,Fp)) F =338.5171•Ib Miniumum Vertical Force 0.2•Sds'Wdl=225.6781-lb 45— (;-)Z9‘ Harper Project: •V. Houf Peterson Client: Job# Righellis Inc. EMLINEERS•+LAANEkS Designer: Date: Pg.# I ANDSGAI'- ARC.4;1EC[S*UUC:E t;;R 1. Wdl:= 10 ]b 8 ft 20 ft Wdl= 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl i 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) SI •= 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h := 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms•= F a.Ss Sm1 := F .S1 2•Sms Sds:= Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) .4a Pds •S r z Fp:= R 1 + 2 h •Wp EQU. 13.3-1 P ` J Fpmax:= 1.6•Sds.[p•Wp EQU. 13.3-2 Fpmin:= .3•Sds•[p•Wp EQU. 13.3-3 F,:= if(Fp > Fpmax,FPmax,if(Fp <Fpmin,FPmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2-Sds•Wdl = 225.6781-lb -rn 11■1 t/vl P Houf Peterson COMMUNICATION RECORD Righellis Inc. TO III FROM❑ MEMO TO FILE L 1 PHONE NO.: PHONE CALL n MEETING Li A 13 O m ._ E --, (.3 .3 ,.. . (---) -. '. .- fl a . It us lt. 'II '� C W I it n.. ,ft ....._ �.� 5 -o � � r- Ui � it W 6-- fi II C` 4 i, 1),)(-1-) o m __.4 dk it ,, LA _ r o N. N. It C Z v� O r N. 6 _..0 0 _ . . . , . 0 BY. ` V' ;' w \ DATE: Iö\ OI 0 JOB NO.:1 CiO90 ' PROJECT: RE: 71) C.`en 1 1I I) i:' ;- _r.NA, C APNc \- 'v 0 El J z Ducx,t 1 V_ F F- W W ❑ L O.333 )((Da.itf ., i) ica.(0. incii! o W I1 V Z • e W I rr a J3 la Z CAPRC ITy 1 ` k ,,, U \---o\sr5 2 = 'l-1 7L c . I O j-- - 0 ❑ 1C 5'1c1n \OfkU..jef r. f.o \c,_\c,_ = 3 Icac 9 W ❑ a C , a r, 1 _L t.__ e e� • o 6 .' USA (Z� S1ri)pe7:�)14 S _;i".a � ,a x `\'(2_ d s. �„ Q , 2 ,! � °' .� C T o bi -- l 41 1 if Z '‘1( Z 2_+� .j .^ -- 1P fF 40, : xa - ; j. (> , , C, '.z = 3o(3i # C11\(,, = g31 #jr-t. 5, ?sc--,c 3o,D - x/417: C- ti'' 0,c , (2>(.22© i4') - 440 =, v)4_ g 614 ( N. BY'. Nyil OATET\\V' 01 o JOB NO_' C V • V �©q / I -_J 41 PROJECT: _ RE: TeL 0a—- C ) ~i1�1 : 1 rI e . ❑ Cl 0 f €__ Zoo* W ❑ f 0 a M = ao04t( 4a" O _.-..w U Z W Z T=C = 8400 ��J — ayoo.T o 3.Su.) a U Z use. 51rnpson NDu 4 To Yf ■5 i°rk`4 r,r1 I 1.______ r o c� U I ..t. e. f rt O U_ Z w Z O M= ayr.) (4o") zoo =_ ...; Bow 4H iv T= C = 8000 ism) = ate 3.5" ae(a & a-loo H-Do - 3b( o v 15 C�14-" E = . _ �c Aw 8 Cl (4 2 Harper I I HP HoufPeterson COMMUNICATION RECORD Righellis Inc. To❑ FROM❑ MEMO TO FILE❑ ENGIMEEP-•PL AI;;:EPS LANG,,CAP ARCt11TECT.,•SUr'VEYi.1. --------------••------•--•----.----.-----.-.-_----- PHONE NO.: PHONE CALL:❑ MEETING:❑ X - m co m n n o frn '` 11 p 3 Q-' R' d 0 0 a ) ° ° 7 wQ.?. 1---) 1, gIFI - .- n -t `S T a , -1 ` O co < 1 -,s; 1 C -C 71, Houf Peterson COMMUNICATION RECORD Righellis Inc. ro E FROM 0 MEMO TO FILE 0 E C,,,C-E 4 •PL,,ER PHONE NO: PHONE CALL:0 MEETING:0 13 -0 w Cgil m m e rn n —1 . 8 --i N.\.1111.11 ..--i • N — I. ,-,4 . c........4 r 1/4..) C, 1-.