Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Plans (2)
/145T-070/3-0-co 9/ Structural CaIculation9 152013 for CITY OF TIGARD Full Lateral & Gravity Analysis o' ILDINGDIVISION r Plan B 1332 Lot 46, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** . Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by,or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. 0"' l PROff 1 N R 09 �`� fsi 12,320 s 0R+ -A01:14.Y15, #y ' N J. E1,6 EXPIRES 12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper Houf Peterson Righellis Inc. 205 SE Spokane St.Suite 200 • Portland,OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St.Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1133 NW Wall St.Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 � c Structural CalculationsEC , (V E for APR Y 5 2013 Full Lateral & Gravity Analysis fL �r y y G D IGARo IVISIpN Plan B 1332 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP'. Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 1 1.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength, fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x &4x Wood Beams&Posts: DF-L#2 6x &Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi,E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists,and flush beams.u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 4 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B A HP 5- Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. t rv44EEa5•?L:ti•:E�i Designer: AMC Date: June 2010 Pg.# ♦'.I. -F AH::-Y". ♦ _ !!;iii DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5•psf Plywood RRF:= 5.psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1-psf Misc RCG:= 2.5•psf Ceiling RIN:= 1•psf Insulation RDL = 15•psf Floor Dead Load FFR:= 3.psf Framing FPL:= 4•psf Sheathing FME:= 1.5•psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5.psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX_Wallwt:= 12•psf 1NT_Wall",,t:= 10•psf Roof Live Load RLL:= 25•psf Floor Live Load FLL:= 40•psf .6—U` leHarper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEERS•PLANNERS Designer: AMC Date: June 2010 Pg.# LANC6CAFE ARCNITECTS•SURVEYOR6 Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748•ft 2.1.12 RFwT:= RDL•Roof Area RFgri•= 12566-lb Floor Weight Floor Area2nd:= 605.ft 2 FLRWT2nd:= FDL•Floor Area2nd FLRwT2ad=7865-lb Floor_Area3rd:= 600.ft2 FLRwT3rd:= FDL•Floor Area3rd FLRWT3rd=7800-lb Wall Weight EX Wall Area:= (2203)4ft2 INT Wall Area:= (906).ft 2 WALLw•i•:= EX_Wallwt•EX_Wall_Area+ INT Wallwt•INT_Wall_Area WALLwT=35496.1b WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) a,:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:_ .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct•(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) • S1 := 0339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Sa:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F„:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) n-L1 e 4. Harper Project: Summer Creek Townhomes UNIT B Houf Peterson. Client: Pulte Group Job# CEN-090 • Righellis Inc. ENGINEERS• •FAWNERS Designer: AMC Date: June 2010 Pg.# l ANDSCAPE RRCYITECTS.SAR`:EY.JRS SMS:= Fa.Ss SMS = 1.058 (EQU 11.41,ASCE 7-05)Sms Sds:= 2 3 Sds=0.705 (EQU 11.4-3,ASCE 7-05) SMS := FvS1 SMl = 0.584 (EQU 11.4-2,ASCE 7-05) 2-SM1 Shc := Sdl =0.389 (EQU 11.4-4,ASCE 7-05) 3 Cst:= Sds le Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Csmax := Shc le Csmax =0.223 (EQU 12.8-3,ASCE 7-05) Ta R ...and shall not be less then... C1 := if(0.044•Sds•le<0.01,0.01,0.044.Sds•le) - 0.5 Si•Iel (EQU 12.8-5&6,ASCE 7-05) C2:= if l S1 <0.6,0.01, R J Csmm:= if(CI >C2,C1,C2) Csml„ =0.031 Cs:= if(Cst<Csm1n,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs=0.108 ,:= Cs•WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E =4840 lb (Allowable Stress) • 5-- C6 Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEEPS•PLANNERS Designer: AMC Date: June 2010 Pg.# LANDSCAPE PRCNITECTS•5URVEV'ORS Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category: II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.16•ft Zone A& B Horizontal Length Smaller of... a2 = 3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2:= .4-hn.2.ft or a2 = 25.6 ft but not less than... a2min 3.2.ft a2min =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetZOneA 19.9•psf PnetZOneB 3.2•psf PnetzoneC:= 14.4-psf PnetzoneD 3.3-psf Vertical PnetzoneE 8.8•psf PnetZOneF 12•psf PnetzoneG –6.4•psf PnetzoneH 9.7.psf Basic Wind Force PA:= PnetzoneA'Iw.X PA = 19.9-psf Wall HWC PB:= PnetzoneB'Iw X PB=3.2'psf Roof HWC PC:= PnetzoneC'Iw-X Pc= 14.4.psf Wall Typical PD:= PnetzoneD'Iw-X PD =3.3'psf Roof Typical PE := PnetzoneE'Iw-X PE = –8.8•psf PF:= PnetzoneF'Iw.X PF = –12•psf PG:= PnetzoneGlw'X PG = –6.4.psf • PH:= PnetzoneH'Iw.X PH =–9.7.psf 13— 1 ieHarper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEERS•PLANNERS Designer: AMC Date: June 2010 Pg.# .ANDSCAPE ARCNITECTS•SURVI-VDRE • Determine Wind Sail In Transverse Direction WSAThZoneA (55 + 59 + 29)•ft2 WSAILzoB:= (6+ 0 + 23)•ft2 WSAILZoneC (429+ 355 + 339)•ft2 WSAILZoneD (0 + 0 + 4)•ft2 WA:= WSAILZoneA•PA WA=2846 lb WB WSAILZoneB'PB WB=93 lb WC:= WSAILZoneC-PC WC= 16171 lb WD:= WSAILZoneD-PD WD= 13 lb Wind_Force:= WA+ WB+ WC+ WD Wind_Forcemin:= I0•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 19123 lb Wind_Forcentin= 12990 lb WSAILZoneE 43•ft2 WSAILZoneE:= 43•ft2 WSAILZoneG 334•ft2 WSAILZoneH 327-ft2 WE:= WSAILZoneE'PE WE =—378 lb WF= WSAILZoneF'PF WF=—516 lb WG:= WSAII-ZoneGPG WG=—2138 lb WH:= WSAILZoneH'PH WH=—3172 lb Upliftnet WF+ WH+ (WE + WG)+ RDL.EWSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILzoneG)]•.6.1.12 UpliftDei= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 8- L5 Harper Project: Summer Creek Townhomes UNIT B E._ Hoof Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. :FEks.,, NNFP Designer: AMC Date: June 2010 Pg.# Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft2 Nth:= RDL•Roof Area RFWT= 12566•lb Floor Weight Floor_Area2nd = 605 ft2 FDL-Floor_Area2nd FLRWT2nd = 7865•lb Floor_Area3rd =600 ft 2 F, yaa ,•= FDL•Floor Area3rd FLRWT3rd = 7800.1b Wall Weight . ? .-Wall.Azea:= (2203)•ft2 INT Wall Area= 906 ft2 , j :== EX_WallN,t•EX_Wall_Area + INT_Wallwt•INT_Wall_Area WALLItrr= 35496•lb WTTOTAI,=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn=32 Mean Height Of Roof le = 1 Component Importance Factor (11.5,ASCE liv:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct=0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period , ,:= Ct•(hn)x Ta = 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1, ASCE 7-05) F„= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT B I HP Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. N ;NFERa•PLANNERS— Designer: AMC Date: June 2010 Pg.# ANt, 'APF A•CMITPCTS•SURVEYORS Fa Ss SMg = 1.058 (EQU 11.4-1,ASCE 7-05) 2 SMg Sds= 0.705 (EQU 11.4-3,ASCE 7-05) 3 5 AA:= FvSi SM1 = 0.584 (EQU 11.4-2,ASCE 7-05) 5 := 2 Mi Shc =0.389 (EQU 11.4-4,ASCE 7-05) 3 Sds:= Cst= 0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Sd1 k U 12.8-3,ASCE 7-05 Cs := (EQU= 0.223 ( Q 7-05) � Ta R ...and shall not be less then... Cam:= if(0.044•S6-Ie <0.01,0.01,0.044•Sds-Ie) (SI 0.5•S1•Iel (EQU 12.8-5&6,ASCE 7-05) := if <0.6,0.01, R J as44,:= if(C1 >C2,C1,C2) Csmin =0.031 • = if(Cst<Csmin,Csmm,if(Cst<Csmax,Cst,Csmax)) Cs=0.108 V:= Cs-WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) Fes= V.0.7 E=4840 lb (Allowable Stress) Lf Harper Project: Summer Creek Townhomes UNIT B !. ' Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEERS.r c A NAEN S Designer: AMC Date: June 2010 Pg.# ANCSSARE ARCNIT£CTS•SORVErORS Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure: B Building Occupancy Category: II Iw= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.16.ft Zone A&B Horizontal Len h Smaller of... ^"^^' a2= 3.2ft (Fig 6-2 note 10,ASCE 7-05) or a2 = .4h�2ft a2=25.6ft but not less than... IN := 3.2•ft a2min = 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetZOneA= 19.9•psf PnetZOneB =3.2•psf PnetzoneC = 14.4.psf PnetZOneD=3.3•psf Vertical PnetzoneE_—8.8.psf PnetzoneF=—12.psf PnetzoneC=—6.4.psf PnetzoneH=—9.7•psf Basic Wind Force Pte:= PnetZOneA'IW.X PA = 19.9•psf Wall HWC PnetzoneB'Ivy'X PB=3.2•psf Roof HWC Pte:= PnetzoneC Iw'X PC= 14.4•psf Wall Typical Pte:= PnetzoneD'Iw'X PD= 3.3.psf Roof Typical Pte:= PnetzoneE'Iw.X PE = —8.8•psf := PnetzoneF'Iw'X PF = —12•psf Pte:= PnetzoneG'Iw'X PG =—6.4•psf Pte:= PnetzoneH'Iw'X PH =—9.7.psf Harper Project: Summer Creek Townhomes UNIT B '•' t Hour Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. • ENG∎NE ERE•PLANNERS Designer: AMC Date: June 2010 Pg.