Loading...
Plans \5 W° / --Coo 60 RECEIVED MAR 282012 Structural Calculations CITYOFTIGARD BUILDING DIVISIOI` for Schwindt Medical / Dental Office 11445 SW Summerfield Drive Tigard, Oregon Prepared for KASA Architects March 20, 2012 JOB NUMBER: KAS-03 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided ., by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 34 sheets total including this cover sheet. 3kD PROF 9 ...�-- 5 G OREGON v N h ` �Q F EXPIRES:06-30-2012 This Packet of Calculations is Null and Void if Signature above is not Original Harper •'.I:It�'. Houf Peterson 4 Righellis Inc. 205 SE Spokane St. Suite 200 ♦ Portland,OR 97202 ♦ [P] 503.221.1131 ♦ [F]503.221.1171 1 104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1141 ♦ [F] 360.750.1 141 1 133 NW Wall St.Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 ♦ [F] 541.318.1141 97*-4. 10'-0° 87'-4` BT-4- Alh CANOPY ABOVE, Cr TYP. 1 On (..." ‘(. ...a. 0 Nk \ __________,i, -mr-grii-tiA,-.1 6 Lt Ls....,.., ta 4).---. 1 0.r- 0 I ' 4-( AC--irm■■••■•■■ ..... n't Alk Fl c • a \ / -EDI C•4 • , ...A./ -..0 -;--- - -•- N H I 1)- /4( ik Mr 78.-8„ /kali Floor Plan 01 4 8' MIIIM=1.1111..1 . . COMPANY PROJECT di WoodWorks® s„,/14,4 NF IOW W:11. Mar.20,2012 13:14 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load P: Distribution Magnitude Location [ft] Units Start End Start End - Loadl Dead Full Area 55.00 (6.00)* psf Load2 Dead Full Area 15.00 (3.00)* psf Load3 Dead Full Area 18.00(22.00)* psf Load4 _Snow Full Area 25.00(22.00)* -- psf *Tributary Width (ft) MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS(In) : • 0' 7t Dead 2752 2752 Live 1925 1925 Total 4677 4677 Bearing: Load Comb #2 #2 Length 1.78 1.78 PSL, 2.0E, 2900Fb, 3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs. Allowable Stress(psi)and Deflection (in)using NOS 2005: Criterion Analysis Value Design Value Analysis/Desi n Shear fv = 95 Fv' = 328 fv/Fv' = 6.29 Bending(+) fb = 859 Fb' = 3173 fb/Fb' = 0.27 Live Defl'n 0.02 = <L/999 0.23 = L/360 0.08 Total Defl'n 0.06 = <L/999 0.11 = L/800 0.56 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 285 1.15 - 1.00 - - - - 1 .00 - 1.00 2 Nb'+ 2900 1.15 - 1.00 0.952 1.00 - 1.00 1.00 - - 2 ecp' 750 - - 1.00 - - - - 1.00 - - S' 2.0 million - 1.00 - - - - 1.00 - - 2 5min' 1.04 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 -• D+S, V = 4677, V design 3118 lbs Bending(+): LC #2 = D+S, M = 8185 lbs-ft Deflection: LC #2 = D+S EI= 1601e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. • • COMPANY PROJECT 1 WoodWorks`�' .,r 1WARF FOR WOOD DEft GN Mar.20,2012 13:14 b2 Design Check Calculation Sheet Sizer 7.1 - LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full Area 55.00 (6.00)* psf Load2 Dead Full Area 15.00 (3.00)* psf Load3 Dead Full Area 18.00(22.00)* psf Load4 Snow Full Area 25.00(22.00)* psf Load5 Snow Full Area 25.00 (6.50)* psf Load6 Dead Full Area 10.00 (6.50)* _ psf *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : �'- z. �-'fir •+ t Pz " 0 • V .tom ♦ T'. _ 0' Dead 3436 3436 Live 2850 2850 Total 6286 6286 Bearing: Load Comb #2 #2 Length _ 1.60 1.60 PSL,2.0E,2900Fb, 5-114x14" Self-weight of 22.97 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 91 Fv' = 328 fv/Fv' = 0.28 Bending(+) fb - 880 Fb' - 3276 fb/Fb' = 0.27 Live Defl'n 0.03 = <L/999 0.27 = L/360 0.10 Total Defl'n , 0.08 = <L/999 0.12 = L/800 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 285 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2900 1.15 - 1.00 0.982 1.00 - 1.00 1.00 - - 7. .'cp' 750 - - 1.00 - - - - 1.00 - - F,' 2.0 million - 1.00 - - - - 1.00 - 2 Emin' 1.04 million - 1.00 - - - 1.00 - - 2 Shear : LC 12 = D+S, V = 6286, V design 4452 lbs Bending(+) : LC #2 - D+S, M 125'12 lbs- ft Deflection: LC #2 = D+5 EI= 2401e06 lh-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. • 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 10/ COMPANY PROJECT WoodWorks' c lrTW4RF FO*WOOD OFOCN Mar.20,2012 13:16 bit Design Check Calculation Sheet Slier 7.1 LOADS (lbs,psf,or plf) Load Typo Distribution magnitude Location (ft) Units Start End