\ __........._ -- rr th c.......0 —c-- " > 0 0 32) ..c. C (.., I 0 i 1 0 ■:::.4 al 11) Z 0 0 Cf: --1 ta CO lb 1 IS ‘0 ■ , . COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live _Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 l0' 5i Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top=at supports,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 00.1111111 WoodWorks® SOFEWARt FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft) Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs. Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN - Unit B-Front Load WoodWorlcs®Sizer 7.1 June 22,2010 14:13:51 Concept Mode : Reactions at Base of Structure View Roof: 25 ' • ■ - 1280 L 1280 L - 49'-6" 442 D 442 D 40-a 4l-0 40-0 40-0 _ 44-0 _. 4310 12272089 L 1601 L 41-n 10481539 D 1074 D 413-0 oa-0 .5 f-0 .510-0 .50-0 JU 34 ey ..5 Ct 3i-0 00 75 L 1y-0 59 D - L0-0 ns /-a u t 1408 L 1232 L ��.40 t5tiv 514D 556D - 14-10 -a 10801 640 L - - «-0 11-0 409 D 792 L - 1 -0 dRni 99DJ 1522 L 99 D _ _ 0-o 553 D 0 98D :4-a 225 75 L J 0 i 73D 9d 1 b 010 2192 L cu-a °0 1311 D - - 'd-0 ao y_ t0.. aL m L20 L a 0 2 L 55 L 4-u 109 58 D _ 021 L L-10 450 2 1 D 5581 D J-o BBIB.BBCCCC CCCFCCCCCCCCCCCCCCC'CCCDDDDDDDDiODDCDDDODDDDDCD+DDDE.EEEEEEEFEEEEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48 50'52'54'56'58'60'62'64'66'68'70'72'74'76' 0'1'2'3'4'5'67'8' 10 1;111,1M 1 1M'.2t22.2:2,2'.242"212i3t3 3 3;3z3'3E3'13E4s4 4:4:4•4!4(4'445(5 5:5:5,5!,515'515e6 6:616,66(6'.6217(77:7:7,77f77-6" -6" 3L1 D FOOT \NC, Loor -F QoM T UDPt g S \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 Concept Mode : Reactions at Base of Structure View Floor 3 : 17 ' • • 1280 L 1280 L 49'-6" 442 D 442 D 4t5=0 4 J 40-0 40-0 43 b 4L-0 5296 1 III IF 376 L - - 4 -0 44}-�j 4328 D 4101 D . . . ..5& i-0 .::"D-o in-b ,',4 0 0,5-0 JG-t0 -0 -:J-o 75 L ...v-o 6-J 59 D -'-b -0-0 1036 L ti 765 D 483 D Z4 277D b 9p 640L L -� 208 Gu-" 774 L .a-� 99 09 -b aAni r-v 1020E 99D ?a n 368 D - 225 98 Dzy3 75 L t �. pan ` i-b 73 0 2186 L b 1298D L_. 4'0614 . -0.. _o . .: . . . _ 4g:to - 4L (. . vI E .94 L� / Lit D. 4 2 L L-0 73 D7112515[x5 D 5647 D--- - 1-e . - EE'3C 3s::C:C C CC C+CCC CC CC CCC C CCCCICC CDDD D O DD D=CDD CD DD DD D D DD CDIDD DE.E E E E!EE EIEEEEE E EEEEEEE!EEEEZ 0' 2 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'5C'52'54'56'58'60'62'64'66'68'70 72'74'76' 0'1'2'3'4'5'6'7'8'91(1 1:1:1,1:1(14102(2 2;22,22(22f2i3i33:3:3,3'.3:3'3<3:4t-14:4:4.4 4i4'44,5t5 5N'5,5:5?5•5i5 6(68:6:6,6.'6(6"6i647i7 77:7,7.747 7'_6' V 00-T kNieN L P' Y OuT . RePtia.. Lore B- c -2., Plain Concrete Isolated Square Footing Design: Fl fe:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density Ysoii 100-pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5647-lb Pd1:= Totaldi Totalll:= 7062-lb P11:= Total11 PtI Pd1 + P11 Pti= 12709-lb Footing Dimensions tf:= 12-in Footing thickness Width := 42-in Footing width A:= Width2 Footing Area net gall —tf''Yconc qnet= 1350-psf PEI Areqd gnet Amid =9.414.f? A= 12.25 ft2 GOOD re Widthreqd Areqd Widthreqd = 3.07-ft < Width = 3.50 ft GOOD Ultimate Loads '= Pd1+ tf'A'•Yconc Pu:= 1.4•Pd1+ 1.7•P11 Pu=22A8-kips Pu qu:= A qu= 1.84•ksf Beam Shear bcoi:= 5.5.in (4x4 post) d:= tf— 2•in := 0.85 b := Width b = 42.in Vn:_ 10.4• fc psi•b•d Vn= 23.8•kips 3 Vu:= qu rb — bcoll b Vu= 9.77•kips < Va= 23.8•kips GOOD I` 2 /J Two-Way Shear bs:= 5.5.in Short side column width bL:= 5.5.in Long side column width b0:= 2.