Plans (19) Nick Gowen
From: Kyle Kalina(Kyle.Kalina @wsfp.us)
Sent: Friday,April 19,2013 2:59 PM
To: Marcus Klein; Nick Gowen
Subject: PCC Distribution Fire Suppression
Existing sprinkler system is currently designed at.43gpm over the most remote 2,000SF.
System has been calculated flowing 23 sprinkler heads with a demand of 1,014.7gpm @ 97.78psi.
System is a grid type with riser/components that is 4-inch and branch lines are 2-inch utilizing%" Reliable Model G 286F
(high temperature) uprights space at approximately 80SF each.
Based on NFPA 13, 2010 edition,the system should be adequate to protect non-encapsulated Class Ill commodities(this
includes paper products)single/double row open shelved racks, down to Oft wide isle,utilizing conventional pallets up to
20ft.and without the use of in-rack sprinkler protection.
Note minimum distance allowable between top of storage and sprinklers that needs to be maintained is 18-inches.
Cheers,
diawestern ,irtut JC .- -2..c( Cry,eS
Fin
NMI I inuc.n. City of Tigard
Tvateeti nJ itac.1 nod Preyterlif
Ap r v d Plans
t_ �I-
Kyle Kalina, Sales Manager By ' Date Vl``6l
Western States Fire Protection Co.
6-713 .203 tT l2 00
13896 Fir St., Suite B
r503.657.5155 97045
P. OFFICE COPY
C: 971.678.4115
F: 503.657.5182
Email: kyle.kalinaAwsfp.us
Website: www.wsfp.com COPY
1
HYDRANT FLOW REQUEST FORM
•
PROJECT: City Of Tigard flow
ADDRESS: 6713 SW BONITA RD TIGARD OR
CROSS STREET:
FLOW
HYDRANT LOCATION: 6713 SW BONITA
STATIC: 105
RESIDUAL: 98
GPM: 1680
DATED: 06.17.13
RESIDUAL
HYDRANT LOCATION: 6777 SW BONITA RD
STATIC: 105
RESIDUAL: 103
GPM:
DATED: 06.17.13
Water Availabmty curve
110
100--b-- r r r T
90
80-
70
U)
a-
; 80-
a-
59-
40-
30-
20-
10-- ----L
800 1600 2400 3200 4000 4800 5600 6400 7200 8000
Flow(GPM)
i Static=105 psi.
•Residual=98 psi at a flow of 1680 gpm.
,
Pl.:- , _-=- RECEIVED
SEIZMIC i i`
,(ei !,,,,;, JUL 25 2013
•® . CITY OF TIGARD
14 ATERIAL H�.NDL y, -IN RING BUILDING DIVISION
EST.1985
SPECIAL PRODUCTS CONVEYORS STORAGE RACKS OTHER SERVICES SHELVING SPECIALS PRODLC7S
TANK SUPPORTS TALL SUPPORTS SELECTIVE SEISMIC ANALYSIS METAL SHUTTLES
MACHINERY HEADER STEEL DRIVE-IN PERMIT ACQUISITION METAUWOOD VLM
RACK BLDGS SORT PLATFORM PUSH BACK EGRESS PLANS MOVABLE CAROUSELS
SHEDS PICK MODULES FLOW RACK STATE APPROVALS GONDOLAS VRC
MEZZANINES ROOF VERIFICATION CANTILEVER PRODUCT TESTING LOCKERS MODULAROFFICES
FOOTINGS CATWALKS FENCES
Licensed in all 50 States
SEISMIC ANALYSIS OF STORAGE RACKS
FOR
PCC Central Distributing
6713 Bonita Rd.Ste 200
Tigard,OR 97224 Ai
Job No. 13-0982
APPROVED BY
SAL E.FATEEN,P.E.
7/8/2013
�4n PROreS
4:4-1 tc, 12i 03��s/p2
IIP
_ /A
•REGON
.��!Y/5 114 ...b•
'
• ch'A E L M•• O
I EXPIRATION tRIK 3 1 7 7 1
161 ATLANTIC STREET * POMONA * CA 91768 * TEL:(909)869-0989 * FAX:(909)869-0981
SEIZMIC
PROJECT PCC Central Distributing •
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 2
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
TABLE OF CONTENTS
TABLE OF CONTENTS & SCOPE 2
PARAMETERS 3
COMPONENTS & SPECIFICATIONS 4
LOADS & DISTRIBUTION 5
LONGITUDINAL ANALYSIS 6
COLUMN 7
BEAM
BEAM TO COLUMN 12
BRACING I
ANCHOR ANALYSIS 14 - 10
BASIC LOAD COMBINATIONS 17
OVERTURNING i S
BASE PLATE 19
SLAB & SOIL 20
SCOPE:
THIS ANALYSIS OF THE STORAGE SYSTEM IS TO DETERMINE ITS
COMPLIANCE WITH THE APPROPRIATE BUILDING CODES WITH RESPECT TO
STATIC AND SEISMIC FORCES.
