Loading...
Plans (19) Nick Gowen From: Kyle Kalina(Kyle.Kalina @wsfp.us) Sent: Friday,April 19,2013 2:59 PM To: Marcus Klein; Nick Gowen Subject: PCC Distribution Fire Suppression Existing sprinkler system is currently designed at.43gpm over the most remote 2,000SF. System has been calculated flowing 23 sprinkler heads with a demand of 1,014.7gpm @ 97.78psi. System is a grid type with riser/components that is 4-inch and branch lines are 2-inch utilizing%" Reliable Model G 286F (high temperature) uprights space at approximately 80SF each. Based on NFPA 13, 2010 edition,the system should be adequate to protect non-encapsulated Class Ill commodities(this includes paper products)single/double row open shelved racks, down to Oft wide isle,utilizing conventional pallets up to 20ft.and without the use of in-rack sprinkler protection. Note minimum distance allowable between top of storage and sprinklers that needs to be maintained is 18-inches. Cheers, diawestern ,irtut JC .- -2..c( Cry,eS Fin NMI I inuc.n. City of Tigard Tvateeti nJ itac.1 nod Preyterlif Ap r v d Plans t_ �I- Kyle Kalina, Sales Manager By ' Date Vl``6l Western States Fire Protection Co. 6-713 .203 tT l2 00 13896 Fir St., Suite B r503.657.5155 97045 P. OFFICE COPY C: 971.678.4115 F: 503.657.5182 Email: kyle.kalinaAwsfp.us Website: www.wsfp.com COPY 1 HYDRANT FLOW REQUEST FORM • PROJECT: City Of Tigard flow ADDRESS: 6713 SW BONITA RD TIGARD OR CROSS STREET: FLOW HYDRANT LOCATION: 6713 SW BONITA STATIC: 105 RESIDUAL: 98 GPM: 1680 DATED: 06.17.13 RESIDUAL HYDRANT LOCATION: 6777 SW BONITA RD STATIC: 105 RESIDUAL: 103 GPM: DATED: 06.17.13 Water Availabmty curve 110 100--b-- r r r T 90 80- 70 U) a- ; 80- a- 59- 40- 30- 20- 10-- ----L 800 1600 2400 3200 4000 4800 5600 6400 7200 8000 Flow(GPM) i Static=105 psi. •Residual=98 psi at a flow of 1680 gpm. , Pl.:- , _-=- RECEIVED SEIZMIC i i` ,(ei !,,,,;, JUL 25 2013 •® . CITY OF TIGARD 14 ATERIAL H�.NDL y, -IN RING BUILDING DIVISION EST.1985 SPECIAL PRODUCTS CONVEYORS STORAGE RACKS OTHER SERVICES SHELVING SPECIALS PRODLC7S TANK SUPPORTS TALL SUPPORTS SELECTIVE SEISMIC ANALYSIS METAL SHUTTLES MACHINERY HEADER STEEL DRIVE-IN PERMIT ACQUISITION METAUWOOD VLM RACK BLDGS SORT PLATFORM PUSH BACK EGRESS PLANS MOVABLE CAROUSELS SHEDS PICK MODULES FLOW RACK STATE APPROVALS GONDOLAS VRC MEZZANINES ROOF VERIFICATION CANTILEVER PRODUCT TESTING LOCKERS MODULAROFFICES FOOTINGS CATWALKS FENCES Licensed in all 50 States SEISMIC ANALYSIS OF STORAGE RACKS FOR PCC Central Distributing 6713 Bonita Rd.Ste 200 Tigard,OR 97224 Ai Job No. 13-0982 APPROVED BY SAL E.FATEEN,P.E. 7/8/2013 �4n PROreS 4:4-1 tc, 12i 03��s/p2 IIP _ /A •REGON .