(bg+ d) + 2•(bL+ d) bo= 62.in (3c:= 1.0 R;= 4 + 8 fc psi b d Va= 71.4-kips (3 3'P. Vnmax := 41.2.66- fc•psi•b•d Vnmax =47.48-kips Vim= qu[b2 —kbc01 + d)2] Vu= 19.42-kips < V ax=47.481ips GOOD Flexure 2 r b —2 bcol 1 Mu:= qu I r-1•b Mu=7.43 ft kips 2 At:= 0.65 _ b•d2 S=0.405-ft3 Ft:= 5.4• fc psi Ft= 162.5-psi ft:= S° ft= 127.36-psi< Ft= 162.5-psi GOOD Jse a 3'-6"x 3'-6"x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fe:= 2500-psi Concrete strength fy:= 60000•psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity "Yconc:= 1501pcf Concrete density 7soil := 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 4101-lb Pdl:= Totaldi Totalll:= 5376•lb P11:= Total!! Ptl:= Pdl+ PIl Ptl = 9477•lb Footing Dimensions tf:= l0.in Footing thickness Width:= 36•in Footing width A:= Width2 Footing Area (I net:= gall —tf'•Yconc gnet= 1375.psf Pt1 Areqd := gnet Areqd g 6.892 ft2 < A=9 ft2 GOOD Widthreqd:= Aregd Widthreqd = 2.63.ft < Width = 3.00 ft GOOD Ultimate Loads PdI+ tf'A'"Yconc Pu:= 1.4•Pd1+ 1.7•P11 Pu= 16.46-kips Pu gu:= A q❑= 1.83•ksf v Beam Shear bcoi 5.5.in (4x4 post) d := tf— 2•in := 0.85 b := Width b = 36•in Vt,:_ �•4- fc•psi•b•d Vu= 16.32-kips 3 Vu qu•r b —2 colt b Vu=6.97•kips < Vn= 16.32•kips GOOD Two-Way Shear bs:= 5.5.in Short side column width bL:= 5.5-in Long side column width b0:= 2•(bg + d) + 2.(bL+ d) bo= 54•in (3c:= 1.0 Vim= + 8 f psi b•d Vn=48.96•kips (-4 3 3'0e Vnmax (•2.66• fc psi•b•d Vr,,,, = 32.56•kips ^V = qu[b2 —(bcol+ d)2] Vu= 14.14•kips < V„n, = 32.56•kips GOOD Flexure 2 2/I Mu qu' I b -bcol) 11 b Mu= 4.43-ft-kips 2 J A:= 0.65 _ b•d 2 S =0.222.ft3 Ft:= 5.4- fc psi Ft= 162.5-psi M ft:_ ° ft= 138.42•psi< Ft= 162.5.psi GOOD S Pee a 3'-0"x 3'-0"x 10" plain concrete footing 64- (0 Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy• 60000•psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity iconc 150•pcf Concrete density 1'soil 100•pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 2515-lb Pdl:= Totaldi Total!! := 3606-lb P11:= Totalll Pd Pdl+ Pll Pt!= 6121-lb Footing Dimensions t f:= 10-in Footing thickness Width := 30•in Footing width A:= Width2 Footing Area 9net:= gall —tf'"Yconc net= 1375•psf Ptl Areqd'= gnet Areqd = 4.452 ft2 < A= 6.25 ft2 GOOD Widthreqd Areqd Widthreqd = 2.11.ft < Width =2.50 ft GOOD Ultimate Loads = Pdl+ tf'A'1`conc Pu:= 1.4•Pdl+ 1.7-P11 Pu= 10.74•kips Pu 9u A qu= 1.72•ksf Beam Shear bcol 5.5•in (4x4 post) d := tf—2•in := 0.85 b:= Width b =30-in Vt,:_ (1).3- fc•psi-b•d V„= 13.6-kips Vu:= qU(b — bCOt I-b V„= 4.39-kips < V°= 13.6-kips GOOD 2 J Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5-in Long side column width b,:= 2-(bs + d) + 2-(bL+ d) bo= 54.in (3c:= 1.0 V = (0• 4 + 8 fc•psi•b•d V,= 40.8•kips (3 3A Vnmax:_ -2.66- fc-psi•b-d Vnmax =27.13-kips y44,:= qu'[b2 —{bcoi + (1)2] Vu= 8.57-kips < Mona„ = 27.13-kips GOOD Flexure 2 (2)-13 1 Mu= qu' (b —2 bc01 • M�,= 2.24-ft•kips ,:. 