Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
f RECEIVED GROUP APR242013 -47T A C K E N Z I E I CITY OF TIGARD BUILDING DIVISION 1515 SE Water Ave#100 / PO Box 14310 Portland,OR 97293 Tel:503.224.9560 Net:info@grpmack.com Fax:503.228.1285 STRUCTURAL CALCULATIONS TuR .t LaCie Tenant Improvement /� Oy Permit 2 Or Tigard, OR �OREGON c j Fe. 8 Z°o 'er � PROJECT NUMBER: 2130079.00 ,q D. wit April 22, 2013 I EXPIMES: 12/31/1 , I Loading 1 - 3 New Openings 4 - 13 Panel Footing 14 - 15 Mezzanine SMT 2-Zt3° aD 16 - 28 Mech Unit ... P22®. {3:- R'0 29 - 33 City of Tigard Appiroyed Plans Date 3 OFFICE COPY The attached calculations verify that the addition of new exterior openings meet the requirements of OSSC Chapter 34, where required HSS strong backs are added to resist the out-of-plane loads. New footings are shown to accommodate lower grades at the dock door panel, and the mezzanine framing and shear wall was improved for new openings along the North wall. Note that a separate permit is being issued for the exterior man doors. t. t It GROUP RiverEast Center 1 1515 SE WaterAve. -PO BOX 14310 AC K E N Z I E I TEL(5L0A)224 95 0 0-FAX(503)228-1285 LOADING PROJECT NAME: Lacie TI PROJECT NO.: 2130079.00 DESIGNER: DBL G ROOF SNOW LOAD pg:= 15•psf Basic ground snow load Pdmin 20•psf Required minimum design snow load TC:= "B" Terrain (exposure)category Ce:= 1.0 Snow exposure factor Ct:= 1.0 Thermal factor is:= 1.0 Importance factor for snow • Calculated flat roof snow load p'f:= 0.7-CeCt•IS•ps p'f= 10.5•psf Pf:= P'f if P'f>Pdmin pf=20.0 psf Pdmin otherwise Rain-on-snow surcharge load Prs 0•psf if pf?25•psf Ns=5•psf 5.psf otherwise Basic design roof snow load Pr Pf+ Prs Pr=25-psf 1 Y l ROOF DEAD LOAD ROOFING R:= 2.5•psf Built up INSUL I:= 1.2•psf 6" Batt + 6" Batt in Suspended Ceiling DECK D:= 1.5•psf 1/2" plywood FIREPROOFING FP:= 0•psf JOIST J:= 2.6•psf 6x16 @ 8' o.c. GIRDER G:= 1.9•psf 6 3/4 x —31.5 (avg) GLB @ 24'o.c. SUBPURLI NS SP:= 0.7-psf 2x4 @ 24" o.c. LIGHTS L:= I•psf MECH M:= 1.5•psf SPRINK S:= 0•psf CEILING C:= 3.2•psf 2x4 @ 24", 2x6 @ 8', 1/2" GYP MISC MI:= 1.0psf DL ff:= R+ I+ D+ FP + J+ G+ SP+ L+ M + S+ C + MI DL,F= 17.I•psf ROOF SEI DEAD LOAD LIGHTS L:= 0.5•psf MECH M:= 0.5•psf SPRINK S:= 0•psf CEILING C:= 3.2.psf MISC MI:= O.Opsf DLffsei:= R + I+ D+ FP + J+ G+ SP + L + M + S+ C + MI DLL sei = 14.6.psf 2 I t MEZZ DEAD LOAD FLOORING FR:= 13-psf 1.5" Gyperete INSUL I:= 0.6-psf 6" Batt in Suspended Ceiling DECK D:= 2.3•psf 3/4" plywood FIREPROOFING FP:= 0•psf JOIST J:= 1.5•psf 16" TJI @ 24" o.c. GIRDER G:= 2.0•psf 6 3/4 x 19.5 GLB LIGHTS L:= I•psf MECH M:= 0.0•psf SPRINK S:= 0•psf CEILING C:= 2.5•psf Suspended ceiling MISC MI:= 1.0psf DLR1e72:= FR+ I+ D+ FP+J+ G+ L + M + S+ C + MI DLme�=23.9-psf MEZZ SEI DEAD LOAD MISC MI:= 0.5psf DLmeasei: FR+ I+ D+ FP+J + G+ L+ M + S + C + MI DLme� sei =23.4•psf 3 T *1 6 1_It e-.1 - A4-414,4 M4/U Ttf)c) 5 Noel 6 v ti 2 , / �(o��r.