��!Y/5 114 ...b• ' • ch'A E L M•• O I EXPIRATION tRIK 3 1 7 7 1 161 ATLANTIC STREET * POMONA * CA 91768 * TEL:(909)869-0989 * FAX:(909)869-0981 SEIZMIC PROJECT PCC Central Distributing • FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 2 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 TABLE OF CONTENTS TABLE OF CONTENTS & SCOPE 2 PARAMETERS 3 COMPONENTS & SPECIFICATIONS 4 LOADS & DISTRIBUTION 5 LONGITUDINAL ANALYSIS 6 COLUMN 7 BEAM BEAM TO COLUMN 12 BRACING I ANCHOR ANALYSIS 14 - 10 BASIC LOAD COMBINATIONS 17 OVERTURNING i S BASE PLATE 19 SLAB & SOIL 20 SCOPE: THIS ANALYSIS OF THE STORAGE SYSTEM IS TO DETERMINE ITS COMPLIANCE WITH THE APPROPRIATE BUILDING CODES WITH RESPECT TO STATIC AND SEISMIC FORCES. THE STORAGE RACKS ARE PREFABRICATED AND ARE TO BE FIELD ASSEMBLED ONLY, WITHOUT ANY FIELD WELDING. SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 3 ' TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET.POMONA.CA 91768 DATE 7/8/2013 THE STORAGE RACKS CONSIST OF SEVERAL BAYS,INTERCONNECTED IN ONE OR BOTH DIRECTIONS,WITH THE COLUMNS OF THE VERTICAL FRAMES BEING COMMON BETWEEN AND ADJACENT BAYS. THE ANALYSIS WILL FOCUS ON A TRIBUTARY BAY TO BE ANALYSED IN BOTH THE LONGITUDINAL AND TRANSVERSE DIRECTION. STABILITY IN THE LONGITUDINAL DIRECTION IS MAINTAINED BY THE BEAM TO COLUMN MOMENT RESISTING CONNECTIONS,WHILE BRACING ACTS IN THE TRANSVERSE DIRECTION. y, CI o \ � IPP• O r 11 '- CO: ''''-- 1411441% 41 GO el ---' ,t,...› CI CONCEPTUAL DRAWING ` Some components may not . II be used or may vary. TRIBUTARY AREA LEGEND I.COLUMN 2. BEAM 3. BEAM TO COLUMN 4.BASE PLATE 5. HORIZONTAL BRACING 6. DIAGONAL BRACING I i 7. BACK TO BACK CONNECTOR TRANSVERSE ir LONGITUDINAL NOTE:ACTUAL CONFIGURATION SHOWN ON COMPONENTS&SPECIFICATIONS SHEET SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 4 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC . 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 COMPONENTS& SPECIFICATIONS :Typical ANALYSIS PER SECTION 2208 OF THE 2010 OSSC SITE CLASS=D Beam Elevation! ProductLoad/Lvl Panel Heighta LEVELS=2 HI=72 in. W 2 WI=5000 lbs. �' 1, , Y1=36 in. H2=72 in. W2=5000 lbs. Y2=44 in. PANELS=4 Y4 Y3=44 in Y4=44 in PRODUCT LOAD/LVL=5000 lbs. f:' _ FRAME HEIGHT=192 in. Y3 H ti v'l1 H i, FRAME DEPTH=42 M. - BEAM LENGTH=96 in. Y2 SEISMIC CATEGORY=D H l / (Fa= 1.11, Ss=0.97) Y1 .1 L 'i Q COLUMN BEAM @ Level 1 CONNECTOR @ Level 1 OK OK OK 3 X 3 X 0.0747(LM20) 4.125 X 2.5 X 0.059 Three Pin Connector Steel=55000 psi Steel=55000 psi Stress=91% Stress=74% Max Static Capacity=5401 lb. Stress=930/" COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK None 4.125 X 2.5 X 0.059 Three Pin Connector Max Static Capacity=5401 lb. Stress=53% Stress= Stress=93% BRACING BASE PLATE OK OK OK HORIZONTAL DIAGONAL 8 in X 5 in X 0.375 in 1 1/2 X 1 1/4 16GA(BC1216) 1 1/2 X 1 1/4 16GA(BC1216) Steel=36000 psi MBase=5053 in.lb. Stress= 12% Stress=23% Stress= 100% SLAB&SOIL OK ANCHORS