# ANDSCAYE ARCHITECTS•SYRVE YDR5 Determine Wind Sail In Longitudinal Direction jaix := (58+ 59+ 21).ft2 WS NNSh :_ (0 + 0 + 51).ft2 SA t:= (98 + 99+ 34)•ft 2 W AIL :_ (0 + 0 + 114)-112 Wes= WSAILZoneA-PA WA=2746 lb WSAILZoneB•PB WB= 163 lb WSAILZoneC•PC WC=3326 lb W4 = WSAILZoneD•PD WD = 376 lb Wince .= WA + WB + WC+ WD - Wind Forc = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force= 6612 lb - Wind_Forcemin = 5340 lb W SAN�M� 1174,44,,:= 151.112 ySAI := 138412 WSA := 242•ft2 Mag ,:= 216•ft2 Wes:= WSAILZoneE'PE WE =—1329 lb V := WSAILZoneF'PF WF=—1656 lb Wes:= WSAILZoneG-PG WG = —15491b AWE:= WSAILZoneH.PH WH=—2095 lb 1 lift v.= WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH+ (WSAILZoneE + WSAILZoneG)]'.6.1.12 Uplift =901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION E- t9i Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height, H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf ? = 1.00 Iw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(psf) Pressure(Ibs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 _ -3172 Roof Leeward Typ Wind Zone Total Wind Force= 19123 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft2 . Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs 1== 1313 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm.Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm Diaphragm (Ibs) (Ibs) Width Width(ft) Width(ft) A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 g 4■\:.0 Harper Houf Peterson Righellis Pg#: . Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D Si = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(T,)= 0.27 Equ.12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SM,= 1.06 Equ. 11.4-1,ASCE 7-05 SM7= 0.58 Equ. 11.4-2,ASCE 7-05 Sos= 0.71 Equ. 11.4-3,ASCE 7-05 Sol= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 - Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(Ib)= 7800 Roof Wt(lb)= 12566 Wall Wt(lb)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces Cumulative%total of base shear Rho Check to Shearwalls(lbs) to shearwalls I Req'd? Vf,00r 2(lb)= 711 100.0% Yes VfiOO,3(lb)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 - Total Base Shear*= ( 4840 LB I - *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. cg, Lo k Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05, section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height, H(ft)= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf i = 1.00 lw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(psf) Pressure(Ibs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E= -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12 0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force= 6612 lbs Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs E= 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D earcc.:. Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (Ibs) Diaphragm (Ibs) id Wth ft Width ft Width(ft) A 4' .- .--k11i 1 8 1283 8 1300 8 723 2 _ 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 — 3 - ! �� Harper Flout Peterson Righellis Pg#: 4 Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(T,)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SM$ 1.06 Equ. 11.4-1,ASCE 7-05 SMl= 0.58 Equ. 11.4-2,ASCE 7-05 Sos= 0.71 Equ. 11.4-3,ASCE 7-05 Sol= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(lb)= 35496 Trib. Floor 2 Diaphragm Wt(lb)= 22063 Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(Ibs) to shearwalls Req'd? Vflbo,2(lb)= 711 100.0% Yes Vfao,3(Ib)= 1595 85.3% Yes V,00f(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear= + 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. .E-L\ Harper Houf Peterson Righellis Pg#: A Shearwall Analysis ' Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear II L Wall H/I. Line Load Line Load Line Load Dead V Panel Shear Panel M0 MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. _ From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (fl-k) (k) 101 8 5.25 5.25 1.52 OK 8.00 2.28 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 723 Single 1.40 IV 103 8 4.58 8.58 1.75 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double , 1.40 VI 107 8 4.58 13.08 1.75 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00, 3.14 27.00 2.77 626 Single 1.40 III 109 8 3.88 3.88 2.06 OK 8.00 2.80 723 Single 1.40 IV 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 11I 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79 1.33 OK 9.00 3.14 18.00 2.77 ' 604 Single 1.40 III 202 9 3.00 9.79 3.00 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III - 203 9 5.00 5.00 1.80 OK _ 9.00 3.14 18.00 2.77 1183 Double 1.40 VII _ 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OK 8.00 2.77 275 Single 1.40 302 8 3.21 10.08 2.49 OK 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 1 ▪ Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height • Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 8 Harper Houf Peterson Righellis rg a. Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho"V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 or: 8.00 0.15 18.00 0.80 27.00 1.26 419 545 0.30 1.31 , Single 1.00 IV 102 8 3.88 3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 Ill 0.22 0.97 Single 0.97 1 103 8 4.58 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 11 104 8 4.00 8.58 2.00 OK _8.00 0.23 _ 8.00 0.80 8.00 1.28 269 350 0.23 1.00 Single 1.00 11 107 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 ' 219 0.26 1.15 Single 1.00 I l08 8 8.50 13.08 0.94 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 NA 2.13 Single 1.00 I 109 8 3.88 3.88 2.06 OK 8.00 0.33 0.00 85 111 0.22 0.97 Single 0.97 I 110 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG III 8 2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NG 112 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00_ 1.28 513 667 0.07 0.31 Double 0.31 NG 201 9 6.79 9.79 1.33 OK 9.00 0.28 18.00 1.26 157 205 0.46 1.51 Single 1.00 202 9 3.00 9.79 3.00 OK 9.00 0.28 18.00 1.26 157 205 0.20 0.67 Single 0.67 II 203 9 5.00 _ 5.00 1.80 OK 9.00 0.55 18.00 1.28 366 _ 476 0.34 1.11 Single 1.00 IV 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OK 8.00 1.26 125 162 0.34 1.72 Single 1.00 I 302 8 3.21 10.08 2.49 OK 8.00 1.26 125 162 0.16 0.80 Single 0.80 1 303 8 5.00 10.00 1.60 OK 8.00 1.28 128 166 0.25 1.25 Single 1.00 1 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II 305 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 11 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= n.71 Total#1st Floor Bays= 4.43 a. Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 14.79 Total if 2nd Floor Bays= 3 • Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 13 Total 3rd Floor Wall Length= zeta Total*3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 13 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load"Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2"L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht M r(Resisting Moment)=Dead Load•L2"0.5'(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) B _.1„1/4...„; Harper Houf Peterson Righellis Pg#: Shearwall Analysis • Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 106 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 I207 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 1 24.71 49.73 -0.47 208 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 1 24.71 49.73 -0.47 I 306 8 10.00 10.00 0.80 OK _ 8.00 0.72 0.29 72 Single 1.40 1 5.78 14.40 -0.30 I 307 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear Shear Application ht Mr(Resisting Moment)=Dead Load L2*0.5•(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#. Shearwall Analysis Based on the ASCE 7-05 .,ongitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V %Story 6 Panel Shear Panel Mo Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 1 55.17 96.89 -0.24 I207 , 9 11.50 11.50 0.78 OK 9.00 0.72 18.00 1.22 0.81 169 169 NA 2.56 Single 1.00 I 28.42 53.69 -0.34 208 9 11.50 11.50 0.78 oK 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 1 31.56 53.69 -0.06 I306 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 ' 122 NA 2.50 Single 1.00 1 9.76 17.40 -0.07 307 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 1 9.76 17.40 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total 6 1st Floor Bays= 6x Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= re Total 2nd Floor Wall Length= 23.00 Total 6 2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= i.e Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= i.e Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height ^ Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load•Rho/Total L Story Strength=L/Total Story L (Required for walls with H/L>1.0.for use in Rho check) #Bays=25UH Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear•Shear Application ht Mr(Resisting,Moment)=Dead Load*12•0.5•(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V(plf) (pit) 101 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 102 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 103 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 107 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 108 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 202 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 277 I/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. -Lt Harper Houf Peterson Righellis Pg#: . SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V(plf) (plf) (lb) (Ib) i 105 259 1/2" APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 207 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 -345 Simpson None 0 208 191 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 -59 Simpson None 0 306 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 -72 Simpson None 0 307 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 -72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. g ---1....