� - 1/� # // ''" 7 XI- _ Z S_ 3 3 6X z S i ti4 cAci i-4. 3 4 Y i-,e 71 '/• 7 i EX;S7 rN4 5 -X w:4-c.L Aexg--,A) EX - `��z 211. 3 3 . 1�X - /�w o o I � �v I �_ A6 d �10 /a pS5C 3 V: 171 500 - 6(/ II / ' 10,,,,--AJ J y 1 4,) /J0 . Cy i� j� lio i v c IcX - • '!f- _ /`J 7.1 / IT .,.., 5_____% Ei_liir------7 1 1 i ( i By 3)B L G R Q U P _ Date — ' MACKENZIE1 lob#-- Portland,Oregon 1 Seattle,Washington I Vancouver,Washington Sht. _- of _ 4 www.groupmackenzie.com ©2013 Gaou. MAC.E,u,: All RIGHtS RESERVED • 7 --(5-V. Z�'f C J vJ�LL t„SrU6.11i �P J 41°A- dv 6 4, /Z f /Z r�L e qt) , EX=S7-tfU cyPri1J?h1bS z - icy r-7.) 5 / 6c r. sec a✓bt o;vKi - �Z L /57 s / X (-0 ) oscc zito,4 . 4 \('(6-s-r S op 6-/J k G,A1 - 4, - triz g i J ' — — By " �L G R OW P Date______ ' MACKENZIE Jobs -- — Portland,Oregon I Seattle,Washington G Vancouver,Washington Sht. of - _ J www.groupmackenzie.com 02 013 G40UF MACKENZIE A_L 415,11'S RESERVED -r— cf • (WALL_ po / ri II i„lot _ / I p r- 0 . 5 S I„, i \K S 1)S 0. 7bC.0 f G (0.70(c)�,s Lb vJp Ff < 0. SSw 112.Ace. .L F-. - 0-S( S (5,5/ \I IF) ?C.C--)%A s Z 1/14 /:_qo_t_z_L) g ice Z . o. g L p - d.Sb'5 (cg. 1 )( Z,) e- ! 7 /az z -.- Fp 637 (24)1" 30 7� ' l --- y (, ,7O, $ G R O U_P Date 11 Z O ( I-5 - - MACKENZIE ' Job# - Portland,Oregon I Seattle,Washington I Vancouver,Washington Sht. . of www.groupmackenzie.com 02012 GROUP MACNENLIE. ALl RIGHTS RESERVED • G R r O F RiverEast Center 1515 SE Water Ave.-PA BOX 14310 OREG-77ACKENZIE TOR(L03)224 95 0O FAX 228-1285 SQUARE HSS COLUMN DESIGN PROJECT NAME: La Cie PROJECT NO.: 2130079.00 DATE: 4/10/13 DESIGNER: DBL I SB 1 ELEMENT ID: Strongback AISC section properties functions are adopted by reference: C Reference:0:\Structural\PROGRAMS\STEEL\AISC Lookup.mcd Supplementary units definitions are adopted by reference: j Reference:O:\Structural\PROGRAMS\Units.mcd LOADING Mux:= 25k4ft M„y:= Ok.ft GEOMETRY Column height: ht:= 24.5.ft Effective length factors: Kx:= 1 Ky:= 1 (kb:_ .9 TRIAL HSS SECTION AND SECTION PROPERTIES Trial Section: C:= "HSS5X5X1/4" F Y:= 46•ksi E:= 29000•ksi A:= A(C) A=4.3 in2 SX:= SX(C) S„=6.41•in3 Zx:= Zx(C) Z =7.61 in3 t:= t(C) t =0.233•in rr:= rr(C) rx= 1.93-in Zy:= Zy(C) Zy= 7.61•in3 b := b(C) b =5-in Sy:= Sy(C) Sy =6.41 in3 ry:= ry(C) ry= 1.93-in SR:= b/t(C) SR= 18.5 Flange Slenderness Ratio SR,:= h/t(C) SRW— 18.5 Web Slenderness Ratio 7 i • CHECK OF COMPACTNESS 1--E E Xp_flange:= Fy•1.12 flange:= Fy•l.4 FlangeCompactness:= "Compact" if SR._ Xp_flange "Noncompact" if Xp_flange< SR .. Xr flange Ref Eq F7-2 "Slender" otherwise Ref Eq F7-3 FlangeCompactness= "Compact" I E >p_web:= .2.42 �`r_web:= .7 Fy WebCompactness:= "Compact" if SR,5 Xp_web "Noncompact" if ap web<SR„<>r_web Check Sect. F7-3 - Ref Eq F7-5 "Slender;No Good" otherwise WebCompactness= "Compact" BALANCED LOADING FOR COMBINED BENDING AND COMPRESSION Kx•ht Ky•ht Ky•ht Kx•ht' Kik:= if < , Kl/r= 152.332 