OK Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 Slab=6"X 3000 psi Pullout Capacity=917 lbs. Shear Capacity=988 lbs. Soil Bearing Pressure= 1000 psf 0.5"X 2.5"Min Embed. Slab Puncture Stress=33% No.Of Anchors=2 per Base Plate Slab Bending Stress=39% Anchor Stress=34% SEIZMIC PROJECT PCC Central Distributing FOR MATHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 5 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET.POMONA.CA 91768 DATE 7/8/013 an I Fn LOADS AND DISTRIBUTION: Typical ��f EL5 woo F5 Determines Seismic Base Shear per Section 1613.1,Chap 2208,of the 2010 OSSC. v NM EL4 F4 Seismic Category: D Fa: 1.11 EL3 Fa Number Of Levels: 2 Ss: 0.97 EL_ F2 wPL(Sum of product loads): 10000 lbs Ie: 1.00 F1 wDL(Sum of dead loads): 200 lbs Rw(Longitudinal): 6.00 E— --I TOTAL FRAME LOAD: 10200 lbs Rw(Transverse): 4.00 LONGTUDINAL DIRECTION TRANSVERSE DIRECTION V _ 2/3•Fa 'S,c 'I�. •(((0.67)-WWL)+WDL).0.75.0.67 V _ 2/3-Fa 'Ss 'IE '(((0.67)'WpL)+WDL).0.75 0.67 Long — R Trans — R . W w [(2/3)X 1.11 X 0.97 X 1 X(((0.67)10000)+200)/6]X 0.75 X 0.6 [(2/3)X 1.11 X 0.97 X I X(((0.67)10000)+200)/4]X 0.75 X 0. VLong 415 lbs VT.,.., ' 622 lbs F = y W.H. E W,H, Levels hx LONGITUDINAL TRANSVERSE wx wshr I, „ wxhx .f; 1 72 5,100 367,200 138 5.100 367,200 207 2 144 5,100 734,400 277 5.100 734,400 415 1,101,600 415 lbs 1101,600 62' Ihs SEIZMIC — .' PROJECT PCC Central Distributing - FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 6 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 LONGITUDINAL ANALYSIS: Typical THE ANALYSIS IS BASED ON THE PORTAL METHOD,WITH THE POINT OF CONTRA FLEXURE OF THE COLUMNS ASSUMED AT MID-HEIGHT BETWEEN BEAMS,EXCEPT FOR THE LOWEST PORTION,WHERE THE BASE PLATE PROVIDES ONLY PARTIAL FIXITY,THE CONTRA FLEXURE IS ASSUMED TO OCCUR CLOSER TO THE BASE.(OR AT THE BASE FOR PINNED CONDITION,WHERE THE BASE PLATE CANNOT CARRY MOMENT). MUpper +MLower —MConn'R' +MConn'L' Iv1n-n Fn MConn'R' =MConn'L' M5-5 �5 MConn •2=Mapper +MLower AIMIV M4-4 M _ Mapper +MLower +M ram I Conn 2 Ends M3-3 f; M h; V 2-2 Long = 207 lbs VCoI — 2 X11-I pr 1,2 H hl MBase = 5053 in/lb M n:,.c FRONT ELEVATION I.I-\'L1.5 h, .f AXIAL LOAD MOMENT MEnds Mconn I 70 (o) 5,100 9,437 4,254 11,456 72 I18 2,550 4,968 4,254 6,738 SAMPLE CALC. M1-1 =(Vow •h,)—Al Base =(207 lbs X 70 in)-5053 in/lb=9,437 in/lb SEIZMIC - PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 7 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 COLUMN ANALYSIS : Typical ANALYZED PER AISI AND THE 2010 OSSC.SECTION PROPERTIES BASED ON THE EFFECTIVE SECTION. P= 5100 lbs M= 9437 in/lb Kx.Lx R = 1.2 X 70in/1.3in Rx = 64.1 ] L Max = 64.1 R Ky•Ly = I X 36in/ 1.1 in Ry = 33.6 Axial IIZE �0 A_,..1 F __ = 70.8 KSI ( /Max Fy = 28 KSI D 2 Since:Fe >Fy/2 - : = 55 KSI X[1 -55 KSI/(4 X 70.8117KSI)] ,:,==F„ =Fy 1--1'y �_ kl--4•F e = 