Start End Loadl Dead Full Area 55.00 (6.00)* psf Load2 Dead Full Area 15.00 (3.00)* psf Load3 Dead Full Area 18.00(22.00)* psf Load4 Snow roll Area 25.00(22.00)* psf *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 41 1555 1555 Live 1100 1100 Total 2655 265" Bearing: Load Comb #2 #2 4 Length 1.42_ 1.42 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analys,_:-, Sheaz fv = 88 Fv• = 207 fv/Fv' = 0.4 fb = 745 Fb' = 1127 fb/Fb' - 0.66 Live Defl'n 0.01 - <L/999 0.13 = L/360 0.08 Total Defl'.i 2.03 = <L/999 0.06 = L/800 0.52 ADDITIONAL DATA: FACTORS: F/E CD CM et CL CF Cfu Cr Cfrt Ci en LC# • Fv' 180 1.15 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 0.990 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1 .00 1.00 - - - - 1.00 1.00 - E' 1.6 million 1.00 1.00 - - - - 1.00 1 .00 - 2 Emin' 0.58 million 1.00 1 .00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+S, V - 2655, V design = 1632 lbs Bending(+) : LC #2 = D+S, M = 2655 lbs-it Deflection: LC #2 = D+S EI= 158e06 lb in2/ply Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd-concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC TUC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ": 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT di WoodWorks® Mar.20,2012 13:16 b5 - Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End _Start End Loadl Dead Full Area 55.00 (5.00)" psf •Tributaty Width (ft) MAXIMUM REACTIONS (ibs)and BEARING LENGTHS (in) : b' 191 Dead 2945 2945 Live Total 2945 2945 Bearing: Load Comb #1 #1 Length 0.56 0.56 PSL, 2.0E, 2900Fb,7x16" Self-weight of 35.0 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 34 Fv• = 256 fv/Fv' = 0.13 Bending(+) fb = 562 Fb' = 2529 fb/Fb' = 0.22 Live Defl'n negligible Total Defl'n 0.29 = L/799 0.38 -- L/600 0.75 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 285 0.90 - 1.00 - - - - 1.00 - 1.00 1 Fb'+ 2900 0.90 1.00 1.000 0.97 1.00 1.00 - - 1 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - 1.00 - - 1 Emin' 1.04 million 1.00 - - - 1.00 - - 1 Shear : LC #1 = D only, V = 2945, V design - 2532 lbs Bending(+): LC #1 = D only, M = 13989 lbs-ft Deflection: LC #1 = D only EI= 4779e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D dead L=live S=snow W=wind I--impact C=construction CLd-concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT di WoodWorks° {OFU WAN(FOR WOOD DFS1Gh Mar.20,2012 13:16 DBL top plate check Design Check Calculation Sheet Sizer 7.1 LOADS (lbs.psf,or pif) Lead Type Distribution Magnitude Location 1ft) Units Start End Start End Load) Dead Point 840 0.50 lbs Load2 Snow Point 1050 0.50 lbs MAXIMUM R _ • ► lb :l c = ARING LENGT i - 0• it Dead 422 422 Live 525 52': Total 947 947 Bearing: Load Comb 02 02 Length _ 0.51 0.51 Lumber n-ply,D.Fir-L,No.2,2x6",2-Plys Self-weight of 3.92 plf included in loads; Lateral support:top=at supports,bottom=at supports;Oblique angle 90.0[deg]; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear x x fv = 0 Fv' - 207 fv/Fv' 0.00 y y fv = 86 Fv' = 207 fv/Fv• = 0.42 Biaxial fvx / Fvx' • Ivy / Fvy' = 0.42 Bending1.1 x x fb = 0 Fb' = 1345 fb/Fb' 0.00 y y fb = 1376 Fb• = 1547 fb/Fb' 0.89 Biaxial 3.9-3: fbl/Fbl' fb2/Fb2'/(1-(fb1■FbE)^2) 0.89 Live Defl'n -0.01 = <L/999 0.03 = L/360 0.23 Total Defl'n -0.02 = L/713 0.05 • L/240 n. ;4 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL Cl' Cfu Cr Cfrt Ci Cn LCO Fv' 180 1.15 1.00 1.00 - - - 1.00 1.00 1.00 2 Fvy' 180 1.15 1.00 1.00 - - - 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 2 Fly' 900 1.15 1.00 1.00 1.000 1.300 1.15 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - 1.00 1.00 F,' 1.6 million 1.00 1.00 - - 1.00 1.00 2 Fein' 0.58 million 1.00 1.00 - - - - 1.00 1.00 2 Shear LC 112 = D+S. V = 947, V design = 946 lbs Bending(*): LC 42 = D.S, M = 473 lbs-ft Deflection: LC 02 = DrS HI= 33e06 lb-in2/ply EIy= 5e06 lb-in2 Total Deflection = 1.50IDead Load Deflection) • Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction C1.d concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 3 BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded Where beams are