rx r ry rx Compact Section in Bending Mpx:= FyZx Mpx=29.172•k-ft EQ F7-1 (1)Mnx_c= (1)b'Mpx 41Mn,_ c=26.255•k•ft Muy:= 0•k•ft Muy=0.k-ft Mpy:= Fy Zy Mpy=29.172•k-ft 4Mny c:_ 4)b•Mpy 04ny_c =26.255.k.ft NonCompact Section in Bending i F l Mnx_n- Mpx— Mpx—F S y x) 3.57 SR — 4 \ E f (1)Mnx_n:= if(4)b'Mnx_n <(1)Mnx_c,Ob'Mnx_n, iMnx_c) ,N1„ n=26.255•k-ft EQ F7-2 ( F V' Mnv n:= Mpy — (Mpv — Fy•Sy)• 3.57•SR-J y — 4 \ E j (1)Mny n:= if( b•Mny_n <it'N'Inv_c,etl'o.Mnv n>ci)Mny_c) 04ny_n = 26.255 k•it 8 t w Slender Section in Bending be:= 1.9:t• 1 _ Fy ` SR I Fy be= 5.439•in EQ F-4 b t + Aeff•= e' '2 b•t•2 Aeg=4.865-in Aeff Qa _ A Qa= 1.131 Limit• V E •4.71 Limit= 111.2 QaFy 2 3 trbl •2 + tb 2 1eff b e' ' 2 J 12 leg=20.697•in4 1eff Seff b _ t Seff=8.683•in3 2 2 4:01VInx_s= 4)b'Seff Fy 41141nx s=29.957•k-ft EQ F-3 (1)Mnys 14)b'Seff Fy 4)Mny_s =29.957-k,ft (Mu),:_ �Mnx_c if FlangeCompactness="Compact" (Wm,=26.255•k-ft 4M n n if FlangeCompactness = "Noncompact" OMnx s if FlangeCompactness="Slender" 4)Mny (43Mny_c if FlangeCompactness= "Compact" c¢Mny= 26.255.k-ft cl)Mny_n if FlangeCompactness= "Noncompact" Mny_s if FlangeCompactness = "Slender" M Unity:— Unity= 0.952 )i Check' := if(Unity S 1,"OK" ,"NG") Check' = "OK" 9 U3A63f38 S1N91L ny 312N3YJ0 Nl °ncac) £lozo WODa1ZuepQWdnoJ6'MMM uol6uiyseM'TannoDuen uo46u!yseM'alueas I uo6eJo'puefJod 0 l JO 14S #4oc emu 131ZNR >IDVIA1 , d110219 r 1, 1 ( Q -L) 0., Z z"7),1g Je/4 cc/if -7.3 s'r'cic,0:4,5 SW) 1 � «-1 G ' ° '/ f, �rvo2/ (7 -A. r ocw,e,* q-1 (1r„ywait S )9 rev ale (7 VN 7/4 SF NZ 1 iVV5?-2"r-fn$) s / 1/1 / 7 12/ 2(cc1 / // O / �( c4:(1\ 6 ti ELEMENT ID: DOOR JAMB AISC section properties functions are adopted by reference. Reference:0:\Structural\PROGRAMS\STEEL\AISC Lookup.mcd Supplementary units definitions are adopted by reference: 0 Reference:0:\Structural\PROGRAMS\Units.mcd LOADING Mux:= 3k•ft May:= Ok•ft GEOMETRY Column height: ht:= 12.ft Effective length factors: lc:= 1 Ky:= 1 4)b:_ .9 TRIAL HSS SECTION AND SECTION PROPERTIES Trial Section: C:= "HSS4X4X1/4" F Y:= 46•ksi E:= 29000•ksi A:= A(C) A=3.37 in2 Sx:= Sx(C) Sx=3.9 in3 Z„:= Zx(C) Zx=4.69.in3 t:= t(C)— t=0.233•in rx:= rx(C) rx= 1.52•in Zy:= Zy(C) Zy=4.69.in3 b:= b(C) b =4-in Sy:= Sy(C) Sy=3.9 in3 ry:= ry(C) ry= 1.52•in SR:= b/t(C) SR= 14.2 Flange Slenderness Ratio h/t(C) SRW= 14.2 Web Slenderness Ratio 11 a * CHECK OF COMPACTNESS FE 1.12 Xp_flange:= y E _flange Fy j—•1.4 FlangeCompactness:= "Compact" i f SR<_ Xp_flange "Noncompact" if >p_flange<SR <_ X,. flange Ref E q F7-2 "Slender" otherwise Ref Eq F7-3 FlangeCompactness= "Compact" Xp_web f .2.42 >r—web:= 7'5.7 Fy WebCompactness:= "Compact" if SRw<>p_web "Noncompact" if Xp_,,,eb<SRw< Xr web Check Sect. F7-3-Ref Eq F7-5 "Slender;No Good" otherwise WebCompactness= "Compact" BALANCED LOADING FOR COMBINED BENDING AND COMPRESSION KX ht Ky•ht Ky•ht Kx•ht KI/r:= if < KI/r=94.737 rx ry r rx Compact Section in