44.3 KSI - Pn=Aeff•F„ = 0.639 in 1\2 X 44.3 KSI = 28321 lbs Pa = - = 28321 lbs/ 1.8 = 15734 lbs SECTION PROPERTIES P A : 3in = 0.32 B : 3in Pa t : 0.0747 in Flexure Aeff: 0.639 in^2 P P Cmx•M Ix : 1.097 in^4 Since: >0.15 Check : + X <<<1 Sx : 0.731 in^3 P. Pa Max•/ix Rx :1.31 in Myield=My =S •Fy = 0.731 In^3 X 55000 PSI = 40205 in/lb Iy : 0.733 in^4 Sy : 0.482 in^3 My Ry : 1.071 in Max= s = 40205/1.67 = 24075 in/lb Kx : 1.2 c2f Lx : 70 in Ky :1 n2 EI Ly : 36 in Pcr= 2 = (3.14159)^2 X 29500 KSI X 1.097/(84in.)^2 = 45266 lbs Fy : 55 KSI (Kx •Lx E : 29500 KSI _ 1 x l = (1 /(1 -(1.8 X 5100 lb/45266 1b)))^-1 = 0.8 Sic: 1.80 1 1—�S2c• P J cy: 1.67 Pcr Cmx: 0.85 (5100 lb/ 15734 lb)+(0.85 X 9437 in/lb/24075 in/lb X 0.8) =0.74 < 1 (74%) Cb : 1 • SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 8 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 DETERMIINE ALLOWABLE MOMENT CAPACITY, Determine allowable bending moment per AISI Check Compression Flange for Local Buckling(B2.1) w=c-2•t-2•r= 1.61 -(2*0.059)-(2*0.25) = 0.99 in wit= 0.99/0.059 = 16.78 A=(1.052111Tc)•(w/t)•.f(FyI E)= (1.052/(4)^0.5)* 16.78*(55/29000)A 0.5 = 0.38 <=0.673 Flange is fully effective Check Web for Local Buckling per Section(B2.3) yt : 1.64 y2 : 2.18 ((comp)=F .(y3/y2)= 55*(1.87/2.18) = 47.18 KSI y3 : 1.87 yeg : 1.948 f2(tension)=Fy•(yt/y2)=55 *(1.64/2.18) = 41.38KSI Ix 1.817 Ss : 0.802 yi=f2/f = 1.87/ 1.64 = -0.877 t: 0.059 r: 0.25 k=4+2.0---03+2.0-0= F,, • 55 4+(2*(1 +-0.877)^3)+2*(1 +-0.877) = 20.98 fu : 65 E: 29000 FlatDepth=w=y, +y3 = 1.64+ 1.87 = 3.51 in. TopFlange: 1.61 wit= 3.51 /0.059 = 59.49 <200 OK BottomFlange: 2.5 WebDepth: 4.125 = 1.052/.)•(w/t)•.0(F/E)_ (1.052/(20.98r0.5)*59.49*(47.18/29000x0.5 = 0.55 be =w= 3.51 b1 =be(3-VI)= 3.51 *(3--0.877) = 13.61 b2 = 3.51/2 = 1.75 $t +b2 = 13.61 + 1.75 = 15.36 Web is fully effective I i SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 9 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET.POMONA,CA 91768 DATE 7/8/2013 DETERMIINE ALLOWABLE MOMENT CAPACITY(cont..) Determine allowable bending moment per AISI Determine Effect of Cold Working on Steel Yield Point(Fya)per Section A7.2 F,,a =c•Fyc+(1-c)•Fy Lcomer =Lc =(7r/2)•(r+t12)= 3.14159*(2*0.25+0.059)/4 = 0.44 C=2•Le/Lf+2.Le = 2*0.44/(0.99+2 *0.44) = 0.47 Lnange-top =L1 = = 0.99 in. m=0.192•(Fn/F )-0.068= 0.192*(65/55)-0.068 = 0.16 bc =3.69•(fn/f)-0.819•(fa/fy)-1.79= y, : 1.64 3.69*(65/55)-0.819*(65/55)^2- 1.79 = 1.43 y2 . 