THE STORAGE RACKS ARE PREFABRICATED AND ARE TO BE FIELD
ASSEMBLED ONLY, WITHOUT ANY FIELD WELDING.
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 3
' TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET.POMONA.CA 91768 DATE 7/8/2013
THE STORAGE RACKS CONSIST OF SEVERAL BAYS,INTERCONNECTED IN ONE OR BOTH DIRECTIONS,WITH THE
COLUMNS OF THE VERTICAL FRAMES BEING COMMON BETWEEN AND ADJACENT BAYS.
THE ANALYSIS WILL FOCUS ON A TRIBUTARY BAY TO BE ANALYSED IN BOTH THE LONGITUDINAL AND
TRANSVERSE DIRECTION.
STABILITY IN THE LONGITUDINAL DIRECTION IS MAINTAINED BY THE BEAM TO COLUMN MOMENT RESISTING
CONNECTIONS,WHILE BRACING ACTS IN THE TRANSVERSE DIRECTION.
y,
CI
o \ �
IPP• O
r 11 '-
CO: ''''-- 1411441% 41
GO el ---'
,t,...›
CI
CONCEPTUAL DRAWING
`
Some components may not
. II
be used or may vary.
TRIBUTARY AREA
LEGEND
I.COLUMN
2. BEAM
3. BEAM TO COLUMN
4.BASE PLATE
5. HORIZONTAL BRACING
6. DIAGONAL BRACING I i
7. BACK TO BACK CONNECTOR TRANSVERSE
ir
LONGITUDINAL
NOTE:ACTUAL CONFIGURATION SHOWN ON COMPONENTS&SPECIFICATIONS SHEET
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 4
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC .
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
COMPONENTS& SPECIFICATIONS :Typical
ANALYSIS PER SECTION 2208 OF THE 2010 OSSC SITE CLASS=D
Beam Elevation! ProductLoad/Lvl Panel Heighta
LEVELS=2 HI=72 in. W 2 WI=5000 lbs. �' 1, , Y1=36 in.
H2=72 in. W2=5000 lbs. Y2=44 in.
PANELS=4 Y4 Y3=44 in
Y4=44 in
PRODUCT LOAD/LVL=5000 lbs. f:'
_
FRAME HEIGHT=192 in. Y3
H ti v'l1 H i,
FRAME DEPTH=42 M. -
BEAM LENGTH=96 in. Y2
SEISMIC CATEGORY=D H l
/
(Fa= 1.11, Ss=0.97) Y1
.1 L 'i Q
COLUMN BEAM @ Level 1 CONNECTOR @ Level 1
OK OK OK
3 X 3 X 0.0747(LM20) 4.125 X 2.5 X 0.059 Three Pin Connector
Steel=55000 psi Steel=55000 psi Stress=91%
Stress=74% Max Static Capacity=5401 lb.
Stress=930/"
COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+
OK OK
None 4.125 X 2.5 X 0.059 Three Pin Connector
Max Static Capacity=5401 lb. Stress=53%
Stress= Stress=93%
BRACING BASE PLATE
OK OK OK
HORIZONTAL DIAGONAL 8 in X 5 in X 0.375 in
1 1/2 X 1 1/4 16GA(BC1216) 1 1/2 X 1 1/4 16GA(BC1216) Steel=36000 psi MBase=5053 in.lb.
Stress= 12% Stress=23% Stress= 100%
SLAB&SOIL OK ANCHORS OK
Hilti Kwik Bolt TZ(KB-TZ) ESR-1917
Slab=6"X 3000 psi Pullout Capacity=917 lbs. Shear Capacity=988 lbs.
Soil Bearing Pressure= 1000 psf 0.5"X 2.5"Min Embed.