Bending Mpx:= FyZx M px= 17.978-k•ft EQ F7-1 cl)Mnx_c= (1)b•Mpx tiM„ c= 16.18•k•ft Muy:= 0•k•ft M„y=0•k•ft Mpy. Fy Zy Mpy= 17.978•k•ft OMny c:= cPb'Mpy fMny_c = 16.18•k•ft NonCompact Section in Bending F Mnx_n:= Mpx - (MI)),- Fy-Sx)•I 3.57•SR.J Y E /- 41 OMnx_n if(<1>b'Mnx_n<4)Mnx_c,(1)b.Mnx_n,OMnx_c) OM nx n= 16.18-k•ft EQ F7-2 IF 1 Mny_n MPy - (Mpy - Fy-Sy)- 3.57-SR-J y - 4 _ ` E J Olny n:— if( b Niny n <45N1„y_n,(t)b Mny n,wMny_c) N,lny_n — 16.13•k f 12 Slender Section in Bending b -_ 1.92t- .33 E e E 1 – F r SR FyJ be=3.685-in EQ F-4 Aeff:= be-t-2 + b-t•2 Aefr=3.58I•in2 Aeff Qa := — A Qa= 1.063 Limit:_ E •4.71 Limit= 114,7 Qa Fy ((b\2 t-b3 k ff:= bet \2) •2 + 2 12 Leff=9.355-in4 jeff Sell _ b _ t Seff=4.967•in3 2 2 (I)Mnx s:= kb'Seff Fy 4)M„c s= 17.135•k-ft EQ F-3 4:1Mny_s:= Ob'Seff Fy 1:1)Mny_s= 17.135-k-ft 0■ c„c:= 4M c if FlangeCompactness= "Compact" (Wnx= 16.18-k-ft ct■M„, n if FlangeCompactness="Noncompact" cIMnx s if FlangeCompactness= "Slender" �Mny:_ 4:•Mny_e if FlangeCompactness= "Compact" ciAtny= 16.18-k•ft �Mny n if FlangeCompactness= "Noncompact" . (1)Mny_s if FlangeCompactness= "Slender" M M Unity:= �Mr + �iy Unity = 0.185 nx ny� Check) := if(Unity S 1,"OK","NG") Check 1 = "OK" 13 r I -71--/\3 �l /,S-076 ,s Fr -DL L z5- f57- ?S 1 (so/Z )(,-7 ?s) 10.2 ADs) Z ( / )(z ')f o k 6� [is Cq) , 1z�1 l 7��(,L ti p p D t ? ) Z.5�8 ? o Z Z 7. 7 z? . 2- By. Date__ GRO_U �__ MACKENZIE ' Joba Portland,Oregon 1 Seattle,Washington Vancouver,Washington Sht. of 4 www.groupmackenzie.com ©2013 Gaoua MsCKENZIE. ALL RIGH1S RHSSR1eu f Footing Type: C Dead Load: Pdi := 5.32-k Footing Length & Width: L:= 4•ft W:= 3ft Live Load: pit:= 2.1-k Footing Thickness: t:= 18-in Concrete Strength: fc:= 3•ksi EQ Load: PE:= 0 = 0-k Steel: fy:= 60•ksi Steel Depth: d:= t —3-in — .75-in.1.5 d = 13.875-in Panel Leg: Leg:= 4-ft Panel Thickness: t 6-in pan:= Service Load: Pser:= max(Pdi + 0.75P11+ PE,Pdi + 0.75P11+ PE) Pscr=6.895-k Ultimate Load: p„:= max(1.2-PdI + 1.6•P11,1.2Pdi + P11+ PE) P„=9.744•k Soil Bearing: gun:= 2250•psf Soil Bearing: Pu Pser qu:= L W q.= L W + .15 kcf•t q =0.8•ksf < qa1=2.25-ksf OK Beam Shear: (per 1'width) W—tpan Vu:_ —d •q„-(1-ft) at "d” from footing face 2 .1)V„:_ .85(2 f„psi d) (1 ft) 4 Ve= 15.503-k > V„=0.076•k OK Flexure: (per 1'width) 2 W tpan 1 Mu qu' 2 2 (1 ft) M„=0.634 lk Find ASfeq : f(Asreq) := Asreq'fy d — Asreq•fy 1-.9 — M„ .85•fc.(140.2 r Given f(p) =0 g(p) := Find(p) Asreq := g`1•in2) Asreq = 0.01•in2 12" oc 2 12in Use#5's 2 As:= 0.31•in • =0.31 in Asreq= 0.01 in2 OK 12in As Check Amin P p = 0.0019 > Pmin:_ .0018 OK (1•ft) •d 15 Ad 6 4,6 = /2 � (WO o,) St..:AIX Iv.At.c1 CD UJAct. G. . 6-AS 5;4E- 2s.t0 e t S.5 C�S°/ `Z/2 4 13Z G Q. E)5 k�F I to 7C 17C s ' se:._ 23 , ?sr R II 'I pD By G R QSl_C Dale. —--- MACKENZIE ' Job# Portland,Oregon I Seattle,Washington I Vancouver,Washington Sht. of 16_ www.groupmackenzie.com 02 012 GROW' M ACKEENZIE. Ail RIGHTS RESERVED li At V = C., P A, 1- ! - L7 I _ O. I/ T � 7 )�25 = i / ` „,)(1. \i, F., 5. 