2.18 ��'' 65/55) = 1.181 < 1.2 Y3 : 1.87 f u/Jr = ( ✓ Ycg 1.948 r/t= (0.25/0.059 = 4.237 <70K I,„ : 1.817 S : 0.802 - Fyn, =be •Fy/(r/t)m = 1.43 *55/(0.25/0.059)^0.16 = 62.43 t: 0.059 r: 0.25 fya_,ap = 0.47*62.43+(1 -0.47)* 55 = 58.49 Fy : 55 th- ru 65 fin-Loran, =fya •ycg/�de P Kg�_ E. 29000 58.49* 1.948/(4.125- 1.948) = 52.34 TopFlange: 1.61 BottomFlange: 2.5 Check Allowable Tension Stress for Bottom Flange WebDepth: 4.125 L range-hat =L m =Lbonom -2•r-2•t= 2.5 -(2 * 0.25)-(2 * 0.059) = 1.88 Chonam =Ch =2.4/(4+2.4)_ 2*0.44/(1.88+2*0.44) = 032 Fy-honour =Fyh =Ch•Fyr+(1-Cb)•Fyf = 0.32*62.43+(1 -0.32)*55 = 5738 F, = Fya_,ap = 58.49 = 58.49 SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 10 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 DETERMINE ALLOWABLE CAPACITY FOR BEAM PAIR PER SECTION 5.2 OF THE RMI,PT II Check Bending Capacity Mcenter =r .M =W•L•Q•R„,/8 S2=LRFDLoadFactor=1.2•DL+1.4.PL+1.4.0.125•PL forDL=2%o/PL n= 1.2*0.02+ 1.4+1.4*0.125 = 1.599 R,„ =1—[(2•F•L)/(6•E•Ib+3.F•L)] = 1 -((2*300*96)/((6*29000* 1.817)+(3 * 300 * 96))) = 0.86 Ifs= 0.95 yi : 1.64 M„ =q$•Fya•S = 0.95* 58.49*0.802 = 44.56 in y2 2.18 Y3 : 1.87 Me„d =W•L•(1—R„,)/8= ycg : 1.948 5401 *0.5 *96*(1 -0.86)/8 = 4537 in/ Ix : 1.817 Sx : 0.802 W =0•M„ •8•(#ofBeams)/(L•R„,•SZ)= t: 0.059 44.56 * 8 *2/(96*0.86 * 1.599)* 1000 = 5401 lb/pair r : 0.25 Fy 55 Check Deflection Capacity j 65 E: 29000 Amax _Ass•Rd TopFlange: 1.61 BottomFlange: 2.5 R,, =1—(4•F L)/(5 F L+10•E•Ib)= WebDepth: 4.125 1 -(4*300*96)/((5 *300* 96)+(10*29000* 1.817)) = 0.83 Amax =L/180 A =(5•w•L3)/(384•E•lb) L/180=(5•W•Ls•Rd)/(384•E•Ib•#ofBeams) ((5 *5401 /2000*96^3)/(384*29000 * 1.817))*0.83 = 0.49 W=(384•E•I.2)/(180.5.L2.Rd)= 384*29000* 1.817*2/(180*5 *(96^2)*0.83)* 1000 = 5878 lb/pair Allowable Load=5401 Ib/pair SEIZMIC PROJECT PCC Central Distributing • FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 11 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET.POMONA.CA 91768 DATE 7/8/2013 ALLOWABLE AND ACTUAL BENDING MOMENT AT EACH LEVEL{ / S MSia!ic —14 12/8 MAAow,Static = Yr 1Allow *1 18 h1 Seismic 1V1 Conn ' Alloo,Seismic s *Fh Level MStatic M.AIIow,Static MSeismic MAllowSeismic Result 1 60768 64812 11456 26466 GOOD 2 60768 64812 6738 26466 GOOD SEIZMIG PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 12 TEL:(909)869.0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 BEAM TO COLUMN ANALYSIS : Typical CONNECTION CAPACITY DEPENDS ON THE FOLLOWING PARAMETERS: : AT LEVEL 1 1.SHEAR CAPACITY OF PIN PinDiameter=0.4381n. Fy = 55000 PSI O 1,- II AShegr =Diameter • 4 = 0.1507 in A2 1'Shear =O.4•Fy •Ashegr = 0.4 X 55000 X 0.1507 inA2 = 3315 lbs 0 • 2.BEARING CAPACITY OF PIN O Column Thickness= 0.0747 �U F. =65000PS1 52=2.22 a=2.22 PBearing =a•Fu •Dia.•Col.Thickness/S2 = 2.22 X 65000 X 0.438 X 0.0747/2.22 = 2127 lbs 3.MOMENT CAPACITY OF BRACKET EdgeDist .