side-loaded,special fastening details may be required 7 COMPANY PROJECT 1 WoodWorks® s OfrW4U(OR WOOD ors,r Mar.20,2012 13:32 Typ Wall Check Design Check Calculation Sheet Sizer 7.1 - LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End Loadl Dead Axial UDL 400 (Ecceatricity = 0.0 in) Load2 _Snow Axial UDL 550 (Eccentricity = 0.0 in) MAXIMUM REACTIONS (lbs): 0' 12' Lumber Stud, D.Fir-L, No.2,2x6" Spaced at 16"c/c;Self-weight of 1.98 plf included in loads; Pinned base;Loadface=width(b);Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld:1.00 x 12.00= 12.00[ft]; Repetitive factor:applied where permitted (refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 156 Fc' - 624 is/Fe' - 0.25 Axial Bearing Cc = 156 Fe" = 1708 fc/Fc' = 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC1I Pc' 1350 1.15 1.00 1.00 0.365 1.100 - - 1.00 1.00 - 2 Fc* 1350 1.15 1.00 1.00 - 1.100 - 1.00 1.00 - 2 Cn = Notch factor as per NDS 3.4.3 Axial : LC 12 = D+S, P = 1289 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: TCC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 8 BV' DATE JOB NO: Or 3/eXe2". PROJECT: RE: rpy) rl "� z f 2, rs / 69 e_r- IJ o /f e, 414604.14 .6,d U / /, tzs- I � ❑ LG r, Sd 020,,\+- � GQ s u o Z u — Gy✓� .2 a 1 z.: q. -- q, 1-/ e&f-1 -) )/ /-6 " 0 Peer Ind / �ss�/ , / (I), 71 e�11 � 17 Lod : 2S, rle 2sI! mil:c e & Conterminous 48 States 2005 ASCE 7 Standard Latitude=45.40437 Longitude=-122.79537 Spectral Response Accelerations Ss and S1 Ss and S1= Mapped Spectral Acceleration Values Site Class B- Fa= 1.0,Fv= 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.914 (Ss,Site Class B) 1.0 0.332 (S1,Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude=45.40437 Longitude=-122.79537 Spectral Response Accelerations SMs and SM1 SMs= FaxSs and SM1 = FvxS1 Site Class D- Fa = 1.134,Fv= 1.735 Period Sa (sec) (g) 0.2 1.036 (SMs, Site Class D) 1.0 0.577 (SM1,Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude=45.40437 Longitude=-122.79537 Design Spectral Response Accelerations SDs and SD1 SDs=2/3x SMs and SD1= 2/3xSM1 Site Class D- Fa = 1.134,Fv= 1.735 Period Sa (sec) (g) 0.2 0.691 (SDs, Site Class D) 1.0 0.384 (SD1, Site Class D) /� Harper Project: Dental Office HP I. Houf Peterson Client: KASAArchitects Job# KAS-03 Righellis Inc. Designer: JAS Date: 01/17/2012 Pg.# DESIGN CRITERIA 2010 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing Wall Dead Load EX_WallWt:= 15.psf Without Veneer RPL:= 1.5•psf Plywood RRF:= 8 psf Roofing EX_WallVwt= 65•psf� RME:= 1.5•psf Mech&Elec Windowwt:= 10•psf RMS:= 3-psf Misc RCG := 2.5•psf Ceiling Roof Live Load RI I : .25.1),,I RIN:= 1•psf Insulation 1 RPR:= 7.5•psf Partitions SSG t—fon:Kt"e l L V c -err t Ced RDL=27.5-psf D L = SST ILD"�G C �;�� b = �{a Ps F KA•x� Transverse Seismic Forces Site Class—D Design Catagory=D Building Occupancy Category:11 Weight of Structure In Transverse Direction Roof Weight Roof Area:= 4100•ft2 RFw-r:= RDL•Roof Area RFwT= 112750.lb Wall Weight EX Wall Area:= 330ft2 Window Area:= 260.ft2 EX WalIV Area:= 1520•fe WALLwT EX_Wal1Wt-EX_Wall_Area+ Windowwt Window_Area -4- EX_Wa1lVm•EX_WaIlV_Area WALLWT= 106350.lb WTTOTAL=219100 lb 1� Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 12 Mean Height Of Roof I,:= 1 Component Importance Factor (115,ASCE 7-08) ' ,:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:_ .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct.(hn1 lx Ta=0.13 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.332 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss:= 0.914 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(l)&(2) Fa:= 1.134 Ace-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F„:= 1.735 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) SMS Fa.S, SMS= 1.036 (EQU 11.41,ASCE 7-05) Sds 2 3MS Sds=0.691 (EQU 1 1.43,ASCE 7-05) SM1 FvS1 SM1 =0.576 (EQU 11.4-2,ASCE 7-05) 2•SM1 Shc := 3 Sd1 =0.384 (EQU 11.44,ASCE 7-05) C Sds'Ie st: Cst=0.106 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Csmax:= Shc'le Csma„=0.458 (EQ U 12.8-3 ASCE 7-OS) Ta R ...and shall not be less then... C1 := if(0.044•Sds•le<0.01,0.01,0.044Sds•Ie) ( 0.5•S1 Iel (EQU 12.8-5&6,ASCE 7-05) C2:= if S1 <0.6,0.01, J R Csmin:= if(Ci >C2,C1,C2) Cs,,,;,,=0.03 Cs:= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs=0.106 ,,:- CS•WTTOTAL V=23291 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E= 16304 lb (Allowable Stress) ---- 12 Longitudinal Seismic Forces Weight of Structure In Longitudinal Direction Roof Weight o A e := 4100112 ,guJ04Tni= RDLRoof Area RFw1= 112750•lb Wall Weight Soft 2 Wig pw,Aiu c = 95.ft 2 FNCww a11 = 800•ft2 NULtaiv:= EX_Wa11 .EX_Wall_Area+ Window,,,i•WindowArea+ EX_WallV,,,1•EX_WallV_Area WALLWT=54150-lb WTTOTAL= 166900 lb Aydv:= CS•WTTOTAL V= 177421b (EQU 12.8-1,ASCE 7-05) = V•0.7 E= 12420 lb (Allowable Stress) • Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II I,,,:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn= 12 Mean Roof Height X:= 1.0 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller of... a2:= 2•.1.43•ft Zone A&B Horizontal Length a2—8.6 e ft (Fig 6-2 note 10,ASCE 7-05) or _ .4•hn•2•ft a2=9.6 ft but not less than... a2min:= 3.2•ft a2min=6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 15.9•psf Pnet7A1e0 := —8.2•psf PnetZOnec := 10.5•psf Pnet7OneD:_ —4.9•psf Vertical PnetZOneE —19.1-psf Pnetw„F —10.8-psf PnetzoneG:_ —13.3-psf Pnett0,, i1 := —8.4•psf Basic Wind Force PA:= PnctzoneA'Iw'X PA= 15.9•psf Wall IIWC P Pnct. I X P —8.2.psf Roof HWC B:= ioncg' w' B=— P Pc:= Pnetumec1w•X PC= 10.5•psf Wall Typical PD:= Pnctzo„D•IW X Pp=—4.9•psf Roof Typical PE:= Pnetzoneg•Iw•X PE=—19.1•psf PF:= PnetzOncF'Iw'X PF=—10.8.psf PG:= Pnet,O„eG•1w•X PG=—13.3•psf PH:= PnetzoneH.L.X PH=—8.4•psf Determine Wind Sail in Transverse Direction WSAILzOneA:= 95•ft2 WSA1LeE:= 165•ft2 WSAILzo1eg:= 0.ft2 WSAIL eF:= 30.112 WSAILLOneC:= 1025.112 WSAILy,O„c6:= 1690.112 WSAILz„1eD:= 0.n2 WSAILz ii:= 2215.112 WA:= WSAILZCA•PA WA= 1511 lb Wg:= WSAILReg•Pg Wg= 0 WC:= WSAILz„,,,c.PC WC= 10762 lb WD:= WSAILzoneD'PD Wg=0 Wind_Force:= WA+ Wg + WC+ WD Wind Forccm;n:= 10•psf•(WSAILzon,,A+ WSAIL2eg+ WSAIL ec+ WSAILzateD) Wind_Force= 12273 lb4— Wind_Forcem;n= 11200 lb WE:= WSAILzOncE.Pa WE=—3152 lb WE:= WSAILzonEF•PF WF=—324 lb WG:= WSA1LLonou'Pc, WG=—22477 lb WH:= WSAILzoneH•PH WH=—18606 lb Upli11fe1:= WF+ WG+ WE 4 Wu+ I5psf•(WSAILzoneF+ WSAILzoeH + WSAILzoneE+ WSAILz,eeG)•.6 Upli11„e�=—7659 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Determine Wind Sail In Longitudinal Direction MAILmosAv:= 95•ft2 MAIlkw4)- 415.ft2 4, nVa vakki= O'ft2 , SAaveR,= 3'ft2 Maloi.9 = 385-ft2 A,,, 17.904,1,1,,:= 1415•ft2 X. oa ' 0-ft2 fir/44.1,,:= 1970•ft2 • = WSAILLoneA-PA WA= 1511 lb , := WSAILLooeg•PH Ws= • WSAILz„„c-PC WC=4042 lb , := WSAILLonen-PD Wo=0 Maii.101:= WA+ Ws+ WG+ WD 2irot a 4,:= 10•psf•(WSAIL,, + WSAILLoney+ WSAILz„o;+ WSAILzoneo) Wind_Force= 5553 lb Wind_Forcemin=4800 lb Xivi= WSAILzoneE'PF. WF=-7926 lb , y:= WSAILzoneF-PF WI - -3240 lb yck:= WSAILz„,G•PG W,; -18820 lb := WSAILzoney•PH _-16548 lb a1 := WF+ W6+ WE+ WH+ 15psf•(WSAILZon0F+ WSAILLoneil + WSAILzoneE+ WSAILzonaG)'.6 Uplift„„,=-9634 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 1� Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCL?7-05 Transrere Shearwalls Line Load Controlled By: Wind Shear H L Wall Il/L Line Load Dead V Panel Shear Panel Mo Mr, I Panel Lgth. From Roof Load Sides Factor Type (ft) (ft) (fl) ht k (MI) (plf) r(' k) (ft-k) (k) 1 12 24.50 24.50 0.49 OK 12.00 6.14 _ 0.30 250 Single 1.40 1 73.64 90.79 0.80 2 12 17.30 17.30 0.69 OK 12.00 6.14 0.30 355 Single 1.40 I I 73.64 45.27 2.77 12 7.50 14.25 1.60 ox 12.00 6.14 0.30 431 Single 1.40 1I 38.76 8.51 4.81 4 12 6.75 14.25 1.78 ox 12.00 6.14 _ 0,30 431 Single.. 