1./ A. (tf-sP) IA t 2 v S cse (0 \Ai. ?5-,7 ,...\, �- y q , 0.1-1-7 1 .1,) ( ci ( � " % 1 '2 , ,i' A._ (e5E.), — By 'D7)L a Date .� tt.__ GROUP ----- , ' MACKENZIE ' Job# __-- Portland,Oregon 1 Seattle,Washington I Vancouver,Washington Sht. _ of_ 17 www.groupmackenzie.com ©2012 GROUP MACKENZIE. 4,1 RIGHTS RESERVED O3na3g341 simoia ny '312142)1+e IN ero,o ZLOZO 8 1° 14s woD eque wdno36w,nnn uoL6ui4seM'3annoDueq uoL6ui9seM'ellleaS I uo6aJp'puefJod JIZN3 >IJVY1 do-ode 1 L d}� JV 7 /, g g y�� '22 C25/ 10 �o ��� fg 2 ,44� 9 S t ! ` ,� r (t/ 9W Uri 11 011 /iht./Z 1-9.Kwka IL a z (? Q ) tszI) r�S -jC a z I,U - -9/ /171/5 tf) ri (1/4Qsy) s‘ -2/ /7fi's Yrl, 1 ++5 Q0ann • ' I C,tec,‹ ?I C-, s=r-a6 ?6„)-7 - (7,111) 6'./5- Ar)(b) - Z.V A__ (z /,ji e,,,,,r ,,07.7,70.) ' 644r pco�7 (8/z Rs 9 ep — -r ' u LT; 1N0 -4 1414 CL `/ x V x Z1 - „ M 0-r '' (0,9 --6•14 SD"*S) M 12 ES 1- \ c S- sd A (i15;))ei ' ( N-D / /11 - OR ?S / — — By Date___ G O LE — MACKENZIE ' Job# -- - Portland,Oregon I Seattle,Washington I Vancouver,Washington Sht _ at 19 www.groupmackenzie-com 02013 GROUP M ACKENZIE. All RIGHTS RESERVED 4 4 G R O U P RiverEast Center MACKENZIE PORTLAND,SE VD,OREG -P.O. BOX 14310 PORTLAND,OREGON 97293 TEL(503)224-9560-FAX(503)228-1285 PANEL FOOTINGS PROJECT NAME: LaCie TI PROJECT NO.: 2130079.00 DESIGNER. DBL Footing Type: A Dead Load: Pd1 := 1•k Footing Length & Width: L:= 4-ft W:= 4ft Live Load: P11:= 1-k Footing Thickness: t:= 30-in 65.3k ft Concrete Strength: fe:= 3-ksi EQ Load: PE:_ = 8.162-k Steel: 8ft fy:= 60-ksi Steel Depth: d:= t—3-in— .75-in-1.5 d=25.875-in Panel Leg: Leg:= 2-ft Panel Thickness: tpan 6-in Service Load: Pser:= max(Pdl + 0.75P11 + PE,Pd1 + 0.75P11+ PE) Ps„=9.912•k Ultimate Load: Pu:= max(1.2•Pdl+ 1.6•P11,1.2Pd1 + P11+ PE) P„= 10.362-k Soil Bearing: gall:= 2250-psf Soil Bearing: qu•_ Pu Pser q:= + .15-kcf-t q=0.995-ksf L•W L-W c Ilan =2.25-ksf OK Beam Shear: (per 1'width) Vu:— W—tpan —d •qu-(1•ft) at"d" from footing face 2 i cl)Vu:_ .85 (2 fe psi d) (1 ft) scl:IVe=28.912-k > Vu=—0.263•k OK Flexure: (per 1'width) 12 Mu qu'/W 2tpan! •2-(1-ft) Mu= 0.992•Ik / _ Find Asfeq : f(Asreq) Asreq'fy• d — Asreq'fy 9 — Mu 85•fe.(1-ft)•2 Given f(p) =0 g(p) := Find(p) Asrey:= g(1-in21 2 Asreq = 8.52 x 10 '•in Use#5's @ 12" oC As := 0.31-in, l2in = 0.62 in2 Asreq =8.52 x 10—3•in2 OK 6in As Check pmin P p = 0.002 > Prnin .0018 OK (1•11)•d 20 Page 1 of 2 Anchor Calculations Anchor Selector(Version 4.11.0.0) Job Name:La Cie Date/me:3/13/2013 10.02:47 AM Calculation Summary-ACI 318 Appendix D For Cracked Concrete per ACI 318-08 Anchor Anchor Steel #of Anchors Embedment Depth(in) Category 7/8"PAB7 AB 1 12 N/A Concrete Concrete Cracked Pc(psi) c,v , Normal weight Yes 3000.0 1.20 Condition Thickness(in) Suppl.Edge Reinforcement B tension and shear 30 No Anchor Layout Dimensions