=1.OIn. PinSpacing = 2 In Fy = 55000 PSI C= P +P2+-P3 = P +P(2.5/4.5)+P,(5/4.5) = P1 X I 667 Tao = 0.1791n. Scup =0.1271n3 Mcapac;ry =scup 'FBending = 0.127 InA3 X.66 X Fy = 4610 in-lb C•d=Mcapac;ry = 1.667 P,•d d=EdgeDist/2 = 0.5 Paw _MCapacity/( 1.667 .d) = 4610/(1.667 X 0.5)= 5531 lbs MINIMUM VALUE OF P1 GOVERNS ' - P = 21271bs McOnn-Anow = [P *4.5]+[Pl *(0.5/4.5)*0.5] = 12644in-lb > 11456in-lb OK SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 13 • TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 TRANSVERSE ANALYSIS: BRACING: Typical IT IS ASSUMED THAT THE LOWER PANEL RESISTS THE FRAME SHEAR IN TENSION AND COMPRESSION. IF HORIZONTAL AND DIAGONAL MEMBERS ARE THE SAME,ANALYSIS WILL BE DONE ON THE DIAGONAL MEMBER AS IT WILL GOVERN. DIAGONAL BRACING :COMPRESSION MEMBER Ldiag= J(L-6)2 +(D-(2•:BCol))2 = 46.9" I+ D Vtrans •LDiag -� Vdag = d =8101bs F'mar, k 1 (1 X 46.8615)/(0.458) = 1023 In � rMin Fe = (( IIZe = 27339.8 PSI rMin SIDE ELEVATION FY = 27500 2 Panel Height(L)= 36 In F Fe < 2 Panel Depth(D)= 42 In Column Depth(B)= 3 In F" =Fe = 27339.8 PSI Clear Depth(d)=(D-2*B)= 36 P =Area•F„ = 68681bs S2c=1.92 Pa = Qc = 35771bs VDiag Brace Stress = = 0.23 <1 (23%) a SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO, 14 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC . 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 POST-INSTALLED ANCHOR ANALYSIS PER ACI 318-11 APPENDIX D Assumed cracked concrete application Anchor Type = Hilti Kwik Bolt TZ(KB-TZ) 1/2"dia,2"hef,4"min slab ICC Report Number = ESR-1917 1.5•h ej = 3in. Slab Thickness (ha) = 6 in. Cal=6 useCaiadJ = 3in. Min.Slab Thickness(hay„) = 4 in. Cat=12 useCa2,adJ = 3in. r�' Concrete Strength (f'a) = 3000 in. Diameter (da) = 0.5 3'hef = 6 in. Nominal Embedment (hnam l 2.5 in. Si =6 in. useSl adJ = 6 in. Effective Embedment (hef) = 2 in. S2 =0 in. useS2 adJ = 0 in. Number of Anchors (n) = 2 e'N = 6 in. e'V = 0 in. I 1 ANc 1.5h of / From ICC ESR Report 1 r' 0.101 in.sq. S2 ASe -} ♦ --- f',aa = 106000 psi Ca2I i Smin = 2.75 in. Cmin = 2.75 in. it _ V VC Caa = 5.5 in. * i /-- 1- AilL C N ha_Ind ! = p,cr N/A ' 1-A---.1.—Wi --. 1.5 Cal Si 1.5 Cal ,/ ASD Value Ore amok Adj.Strength Conversion Factor 1.4 Tension Capacity 1712 lbs 0.75 1284 lbs 917 lbs Shear Capacity 1844 lbs 0.75 1383 lbs 988 lbs SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 15 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC • 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 ANCHOR ANALYSIS TENSION STRENGTH D.5.1 Steel Strength = 0.75 D.4.3.a)i) ,�, D-2 ONsa ='Y"Asefura (0.75 *2* 0.101 * 106000) = 8030 lbs Concrete Breakout Strength gNehg D.5.2 0 = 0.65 D.4.3 c)ii)Condition B Category 1 ANC, = `Cal.adi +S,.adi +1.5hef) C � a2adi +S2024 +I.5het)= 72 insa. ANA =9hef 2 = 36 in.sq. Check if ANC <nAnco ANc/ANco = 2 ec,N = 1 D.5.2.4 �ed,N = 1 D.5.2.5 Vic,N = 1 D.5.2.6 k, = 17 D.5.2.2 A„ = 1 Alb = kca'a W 'c)o.s`het.)5 = 2634 lbs D-6 �cp.N = 1 D.5.2.7 ON =b(A /A ll� fl / X��/ AN ) D.5.2.1 cbg Nc Nco ec,N �ed,N Y"C,N 7r'cp.N h (0.65 *(72/36)* 1 * 1 * 1 * 1 *2634) = 34241bs D.5.3 Pullout Stength O N pn 0 = 0.65 D.4.4 c)ii)Condition