„M Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 _ 14.54 14.93 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8.14 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L 201R 6.71 6.71 12.65 12.72 108 8 1.1667 8.5 13,08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 23.30 111 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 21.99 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39.13 9.72 5.02 4.90 5.32 301 L 301R 1.45 1.40 6.35 6.71 202 9 1.1667, 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 3021 302r 1.67 1.72 6.77 7.24 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303E 303R 1.61 1.32 12.13 12.12 301 8 6.88 10.09 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 1.45 1.40 1.45 1.40 • 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1.72 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44 1.61 1.32 1.61 1.32 304 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 2.13 305 8 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions&Formulas 0 L=Shear Panel Length C--2. H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L w „ Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) I 0 1 • Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kit kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 0.231 0.8 1.277, 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192_0.078 7.00 1.93 1.41 1.29 1.41 201L 201(part) 1.17 0.34 2.46 1.75_ 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 9.87 7.32 11 1 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 203R,304L -2.99 2.91 5.74 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 13.83 9.72 5.02 0.75 1.37 301L 301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 1.35 203 9 1.1667 5.00 5.00 0.8 1.297 2.077 415 0.172 0.848 0.385 20.18 6.39 4.08 2.89 3.30 303L 303R 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 0.20_ 302 8 3.21 10.09 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 0.21 0.29 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384- 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.32 304 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.72 0.90 0.72 0.90 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line I V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HDI2 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HDUI4 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 I11 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind _ 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13_Strap MST48 2.88 Wind 1.90 MST48 _ 2.88 (-6 M1 J I 7 1 i 1 , �N� � ;oko JOB NO CAN 09.,0 OF gy � DATE � _ PROJECT: RE: 0\ 1 V-151;JTtO1J o&" SH ERR_ 1-6111' N' ot.i 5T1T-VNEsS 7 J w z DESK-,N SNEAK= 8.aai5 V-..ps it D w w 2 Ax\o,1 Upca. 'w a,>~L 110 : I ❑ (1.2,5)R1q,SY.a.0%5)21-(2.4X0.01IN+ (( R,5-(o.o1s) ' )(0,012>>( Iz> = \.4-O k1ps D1- o (1.25' (14.5Yo.c lc)) 4-((Iq,s7(o.ots-X !2.' 1.3+-1 yc 5\-- To+a1 s 3.O4- '(-_ i•5 o w VIA 0. 11\ : La a (\q,5)(o,01t.)(0.5(t)i- (2�-(oo1Zxo,$) Jr (q,5)(o.o\s'Y9.7. } (alaXo.o15x11I6 Z fi(18X0.o1-?XZlz) (''Iz)(ao13.)(Z)2 (Z).= a.a1a v.,n5 DL. 0 F- (1q.5A0.02s (o.$) }- (161.5-)(0,025:11z) = a.(.b\ k,as sL. 0 z _ ("1z1(0.04OX2� O.44 tips LL 2 +o.a1 = 5.333V- 2 0 0 wa11 1\2 : _►9.5')(o.ot0(°12) i-(2`)-- 0.0+2)(2.x0 A-("11)(0,013) l L) a..aS `-_,c5 DI- E0 (‘C\.C))(0.02-5)(1°12') = a.a3-�s V-TS s1_ w ("I.LY 0.0461:6 _ 0.44 K, QS LL F 1 To}al S.1Z�5 . 5 CCAr3 (.e1 5-t.(1=tress WALL Ty 9E Psk\Uwahkshtar of c-1 k=st"P:Ir+•F{' tR= *-( ,.. 1\0 55\1\1\S It-If 1560 # 0.35 5314, O. 153 111 5SW24x S 34# 6.31 1bt13kL 0- 0.6224 112 SSuw 15 )c.. - 11069 # 035" S31 L(_ cv 0.1103 a°l 11 2.1*. 1 , cD -:-.v• V.R.- `NRLL . \sk. Shur- 110 1,51" - < 1'r30# \\1 syas 5,110 # a -F • 112 1SIX < \S-1-o1: "s I.o�. .�/ • : it W iF 1\1 = Sswatx'- - x t- 541LFres5 Q.•el s.� n is'-y 1f o 11660 0.-,A, (— 4 a a►1 lb.4j�_: w,-4h,n slice 44 0# 0.;4 1305`O ' 0,$ 4 as•# .o� t12 1�to04r 0,3(.. ___12.6.:. O. as 1 1a31 - g --i d\ 0 o ion- X08 I T 0---- ill 1110 X11 112 2 8- gay ( RoHl LuPt r)%s) O N 1 i C3 - 5-t F LOo it. Sw L A N-W O- O ❑ 01 1; 0 ° 2_ I II� T " J 133 104 0 &- LS l-c)P •1 11 N wT - 5t- T took --v00-73 cuvF oin c. koe soe [-De MEI OM 4111101113/4/111. - 0 102 0 f 30 302_ r s' 1 V M M I ri 111 L L,J f 303 0 ,)� � LTA- UNIT - g-p LEVEL Sw LA`/0 .ffl $ • BY M1 DATE tt ..., 0. _Ito Joe No 0 ; PROJECT: il942; a-4)-5-ie,4 RE DeS 1ar'. 4 Cm. Poloc\or .e SA,-O ( S J OP 7 1)t\.) 1 -I 0 LL. Z 1: 1/1*.".■21. 0 w 0 X TR.12) Uil DTEt' 011/4.3 D -501MT = GILcitiz" /-esA -ro? -PLATt- j Ci •RI N ( 511;it_oettAkk-,-,z 111111 m . u z w o D 5!C.-lu W if Y-.) Pressuce z 7- - a,015 psC 0 f--.f. I'-'rlt)" 'Oesop 9‘c0ez,- to 5?ot.,(1\ c■J‘k teinii\ To?ii,,A1 es 5 I-Fie 2 tj,)i-kAr‘ U.J1r4 100d oc 1 cilpL9 M 71: T1,.`") o t IC 1-_—_1 ' 'k:144:AcNi* g16.1'k 4°lel sk CY-0'' x o iz o u. z w Kmckx =1,11P-1: - 1:LaS1111 ..... 5111 *ct n z 0 x 5 ._-.... „A.- .., . So.- t . it(3.5 5-2.5\; I 11111 ,_,:k = 6g t 21-ffitte.. -3 '—i = o 6 _ 1.., 0., •=-1 -3. -;- : 3 -It . _ 8 - L -2?) —1S-1 118 I of) '►Xb'0)\91),a'90''X sd # D'TT)'D'..)-'771)(2 = 4- = 1 -- (s�•�) t ( 3 1?) - -L \r,4 p } 6.41` 40 +°lt' S ,5 c3'a) 5` 1,-e + 4 5t.9'0)S' 645,e., = y „51 .St 9' us-1 015°l l =?a _ M ` -1- - -L1 -Sc`. 'O' 3 Qom, 6\ Q 110-,21 r L.A3AO arll 0 )00W ►�-;fit = 1NIca Uo ui jjril Clk �arn� Crlx v 13. 4 UOY11 '91 '6001 J. Qe4-6 2 w`) d o h Z (lot :103 r0 d ON 3NOHd 11VO 3NOHd H!ON11331All n .auk smagg!U 0 z 0 31Id Ol OW3W NOI1VOINf VJV OO m 0 0 0 ob o- 1 .ON eOr ♦ !, —7_ 0� 31tla • L WoodWorks® Sizer _ SOFTWARE FOR WOOD DESIGN • Unit B-Front Lard WoodWorks®Sizer 7.1 June 26,2010 10:52:50 COMPANY I PROJECT RESULTS by GROUP- NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Tru ss es Not designed by request 12) 208 Lumber n-ply D.Fir-L No.2 1- 208 By Others Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 206 416.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 2x4 416.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR ...... Mnf Jot ..:s...... Not designed by request.. .��....... larding Lumber-soft D.Fir-L No.2 2x6 416.0 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x4 1.75x14 LSL LSL 1.55E 2325Fb 1.75:14 By Others Not designed by request By Others 2 Not designed by request 12) 2x13 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 12) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 (3) 204 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 204 Lumber Stud Hem-Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR iLMnf Trusses Not designed by request deck joists Lumber-soft D.Fir-L No.2 2xB 416.0 Mnf Tat Not designed by request 3.125014 LSL LSL 1.55E 2325Fb 3.5.14 408 Lumber-soft D.Fir-L No.2 4x8 3.125010.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.125x16.5 GL Glulam-Balanced West Species 20F-V7 DF 5.125016.5 (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 4x12 Lumber-soft D.Fir-L No.2 4x12 3.1250141) L5L 1.55E 2325Fb 3.5X14 (2) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 204 Lumber n-ply Hem-Fir No.2 3- 204 13) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Well Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values deck joists j42 Bending 0.41 Mnf Jst Mnf Jet Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 208 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.57 3.125x14 LSL b21 Shear 0.41 4.8 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125x16.5 GL b26 Bending 0.21 (2) 2x10 b15 Bending 0.93 4.12 b22 Shear 0.16 3.1250141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 e2 Axial 0.34 (3) 2x6 c64 Axial 0.59 6x6 c36 Axial 0.77 (2) 204 c25 Axial 0.35 13) 2x4 c44 Axial 0.84 Typ Wall w15 Axial 0.28 Fnd Fnd Not designed by request Typ Wall 2x4 040 Axial 0.33 DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. B. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely et intervals not exceeding 4 times the depth and that • each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. gt-67► WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN I - Unit B-Rear Load WoodWorks®Sizer 7.1 June 28, 2010 10:56:39 Concept b244de : Beam View Floor 2 : 8 ' • • 1050 49'-6„ I U4 40_0 IU3 4!-0 I U� 40-0 40-0 iVy b25 44-0 JO - 43-0 4L-0 0? -- 41-0 00`00 4U-0 1/4 3`U-0 00-0 Jt 30-0 00 30-0 00 34-0 00 JS -40 0t JLt? ZS0 3 1-0- 00 JU 0 -0 04- L0-0 L0-0 03 elL 0 1 Lb-b 00 _ L 5-0 • b LS-0 f; LL- - L I -0 0 r J GU-0 (4 0-0-0 /4 !-0 1 0-0 I ( 0 0 00 -. -. .. - _ 4-b J-O 00 L-0 0/ 1 1-0 00 i U-b -0 b21 u-b 0 C1G a-0 01) -.. b6 b26 °U1 b20iitb22•�b23 4 0 i■ Il I-b U-0 BBI BB BCCCCCCCCICCCCCCCCCCCCCCC\CCCDDDDDDDDtDDDCDDDODDDDDCDCDDDEEEEE'EE'EFEEEEEIEEfEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64 66'68'70'72'74'76' 0'1 2'3 4'5'6'7 8'9111 1: 1,1!1l','1 1 s2(22;22,2022120(3 3.33,3'36 313!40 4A:4.4:4(4.414!5:5 5:5:5,5!5(5'5(56(66;6:6,6!6t67616717'7:7:7,77(77-6' Le'\/ WoodWorks@ Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Wood Works®Sizer 7.1 June 28,2010 10:0432 Concept b24Dde: Beam View Floor 2 : 8 ' • • 49'-6" ft'46: 40-0 ....... 4/-0 b1 44-0 4j-0 41-0 z.lz.D 41..1-0 . . 30-0 z...'. .. - - if-b :-,•Z .1.r.)-1 i4-0 .5.5-0 3i 31-0 30 ii.J-0 00 G -13 04 0 i Z0-0 0U L4-43 il ■0 LL-0 4 1 -C.) :Z 1 t 1.• (U ILI-0 OC i.j-i7. 0:, "-Q b21 8-i f-C 04 5 0-0 0 I- b26 • • -0 ) b20 b22-b23 - 4-0 ii - - 4:-0 -% • BB‘BB BCCC C C CCCICCC CC CC CCC CCC CCICC CODDDD DO DIODDCD DD DDD DDDCD\DD DEE E E EEEEFEEEEBEEiEERBEEEEZ 0 2 4: 5' 8' 10'12'la'1518'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52454'56'58'60'62'64'66'68'70'72'74'76 012 345 87'8911 1:11,1:1;110 22 222222-2122(323:3,326'304(4 4;4.44,4f4-4455 5:515,55(5'5i56(6 55-.8,6!E(6'6167:7 777;717;77 5- c,....)3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Wood Works®Sizer 7.1 June 28, 2010 10:04:34 . Co c60ept Mode : Ccc59imn View Floor 2 : 8 ' -lank tee= 49'-6" 40-0 4 t-O 40-0 40-0 ' c57 c1 c2 c46 c58 44-a 43-O (Al�—}1.01 _ - 4L-0 4 1-0 4U-0 30-a 31 30--0 0 30-t7 34-0 33-0 c47 - 3L-0 z.- , I-0 3u-0 ca-a c55 t t c48 . o G0-0 c63 L4-o o49 L3-0 LL-O 50 LU a�L i -a I I 8 c53 is n c5... .. . ... . . . . . ... . . .. ... ... . ..c51 4-0 I 7 c56 1 3-0 L n 7d I '-a ;U-0 3-0 z3-a i 45 -a c40 c64 - c36 0-0 4 0 ..:- I.1 • 3-0 A c39 aa, 0 0-0 r C C C C C C C D D D D D D D D EE E E E'EtEEE:EEEE EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64'66'68'70'7Z 74'76' 0 1'2'3'4 5'678'5111 1:1:1,11(1'1;12(2 222,22E2'212'322:33,3'0E3'32E414 4:4:44:414'4t415t5 5:5:5.55t5.53!6166:66,616:616 7(7'7:7:7<<o t77 6 8— C.,,,,\L-0\ j 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Wood Works®Sizer 7.1 June 28, 2010 10:04:29 Concept Mode : Beam View Floor 3 : 17 ' 1050 W4 I U.S 0 I t.11 I U I/ IOU° b7 v9 ...r. ars=gor 4.5-n 0 4z-0 / 41 -0 VO 40-0 i ' J r-0 LS Ji-0 00 - Jz-b Of 00 1.14) 0 ZV-t 04 - b12 45Z- n b8 Lo-u b25 rsi 14 Z4-0 • a -0 - b13 b11 _ . _ _ ID-0 4-0 1 -n ::. 00 n4, 045 0-b • IF 1)10 b9 11=1.11413 . _ .--n J-0 BBIBBBCCCCCOCCFCCCCCCCCCCCCCCC%CCCODDDODDCACDDCDDDDDDODDCDODDEEEEEEEEIEFEEEEEEEEEEBEEEEZ 0' 2' 4 6' 8' 10'12'14'15'18'20'2224'26'28'30'32'34'36'38'40'42'444648'5052'54'5658 60'62'6466'es'70 7274'76' 71 2345678 911 1.I.1,1:-' 1'1,-.'22 222,2 22212(30133,316 312.(4v1 4 4.14404 415(5 5:5:5,55t55156‘6 6:6.6616-561717 7.7:77.777-5" • • L I WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28, 2010 10:04:27 _ Concept Mode: Column View Floor 3 : 17 ' 49'-6" 1050 40-b IU4� 4r-b IUSb - 40-0 IULf 4�-b -iui WU c14 c15 `4-b 43-b 44-n / 4 1-b yr n 4U-0 yb - Sy-b J4 3b-n S 3f-b SO-0 y 1 30-b y .. - -- 34-n yu 33-b 00 -- c38 ..c a bf H ...3u-o nn ty-n 04. c25 c16 �o 0 03 1 1 _• Lb-0 04 - .. L0-b 0t.) 44 44-n re r0 I I C17 LS-b LL-0 /r c43 4 10 `0 c23 c67 IV-n t0-b c22 r n /.`'. ib-n ;� c24 c26 10-b (U II i 14-b ny 13-0 r IL-0 0 _ • i1-n n - IU-b bb _ 7 b b44) s n t),13 ... _ . c45 c44 - 4-n by • .' c21 c20c19 ©8 - - ... .. _ - 3-n BB\BB BCCCCCCCCtCCCCCCCCCCCCCCC%CCCDDDDDDODtDDDCDDD DDDDDDCDiDDDEEEE E EEEFEEEiEEEEIEEEEEEIEEEEZ 0" 2 4' 6' 8' 10'12'14''.6 18'20'22'24'26'28'30'32"34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64'66`6V 70'72'74'76' 0 1"2 2'4'5 6 7'8'9111 1;1:1.10(11 0 2(2 222.2022213(3 3:3:3,3243'3(314(4 4:4:4.4414'4(4!5(5 5:5:5.5 15(5'515i6t6-6i:6:6.6!6(6'6i6S71 •77:x.77777-6 • S- el(4 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Woodworks®Sizer 7.1 June 28,2010 10:04:23 Concept Mode : Beam View Roof: 25 ' b15 b16 b27 I • o b18 I WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN - Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:25 Concept Mode : Column View Roof: 2.5 ' if 49'-6" i 1)4 40-0 d t U4 -- - - 4/-0 k U3? - - 40-b t UL 40-b VG? - - Va9 c27 c28 44-0 43-b 4G-U V0 -�� 41-tl t VO 4U-0 �b 3y-b �O. _ - - -- .. - 30-0 y3_ _ 30-b V1 1 30-b . . .. 34 tl OV OU 33-tl 0/ 31 ! " 3U b ' 0b 05 .0 -0 G0 tl 0G - - - - -. .030 - - -- • . • - - GO-0 01) 0 1 - - G4-0 f0 13-0• i _ GL-0 i r c66 CI tl 1 /0 . _ GU-b ty-b c65 1 0-b 14 _ .. .. r-0 /3 i0-0 IL_ - .. - 10-b ( b i 14-U_ ._ ... by 13 b 1G-0 00 - 11-b r 11.3-0 0b - -b 00 0-b 041 _r 03, b-b • bud ■ c34 -c35 - .'_. _ . _. -- 4-0 . .,_ 3-0 A Qommm■I■0 ■" _. .. U-o B8!E3B BC CCCC CC CICCC CC CCCC C C CC CC'CC C0 D0 D 0 DD DFDDDCD DD DD D 0 DD C01DD DE,E E EE EEEFEEEEEEIE EEEEEEEEEEEZ 0' 2 4' S 8' 10'12'14'16'18'2C'22'24'25'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64'66'68'70'72'74'76' 0'1'2'3'4'56'7'8'9111 1:1.1,11111'1 i 11212 22:2,22E2212'3i3".3,3,3:3i3 213'414 4 "4,4t4f4-414(515 5.5:5,5!5(5.51516166:6:6,6!616.6161717 7277;7777-6" 8...._ (..._:\erb COMPANY PROJECT i WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3 c14 Dead Point 1074 2.50 lbs 4 c14 Rf.Live Point 1601 2.50 lbs 5 j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL 160.0 plf MAXIMUM R; _-- - - .r, -.- - ter:. -7777,7-77777"---F• ' '* 1k � . 'R'ri+iYiFY MAY .,a♦f ».. I Cr 31 Dead 1048 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys Self-weight of 6.59 plf included in loads, Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv' = 127 Fv' = 207 fv*/Fv' = 0.62 Bending(+) fb = 581 Fb' = 1138 fb/Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 3627, V design' = 2356 lbs Bending(+): LC #2 = D+L, M = 2073 lbs-ft Deflection: LC #2 = D+L EI- 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. . 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3 BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that 1 each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 8-69 r COMPANY PROJECT i i WoodWorks`HJ - iSOf f W ANf FOR WI0.20 D1-S!(.■ June 28,2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10 Dead 54 54 120 Live 120 120 Total 174 Bearing: #2 Load Comb #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 180 fv/Fv' = 0.05 Bending(+) fb = 120 Fb' = 1080 fb/Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 174, V design = 139 lbs Bending(+) : LC #2 = D+L, M = 262 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded, special fastening details may be required. g- 61,n COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or pit) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_c30 Dead Point 59 3.50 lbs 2 c30 Snow Point 75 3.50 lbs 3_w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6 j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7-j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 b12 Live Point 469 5.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): 10' g1 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length 0.69 0.93 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 180 fv*/Fv' = 0.37 Bending(+) fb = 556 Fb' = 990 fb/Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1744, V design* = 1232 lbs Bending(+): LC #2 = D+L, M = 1984 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT di WoodWorks®' - S(N!MARI/()R W()()()Of SECS June 28,2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 lbs 3 c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REP ■TInwle ul..-k .....+ DDADILI ' I eMIrruc i:..i • E IA 3 I0 i Dead 63 146 Live 85 110 Total 148 256 Bearing: #2 Load Comb #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 12 Fv' = 207 fv/Fv' = 0.06 Bending(+) fb = 82 Fb' = 1242 fb/Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 256, V design = 169 lbs Bending(+) : LC #2 = D+L, M = 179 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) _ (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. ug-(110-- COMPANY PROJECT i I WoodWorks' SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3 w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REP''Tlnwrc u4.