Slab Puncture Stress=33% No.Of Anchors=2 per Base Plate
Slab Bending Stress=39% Anchor Stress=34%
SEIZMIC
PROJECT PCC Central Distributing
FOR MATHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 5
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET.POMONA.CA 91768 DATE 7/8/013
an I Fn
LOADS AND DISTRIBUTION: Typical ��f
EL5 woo F5
Determines Seismic Base Shear per Section 1613.1,Chap 2208,of the 2010 OSSC. v
NM
EL4 F4
Seismic Category: D Fa: 1.11
EL3 Fa
Number Of Levels: 2 Ss: 0.97
EL_ F2
wPL(Sum of product loads): 10000 lbs Ie: 1.00 F1
wDL(Sum of dead loads): 200 lbs Rw(Longitudinal): 6.00
E— --I
TOTAL FRAME LOAD: 10200 lbs Rw(Transverse): 4.00
LONGTUDINAL DIRECTION TRANSVERSE DIRECTION
V _ 2/3•Fa 'S,c 'I�. •(((0.67)-WWL)+WDL).0.75.0.67 V _ 2/3-Fa 'Ss 'IE '(((0.67)'WpL)+WDL).0.75 0.67
Long — R Trans — R
. W w
[(2/3)X 1.11 X 0.97 X 1 X(((0.67)10000)+200)/6]X 0.75 X 0.6 [(2/3)X 1.11 X 0.97 X I X(((0.67)10000)+200)/4]X 0.75 X 0.
VLong 415 lbs VT.,.., ' 622 lbs
F = y
W.H.
E W,H,
Levels hx LONGITUDINAL TRANSVERSE
wx wshr I, „ wxhx .f;
1 72 5,100 367,200 138 5.100 367,200 207
2 144 5,100 734,400 277 5.100 734,400 415
1,101,600 415 lbs 1101,600 62' Ihs
SEIZMIC
— .' PROJECT PCC Central Distributing -
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 6
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
LONGITUDINAL ANALYSIS: Typical
THE ANALYSIS IS BASED ON THE PORTAL METHOD,WITH THE POINT OF CONTRA FLEXURE OF THE COLUMNS
ASSUMED AT MID-HEIGHT BETWEEN BEAMS,EXCEPT FOR THE LOWEST PORTION,WHERE THE BASE PLATE
PROVIDES ONLY PARTIAL FIXITY,THE CONTRA FLEXURE IS ASSUMED TO OCCUR CLOSER TO THE BASE.(OR
AT THE BASE FOR PINNED CONDITION,WHERE THE BASE PLATE CANNOT CARRY MOMENT).
MUpper +MLower —MConn'R' +MConn'L' Iv1n-n
Fn
MConn'R' =MConn'L' M5-5 �5
MConn •2=Mapper +MLower AIMIV
M4-4
M _ Mapper +MLower +M ram I Conn 2 Ends M3-3 f;
M
h;
V 2-2
Long = 207 lbs
VCoI — 2 X11-I pr 1,2
H
hl
MBase = 5053 in/lb M n:,.c
FRONT ELEVATION
I.I-\'L1.5 h, .f AXIAL LOAD MOMENT MEnds Mconn
I 70 (o) 5,100 9,437 4,254 11,456
72 I18 2,550 4,968 4,254 6,738
SAMPLE CALC.
M1-1 =(Vow •h,)—Al Base
=(207 lbs X 70 in)-5053 in/lb=9,437 in/lb
SEIZMIC
- PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 7
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
COLUMN ANALYSIS : Typical
ANALYZED PER AISI AND THE 2010 OSSC.SECTION PROPERTIES BASED ON THE EFFECTIVE SECTION.