BCategory I Cgc.p = 1 D.5.3.6 ON,,, = c,PNP.crV c/2500y-5 N/A = N/A D.5.3.1 Steel Strength (o sa) 8030 lbs Embedment Strength - Concrete breakout strength (0Arcbg) 3424 lbs Embedment Strength - Pullout strength (0/Vim) N/A SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 16 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC • 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 ANCHOR ANALYSIS, SHEAR STRENGTH Steel Strength 0Vsa D.6.1 D.4.3 a)ii) 0 = 0.65 D-28 0Vsa =On'0.6Asefura (0.65 * 2 *0.6 * 0.101 * 10 = 8351 lbs Concrete Breakout Strength bVcbg D.6.2 D.4.3 c)i)condition B 0 = 0,7 Avc =(1.5ca1 +Si o4 +1.5cai)17a = 144 in.sa. Avca =3Caiha = 108 in.so. Check if Avc nArca Ave/Avca = 1.33 Y1ec,V = 1 D.6.2.5 eld 1 D.6.2.6 Wc,v 1 D.6.2.7 V/h,V - 1.22 D.6.2.8 d, (1.5 in. J D.6.2.2 I in. = 1 D.3.6 Vh = the smaller of �T e Ida 0.22(d a�00 5 2a(f,cyo.5 call 1.3 and 9A.a!r,c)o.5 cap'.5 = 4577 lbs D-33,D-34 Pow =0(Avc/Avca/\Y'ec,v Xt'ea,v Xwc,v XV'h,V RVh) 4/ 1 D.6.2.1 (0.7* 1.33 * 1 * I * l * 1.22*4577)* 1 = 5199 lbs Concrete Pryout Stength gVcpg D.6.3 0 = 0.7 D.4.3 c)i)Condition B Kg, = 1 D.6.3.1 Nchg= 5268 lbs OVcpg =W cpNcbg (0.7 * l * 5268) = 3688 lbs D.6.3.1 Steel Strength (OV.s,) 8351 lbs Embedment Strength -Concrete breakout strength (qw bg) 5199 lbs Embedment Strength - Pryout strength (ovcpg) 3688 lbs SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 17 . TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 BASIC LOAD COMBINATIONS 2010 OSSC SECTION 2208 RMI/ANSI MH 16.1 VTrans =6221b VLong =415 lb Sas = 0.718 Product Load/2(PL) = 5000 lb Dead Load/2(DL) = 100 lb Seismic Load(EL) = 3537 lb BASIC LOAD COMBINATION 1:DL 1.0* 100= 100 lb 2:DL+PL+LL+(Lr or SL orRL) 100+5000+0+0=5100 lb 3:(0.6* DL)+(0.75 *0.6* Ptapp)-(0.75 *WL) (0.6* 100)+(0.75 *0.6*3350)+(0.75 *0)= 1567 lb 3:((0.6-(0.11 * Sds))*DL)+(0.75*(0,6-(0.14*Sds))*PLapp)-(0.75 *0.67*EL) (0.6-(0.1 1 * 0.718))* 100+(0.75*(0.6-(0.14* 0.718)))*3350-(0.75 *0.67*3537)= -470 lb 4: DL+(0.75 * PL)+LL+(Lr or SL or RL)+(0.75*WL) 100+(0.75 * 5000)+0+0+(0.75 *0)=5100 lb 4:(1 +(0.11 * Sds))*DL+(0.75 *(1 +(0.14* Sds)*PLapp)+(0.75*0.67*EL) (1 +(0.11 *0.718))* 100+(0.75 *(1 +(0.14*0.718)))* 5000+(0.75*0.67*3537)= 6012 lb 5:DL+LL+(0.5* (SL orRL))+(0.88*PL)+1L 100+5000+(0.5 *0)+(0.88*5000)+ 1250=5750 lb SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HAND ING ENGINEERING SHEET NO. 18 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 OVERTURNING ANALYSIS : Typical ANALYSIS OF OVERTURNING WILL BE BASED ON SECTION 2208& 1613.1 OF THE 2010 OSSC FULLY LOADED Total Shear = 622 lbs W Mop, = Virons Ht aw Fr Mme, = 622 X 120 = 74640 in/lb R` /F 6 M3! =E(Wp+.85wDL)•d/2 Il� V M = (10000+(.85 X 200))X 42/2 = 213570 in/lb F 5 Mw j 1 M , —M = (74640-213570)/42 f1 PUp1.0 — d Si = -3308 lbs. Puplift<=0 No Up Lift