0.65 b-d2 1:— S=0.185•ft3 Ft:= 5•1:1)• fc•psi Ft= 162.5-psi Mu ft:= - ft= 83.98-psi < Ft= 162.5-psi GOOD S .Jse a 2'-6" x 2'-6"x 10" plain concrete footing BY I DATE 5 \ amo JOB NO C ^" ,_0°(J1 4..a.os K- 4 ao5k . PROJECT: I 1 r1 `} r/}-{�`y�.� I /'��-1�+, a,45� a=�31 w 5.5b 1 k Re \, �� 1 �1 on 1 L LVSJ�6� ❑ ❑ C., t--,-y tci_ 1'06'4 319,1 ta 111 f • J Ibis -5-1" X \s" ( _ 1 'I 1 O Ibis J �/ V /� � ' Y 0 X II 1-11401-5+-1.-is"---1–e+gasi----iv-jj–,yi O J tr a u O w o w �I o / a ��� QV�'(�'UY�1 O M(4„—(0. \50)(3.s is seNts .9 - a,45({) 4-a.-)31Cc.5> 4-s .5ed∎-)--) o o4aA3 � ' )M R� _ s o)C .s C � L ( ra.,c►SC«� +- 1((k- >k 5 .S \ (6 0 = ante ” -FS _.a �_ 7.. H' ' \, ©rC. 0 13t1:2. re z X i n� aya,(oS" — i'3�,a1 4 ,1 � e. =- �I ,bS ° Q °i3 o H a d -31115-2c) ' 3(I,s bit)-a(4.ts)) xxa - 0 8—,, ,,C.1 f3entley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:48 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load.etz\ M33=81.13[Kip'ft] M33=-23.24[Kip'ft] 4 • � X 8-�lO Bentley- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:49 AM Units system:English File name:O:IHHPR Projects\CEN-Centex Homes(309)10EN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit BIFDN\Front Load 2.etz1 M33=48.59[Kip*ft] • ] Y M33=-54.65[Kip'ft] k X 4 *\1 By 1\nL DATE: --50\ ,) '()to JOB NC cci_to ,ock0 C PROJECT: RE: Tronk loud coo -.c\t a 3'-C,xLxlV . Lit 0 F W [11111111]-_____ -4&- Una 1 --.) $1.Vb. t=t • u O W vnii- C-, 83.y 4 t U Z W O • a o Iv\mn = ;k A - —�3.-D,- -- en►kk t3 S`�.6 U_ 1k t: 'C -) - 40.04 t. Z 2 aj\r\ = O.g0ASSyCa-°‘12.) U 1.f � iV 5 C t `` D c. s d. etbtN7- x35ct� 4@ 1211 cr L._ z Z CO, � o � o $ 3oo4?>_ �N e • i_ Mr. O. t0 obAto oao (1S ,�3 z -\ , O 6 k c6t .:? 83,44 1'r,5 ( s e re O.C. As= 14o-: w-1- • a z l 1 0 4-1,-)(6o,o c a o.) /(0,a3oo 4 Z> . 0.C.42.u- #s@ I' zmr, : 0,0io( t; 60,oOoX5. - b.t,A212") - 'Ik, .4' 1.0. CL.33) -gc.I-.'4 ? t>3 ••• Dtc- t \'\ -t S e lo" o,c. a (\ .2�>(Lo 000)/Co.4')(3096)(4.2`)= 0`-L,5 I N o ci am,. = O. \o Et:2.R-144006x,5- 0.'t- / ) , g 4.bs Lc.- )53.49..0 t. ce,: hec k 'i f. Trrnerk °I) . a = Try 4 e re o.G • As= 0.-tts L,,,Z x Co M�n Q•cio(o.1-bS�C�o,ocx))(1 — U'46�/7 `} = 5a.►LocCt ` ` r T ''11 BY DATE JOB NO. PROJECT: RE. (3 MIT- 13 C -Rear Load 0 W o t ZrUO 2-004 W r O J I V cc U 0 a a 0 Mor = 54 ,S3 k.Ft Mz,! DLO) a. (x.,3'4) f.D(IL,33) = 45.34 t°lGL I,S(SLI ,c ) < aL.LL toiDL DL = L • ',c,25 U t Ix TIP ' = grnv.x _. C ,_ (o M _�. .(12,t)(o,-41) ._ o = ^ CzXE�� a(1�'�2 - o. aaa �s� $0-). = • ix 77: B_ V`2 53. .r Bentley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system: English File name:O:WHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Rear Load 2.etz\ M33=36.82[Kip'ft] • M33=5022[Kip'ft] • 8- Itk AC1318-05 Appendix D - 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'et= 17.00 inches he= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches Cmin = 2.25 inches cm;n = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k = 24 cast-in-place anchor