Cx1 Cx2 Cy1 Cy2 (in) (in) (in) (in) 24 24 24 24 Factored Loads Nua(Ib) 1 Vuax(Ib) Vuay(Ib) Mux(Ib`ft) Muy(Ib'ft) 6000 0 0 0 0 ex(in) ey(in) Mod/high seismic Apply entire shear @ front row 0 0 Yes No Individual Anchor Tension Loads N ua1 (Ib) 6000.00 e'Nx(in) e'Ny(in) 0.00 0.00 Individual Anchor Shear Loads V ua1 (Ib) 0.00 e'vx(in) e'vy(in) 0.00 '0.00 Tension Strengths Steel(c=0.75) Nsa(Ib) cbNsa(Ib) Nua(lb) N ua kl)Nsa 26795 20096.25 6000.00 0.2986 Concrete Breakout(i=0.70,°seis=0.75 Ncb(lb) coNcb(Ib) Nua(Ib) Nua/ONcb 62023.11 32562.13 6000.00 0.1843 Pullout(ch=0.70,cpseis=0.75) NPn(Ib) <DNan(Ib) Nua(lb) Nua/`ANun 107068.80 56211.12 6000.00 0.1067 21 ahouthlank ;/Il/T)(11 Page 2 of 2 Side-Face Blowout does not apply Shear Strengths Steel(kD=0.65) Veq(Ib) (1>Veq(lb) Vua(lb) Vua/DVeq 16080 10452.00 0.00 0.0000 Concrete Breakout(case 1)(d)=0.70.cbsels=0.75) Vcbx(Ib) oVcbx(lb) Vuax(Ib) Vuax/1)Vcbx 43875.77 23034.78 0.00 0.0000 Vcby(lb) <DVcby(lb) Vuay(lb) Vuay kOVcby Vua/c3Vcb 43875.77 23034.78 0.00 0.0000 0.0000 Concrete Breakout(case 2)does not apply to single anchor layout Concrete Breakout(case 3)(1=0.70,cl)seis=0.75) cx1 edge Vcby(lb) (DVcby(Ib) Vuay(lb) Vuay/fiVcby 93352.71-49010.17_0.00 0.0000 cy1 edge Vcbx(Ib) OVcbx(Ib) Vuax(Ib) Vuax/IVcbx 93352.71 49010.17 0.00 0.0000 cx2 edge Vcby(lb) NVcby(lb) Vuay(lb) Vuay/0Vcby 93352.71 49010.17 0.00 0.0000 cy2 edge Vcbx(Ib) iVcbx(Ib) Vuax(Ib) Vuax/0Vcbx Vua/(1)Vcb 93352.71 49010.17 0.00 0.0000 0.0000 Pryout(m=0.70,(Dseis=0.75) Vcp(lb) 1.[DVcp(lb) Vuax(Ib) V uax/c1Vcp 124046.21 65124.26 0 0.0000 Vcp(Ib) DVcp(Ib) Vuay(lb) Vuay/0Vca Vua/c0Vcp 124046.21 65124.26 0 0.0000 0.0000 Interaction check Note:Ratios in the equation below have been divided by 0.4 factor for brittle failure. V.Max(0)<=0.2 and T.Max(0.46)<=1.0[Sec D.7.11 Interaction check:PASS Use 718"diameter PAB7 anchor(s)with 12 in.embedment 22 hni,r hI L: I • \IVA 1.■.L Ci107'J. 70 ez.ait)c. tree 1 -- mo7 �. /107 65 . 3 e--,�7 (4si lm eft, 2 /- // M JJ ;I /e C grflllL 6 j 2 3 4 �—3-' f S /0 AL f (//t il 1474. 7r,11 f) /I e- /2 " O. C- o ( I 17$ Z5"3/ Z- 3 /70 '' 6/o (.2 c / 2Zd/,,;a `r '-' i •/,,, . . to o 0 ._.,i„._. J Z'F By 06 L GROUP Date MACKENZI Job# - --- Portland,Oregon I Seattle,Washington I Vancouver,Washington Sht.— _ __of_ 23 www.groupmackenzie.com ©2013 GROUP MACKENZIE. ALL RIGHTS RESERVED $ `y Page 1 of 2 Anchor Calculations Anchor Selector(Version 4.11.0.0) Job Name: Date/Time:3/28/2013 5:03:55 PM Calculation Summary-ACI 318 Appendix D For Cracked Concrete per ACI 318-08 Anchor Anchor Steel Code Report #of Anchors Embedment Depth(in) Category 1/2"Titen HD N/A ICC-ES ESR-2713 2 3.25 1 Concrete Concrete Cracked Pc(psi) Normal weight Yes 3000.0 1.00 Condition Thickness(in) Suppl.Edge Reinforcement B tension and shear 5.5 No Anchor Layout Dimensions �x1 cx2 cy1 cy2 sx1 (in) :(in) (in) (in) (in) 1000 1000 6 1000 12 Factored Loads