F 4 1(M,,., +M1,) = (74640+213570)/42 Pn��o"".R = = 6862 lbs. F 3 TOP SHELF LOADED op,FF 2 Shear = 469 lbs Mm,, = Viop Ht ;El M = 469 X(144+((72- 10)/2)) = 82058 in/lb • MS1 =E(Wp +wDL)•d/2 r P uplift M3, (5000+.85 X 200))X 42/2 = 108570 in/lb CROSS AISLE ELEVATION 1(M0, —M31) = (82058- 108570)/42 PUpLrA = d = -631 lbs. Puplift<=0 No up Lift ANCHORS No. of Anchors : 2 Pull Out Capacity: 917 Lbs. Shear Capacity: 988 Lbs. COMBINED STRESS Fully Loaded = (0/917 X 2))+((622/2)/(988 X 2))= 0.16 Top Shelf Loaded = (0 1(917 X 2))+((469/2)/(988 X 2))= 0.12 Seismic Uplift Critical(LC#3) = ((470/917 X 2))+((622/2)/(988 X 2)))/ 1.2= 0.34 Sec 4.22 ESR-1917 USE 2 Hilti Kwik Bolt TZ(KB-TZ) 1/2"dia,2"hef,4"min slab Anchors per BasePlate. (or approved equal) SEIZMIC • PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 19 • TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 BASE PLATE ANALYSIS : Typical THE BASE PLATE WILL BE ANALYZED WITH THE RECTANGULAR STRESS RESULTING FROM THE VERTICAL LOAD P,COMBINED WITH THE TRIANGULAR STRESSES RESULTING FROM THE MOMENT Mb(IF ANY). THERE ARE 3 CRITERIA IN DETERMINING Mb.THEY ARE 1.MOMENT CAPACITY OF THE BASE PLATE, 2.MOMENT CAPACITY OF THE ANCHOR BOLTS,AND 3.Vcol*h/2(FULL FIXITY).Mb IS THAT SMALLEST VALUE OBTAINED FROM THE 3 CRITERIA ABOVE. Pca! = 5100 lbs Base Plate Width (B) = 8 in b = 3 in Mme = 5053 in/lb Base Plate Depth (D) = 5 in bl = 2.5 in Base Plate Thickness (t) = 0.375 in Fy(base) = 36000 PSI P _ Pco, = 127.5 PSI A D•B Mh = 94.7 PSI D•B2/6 III I•I 2•b, .fh2 = B •lb = 59.21 PSI bI— � b b1 11, =.f, —.fh2 = 35.53 PSI t e w13,2 1,12— ,z Mb = 2 — 2 'Wa -Fib! +.67fr,2J M = 632.83 in/lb n 1•t2 SBase = 6 = 0.02 in/cb — fit FeOSe =•75Fy = 36000 PSI A _ fi, fb = Mb = 0.75 <= 1 OK f Fb SBase • Base -- SEIZMIC PROJECT PCC Central Distributing FOR NWHS(OR) MATERIAL HANDLING ENGINEERING SHEET NO. 20 TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC 161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013 SLAB AND SOIL ; Typical THE SLAB WILL BE CHECKED FOR PUNCTURE STRESS.IF NO PUNCTURE OCCURS,IT WILL BE ASSUMED TO DISTRIBUTE THE LOAD OVER A LARGER AREA OF SOIL AND WILL ACT AS A FOOTING. PUNCTURE Ps tam = 5100 lbs PSeismic = 1777 lbs Mot = 74640 in-lb Pm =(1.2+0.2Sds)•DL+ 0.85+0.2Sds).PL+I.OEL = 8639 lbs (Gray.-seis.critical) F — 3+38 .2. f'e =---) = 87.42 PSI 2.66.2• f�c Apima =KB+t)+(W+t)}•2•t = 300 sq.in. J, _ Pinar NINt 0.33 FV ApanC1 •Fpunc7 -\ f- b / ►3 / SLAB TENSION / L / P. •144 Asoil — 1.33 f = 935 sq. in. Loa BASE PLATE B = 8 in L= Asoi! = 30.58 in W = 5 in B = IB•W +t = 1232 in Frame Depth d = 42 in L—B, b — 2 = 9.13 in CONCRETE Mconc _ 1.3 3- .b 2 = 3000 PSI 2 144.2 = 385 in-lb f t = 6in Scow = 2 1•t = 6 cb. in. 0 = 0.6 6 Front °50 . c = 164.32 PSI 2 = 0.6 J b = MConc = 0.39 SOIL Fb SConc FConc OK fsoil = 1000 PSF