1.40 , 11 34.88_ 6.89 4.92 5 11 3.25 6.50 3.38 ox 11.00 0.30 _ 0 Single, 1.40 I 0.00 1.60 -0.35 6 _ 11 3.25 6.50 _3.38 OK 11.00 0.30 0 _Single 1.40 I 0.00 1.60 0.35 Spreadsheet Column Definitions &Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For ilL>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) /� Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 T Transvere Shea rival' Line Load Controlled By Seismic Shear IT L Wall II/L Line Load I Dead V Rho"V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (fl) ht k (kV) (plf) (plf) (ft-k) (ft-k) (k) 1 12 24.50 _24.50 0.49 ox 12.00 0.82 0.70 33 33 NA 4.08 Single 1.00 1 9.78 209.64 -4.83 2 12 17.30 17.30 0.69_ ox 12.00 8.13 0.70 470 470 NA 2.118 Single 1.00 IV 97.55 104.53 2.07 3 12 7.50 14.25 1.60 ox 12.00 7.32 0,70 513 , 513 0.31 1.25 Single 1.00 IV 46.21 19.65 4.92 4 12 6.75 14.25 1.78 ox 12.00 7.32 0.70 513 513 0.28 1.13 Single 1.00 1V 41.59 15.91 5.13 5 11 3.25 6.50 3.38 on 11.00 0.82 0.37 126 126 0.13 0.59 Single 0.59 I 4.51 195 1.21 6 11 3.25 6.50 3.38 on 11.00 0.82 037_ 126 126 - 0.13 0.59 Single 0.59 I _ 4.51 _ 1.98 _ 1.21 $ho Calculation Does the main floor shearwalls resist more than 35%of the total Transverse base shear? Yes Total Main Floor Wall Length= 1450 Total#Main Floor Bays= 1051 Arc 2 bays minimum present along each wall line? Yeo:: Rho= 1.0 Spreadsheet Column Definitions&Formulas L_Shear Panel Length H=Shear Panel Height Wall Length_Sum of Shear Panels Lengths in Shear Line H/L Ratio=flight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) 0 Bays=2'lH Shear Factor-Adjustment For II/L.>2:1 Mo(Overturning Moment)=Wall Shear Shear Application ht Mr(Resisting Moment)=Dead Load*1,2*0.5*(.6 wind or.9 seismic) Uplift T (Mo-Mr)I(1.-6 in) • • t / 7 Harper Houf Peterson Righellis Pg#: __ SHEAR WALL SUMMARY' Transvere Shearwalls Panel NN'alI Shear Wall Type Good For Uplift Simpson Iloldo++n Good For V (plf) (III) (1b) (II)) 250 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 799 Simpson None 0 2 470 1/2"APA Rated Plyw'd w/8d Nails(4 12/12 595 2767 Simpson I ll)Q8 w DF 9230 3 ■13 1/2"APA Rated Plyw'd w/8d Nails(t@ 2/12 595 4918 Simpson 119Q8 w DF 9230 4 513 1/2"APA Rated Plyw'd w/8d Nails P,2/12 595 _ 5127 _ Simpson HDQ8 w DF 9230 126 1/2"APA Rated Plyw'd w/8d Nails(a)6/12 143 1208 Simpson 11DQ8 w l)F 9230 r. 126 _1/2"APA Rated Plyw'd w/8d Nails(a;6/12 143 1208 _ Simpson 11DQ8 w DF 9230 NOTE 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /( Harper Hoof Peterson Righerlis Pg »� Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Dead V Pancl Shear Panel M0 MR T Jpl : • Panel Lgth. From Roof Load Sides Factor Type (ft) (ft) (ft) ht k (ldf) (plf) (ft-k) (ft-k) (k) 7 12 7.25 39.67 1.66 on 12.00 2.78 0.30 70 Single 1.40 I 6.09 7.95 0.20 8 12 9.75 39.67 1.23 ox_12.00 2.78 0.30 70 Single 1.40 I 8.19 14.38 -0.05 - 9 12 13.00 39.67 0.92 ox 12.00, 2. 78 0.30 70 Single 1.40 I 10.92 25.56 -0.35 10 12 9.67 39.67 1.24 ox 12.00 2.78 0.30 70 Single 1.40 i , 8.12 14.14 -0.04 11 12 7.00 24.75 1.71 on 12.00 2.78 0.30 112 Single 1.40 I 9.42 7.41 0.77 12 12 5.75 24.75 2.09 ox 12.00 2.78 0.30 112 Simile 1.40 I 7.74 5.00 0.90 13 12 6.00 24.75 2.00 ox 12.00 2.78 0.30 112 Single 1.40 I 8.08 5.45 0.87 14 12 6.00 24.75 2.00 ox 12.00 2.78 0.30 _ 112 Single 1.40 1 8.08 5.45 - 0.87 Spreadsheet Column Definitions&Formulas L=Shear Panel Length II=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line I I/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*LZ*0.5*(.6 wind or.9 seismic) l Iplift T=(Mo-Mr)/(L-6 in) Harper Houl Peterson Righellis Pg 9 Shearwall Analysis Based on the ASCII 7-05 Lonoltudiaal Shearwa is Line Load Controlled By: Seismic Shur 11 L Well Ii/L Line Lo ul Dead V Rho•V %Story * Panel - Shear Panel Mo Ma Upliii Panel Lgth. From Roof Load Strength Hays Sides Factor Type T (it) (ft) (ft) lit k (klt) (plf) (plf) (ft-k) (ft-k) (k) 7 12 7.25 39.67 1.66 ox 12.00 6.21 0.37 157 157 1.00 1.21 Single 1.00 I 13.62 9.84 1.14 8 12 9.75 39.67 1.23 ox 12.00 6,21 0.37 157 157 1.34 1.43 Single , 1.00 I 18.32 17.80 0.83 _ 9 12 13.00 39.67 0.92 ox 12.00 6.21 0.37 157 157 NA 2.17 Single 1,00 I 24.42 31.65 0.43 10 12 9.67 _39.67 L24 ox 12.00 6.21 0.37 157 157 1.33 1.61 , Single 1.00 I 18.17 17.51 0.84 11 12 7.00 24,75 1.71 ox 12.00 6.21 0.37 251 251 0.97 1.17 Single L00 1I 21.08 9.18 2.40 12 12 5.75 24.75 2.09 ox 12.00 6.21 0.37 251 2.51 0.79 0.96 Siutde 0.96 II 17.31 6.19 2.59 13 12 6.00 24.75 2.110 ox 12.00 6.21 0.37 251 251 0.83 1.00 Single 1.00 II 18.07 6.74 2.55 14 12 6.110 24.75 2.00 OK 12.00 6.21 037 251 251 . 