Nua(Ib) Vuax(Ib) Vuay(Ib) Mux(Ib'ft) Muy(Ib*ft) 0 1708 0 0 0 ex(in) ey(in) Mod/high seismic Apply entire shear @ front row 0 0 Yes No Individual Anchor Tension Loads N ua1(Ib) N ua2(Ib) 0.00 0.00 e'Nx(in) e'Ny(in) 0.00 0.00 Individual Anchor Shear Loads V ua1 (Ib) V ua2(lb) 854.00 854.00 e'vx(in) e'vy(in) 0.00 0.00 Tension Strengths Steel(4=0.65) Nsa(Ib) 4Nsa(lb) Nua(lb) N ua/4Nsa 20130 13084.50 0.00 0.0000 Concrete Breakout(4=0.65•(Dseis=0.75) Ncbg(Ib) 4NcbG(lb) Nua(lb) s Nua/4Ncbg 6708.75 3270.51 0.00 0.0000 Pullout does not apply 24 ahout:hl nl: " `' "' Paige 2 of 2 Side-Face Blowout does not apply Shear Strengths Steel(5 =0.60) Veq(lb) OVeq(Ib) Vua(lb) V ua/(3Ve q 4790 2874.00 854.00 0.2971 Concrete Breakout(case 1)(0 =0.70,4)sels°0.75) Vcbx(Ib) (3Vcbx(Ib) Vuax(lb) Vuax/0Vcbx 166490.34 87407.43 854.00 0.0098 Vcbgy(lb) OV (Ib) °_Vuay(lb) E V /0V E Vua/cV cbgy cbgy Vuay cbgy ua cbg 474466.64_249094.98 0.00 0.0000 0.0098 Concrete Breakout(case 2)(D=0.70,ct)seis=0.75) Vcbx(Ib) OVthx(ib) E Vuax(ib) E Vuax/DVcbx 166490.34 87407.43 1708.00 0.0195 Vcbgy(lb) (1)Vcbgy(Ib) E Vuay(lb) E Vuay/OVcbgy E Vua/a,Vth9 474466.64 249094.98 0.00 0.0000 0.0195 Concrete Breakout(case 3)(0=0.70,rDseis=0.75) cx1 edge Vthy(lb) 'VVcby(Ib) Vuay(lb) Vuay/$Vcby 474466.64 249094.98 0.00 0.0000 oy1 edge Vebgx(Ib) 'VVthgx(Ib) E Vuax(Ib) Z Vuax/VVcbgx 14149.10 7428.28 1708.00 0.2299 cx2 edge Vcby(Ib) 'Vcby(lb) Vuay(lb) Vuay/'VVcby 474466.64 249094.98 0.00 _0.0000 cy2 edge Vcbgx(Ib) 'VVcbgx(Ib) E Vuax(Ib) £Vuax/'VVcbgx E Vua/'VVcbg 948933.27 498189.97 1708.00 0.0034 0.2299 Pryout(V=0.70,Oseis=0.75) Vcp9(Ib) 0VcP9(lb) E Vuax(Ib) >Vuax P9 6708.75 3522 09 1708 0.4849 Vcpg(lb) 'VVcp9(Ib) E Vuay(lb) E Vuay ADVcPg E Vua/(1)Vc P9 6708.75 3522.09 0 0.0000 0.4849 Interaction check Note:Ratios in the equation below have been divided by 0.5 factor for brittle failure. T.Max(0)<=0.2 and V.Max(0.97)<=1.0[Sec D.7.2] Interaction check:PASS Use 1/2"diameter Titen HD anchor(s)with 3.25 in.embedment 25 about:blank U tT I - e 5 . S k (/-i >4/71 , 78 i'tr AssuM6 /5' , 1" e-- , /5 ( m) = /Zc 0 LS 74 0 T F/a 5cAs 5P5z5- /2 V Z. 3 ,' i . 05e.' 5P525i12 jo g.ET -7-hiao Py_Yk/oaD it 00 o- S(-42-5-'1AIS e- TX j91 A- 1-10 0 sc,e6 WS w 1-1) l --7-- /2 cTc)(7. V) . /‘.1)(!) ‘ �, r ,�'� 1:41/1, ' "i" ( 4" ,t d 3 /ea vet b — —— By Date G R Q-LJP ' M A C K E N Z I E � Job# — Portland,Oregon i Seattle,Washington I Vancouver,Washington Sht. of 26 — www.groupmackenzie-com ©2 0 1 3 GROUP M ACK En Z IE. ALL RIGHTS RFSERVED • LL L C � A. A Uov PL (/ 4) y Zito Y Lc, (/ /2,) y cc /`/S z 4 Z (zi& 4 ss s = 1/e -Fr (2it r s s) c. r� f 2 & (ig - 1 rb 2 /sz � Z�S PSG Cdr /.o 6 c /O GM /, 0 G /2�\l/0 rt / S,2S f1 L 4 /� � o t e. 0 CAL O, yr Cr C CG e / / fr-fr C- (6f, 9 b ) 2 -;s z- BY nL Data G R 0_11T_ —MACKENZIE Job it_ Portland,Oregon Seattle,Washington J Vancouver,Washington Sht__ of _27 www.groupmackenzie.com ©2013 GROUP MACKENZIE. A LL RIGHTS RESERVED S .t.