••\ .....I DC A DIAIf` I CAIf"TLIC /:..1 • 2 10' 31 Dead 146 63 Live 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports: Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 207 fv/Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb/Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Ervin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 229, V design = 148 lbs Bending(+) : LC #3 = D+.75(L+S), M = 157 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. g- V) COMPANY PROJECT di WoodWorks'K " SC)?!N:AA/FOR W'1O/(DI 5)(,1 June 28,2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5 j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6-j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8 j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ,,-,r. � .a fi r- _+a �--.. .. . . 7.r,... - - -;e., _.46°" `°'...+i.1•�'�'�,,". s`..... '-...r:- _,,;..R .-=- -• ,,.,,-� ,-m�J _ -v,,.�, y- z.„ r y.:Z �.;� ..1 = Z- -- I 0' 8'-6'( Dead 553 685 - Live 1522 1878 Total 2076 2563 Bearing: Load Comb #2 #2 . Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1-3!4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full, bottom=at supports: Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 126 Fv' = 310 fv/Fv' = 0.41 Bending(+) fb = 1324 Fb' = 2325 fb/Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L/750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 2563, V design = 2064 lbs Bending(+) : LC #2 = D+L, M = 6308 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. eg._ (/ , \.....k COMPANY PROJECT di WoodWorks® 5Of7WARF FOR WOOD DESIGN June 28,2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .n.`7* � 4 � p � 7. - Ypdi�F. . .� i + �M 4.x. . " ;,;V p ",iG{ 4d4r f .4;11'44+ ' r*gy+ � * .1i 7 a1w#w 'Hf. .3'`t =t �ay1 L w 1NF ,� 0. 64 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34_ 1.34 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 101 Fv' = 207 fv/Fv' = 0.49 Bending(+) fb = 1055 Fb' = 1138 fb/Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 ` - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2508, V design = 1864 lbs Bending(+) : LC #2 = D+L, M = 3762 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT di WoodWorks® - SOFTWARF FOR WOOD DESIGN June 28,2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 _Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REPr•T1A61C n4...% °°'' MCAMAW. I clan-rue t:... • ..: 1 0' Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 0.50* Length 0.50* 'Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 180 fv/Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 162, V design = 99 lbs Bending(+) : LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. - is.___61 \14 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28 2010 10 34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs.psf,or pit) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern 1_w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2 w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3-w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UD 320.0 320.0 2.00 6.00 No 5'w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6-w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 c44 Dead Point 1940 1.50 No 8 c44 Snow Point 2853 1.50 No 9-j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No ll j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12_j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17 j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19-b23 Dead Point 658 0.00 No 20-b23 Snow Point 195 0.00 No MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : '7-" ';^- �' .-- ' -„' ��-'-777-=°�t_ �. -= _ •'; -� -�.... �`.,..-4 _.. - K --_.. -rte.. ,J _ --�--'� - ....rte• ...4,.,.,,,. .. ---,.` -.�._�.../e - .�c:.�•;m„ �-�-� ---.s.- +,._.+�. .. 0 2 ... __ 10R Dead 5581 1311 Live 5266 2508 Total 10847 3819 nearing: ■ Load Comb 80 83 02 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv. = 139 Fv' = 356 fv'/Fv' = 0.39 3ending(+) fb = 717 Fb' = 2325 fb/Fb' = 0.31 Bending(-) fb = 600 Fb' = 2632 fb/Fb' = 0.23 Deflection: Interior Live 0.05 = <1/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/69B 0.13 = L/180 0.26 _ Total -0.03 = L/788 0.20 = L/120 _ 0.15 _ 'The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.09 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - . E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 114 = D+S, V = 7237, V design' = 4536 lbs Bending(+): LC 02 = D+L, M = 6833 lbs-ft Bending)-): LC 04 = D+S, M = 5720 lbs-ft Deflection: LC 02 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: - 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber)..the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 14.The critical deflection value has been determined using maximum back-span deflection.Cantilever deflections do not govern design. COMPANY PROJECT 1 WoodWorks® - SOFIWAR(FOR WOOD DF J(:N June 28,2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs,psf,or pif) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2 w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3_j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5_j47 Dead Full UDL 42.5 plf 6j47 Live Full UDL 62.5 plf 7 b23 Dead Point 700 1.00 lbs 8-b23 Snow Point _ 195 1.00 lbs I MAXIMUM RE -- - ._ ... . . ----•-•- • --•--•.- .. 0 --- - - 2L81 Dead 683 807 Live 341 572 Total 1024 1379 Bearing: #3 Load Comb #3 Length x.50' 0.63 *Min bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 4x12" Self-weight of 9 35 plf included in loads. Lateral support-top=full,bottom=at supports, Analysis vs. Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterior. Analysis Value Design Value Analysis/Design Shear fv = 30 Fv' = 207 fv/Fv' = 0.14 Bending(+) fb = 159 Fb' = 1138 fb/Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V - 1024, V design = 778 lbs Bending(+): LC #3 = D+.75(L+S), M = 978 lbs-ft Deflection: LC #3 = D+.75(L+S) EI- 664e06 lb-in2 Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S-snow W=wind I=impact C-construction CLd-concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4.1. B.._ („\vb COMPANY PROJECT dt WoodWorks® lOFJWARE FOR WOOD OFS/GN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End l w33 Dead Partial UD 204.0 204..0 0.00 1.50 plf 2 c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4 c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6_w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7-c20 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9_c21 Dead Point 143 9.50 lbs 10_c21 Rf.Live Point 110 9.50 lbs 11 w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : tee` - �w�yarn _ . Ry �.° �...ar =... _ �...t/�+• ....., [- �cEa„ =" -"._-- .". ...�+..�t �....... .-- -s- 'In.-.-.fir .:.r- 3-. ��- .sir- S ...- -e se o r. : eer-r • 10' 114 Dead 700 700 Live 195 195 Total 895 895 - Bearing: - - _ -- Load Comb #2 #2 Length 0.50* _ 0.50* *Min. bearing length for beams is 1/2"for exterior supports LSL, 1.55E, 2325Fb, 3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 356 fv/Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb/Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending(+) : LC #2 = D+L, M = 2028 lbs-ft - Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) - Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks`H - .SOFIWARE FOR WOOD DESIGN June 28,2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7 j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8-j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 0' 161 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: - Load Comb #2 #2 Length 0.85 0.85 Glulam-Unbal.,West Species, 24F-V4 DF, 3-1/8x10-112" Self-weight of 7.55 plf included in loads; - Lateral support:top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design ' Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM: bxd=actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8-6w COMPANY PROJECT Of WoodWorks® tiOFlWARE FOR WOOD OFSJGN June 28,2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS Ilbsl and BEARING LFNGTHS (inl 7S1 0 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length _ 0.68_ 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. g --Gak COMPANY PROJECT i i I WoodWorks® SUFI WARE FOR WOOD biliGN June 28.2010 10 57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2-w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3-w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4-w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6-c14 Rf.Live Point 1601 7.00 lbs 7-c15 Dead Point 1074 13.00 lbs 8-c15 