0.83 1.10 _ Single 1.00 n 1 R.07 6.74 2 55 jtho Calculation Does the upper floor shearwalls resist more than 35%of the total longitudinal base she. Yes Total Lower Moor Wall Length- 915 Total 8 Lower Fluor Hays= Are 2 bays minimum present along each wall line? kiss Lower Flour Rho- t.r Spreadsheet Column Definitions&Formulas 1.=Shear Panel Length H-Shear Panel Height Wall Length-Sum of Shear Panels Lengths in Shear Line H/L Ratio-Hight to Width Ratio Check V(Panel Shear)=Sum of Line l.oad'Rhu/Total L Story Strength=1./Total Story L. (Required tin walls with IUI.>1.0,for use in Rho cher RBays=2.1AI Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear'Shear Application ht Mr(Resisting Moment)=Dead Load*e•0.5•(.6 wind ur It seismic) Uplift'I'-(Mo-Mr)I(L-6 in) • • Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY Longitudinal Shearwalls • Panel WaU Shear Wall Type - Good For Uplift Simpson Holdown Good For V(l (Ii lb lb 7 157 1/2"APA Rated Plyw'd w/8d Nails a 6/12 242 1143 Simpson IIDU2 3075 8 157 1/2"APA Rated Plyw'd wl 8d Nails g 6/12 242 825 Simpson I IDU2 3075 9 157 1/2"APA Rated Plyw'd w/8d Nails a,6/12 242 435 Simpson IIDU2 3075 10 157 1/2"APA Rated Plyw'd w/8d Nails AL),6/12 242 835 Simpson I ID112 3075 11 251 1/2"APA Rated Plyw'd w/8d Nails a 4/12 353 2396 Simpson HD112 3075 12 251 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 2590 Simpson IIDU2 3075 13 251 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 353 2549 Simpson HDIJ2 3075 14 251 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 353 2549 Simpson I IDU2 3075 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. . 21 • s Orr � S1 60nrLe cf. /1 ci &fit Ue(�e 'r Wd1:- 65.12.1.5•ft•8•ft ft 6)o+ ". 64*.' Seismic Forces Site Class =D Design Catagory=D Wp Wdl Ip:_ 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 0.332 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss•= 0.914 Max EQ, 5% damped, spectral responce acceleration at short period z:= 16 Height of Component h:= 16 Mean Height Of Roof Fa 1.134 Acc-based site coefficient @ .3 s-period Fes:= 1.735 Vel-based site coefficient @ 1 s-period Sms:— Fa.Ss Smi := FvSi 2.Sms Sds:= Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 Rp:= 1.5 (Table 13.5-1,ASCE 7-05) .4a p•Sds Ip z l F :_ P Rp 1 + 2•h •Wp EQU. 13.3-1 Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin .3.Sds'Ip.Wp EQU. 13.3-3 Fes:= if(Fp> Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp y' Fp=431.174.1 Miniumum Vertical Force / (', r 0.2•S ds•W dl= 107.7935.lb F tip d I e( • Tar (v1.ect,i, := 750 lb Wdl Seismic Forces Site Class =D Design Catagory=D Wp Wdl 1p:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.332 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss:= 0.914 Max EQ, 5% damped, spectral responce acceleration at short period z:= 16 Height of Component h := 16 Mean Height Of Roof Fa:= 1.134 Acc-based site coefficient @ .3 s-period Fv:= 1.735 Vel-based site coefficient @ 1 s-period Sms:= Fa•SS Sml Fv.S1 2•Sms Sds:= 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections ap:= 2.5 Rp:= 6.0 (Table 13.5-1,ASCE 7-05) • .4ap•Sds'lp F P (l + 2-Z h)•Wp EQU. 13.3-1 Fpmax•= 1.6•Sds•lp•Wp EQU. 13.3-2 Fpmin •3-Sds•lp.Wp EQU. 13.3-3 Fes= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin°Fpmin,Fp)) Fp= 259.119.11, Miniumum Vertical Force 0.2•Sds•Wdl = 103.6476.1b e'er g De Cyr\ Wdl•= 8• lb •I9•ft•7•ft ft2 Seismic Forces Site Class =D Design Catagory=D Wp•— Wdl 1p:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.332 Max EQ, 5% damped, spectral responce acceleration of 1 sec. SS:= 0.914 Max EQ, 5% damped, spectral responce acceleration at short period z:= 8.5 Height of Component h:= 16 Mean Height Of Roof Fa:= 1.134 Acc-based site coefficient @ .3 s-period Fv:= 1.735 Vel-based site coefficient @ 1 s-period Sins:= Fa•Ss Sml := FvS1 2•Sms Sds:= Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 Rp := 1.5 (Table 13.5-1,ASCE 7-05) 4a •Sds•1 / Fp := p� p• I 1 + hJ Wp EQU. 13.3-1 Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin •3'Sds'lp'Wp EQU. 13.3-3 hkP,^= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin.Fpmin,l•p)) Fp =404.3638•lb T ro, e) )( 1,mv-ii 1 � / /77 / .... a4.