P= 5100 lbs
M= 9437 in/lb
Kx.Lx
R = 1.2 X 70in/1.3in
Rx = 64.1 ] L Max = 64.1
R
Ky•Ly = I X 36in/ 1.1 in
Ry = 33.6
Axial IIZE �0 A_,..1
F __ = 70.8 KSI
( /Max
Fy = 28 KSI D
2 Since:Fe >Fy/2 - :
= 55 KSI X[1 -55 KSI/(4 X 70.8117KSI)] ,:,==F„ =Fy 1--1'y �_ kl--4•F e = 44.3 KSI -
Pn=Aeff•F„ = 0.639 in 1\2 X 44.3 KSI = 28321 lbs
Pa = - = 28321 lbs/ 1.8 = 15734 lbs SECTION PROPERTIES
P A : 3in
= 0.32 B : 3in
Pa t : 0.0747 in
Flexure Aeff: 0.639 in^2
P P
Cmx•M Ix : 1.097 in^4
Since: >0.15 Check : + X <<<1 Sx : 0.731 in^3
P. Pa Max•/ix Rx :1.31 in
Myield=My =S •Fy = 0.731 In^3 X 55000 PSI = 40205 in/lb Iy : 0.733 in^4
Sy : 0.482 in^3
My Ry : 1.071 in
Max= s = 40205/1.67 = 24075 in/lb Kx : 1.2
c2f Lx : 70 in
Ky :1
n2 EI Ly : 36 in
Pcr= 2 = (3.14159)^2 X 29500 KSI X 1.097/(84in.)^2 = 45266 lbs Fy : 55 KSI
(Kx •Lx E : 29500 KSI
_ 1
x
l = (1 /(1 -(1.8 X 5100 lb/45266 1b)))^-1 = 0.8 Sic: 1.80
1 1—�S2c• P J cy: 1.67
Pcr Cmx: 0.85
(5100 lb/ 15734 lb)+(0.85 X 9437 in/lb/24075 in/lb X 0.8) =0.74 < 1 (74%) Cb : 1
•
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 8
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
DETERMIINE ALLOWABLE MOMENT CAPACITY,
Determine allowable bending moment per AISI
Check Compression Flange for Local Buckling(B2.1)
w=c-2•t-2•r= 1.61 -(2*0.059)-(2*0.25) = 0.99 in
wit= 0.99/0.059 = 16.78
A=(1.052111Tc)•(w/t)•.f(FyI E)=
(1.052/(4)^0.5)* 16.78*(55/29000)A 0.5 = 0.38 <=0.673 Flange is fully effective
Check Web for Local Buckling per Section(B2.3)
yt : 1.64
y2 : 2.18
((comp)=F .(y3/y2)= 55*(1.87/2.18) = 47.18 KSI y3 : 1.87
yeg : 1.948
f2(tension)=Fy•(yt/y2)=55 *(1.64/2.18) = 41.38KSI Ix 1.817
Ss : 0.802
yi=f2/f = 1.87/ 1.64 = -0.877 t: 0.059
r: 0.25
k=4+2.0---03+2.0-0= F,, • 55
4+(2*(1 +-0.877)^3)+2*(1 +-0.877) = 20.98 fu : 65
E: 29000
FlatDepth=w=y, +y3 = 1.64+ 1.87 = 3.51 in. TopFlange: 1.61
wit= 3.51 /0.059 = 59.49 <200 OK BottomFlange: 2.5
WebDepth: 4.125
= 1.052/.)•(w/t)•.0(F/E)_
(1.052/(20.98r0.5)*59.49*(47.18/29000x0.5 = 0.55
be =w=
3.51
b1 =be(3-VI)= 3.51 *(3--0.877) = 13.61
b2 = 3.51/2 = 1.75
$t +b2 = 13.61 + 1.75 = 15.36
Web is fully effective
I i
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 9
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET.POMONA,CA 91768 DATE 7/8/2013
DETERMIINE ALLOWABLE MOMENT CAPACITY(cont..)
Determine allowable bending moment per AISI
Determine Effect of Cold Working on Steel Yield Point(Fya)per Section A7.2
F,,a =c•Fyc+(1-c)•Fy
Lcomer =Lc =(7r/2)•(r+t12)= 3.14159*(2*0.25+0.059)/4 = 0.44
C=2•Le/Lf+2.Le = 2*0.44/(0.99+2 *0.44) = 0.47
Lnange-top =L1 = = 0.99 in.
m=0.192•(Fn/F )-0.068= 0.192*(65/55)-0.068 = 0.16
bc =3.69•(fn/f)-0.819•(fa/fy)-1.79= y, : 1.64
3.69*(65/55)-0.819*(65/55)^2- 1.79 = 1.43 y2 . 2.18
��'' 65/55) = 1.181 < 1.2 Y3 : 1.87
f u/Jr = (
✓
Ycg 1.948
r/t= (0.25/0.059 = 4.237 <70K I,„ : 1.817
S : 0.802
- Fyn, =be •Fy/(r/t)m = 1.43 *55/(0.25/0.059)^0.16 = 62.43 t: 0.059
r: 0.25
fya_,ap = 0.47*62.43+(1 -0.47)* 55 = 58.49 Fy : 55
th- ru 65
fin-Loran, =fya •ycg/�de P Kg�_ E. 29000
58.49* 1.948/(4.125- 1.948) = 52.34
TopFlange: 1.61
BottomFlange: 2.5