Rf.Live Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13-w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14-w75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15_542 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_543 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 543 Live Partial UD 160.0 160.0 4.50 5.50 plf I9 544 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_545 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 546 Live Partial UD 160.0 160.0 13.00 14.50 plf 25547 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 147 Live Partial UD :60.0 160.0 14.50 16.00 _ plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): LI O, - 161 Dead 432B 4101 Live 5296 5376 - Total 9624 9477 Bearing: Load Comb #2 M2 Length 2.89 2.64 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads, Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design- Value Analysis/Design Shear fv = 157 Fv = 305 fv/Fv' = 0.52 Bending(*) fb = 2301 Fb' = 2760 fb/Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.66 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 9624, V design = 8063 lbs Bending(+): LC #2 = D+L, M = 36854 lbs-ft Deflection: LC #2 = D+L EI= 2$94e06 lb-in2 Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S•snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSIIAITC A190.1-1992 - 3.GLULAM.bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3 5.GLULAM bearing length based on smaller of Fcp(tension),Fcp(comp'n) 8---(:AfD.\.1;N.._. COMPANY PROJECT i1 WoodWorks® SOF7WARF FOR wool)DFSJG' June 28,2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 _Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 15'-61 Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 305 fv/Fv' = 0.18 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+S, V = 4441, V design = 3070 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Deflection: LC #2 = D+S EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6-19-4.3 COMPANY PROJECT IIIN WoodWorks® SOFTWARE FOR W000 OCSIG% June 28,2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs.psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2089 (Eccestricity = 0.00 in) MAXIMUM REACTIONS (lbs): s.., f; ..40e ,; -A 4 --- • 0' 8' Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener: nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial to = 221 Fc' = 980 fc/Fc' = 0.23 Axial Bearing to - 221 Fc* = 1644 fc/Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3655 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2-b12 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): .111111111111.11E, . ._ _..., ...., ... .1, c , s. r1 :f AL. ;"' R 1:4 • 0' 9, Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 Fc' = 380 fc/Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1942 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® sOF7WARF FOR WOOD DESIGN June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location Eft] Units Start End Start End 1_b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2—b21 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 0' 8' Timber-soft, Hem-Fir, No.2, 6x6" Self-weight of 6.25 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 12705 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i WoodWorks® SOF WAR[mR WOOD D(Sl( June 28,2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener: nails;Ke x Lb: 1.00 x 9.00=9.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 306 Fc' = 363 fc/Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc/Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 4823 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 8,_ COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD OFSLGN June 28,2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2_c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(Ibs): k+ 0, 8♦ Lumber n-ply, Hem-Fir, No.2,2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d); Built-up fastener: nails;Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 259 Fc' = 439 fc/Fc' = 0.59 - Axial Bearing fc = 259 Fc* = 1644 fc/Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6404 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. " N4-t DATE 7 ILti rt, JOB NO Apt ao to PROJECT: • RE: earM I LcA \ ` •eac ` ❑ ❑ beCIAY\ ale t u.x■\\ an 3 Z 0 W O Ze_o,.m as -, vJ O 11 ao\ . ao a, ID � U o W SI`(1 c'e U■) M > Se r S A L Qfei( \Y ca ci* 0 IP-04 De k C VI ire fi:A 0 2 0 rc• O LL. Z ❑ 2 O I- a ; a• te 0 W, x a 414 c COMPANY PROJECT _ fR WoodWorks® SW MAW FOR WGU0 oiliGN June 28,2010 10 19 b25 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location (ftl Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2_w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5-c14 Dead Point 1074 7.00 lbs 6_c14 Snow Point 1601 7.00 lbs 7_c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16-342 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead ' Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 2038.2 Wind _ Point -7960 16.00 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in) : Dead 4328 4101 Live 7703 4096 Uplift 2458 Total 12031 8197 Bearing: - - Load Comb #4 46 Length 3.61 2.46 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads, Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 1986 Fb' = 2760 fb/Fb' = 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 _ 0.90 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv• 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emio' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC 116 - D+S, M = 31814 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application 2 Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM bud=actual breadth x actual depth. - 4 Glulam Beams shalt be laterally supported according to the provisions of NUS Clause 3 3 3 5.GLULAM bearing length based on smaller of Fcp(tension),Fcp(comp'n) 8....._&130 COMPANY PROJECT i WoodWorks° SOFIWARF FOR WOOD D SICV June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 pif 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 pif 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS (in) : _ [0' 161 Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27 1.23 Glulam-Bal.,West Species, 24F-V8 DF,5-1!8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 978 Fb' = 2160 fb/Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n .-0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #1 = D only, M = 15667 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT - di WoodWorks® SOFIWARI+OR WOOD D[SJGh June 28.2010 10 20 b25 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS 1lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2-w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4_w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf lO w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12-w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 pif 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 pit 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26_j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 2038.1 Wind Point -7960 13.00 lbs 2039.2 wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : Dead 4328 4101 Live 4016 7763 Uplift 2321 Total 8344 11864 Bearing: Load Comb 06 #4 Length 2.50 3.561 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads. Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0,45 Bending(+) fb = 2949 Fb' = 3840 fb/Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0,79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fop' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 06 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC 04 - D+.75(L*S+W), M = 47228 lbs-ft Deflection: LC 04 = D+.75(L+S+W) EI- 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C-construction CLd-concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3 GLULAM bxd=actual breadth x actual depth 4 Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 5.GLULAM.bearing length based on smaller of Fcp(tension),Fcp(comp'n). g--- 7/7) 31_______ COMPANY PROJECT i I WoodWorks® SOFIW4RF FOR WOOD DESIGN June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead - Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 1-1-__w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : l0, 164 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam-Bal.,West Species, 24F-V8 DF, 5-1/8x15" Self-weight of 17 7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value -Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 1905 Fb' = 3840 fb/Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L/525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #2 = .6D+W, M = 30517 lbs-ft Deflection: LC #2 = .6D+W EI- 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3 GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5 GLULAM.bearing length based on smaller of Fcp(tension),Fcp(comp'n). Le..