( BY�/\ DA / ? / J08 N) 4-..c —4.r PROJECT: • RE. 6 ( Fal //e.1-141-- -/4 1 II 4r / ,42 3 f .....-x L1 0 _I g [6.-', .,...„ //o W L' z 4 U Z O U of40) ?Q i L /. Z X 0 . .e9 i663 hO. 7dk /.0 P4,) t v U s z 6 a ! c. 7 3 r+1, x - q V i ( 5 1 1 &. P5.; • . . . ;, xVaa F,- 4* • I COMPANY PROJECT di WoodWo rks® S')f 1 44WF IC•* Mar.20,2012 13:33 c and c (e."(ul`^-^ Design Check Calculation Sheet Sizer 7.1 - LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft) :nits Start End Start End Loadl Wind Full Area 16.00 (8.00)* psf Load2 Dead Axial 3168 (Eccentricity = 0.00 in) Load3 Snow Axial 4400 (Eccentricity = 0.0# in) Load4 Dead Axial 2640 (Eccentricity = 0.00 in) *Tributary Width (ft) MAXIMUM REACTIONS(Ibs): 0' 12' Dead rive 768 768 Total '108 768 PSL, 2.0E,2900Fb, 5-1/4x5-1/2" Self-weight of 9.02 plf included in loads; Pinned base;Loadface=width(b);Ke x Lb:1.00 x 12.00= 12.00[ft];Ke x Ld: 1.00 x 12.00=12.00(ft];Lateral support:top=Lb,bottom=Lb; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 40 Fv' 456 fv/Fv' = 0.09 Bending(+) fb = 1045 Fb' = 4990 fb/Fb' = 0.21 Axial fc = 357 Fc' = 1081 fc/Fc' = 0.33 Axial Bearing fc = 357 Fc* 3335 fc/Fc* = 0.11 Combined (axis: compression + s_de load bending) Eq.3.9 3 = 0.30 • Live Defl'n 0.41 = L/351 0.80 = 1./180 0.51 Total Defl'n 0.41 L/351 0.60 = L/240 0.68 ADDITIONAL DATA: FACTORS: F/E CD CM et CL/CP CV Cfu Cr Cfrt CF LC# Fv' 285 1.60 - 1.00 - - - - 1.00 - 4 Fb'+ 2900 1.60 - 1.00 0.987 1.09 - 1.00 1.00 - 4 Fc' 2900 1.15 - 1.00 0.324 - - - 1.00 - 2 Fc'comb 2900 1.60 - - 0.237 - - - - - 3 E' 2.0 million 1.00 - - - 1.00 4 Emin' 1.04 million - 1.00 - - - 1.00 - 4 Fc* 2900 1.15 - 1.00 - - - 1.00 2 Shear : LC #4 - .6D+W, V = 768, V design = 768 lbs Bending(+) : LC #4 = .6D+W, M = 2304 lbs-ft Deflection: LC #4 _ .6D+W EI= 146006 lb in2 Total Deflection = 1.50(Dead Load Deflection) i Live Load Deflection. Axial : LC #2 = D45, P -= 10316 lbs Combined : LC #3 = D+.75(S+W); (1 - fc/FcE) - 0.74 (D=dead I,=live S=snow W=wind 1=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1,Please verify that the default deflection limits are appropriate for your application. 2.SCL-Columns(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. COMPANY PROJECT 1 WoodWorks® s••n•t.r.r Mp w:,•x,n„r.� Mar.20,2012 13:33 Wall C&C Design Check Calculation Sheet • Sizer 7.1 LOADS (lbs,psf,or pit) Load Type Distribution Magnitude Location [ft] Units _ Start End Start End Loads Dead Axial UDL 400 (Eccentricity = 0.00 in) Load2 Snow Axial UDL 550 (Eccentricity = 0.00 in) Load3 Wind Pull Area _ 20.00 (8.0)* _ psf *Tributary Width tin) MAXIMUM REACTIONS (lbs): 0' 16 Dead Live 107 P7 Total 107 IUD Lumber Stud, D.Fir-L, No.2,2x6" )Spaced at 8"c/c;Self-weight of 1.96 plf included in loads; Pinned base;Loadface=width(b);Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld:1.00 x 16.00= 16.00[ft];Lateral support:top=Lb,bottom=Lb; Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear £v = 19 Fv' = 288 fv/Fv' - 0.07 Bending(+) fb = 677 Fb' = 2153 fb/Fb' = 0.31 Axial fc = 81 Fc' = 371 fc/Fc' = 0.22 Combined eda(axi fc = or Fc* = bending) f3.93 = 0.05 Combined (axia_ compression + s_de load bending) Eq.3.9-3 = 0.34 • Live Defl'n 0.59 L/324 1 .07 -. L/180 0.55 Total Defl'n 0.59 = L/324 0.80 = L/240 0.74 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Ctu Cr Cfrt Ci Cn LC# Fv' 180 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 900 1.10 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 4 Fcp' 625 1.00 1.00 - - - - 1.00 1.00 - - Fc' 1350 1.15 1.00 1.00 0.217 1.100 - - 1.00 1.00 - 2 Fc'comb 1350 1.60 - - 0.159 - - - - - 4 E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Fain 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Fc* 1350 1 .15 1.00 1.00 1.100 - - 1.00 1.00 - 2 Shear : LC #4 = .60+W, V 107, V design = 107 lbs Bending(+) : LC 14 = .6D+W, M = 427 lbs-ft Deflection: LC 14 = .60+W Ei= 33e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Axial : T,C #2 - D+S, P - 665 lbs