Check Allowable Tension Stress for Bottom Flange WebDepth: 4.125
L range-hat =L m =Lbonom -2•r-2•t=
2.5 -(2 * 0.25)-(2 * 0.059) = 1.88
Chonam =Ch =2.4/(4+2.4)_
2*0.44/(1.88+2*0.44) = 032
Fy-honour =Fyh =Ch•Fyr+(1-Cb)•Fyf =
0.32*62.43+(1 -0.32)*55 = 5738
F, = Fya_,ap =
58.49 = 58.49
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 10
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
DETERMINE ALLOWABLE CAPACITY FOR BEAM PAIR
PER SECTION 5.2 OF THE RMI,PT II
Check Bending Capacity
Mcenter =r .M =W•L•Q•R„,/8
S2=LRFDLoadFactor=1.2•DL+1.4.PL+1.4.0.125•PL
forDL=2%o/PL
n= 1.2*0.02+ 1.4+1.4*0.125 = 1.599
R,„ =1—[(2•F•L)/(6•E•Ib+3.F•L)] =
1 -((2*300*96)/((6*29000* 1.817)+(3 * 300 * 96))) = 0.86
Ifs= 0.95 yi : 1.64
M„ =q$•Fya•S = 0.95* 58.49*0.802 = 44.56 in y2 2.18
Y3 : 1.87
Me„d =W•L•(1—R„,)/8= ycg : 1.948
5401 *0.5 *96*(1 -0.86)/8 = 4537 in/ Ix : 1.817
Sx : 0.802
W =0•M„ •8•(#ofBeams)/(L•R„,•SZ)= t: 0.059
44.56 * 8 *2/(96*0.86 * 1.599)* 1000 = 5401 lb/pair r : 0.25
Fy 55
Check Deflection Capacity j 65
E: 29000
Amax _Ass•Rd
TopFlange: 1.61
BottomFlange: 2.5
R,, =1—(4•F L)/(5 F L+10•E•Ib)= WebDepth: 4.125
1 -(4*300*96)/((5 *300* 96)+(10*29000* 1.817)) = 0.83
Amax =L/180
A =(5•w•L3)/(384•E•lb)
L/180=(5•W•Ls•Rd)/(384•E•Ib•#ofBeams)
((5 *5401 /2000*96^3)/(384*29000 * 1.817))*0.83 = 0.49
W=(384•E•I.2)/(180.5.L2.Rd)=
384*29000* 1.817*2/(180*5 *(96^2)*0.83)* 1000 = 5878 lb/pair
Allowable Load=5401 Ib/pair
SEIZMIC
PROJECT PCC Central Distributing
•
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 11
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET.POMONA.CA 91768 DATE 7/8/2013
ALLOWABLE AND ACTUAL BENDING MOMENT AT EACH LEVEL{ / S MSia!ic —14 12/8 MAAow,Static = Yr 1Allow *1 18 h1 Seismic 1V1 Conn ' Alloo,Seismic s *Fh
Level MStatic M.AIIow,Static MSeismic MAllowSeismic Result
1 60768 64812 11456 26466 GOOD
2 60768 64812 6738 26466 GOOD
SEIZMIG
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 12
TEL:(909)869.0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
BEAM TO COLUMN ANALYSIS : Typical
CONNECTION CAPACITY DEPENDS ON THE FOLLOWING PARAMETERS:
: AT LEVEL 1
1.SHEAR CAPACITY OF PIN
PinDiameter=0.4381n.
Fy = 55000 PSI
O
1,-
II
AShegr =Diameter • 4 = 0.1507 in A2
1'Shear =O.4•Fy •Ashegr = 0.4 X 55000 X 0.1507 inA2 = 3315 lbs 0 •
2.BEARING CAPACITY OF PIN O
Column Thickness= 0.0747 �U
F. =65000PS1
52=2.22
a=2.22
PBearing =a•Fu •Dia.•Col.Thickness/S2 = 2.22 X 65000 X 0.438 X 0.0747/2.22 = 2127 lbs
3.MOMENT CAPACITY OF BRACKET
EdgeDist .=1.OIn.
PinSpacing = 2 In
Fy = 55000 PSI
C= P +P2+-P3 = P +P(2.5/4.5)+P,(5/4.5) = P1 X I 667
Tao = 0.1791n.
Scup =0.1271n3
Mcapac;ry =scup 'FBending = 0.127 InA3 X.66 X Fy = 4610 in-lb
C•d=Mcapac;ry = 1.667 P,•d
d=EdgeDist/2 = 0.5
Paw _MCapacity/( 1.667 .d) = 4610/(1.667 X 0.5)= 5531 lbs
MINIMUM VALUE OF P1 GOVERNS ' -
P = 21271bs
McOnn-Anow = [P *4.5]+[Pl *(0.5/4.5)*0.5]
= 12644in-lb > 11456in-lb OK
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 13
• TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
TRANSVERSE ANALYSIS: BRACING: Typical
IT IS ASSUMED THAT THE LOWER PANEL RESISTS THE FRAME SHEAR IN TENSION AND COMPRESSION.