k = 24 cast-in-place anchor t¢= 0.75 strength reduction factor •= 0.75 strength reduction factor Calculations Calculations ANc= 408 in` AN = 1296 in` ANo= 2601 in` AN,„= 1296 in Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Wed,N= 1.00 Ncb= 10,500 pounds Nob= 55,121 pounds (I)Ncb= 7,875 pounds Oct,= 41,341 pounds Combined Capacity of Stem Wall and Foundation 4Ncb= 49,216 0.754Ncb= 36,912 Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc= 3000 psi cm;n = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 261,589 pounds 4)Nsb= 196,192 pounds Concrete Pullout Strength Givens Abrg= 2.75 in fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 66,000 pounds 4Np= 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 = 0.80 strength reduction factor Calculations Ns= 44,254 pounds .4)Ns= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks \(CI ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h'ef = 3.50 inches hef = 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches cmin = 2.25 inches cm,n = 18.00 inches LPc,N= 1.00 cast-in-place anchor kl1c.N= 1.00 cast-in-place anchor k = 24 cast-in-place anchor k = 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact, Calculations Calculations ANc = 68 in` AN = 1296 in` ANo = 110.25 in` ANo = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds 4/ed,N= 0.8286 41ed.N= 1.00 Ncb = 4,399 pounds Ncb = 55,121 pounds (I)Ncb = 3,299 pounds (1)Ncb = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4Ncb = 44,640 0.75(1)Ncb = 33,480 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi cmin = 18.00 inches (J) = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds (I)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` f c = 3000 psi = 0.75 strength reduction factor Calculations Np = 51,552 pounds 4NP = 38,664 pounds Steel Yield Strength Givens f,= 58,000 psi A = 0.606 in2 = 0.80 strength reduction factor Calculations Ns = 35,148 pounds RNs = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks \t By I\ E V M DAT L. `c , 1)10 JOe NO c e (U—4,.,^' a e3 O� PROJ ECT. ✓✓✓ RE: S\-e m UJail Too-hP3 e 5 i des C) ' but Iclonojs F-• W O f �o Sct(1tcsc ) 300 Pty v�at1 ce,CZ te.veyts (13 5C) = aOb � S loot o 401w 650 p���CIt� b11z� - 333 P►.t= stem ° W C8110(l s0 pc.c Y w — 100 t),) Pt.s p W = (5c0( levets)(.4o t-s 0= (.UO Q...F S1noC` • -Caul load = ly-9 t } tnvuo t,.,f. 'Moo( S'op= )Soo pc. = ISO pc...P • w o • 1 115 I + (a) ) �SOCw - w = 1•060 t5" 0 0 o G rear i rcmE of build"rte O a DL: asyc"ot)=. 3oc� p�F wa,« �°►u.tevels)C1 sF == a314 P1 F �kOOc- 40tN(150?cF X 'in..)('i+t 1 = 333 t,F S1-e (5It2)(tso w t' �1 � = coca w 681 )_ b c- cod L 8 : (66(2.)(.4-o)= Lc Ctt;)(2S) = 4"CC) PLP o TL ti a343 t 100 v.) x .b a3 r too tiscx� I> euvvi-% 61L =Same as. 14 m inv5 S loci load. TL' \ b; 1OO vJ W; 1.00 • . t3 S-e 1 S' e Pat.4v vuctl tiv 8 .5(.17.)(2)= OC.) p+.P wui1 (5)(2 X I33(i)= L4 t tc pc.F s loo 40 oNCmix.tTi► )Celn.): 33'? c 51-fm (C3 I1).Y.tSc u)) I00‘4.) LL o (tri,2'C 40Cz>= ,skyx- cL a ,a9+tOO w LA) = use a4 iN