-:a. y 2352 P5 - SZ /0 7. 7 ;, 3 14 3v 3(s- cpc.) ,e ,.... i Fv 2(zet9sr) . z_ CjL/3 S III x z/ S a &/ in 5 I e /A/0, 2. — — -- By GROUP Date _ ' MACKENZIE—I Jobtt — Portland,Oregon I Seattle,Washington I Vancouver,Washington Sht. of _B_ www.groupmackenzie.com ®2013 GROUR MACKENZIE. All RIGN'3 RESERVED 4} 0 *, G R O U P -- 1 0690 SW BANCROFT STREET-P.O.BOX 69039 PORTLAND,OREGON 97201-0039 TEL(503)224-9560-FAX(503)228-1285 ROOF ANALYSIS W/ NEW MECH UNITS PROJECT NAME: La Cie TI PROJECT NO.: 2130079.00 DATE: 3/29/13 lsub:= 8•ft SUBPURLIN SPAN s:= 2•ft SUBPURLIN SPACING ]p„r:= 24•ft PURLIN SPAN 1 := 50•ft GIRDER SPAN DESIGN DEAD LOAD ROOFING R:= 2.5-psf Built up INSUL I:= 1.2•psf 6" Batt + 6" Batt in Suspended Ceiling DECK D:= 1.5•psf 1/2" plywood JOIST J:= 2.6.psf 6x16 @ 8'o.c. GIRDER G:= 1.9-psf 6 3/4 x —31.5 (avg) GLB @ 24'o.c. SUBPURLINS SP:= 0.7•psf 2x4 @ 24" o,c. LIGHTS L:= 1•psf MECH M:= 1.5•psf SPRINK S:= 2•psf CEILING C:= 32-psf 2x4 @ 24", 2x6 @ 8', 1/2" GYP MISC MI:= 1.0psf DLp„r:= R+ I+ D+ J+ SP + L+M+ S+ C + MI DLp„r= 17.2-psf DLgir:= R + I + D+ J+ G+ SP + L+ M + S + C + MI DLgir= 1 9.1-psf EXISTING DEAD LOAD LIGHTS L:= 0.75-psf MECH M := 0•psf SPRINK S:= 1.5-psf 29 90 ti* AN MISC MI := Opsf DLpur2:= R + I + D+ J + SP + L+ M + S + C + MI DLpir2 = 13.95•psf DLa,r2:= R+ I+ D+ J + G + SP+ L + M + S+ C+ MI DLgjr2= I5.85•psf Roof Live Load snow:= 25.psf LL:= snow LL=25•psf P,ucit:_ &001b 30 r v• r. SUBPURLINS 2 x 8 No.2 Wsub:_ (DLpur2 - J - L - S + LL)•S Z Wsub= 34.1.plf Find maximum moment M — Wsub. sub + Punit'0•5'Isub 8 4 M = 1.073-k-ft Wsuh'Isub Puna'0.5 V:= + 2 2 V=336.41b _ M S Q 900•psi•1.2.1.15 Sp Q= 10.365•in3 3 V AREQ:_ AREQ=2.438•in2 2 180•psi•1.15 S2x:= 13.14•in3 Define Actual Section Modulus Here A2x:= 10.88•in2 Define Actual Area Here Sxx:= if(SREQ<S2x,"OK","NO GOOD") Sxx= "OK" A:= if(AREQ<A2x,"OK","NO GOOD") A= "OK" 2x8 No. 1 DFL 31 PURLINS Wdesign (Up,.+ LL)-lsub 'design =337.6-plf wex [(DLpur2 + LL)-1„b1 weX =311.6•plf 2 wdesign•lpur Mmax 8 Mmax=24.307•k-ft 2 w ex Ipur Mex 8 M„=22.435-k-ft wdesign•Ipur Vmax'— 2 Vmax=4.051-k Wex'1 pur Vex 2 Vex =3.739•k Additional moment available with 5% increase Madd:= 1.05-Mmax— nlex Madd = 3.0871k41 Additional shear available with 5% increase Vadd 1.05-Vmar— Vex Vadd=0.515•k Igt Punic 0.5-d•(lpur —d) Munn Munit=2.4-k-ft Ipur Punit'0.5•(lpur —d) Vunit== Vunit=0.2-k Ipur 32 •«" GIRDER wdesign:_ (DLgir+ LLY laur wdesign = 1.058 x 103-plf wex:_ (DLgir2 + LL)-lpur weY =980.4•pff 2 Wdesign•Igir Mmax:= 8 Mm„= 330.75•k-ft 2 wex'Igir Flex:= 8 Mex = 306.375-k•ft wdesign'lgir Vmax'= 2 Vmax= 26.46-k wex'Igir Vex:= 2 Vex= 24.51-k Additional moment available with 5% increase Madd:= 1.05-Mmax—Mex Madd =40.913•k-ft Additional shear available with 5% increase Vadd:= I.05•Vmax—Vex Vadd =3.273-k d 24ft Punit'd'(Igir—d) Munit:= Munit=9.984-k-ft Igir Punit'(Igir—d) Vunit:= Vwit=0.416-k Igir 33