IF HORIZONTAL AND DIAGONAL MEMBERS ARE THE SAME,ANALYSIS WILL BE DONE ON THE
DIAGONAL MEMBER AS IT WILL GOVERN.
DIAGONAL BRACING :COMPRESSION MEMBER
Ldiag= J(L-6)2 +(D-(2•:BCol))2 = 46.9" I+ D
Vtrans •LDiag -�
Vdag = d =8101bs
F'mar,
k 1 (1 X 46.8615)/(0.458) = 1023 In �
rMin
Fe = (( IIZe = 27339.8 PSI
rMin
SIDE ELEVATION
FY
= 27500
2
Panel Height(L)= 36 In
F
Fe < 2 Panel Depth(D)= 42 In
Column Depth(B)= 3 In
F" =Fe = 27339.8 PSI Clear Depth(d)=(D-2*B)= 36
P =Area•F„ = 68681bs
S2c=1.92
Pa = Qc = 35771bs
VDiag
Brace Stress = = 0.23 <1 (23%)
a
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO, 14
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC .
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
POST-INSTALLED ANCHOR ANALYSIS PER ACI 318-11 APPENDIX D
Assumed cracked concrete application
Anchor Type = Hilti Kwik Bolt TZ(KB-TZ) 1/2"dia,2"hef,4"min slab
ICC Report Number = ESR-1917 1.5•h
ej = 3in.
Slab Thickness (ha) = 6 in.
Cal=6 useCaiadJ = 3in.
Min.Slab Thickness(hay„) = 4 in.
Cat=12 useCa2,adJ = 3in.
r�'
Concrete Strength (f'a) = 3000 in.
Diameter (da) = 0.5
3'hef = 6 in.
Nominal Embedment (hnam l 2.5 in.
Si =6 in. useSl adJ = 6 in.
Effective Embedment (hef) = 2 in.
S2 =0 in. useS2 adJ = 0 in.
Number of Anchors (n) = 2
e'N = 6 in.
e'V = 0 in. I 1 ANc
1.5h
of /
From ICC ESR Report
1 r'
0.101 in.sq. S2
ASe -} ♦ ---
f',aa = 106000 psi Ca2I i
Smin = 2.75 in.
Cmin = 2.75 in. it _ V
VC
Caa = 5.5 in. * i /-- 1- AilL C
N ha_Ind !
=
p,cr N/A ' 1-A---.1.—Wi --.
1.5 Cal Si 1.5 Cal
,/ ASD Value
Ore amok Adj.Strength Conversion Factor 1.4
Tension Capacity 1712 lbs 0.75 1284 lbs 917 lbs
Shear Capacity 1844 lbs 0.75 1383 lbs 988 lbs
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 15
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
•
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
ANCHOR ANALYSIS
TENSION STRENGTH D.5.1
Steel Strength
= 0.75
D.4.3.a)i)
,�, D-2
ONsa ='Y"Asefura (0.75 *2* 0.101 * 106000) = 8030 lbs
Concrete Breakout Strength gNehg D.5.2
0 = 0.65 D.4.3 c)ii)Condition B Category 1
ANC, = `Cal.adi +S,.adi +1.5hef) C
� a2adi +S2024 +I.5het)= 72 insa.
ANA =9hef 2 = 36 in.sq.
Check if ANC <nAnco ANc/ANco = 2
ec,N = 1 D.5.2.4
�ed,N = 1 D.5.2.5
Vic,N = 1 D.5.2.6
k, = 17 D.5.2.2
A„ = 1
Alb = kca'a W 'c)o.s`het.)5 = 2634 lbs D-6
�cp.N = 1 D.5.2.7
ON =b(A /A ll� fl / X��/ AN ) D.5.2.1
cbg Nc Nco ec,N �ed,N Y"C,N 7r'cp.N h
(0.65 *(72/36)* 1 * 1 * 1 * 1 *2634) = 34241bs
D.5.3
Pullout Stength O N pn
0 = 0.65 D.4.4 c)ii)Condition BCategory I
Cgc.p = 1 D.5.3.6
ON,,, = c,PNP.crV c/2500y-5 N/A = N/A D.5.3.1
Steel Strength (o sa) 8030 lbs
Embedment Strength - Concrete breakout strength (0Arcbg) 3424 lbs
Embedment Strength - Pullout strength (0/Vim) N/A
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 16
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC •
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
ANCHOR ANALYSIS,
SHEAR STRENGTH
Steel Strength 0Vsa D.6.1
D.4.3 a)ii)
0 = 0.65 D-28
0Vsa =On'0.6Asefura (0.65 * 2 *0.6 * 0.101 * 10 = 8351 lbs
Concrete Breakout Strength bVcbg D.6.2
D.4.3 c)i)condition B
0 = 0,7
Avc =(1.5ca1 +Si o4 +1.5cai)17a = 144 in.sa.