---6,,,i,i; 2.) COMPANY PROJECT - I I WoodWorks „Th ‘01!N ART i(lk 14',)(1111>TST(.% June 28,2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location Eft) Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2-w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 4L- -------- 10' 15'-6'I Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 - Length 1.41 3.24 Glulam-Bal., West Species, 20F-V7 DF, 5-118x16-112" - Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 _ 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC #4 = .6D+W, M = 48956 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: - 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM: bxd=actual breadth x actual depth. _ 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM: bearing length based on smaller of Fcp(tension),Fcp(comp'n). g...._ci;(-1 COMPANY PROJECT II44 WoodWorksr SOFTWARE FOR WOOD OfSIGN June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 15'-6' Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC'#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8..., 6,,,,,,;5-- COMPANY PROJECT di WoodWorks® - %OV TVAR!(OR WUU!)1)1 Sit. June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7 1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 _ lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 l0' 15'-61 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads, Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 FIT' = 424 fv/Fv' = 0.32 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 7647, V design = 7647 lbs Bending(+): LC #2 = D+S, M = 9454 lbs-ft Bending(-): LC #4 = .6D+W, M = 42496 lbs-ft Deflection: LC #4 = .6D+W EI- 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L-live S-snow W=wind I-impact C=construction CLd-concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3 3 5 GLULAM:bearing length based on smaller of Fcp(tension).Fcp(comp'n). 8..--61 ,,e7 d� COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DFSs:M June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS(in) : - 10' 15'-6'4 Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 Length 0.50* 0.72 bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 267 Fb' = 1797 fb/Fb' = 0.15 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 7647, V design = 7647 lbs Bending(+) : LC #1 = D only, M = 5167 lbs-ft Bending(-) : LC #2 = .6D+W, M = 42496 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). Harper Project: Houf Peterson . Client: Job# Righellis Inc. EN41REE 4S.vl.tin Eyy Designer: Date: Pg.# I.AN(I S!:0.Vt. 0. (:il •t" V ..tft'.'f'I;R!+ Wdl:= 10•��•8•ft•20•ft Wdl = 1600•16 ft Seismic Forces Site Class=D Design Catagory=D Wp•= Wdl i_ 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 •= 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa Ss Sml := Fv.S1 2Sms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap 1.0 RP:= 2.5 (Table 13.5-1, ASCE 7-05) 4a •Sds• F P:= pR �•(l + 2-1-W p EQU. 13.3-1 FPmax 1.6•Sds•Ip•Wp EQU. 13.3-2 FPmin'= -3'Sds•1p'Wp EQU. 13.3-3 F,:= if(Fp > Fpmax,FPmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2•Sds•Wdl=225.6781-lb Harper Project: •'! Houf Peterson Client: Job# Righellis Inc. ,„o,R,,„ „,E4, Designer: Date: Pg.# Wdl 10 Ib 8•ft•20.ft Wdl = 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip :_ 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. SS:= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z:= 9 Height of Component h := 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms•.= Fa-Ss Sml := Fv.S1 2.S ms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp := 2.5 (Table 13.5-1, ASCE 7-05) .4a P•Sds. r z F := R I I + P 2 hl•Wp EQU. 13.3-1 P \ J Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3.Sds•lp•Wp EQU. 13.3-3 4,:= if(Fp > FPmax,FPmax,if(Fp <Fpmin,FPmin,Fp)) F = 338.5 171•lb Miniumum Vertical Force 0.2•Sds•Wdl = 225.6781-lb -(; ) 1111S 19. HP UHoufPeterson COMMUNICATION RECORD Righellis Inc. TO❑ FROM❑ MEMO TO FILE 0 PHONE NO.: PHONE CALL:D MEETING:❑ A -u w m I 0 a==-. C, E., --,--,C� i o I ) il W u3 ,-- u.) 5 - -G xi 0 6- A It V ; c' , ..c.,----.' .1:. 6 • X Q U1 O1 ■ I 0 ?J O d o fb ( ) n Crl 6 .....0 0 , , r 0 • s COI Oi ( J -0 1. 0 BV. W DATE 1 ' a 0 JOB NO PROJECT'. RE' O E c.. 1)1 (fi r-" ;-I'z.f-I,M CAP \c_v± v ❑ ❑ DECUr4C-1 il z ( o t NRkL CPrP(C lry (lbd Cc r i ciy\ f W O 0 e ,'2, U ■ w cc d • e CAaaC.IT _ __ - - I =(ye ?{_; i/ LY z ��ds 1btN .F u Z ja‘sr5 I O l - " 4 I6ox. - - �� spat i� �e��ee r.: �.a�� .s � f Co,poc! ,i = (r,l lx.,.. . W FD- d V.) ,fit C T u o 1 -= 1 ,c,i Qy_1t .__ _l 1 1 -- . o Tl _�j . •• ; ___ I = u C T ' 4 (41 ,)( 2 )(ti Z2-0.1k,. S-�c, CF+ < 44,. t1ttla i> „ C�rU.,,, , h, X006. = 30°A # (\11\ ) _ g?,1 #JF- S\ ?s crn 3(-y-D`l4- x 41 --' C t2:1 0.c , (2 (.220 — (440 ''+',= , 0 g 61 q. f /" O - DATE 010 JOB NO.' ( E; J Q . •PROJECT: RE: -De.L PCcrc9L _ ❑ ❑ Loam C. Pt ) °1 w •■ • 200 w• ❑ Li °0 a M = Q00 464 411 U Z W O CC a 3‘"z o 3.St►..) z () _._ S\r v c r NDu 4 f `}.ZS o C f M O a z w H d M = a » "-) zoo =..4i Boo° * J T- c _ s000 stifQ = as 305 { a1!)(.0 4. aA00 nort u � a = z I Ec tz.xi W 9 ; ---)r gi-- 4 / , . . . , . Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To 0 FROM E MEMO To FILED E.GINE:, PA, S S PHONE NO PHONE CALL:0 MEETING:0 M -0 CO ) H P m -to 0 X 1 1 n 0 at 2 (--) 1— 0 i II ff - r_ -c. 0 r,--- 0 § _ s 8 o (2 7 ,---..„ 0) - 3 03 oi j 3 O. CD o Su (.11 1- rj V 1 . ■ r---- ) ..),) 1‘ )F11, I 51) CI _. 6--- 0 1 z • ( 1 (' Cri ‘ 0 .......0 . 0 4' 74 BY. hooky,Go( • DATE k) ao(0 JOB NO• ce N-09 0 PROJECT: • RE: 12)ear0 I POST L-Priou T .0 0 w •• ..1 0 E Z O E 1.- w O 2 2 D Ci rt 8 II 0 w o z w 0 . ... pov. 1.. CC 0. %ST N ;14 POST 1- z 0 ■---- < 0 z o ■c- *so+srS _ 7 -—- - — -----›* 2 2 0 U El 2 0 •• // / / / / r C r c f it 0 w 0 6 . O 1 DEL (I- LA‘K)k.) r c GuR iri., Q.Prm_._ = 0 • , g.o ' > 1 1 . COMPANY PROJECT tit WoodWorks GOFTW4RE FOR WOOD DLSIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE _Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : i0' 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C.- c COMPANY PROJECT drWoodWorks® 5OFIWARt FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : Icy 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 22,2010 14:13:51 Concept Mode : Reactions at Base of Structure View Roof: 25 ' • • 1280 L 1280 L 442 D 442 D 40-b 47-0 40-n 40-n 44-0 46-b 4L-n 12272089 L 1601 L 41-0 10481539 D 1074 D 4U-G .7; -b 0-0 j:-0 30-n -b 34-n 3I-0 75 L ry 59D Go-0 G/-b 14081 1232 L tb-o 514 D 556 D L4 n 10801 640 L LL-'' L1 -n 409 D 792 L Lu n -n nAn1 99 DJ _ I -b 1522 L 99 D ,n 553 D 1�-0 98 D 14-b 225 75 L 1.5-0 73D 7dn 10 2192 L U-b 1311 D y-° -n r-n 1220 L 55L 4-n 109 58 D - 021 L t-n 2450 2 ;-n D X581 D u BB`B.BBCCCC CC MCC CCCCCCCCCCCCICCCDDDDDDDDIDDDCDDDDDDDDDCDI DDDEEEEEEEEhEEEEEEEEEEEEEIEEEEZ 0' 2 4' 6' 8' 10' 12'14'16 18'20'22'24'26'28'30'32'34'36'33'40'42'44'46'48'50'52'54'56'58'60'62'64'66'68'70'72'74'76' 0 2 3t'5'6'78' 111 1: :1,1111; '111'.2:2 22:2,222-212f3t33:3:3,3'.313 3e31414 4:4:44!414'4415(5 5:5:5,55(5.51516i6 6'k:6,656'607(7 7:7.7,7r7,7--0 3Ut L 3) D 'DOT \N C--■ LPcOOr -F Q.oN31- LOAD WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 Concept Mode : Reactions at Base of Structure View Floor 3 : 17 ' • • 1280 L 1280 L 442D 442D 5296 L 376 L 4328 D 4101 D 75 L ._C-0 59 D L:-d �o-o 765 1 1036 L o-o 277 D 483 D L4 a-. G J-0 gD 640E t"i-b 208 774 L Zu-G iy,0 99 DD -O am i , -a 1020L 99D ,°-o 368 D ;4-0 98 D I4-o 225 \ 1 75L I ;-t� 73D V 21rl iUb 'd 2186 L �_o 1-1/0\4° 1298 D u ,Lc'\� J \ n 94L 084E 4-b 3-b 94 LF f 306 LI1 D. 4 62 L a-b 73 D 7E2515 CF5 D 5647 D v-b bi:A3 E.BC CC C C CC GICCC CC C CCC C C CC CCICC CD DD D D DD DICDD CD DD DDD D DD CDIDD DE.EE E E EE EFEEE!EEiE E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'S8'60'62'64'60 68'70'72'74'76' 0'1'2'3'4'567'8'91(1 1:1:1,1:1:1'1N'2(22:22.2:2(22253(33:3:3,3:3f3'31 3<.4(44:4:4s+:4f4'4:4f5:55.5'5,5:5:5'5(5'.5(68:6:6/6'6E6'6(677(77:7:7/7`7177-6 V OQT kt,Jed, L IN G OVT - Rep Lops B_ c --2,.._ Plain Concrete Isolated Square Footing Design: Fl fc:= 2500-psi Concrete strength fy:= 60000•psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoil 100-pcf Soil density gall I500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5647-lb Pd1:= Totaldl Totalll := 7062-lb P11:= Totalll Ptl Pdl+ Pll Ptl= 12709-lb Footing Dimensions tf:= 12•in Footing thickness Width:= 42•in Footing width A:= Width2 Footing Area gnet gall —tf•'Yconc net= 1350•psf Pt' Areqd gnet A red = q 9.414 ft 2 < A= 12.25 ft2 GOOD Widthregd Are;, Widthregd = 3.07-ft < Width = 3.50 ft GOOD Ultimate Loads nP.dk:= Pdl+ tf.A•"Yconc 13,:= 1.4-Pd1+ 1.7•P11 Pu= 22.48-kips Pu qu:= A q„= 1.84•ksf Beam Shear bco1:= 5.5•in (4x4 post) d:= tf—2•in := 0.85 b:= Width b =42•in 4 V,:= — fcpsibd Vu= 23.8•kips 3 Vu Qu(b —bcoll b V„= 9.77•kips < Vu= 23.8•kips GOOD I` 2 /I Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5.in Long side column width b,:= 2.