Combined : LC #4 = .6D+W; (1 - fc/FcE) = 0.94 (D=dead L=live 5=snow W-wind 1=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: 1CC-IOC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. • 27 2C ys 5-5-1 s(2 )(9f1/1- iL //(1 ) 1 MO '/ i/il -7 i9 ( ' x rd612 1/1j i mfr �s09/ # b o/ /07,5 _5- -%) 5Ay -)./.5eia ,Fele '5/ 4. ----- s/ ".5 '4V L50-e, 3-7s-tl fYf� 19 g b 'I -fe°71 r v: 09 -7 .s ems 3a •Io road ox • i I 0 ° II Z 2 n 0 O 3 U m 3 3 0 m -1 0 n m n 080032:1 NOIIVDINfV OJ Harper '• P'• Houf Peterson Righellis Inc. To] FROM 0 MEMO TO FILE E ^NGIN-vS■ LAk. APL A4CM1 Tf CT 9,�u C�R'•k TOaL PHONE NO.: PHONE CALL:G MEETING: X 11 r x 11 > Css In 11/2-7-4 C.. i t 1 1 vij . ).-\ 4— w 1 ke) 1 ..'i : q 1 O DATE. JOB NO OF ■ .i4 641 /? /1S "e2 --1-' PaoJrcr. ej RE- `... YY'. .i Wt 4 .,_ � YV" s! r El Li Itjw 0 . Z U/ 1. = J ..-s.74-- ._ „, O f 4n i /O U ,. . c, 1) t- .1.: -vi-,s i eli. 1./ — 24 .:-,-.2, 1 7. O ` f a U Z E, -1 U ❑ C: f / 'K' 1-1 6 , ,L_.t_t_4___._c_:_4, 0 . .0 cier,q-i\"(5, 076/e,_. E__ a- ( e t' -" c)-.(c__ _/)9/)(i/4 - - 3 --a G.G. £ t ± (/" cG L. 4xi ( _Pn ) , t c t/ox 1(X c..) = (K•" .. 1 ) i )C. / r L.: • /7" /4-71— cu ,5 - V 6, - P )r 0 S)6c5 4,xx !/ i> „,_ _ M/s/ T X4.5 _ , /�_S ,,' * . v,,k t /j I o a4 to _ A --/A1 Y ( A, - / As -' ;°1 JOB NO " t+-C O /16//...) /09-s — PROJECT: I{ RE' G-L T r e(eit D5r :❑ ❑ • J Z W at L ��- � 0 W ❑ / � W U Z u1 O ac 0 (Je— leiT- 0,4 4F *leiet &C) 14- De Ity f ; Ll o q114- 17k^W / h f-Z 1 . D ?r -4; � sfn a) e ql 1°° # .74 B zsc''> ese, �. a xxa 4> 1 C Bentleys Microsoft Current Date:3/2012012 1:47 PM Units system:English File name:O:IHHPR Projects\KAS-KASA Architects\KAS-03-Tigard Pediatric Dentist Officelcalcs\canopy.etzl De r\ Cosr‘o CokArif t 1" °'",-S+- N. X .. .. rda Bentley Microsoft Current Date:3/20/2012 1:47 PM • Units system:English File name:0:\HHPR Projects\KAS-KASA Architects\KAS-03-Tigard Pediatric Dentist Office\calcs\canopy.etz\ . Steel Code Check Report: Summary-For all selected load conditions Load conditions to be included in design: idO=DL id1=DL+S Description Section Member Ctrl Eq. Ratio Status Reference C vats 1 id°at 50.00% 0.02 OK Eq.H1-lb idl at 50.00% 0.07 OK Eq.H1-1b 2 id0 at 56.25% 0.01 OK Eq.H1-lb id1 at 81.25% 0.02 OK Eq.H1-lb 3 id0 at 43.75% 0.01 OK Eq.H1-lb id1 at 18.75% 0.02 OK Eq.H1-lb 4 id0 at 50.00% 0.02 OK Eq.H1-lb id1 at 50.00% 0.06 OK Eq.Hl-lb 5 id0 at 100.00% 0.01 OK Eq.H1-lb id1 at 100.00% 0.01 OK Eq.H1-lb • 6 idO at 0.00% 0.01 OK Eq.H1-lb id1 at 0.00% 0.01 OK Eq.H1-lb 10 id0 at 50.00% 0.04 OK „.„..V..:- Eq.H1-lb idl at 50.00% 0.12 OK - Eq.H1-lb HSS_SQR 3X3X1_4 11 id0 at 50.00% 0.06 OK Eq.H1-lb idl at 50.00% 0.20 OK Eq.H1-lb 12 id0 at 50.00% 0.06 OK doe" Eq.H1-lb id1 at 50.00% 0.20 OK f..."- Eq.HI-lb 13 id°at 50.00% 0.04 OK Eq.H1-lb idl at 50.00% 0.18 OK Eq.H1-lb 14 id0 at 50.00% 0.04 OK Eq.H1-lb id1 at 50.00% 0.18 OK Eq.H1-lb 15 id0 at 50.00% 0.04 OK Eq.H1-lb idl at 50.00% 0.11 OK Eq.H1-lb 16 id0 at 50.00% 0.04 OK Eq.Hl-lb Idl at 50.00% 0.11 OK Eq.H1-lb RndBar 1_2 7 id0 at 50.00% 0.16 OK Eq.H1-lb • id1 at 50.00% 0.36 OK Eq.H1-la 8 id0 at 50.00% 0.20 OK 6 Eq.H1-1b id1 at 50.00% 0.54 OK Eq.H1-1a 9 Id°at 50.00% 0.16 OK Eq.Hl-lb id1 at 50.00% 0.36 OK Eq.H1-la Pagel ... 3 G 4 i Wd1:= 8.-lb •18•ft•6•ft 5-( '� ft2 • Seismic Forces Site Class =D Design Category=D Wp• Wdl Ip;- 1,0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) Si := 0.332 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss:= 0.914 Max EQ, 5% damped, spectral responce acceleration at short period z:= 8.5 Height of Component h:- 16 Mean Height Of Roof Fa:- 1.134 Acc-based site coefficient @ .3 s-period Fv:= 1.735 Vel-based site coefficient @ 1 s-period Sms : Fa•Ss Sm1 :- Fv'S1 2Sms Sds 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections ap := 2.5 Rp:= 2.5 (Table 13.5-1,ASCE 7-05) .4ap'Sds'In ( F := RP •\1 + 2•hJ•Wp EQU. 13.3-1 Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:- •3.Sds'lp.Wp EQU. 13.3-3 := if(Fp >Fpmax,Fpmax,if(Fp < Fpinin,Fpmin'Fp)) F = 492.5334•lb Miniumum Vertical Force 0•2•Sds Wdl_ 119.402•lb 61/"`e-CL / - S161— //9 - / / •