Avca =3Caiha = 108 in.so.
Check if Avc nArca Ave/Avca = 1.33
Y1ec,V = 1
D.6.2.5
eld
1 D.6.2.6
Wc,v 1 D.6.2.7
V/h,V - 1.22 D.6.2.8
d, (1.5 in.
J D.6.2.2
I in.
= 1 D.3.6
Vh = the smaller of �T e Ida 0.22(d a�00 5 2a(f,cyo.5 call 1.3 and 9A.a!r,c)o.5 cap'.5 = 4577 lbs D-33,D-34
Pow =0(Avc/Avca/\Y'ec,v Xt'ea,v Xwc,v XV'h,V RVh) 4/ 1 D.6.2.1
(0.7* 1.33 * 1 * I * l * 1.22*4577)* 1 = 5199 lbs
Concrete Pryout Stength gVcpg D.6.3
0 = 0.7 D.4.3 c)i)Condition B
Kg, = 1 D.6.3.1
Nchg= 5268 lbs
OVcpg =W cpNcbg (0.7 * l * 5268) = 3688 lbs D.6.3.1
Steel Strength (OV.s,) 8351 lbs
Embedment Strength -Concrete breakout strength (qw bg) 5199 lbs
Embedment Strength - Pryout strength (ovcpg) 3688 lbs
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 17
. TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
BASIC LOAD COMBINATIONS
2010 OSSC SECTION 2208 RMI/ANSI MH 16.1
VTrans =6221b VLong =415 lb Sas = 0.718
Product Load/2(PL) = 5000 lb Dead Load/2(DL) = 100 lb Seismic Load(EL) = 3537 lb
BASIC LOAD COMBINATION
1:DL
1.0* 100= 100 lb
2:DL+PL+LL+(Lr or SL orRL)
100+5000+0+0=5100 lb
3:(0.6* DL)+(0.75 *0.6* Ptapp)-(0.75 *WL)
(0.6* 100)+(0.75 *0.6*3350)+(0.75 *0)= 1567 lb
3:((0.6-(0.11 * Sds))*DL)+(0.75*(0,6-(0.14*Sds))*PLapp)-(0.75 *0.67*EL)
(0.6-(0.1 1 * 0.718))* 100+(0.75*(0.6-(0.14* 0.718)))*3350-(0.75 *0.67*3537)= -470 lb
4: DL+(0.75 * PL)+LL+(Lr or SL or RL)+(0.75*WL)
100+(0.75 * 5000)+0+0+(0.75 *0)=5100 lb
4:(1 +(0.11 * Sds))*DL+(0.75 *(1 +(0.14* Sds)*PLapp)+(0.75*0.67*EL)
(1 +(0.11 *0.718))* 100+(0.75 *(1 +(0.14*0.718)))* 5000+(0.75*0.67*3537)= 6012 lb
5:DL+LL+(0.5* (SL orRL))+(0.88*PL)+1L
100+5000+(0.5 *0)+(0.88*5000)+ 1250=5750 lb
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HAND ING ENGINEERING SHEET NO. 18
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
OVERTURNING ANALYSIS : Typical
ANALYSIS OF OVERTURNING WILL BE BASED ON SECTION 2208& 1613.1 OF THE 2010 OSSC
FULLY LOADED
Total Shear = 622 lbs
W
Mop, = Virons Ht
aw Fr
Mme, = 622 X 120 = 74640 in/lb R` /F 6
M3! =E(Wp+.85wDL)•d/2 Il�
V
M = (10000+(.85 X 200))X 42/2 = 213570 in/lb F 5
Mw j
1 M , —M = (74640-213570)/42 f1
PUp1.0 — d Si = -3308 lbs. Puplift<=0 No Up Lift F 4
1(M,,., +M1,) = (74640+213570)/42
Pn��o"".R = = 6862 lbs. F 3
TOP SHELF LOADED
op,FF 2
Shear = 469 lbs
Mm,, = Viop Ht
;El
M = 469 X(144+((72- 10)/2)) = 82058 in/lb •
MS1 =E(Wp +wDL)•d/2 r
P uplift
M3, (5000+.85 X 200))X 42/2 = 108570 in/lb CROSS AISLE ELEVATION
1(M0, —M31) = (82058- 108570)/42
PUpLrA = d = -631 lbs. Puplift<=0 No up Lift
ANCHORS
No. of Anchors : 2
Pull Out Capacity: 917 Lbs.