(bs + d) + 2-(bL+ d) bo= 62-in pc:= 1.0 ViwNn= + 8 fc•psi•b•d Vn= 71.4•kips (-4 3 3.Oc Vnmax:_ 2.66 fc psi b d Vnmax =47.48-kips , = 9u•[b2 ryy,: —�bcol+ (1)2] Vu= 19.42•kips < Vnmax =47.48•kips GOOD Flexure (b —bcol)2 r11 Mu:= 4u' M,. ).b Mu= 7.43 ft kips \ 2 2 A,:= 0.65 _ b•d 2 S=0.405•ft3 Ft:= 5.0• fc•psi Ft= 162.5•psi Mu ft:= — ft= 127.36•psi< Ft= 162.5•psi GOOD lJse a 3'-6"x 3'-6"x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength ES := 29000-ksi Steel modulus of elasticity lconc 150•pcf Concrete density 'Ysoil:= 100•pcf Soil density clall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 4101.1b Pdl:= Totaldi Totalp:= 5376-lb P11:= Totalll Pt]:= Pd1 + 1311 Pd=9477-lb Footing Dimensions tf:= 10•in Footing thickness Width:= 36-in Footing width • Width2 Footing Area (net gall —tf'"Yconc net= 1375•psf Ptl Areqd (net Areqd =6.892 ft 2 < A=9 ft 2 GOOD Widthrcgd:= rk,7,70 Widthfeqd = 2.63-ft < Width =3.00 ft GOOD Ultimate Loads ArA:= Pdl+ tf'A'"Yconc Pu:= 1.4Pdl+ 1.7•P11 P„= 16.46-kips Pu qu:= A qu= I.83-ksf Beam Shear bcoi 5.5•in (4x4 post) d:= tf—2-in := 0.85 b := Width b = 36-in Vu:_ 43.4 fc•psi•b•d Vu= 16.32-kips 3 Vu:= 9u'(13 — 6,011 b Vu= 6.97•kips < Vn= 16.32•kips GOOD 2 /I Two-Way Shear bs:= 5.5•in Short side column width bL:= 5.5•in Long side column width b0:= 2•(bg + d) + 2•(bL+ d) b0= 54-in 13c:= 1.0 V,U.= 4 + • 8 fc•psibd • • Vu= 48.96-kips C3 3.pc Vnmax 0.2.66• fc psi•b•d Vnmax = 32.56-kips = 9u•[b2—kb„+ d02] Vu= 14.14-kips < Vmnax = 32.56-kips GOOD Flexure 2 Mu 9u•[(b — 6,011 ].(_).b 1Mu= 4.43 ft kips 2 /I A:= 0.65 2 S:= b6 S=0.222•ft3 Ft:= 5.43 f,•psi Ft= 162.5-psi Mu := — ft= 138.42•psi< Ft= 162.5-psi GOOD lJse a 3'-0"x 3'-0"x 10" plain concrete footing 6- d -' (e, Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity "(conc 150•pcf Concrete density '(soil 100-pcf Soil density gall:= 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2515-lb Pdl:= Totaldi Totalll:= 3606-lb P11:= Total11 Ptl PdI+ P11 Ptl= 6121-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area clnet lail –tf'1`conc gnet= 1375-psf Ptl Areqd clue A red = Areqd ft2 < A=6.25 ft2 GOOD Widthregd Aregd Widthregd = 2.11-ft < Width =2.50 ft GOOD Ultimate Loads , := Pdl+ tf'A'"(conc P„:= 1.4-Pd1+ 1.7-P11 Pu= 10.74-kips Pu qu — qu= 1.72•ksf A Beam Shear boot:= 5.5•in (4x4 post) d:= tf—2-in := 0.85 b:= Width b =30-in Vu:_ 3- fu-psi•b•d Vn= 13.6-kips Vu:= qu(b — bco1 I•b Vu= 4.39-kips < Vn= 13.6-kips GOOD 2 J Two-Way Shear bs:= 5.5.in Short side column width bL:= 5.5•in Long side column width bo:= 2•(bs+ d) + 2-(bL+ d) b0= 54-in (lc:= 1.0 V = 4 + 8 0• fu psi b d Vn= 40.8•kips (3 3.00 Vnnax := 0.2.66 fu•psi-b•d Vnmax =27.13-kips qu'[b2 —(bc0 + d)2] Vu= 8.57-kips < Vnmax =27.13-kips GOOD Flexure 2 (b -2 bcot r1l Mu qu- I I — I•b Mu=2.24-ft-kips \ 2 := 0.65 b•d2 S=0.185•ft 3 6 '1:= Ft:= 5.4. fu psi Ft= 162.5-psi ft:= M° ft= 83.98-psi < Ft= 162.5-psi GOOD .Jse a 2'-6"x 2'-6"x 10" plain concrete footing BY \q\ DATE JU` \ I aoio q.ao5�- .aosk PROJECT >, �•�31 s.5 ►t_ RE. n\ T3 - Fran Load a.qs,°"9" 31 91 to \VI qa3's '-1," „ x ∎$ _i(Ty 1C Z -y--�- ` -�- —1, IL / 0 W I } �—►- 0 5�-Q.�S�-----�-1�-� $,?S o ash 1 1 O i o Z Ch-e-c k Ove Our(h Cy Cr Mop = �q ,�v fi .31:_c\/ t � �- 4��5 Cu.) 1�q.a \so�C3.st?Al,s Leo a,gs(i) a,-)1tCc.s> 4- s .se ( --1-) LS' (O, 15o)C3(5„Clt)CI,S)(9) r ;,t-i5( tk.s> .S`a\ f aot 0 = aa �., Lticl \,s 0\c- 13�,Z z X = M _ a4 a,�s~ - ► �,ai : 4,10) e.= .?)s Q av q3 CL -3\--05 U rr °- o = Z = fY • Is r, rse Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:48 AM • Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomeskalcs\Unit B\FDN\Front Load.etz\ M33=81.13[Kip'ft] [ • M33=-23.24[Kip*ft] t 1 X 841,0 rA Bentley- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:49 AM Units system:English File name:O:IHHPR Projects\CEN-Centex Homes(309)ICEN-Plans\CEN-090 Summer Creek Townhomeslcalcs\Unit B1FDN1Front Load 2.etz1 M33=48.59[Kip*ft] M33=-54.65[Kip'ft] A BY Nsq(.....„. DATE: ---30 1.1 3 0 0 Joe No PROJECT: . RE: TracAV toad, ca:ANO 7 E 31 7 ____, ...1, w . -i."x L-)k IV , 0 Li- E I G O w , w O 2 1 44- i E My*P4oc = Q.Nk PI "") 51 .6\ .mCk. Ac-- 31-C." . A- D Z 1.r .... ta ct 6 O , ON k- C 83.44 v46 „ z , 0 z MrtviN = ,V,r. -b) 0 F: unt.v-- r - -54,..10S v_c. - < QiNi N. C -› - 40.04 t.c t, , Z 7 2 21\j\r\ 4•:- Os C\0 L%5S‘ (ak''Cl2.) 2 O a x. AsIt la.532.b , --1 t: 0,c. As= op Latta,az. x3,5 C t. ikte ir 2 O - x d w (0,lo\(•140)000 1 ottY..3oo0Cca:)::7- \ 3\ J _ . • e o 1 0 Mirk = 0.c10(oi 410t„, footorjoyks--1,y)3/4, ) 'To-) CO -0 s e d' o,c_. M= k‘o-lco usi- o,c.42_%I..) tt-s@te ovin .- lo, o( vo-"4-15)((..0,00065- om-liz) 0. ) .z.cl(4-.1. > sl ,-. "irk) -t S" e to" 0,c. ksr..- k ra,ot tol- icaces-X.3o2 N)= 0 c 0 6 -: OM,r, ..z.- 0.c■o c\.20‘)(wiouo-Xis-- ctriltlz..) L.-. a cibs v_c- )53A9...o t = , - = 5 ta" 7,J ,, INevskk‘i t., iramerk, ,= 1 g -1-1- -_:-. &" 1 a a Coilt75-1.441c00") /0,E)C3cr_ernt) _, = ØNNnx 0.q0(o.1465:)(40.0c6)(ts- ... 0‘c_ - By DATE JOB NO. PROJECT: RE. NJ 1T• i3 , C -Rear Looct Z 54,51ok 20UO W -- 0 ¢ • z w ° a Mor = 54 ,53 kFt Me.; DLC ) 4- Z. (4,3'f) t a(V. = 45.34 t°r DL 6101_ t- D,(1.6-0 3(..LL �aD� 1,5 (5q ,53 to DL 1DL = G . 17.(, V-;95 u _ Pqm U) x 1 , 5 f z x = Nt fQ _ `- 4 t ^� CB. '� . a.- - e 0:-r4 F t ia . 1 rn = Q b 1\1) t ! <<�.�>Co.�3� = DSO �s 4 c t U E- o xma -= B - V12 r _ n Bentley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit CIFDN\Rear Load 2.etz1 • M33=36.82[Kip ft] M33=-50.22[Kip'ft] 8.— 1(-k- t X AC1 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 17.00 inches hef= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cm;n= 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor 4= 0.75 strength reduction factor Calculations Calculations ANc= 408 in AN = 1296 in` ANo= 2601 in AN,„= 1296 in` Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Wed,N= 1.00 Ncb= 10,500 pounds Ncb= 55,121 pounds 4,Ncb= 7,875 pounds 4,Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation 010 = 49,216 0.754,Ncb = 36,912 Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc = 3000 psi = 18.00 inches 4) = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4)Nsb = 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc = 3000 psi cp = 0.75 strength reduction factor Calculations Np = 66,000 pounds 4)Np= 49,500 pounds - Steel Yield Strength Givens f, = 58,000 psi A = 0.763 in2 4) = 0.80 strength reduction factor Calculations Ns = 44,254 pounds RNs = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks V\0 ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cm„= 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches Cmin = 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Vc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k = 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact, Calculations Calculations ANc = 68 in` AN = 1296 in ANa= 110.25 in ANo = 1296 in Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 y/ed,N= 1.00 Ncb= 4,399 pounds Ncb= 55,121 pounds 4Ncb = 3,299 pounds +Ntb = 41,341 pounds Combined Capacity of Stem Wall and Foundation ocb = 44,640 0.754 Ncb= 33,480 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi cm;n = 18.00 inches (1? = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 inz fc = 3000 psi = 0.75 strength reduction factor Calculations Np = 51,552 pounds 4)Np = 38,664 pounds Steel Yield Strength Givens ft = 58,000 psi A = 0.606 in2 = 0.80 strength reduction factor Calculations Ns = 35,148 pounds �Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks BY DATE ILA 3 a V JOB No C e ^•r `+ Oi PROJECT: RE: S k-e m V.A11 ' Coo ,03 0 J S;des O F By i lc�r r Z � F• W W O qtr ° asct( 'z. sc)- 300 pLc uico1 ❑ $C1(2 level063 c.:c = a 4b p S►oor J 4o'N (tsopc0('1,7 1112)_ 333 pLP 51-ern c O W (8112_)( 150 pc0(W = 100w PL` 0 W 2 a L.L. o (acC)C2 levels‘")(40 ) = cot-k) pu Sioot- O Q - _ Z Ta{a1 loG tUOu) air f MD\% Sbp . \Soo psi - iSapu- • w 1 118 l + 1 w < `show w lad( ct IS" 0• 0 Z ❑ e cpci i dunk. c;C bu l� r> O 2 a DLo a5 C12-)=. 3cx, pl.F 0- 1k 40),J65oF A px 1117_ )C6112) = 333 pt-F- 51-e Ci1z)C(50 w) = loOw ClS�C 11 psi) Sob - coo f7. L: (012.)(40 1-2.0 p Lc C\¢,, (2s) _ L co PL.: O TL d x343 - 1oOuJ a3y3 r 100w ' ISUQ'u .� . c.,U 1 ,L '=' a 1 \N @ Same cis , locx` 1°adz, TL: k00w (J) =- 1.00 < U S-E?. 1 S @ Paf )vJul1 L. 9 as C\2 (2)= b0) per- wu t I ( 5)(2X13X(2-)= 4110 pLF loot 40‘N(1,50a4)C 112:Xein.)= 5fr l ( I►a)(t50W> w100W LL o (��.z�C 4o L) = 1 2 5 60 c L' r� a6a9 foow W = L ? fl-r us a■I I/V (