Shear Capacity: 988 Lbs.
COMBINED STRESS
Fully Loaded = (0/917 X 2))+((622/2)/(988 X 2))= 0.16
Top Shelf Loaded = (0 1(917 X 2))+((469/2)/(988 X 2))= 0.12
Seismic Uplift Critical(LC#3) = ((470/917 X 2))+((622/2)/(988 X 2)))/ 1.2= 0.34 Sec 4.22 ESR-1917
USE 2 Hilti Kwik Bolt TZ(KB-TZ) 1/2"dia,2"hef,4"min slab Anchors per BasePlate.
(or approved equal)
SEIZMIC
• PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 19
• TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
BASE PLATE ANALYSIS : Typical
THE BASE PLATE WILL BE ANALYZED WITH THE RECTANGULAR STRESS RESULTING FROM THE VERTICAL
LOAD P,COMBINED WITH THE TRIANGULAR STRESSES RESULTING FROM THE MOMENT Mb(IF ANY).
THERE ARE 3 CRITERIA IN DETERMINING Mb.THEY ARE 1.MOMENT CAPACITY OF THE BASE PLATE,
2.MOMENT CAPACITY OF THE ANCHOR BOLTS,AND 3.Vcol*h/2(FULL FIXITY).Mb IS THAT SMALLEST
VALUE OBTAINED FROM THE 3 CRITERIA ABOVE.
Pca! = 5100 lbs Base Plate Width (B) = 8 in b = 3 in
Mme = 5053 in/lb Base Plate Depth (D) = 5 in bl = 2.5 in
Base Plate Thickness (t) = 0.375 in Fy(base) = 36000 PSI
P _ Pco, = 127.5 PSI
A D•B
Mh = 94.7 PSI
D•B2/6 III I•I
2•b,
.fh2 = B •lb = 59.21 PSI
bI— � b b1
11, =.f, —.fh2 = 35.53 PSI t e
w13,2 1,12— ,z
Mb = 2 — 2 'Wa -Fib! +.67fr,2J
M = 632.83 in/lb
n
1•t2
SBase = 6 = 0.02 in/cb
— fit
FeOSe =•75Fy = 36000 PSI A _ fi,
fb = Mb
= 0.75 <= 1 OK f
Fb SBase • Base --
SEIZMIC
PROJECT PCC Central Distributing
FOR NWHS(OR)
MATERIAL HANDLING ENGINEERING SHEET NO. 20
TEL:(909)869-0989 FAX:(909)869-0981 CALCULATED BY LC
161 ATLANTIC STREET,POMONA,CA 91768 DATE 7/8/2013
SLAB AND SOIL ; Typical
THE SLAB WILL BE CHECKED FOR PUNCTURE STRESS.IF NO PUNCTURE OCCURS,IT WILL BE ASSUMED TO
DISTRIBUTE THE LOAD OVER A LARGER AREA OF SOIL AND WILL ACT AS A FOOTING.
PUNCTURE
Ps tam = 5100 lbs PSeismic = 1777 lbs Mot = 74640 in-lb
Pm =(1.2+0.2Sds)•DL+ 0.85+0.2Sds).PL+I.OEL = 8639 lbs
(Gray.-seis.critical)
F — 3+38 .2. f'e =---) = 87.42 PSI
2.66.2• f�c
Apima =KB+t)+(W+t)}•2•t =
300 sq.in.
J, _ Pinar NINt
0.33
FV ApanC1 •Fpunc7 -\
f- b / ►3 /
SLAB TENSION
/ L /
P. •144
Asoil — 1.33 f = 935 sq. in.
Loa BASE PLATE
B = 8 in
L= Asoi!
= 30.58 in W = 5 in
B = IB•W +t = 1232 in Frame Depth d = 42 in
L—B,
b —
2 = 9.13 in CONCRETE
Mconc _ 1.3 3- .b 2 = 3000 PSI
2 144.2 = 385 in-lb f
t = 6in
Scow = 2
1•t = 6 cb. in. 0 = 0.6
6
Front °50 . c = 164.32 PSI 2 = 0.6
J b = MConc
= 0.39 SOIL
Fb SConc FConc
OK fsoil = 1000 PSF