Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
/d 1'(p Sag MS' 7 20 /3 O6o (07 ., Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Lot 68, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 122 sheets total including this cover sheet. $ SRUCTUR4 ( 5. 0.11 PROF F ff i 4 �e 12,320 R N Y 15, ‘W Nr J. E tS- 1 a ∎ - Ms 12-31 -2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper •'.1:1 �:- Houf Peterson S Righellis Inc. EN3rn[ [US • nr.c _••c,c•n, •wcurte , 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 6 • Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, l : 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works — Sizer version 2002 Bently RAM Advanse • Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP '• Houf Peterson Client: PULTE GROUP Job # CEN -090 • Righellis Inc. ENGIN eE 45 PLAK YEP.'a — Designer: AMC Date: Pg. # i AF�SC.:PE AFCHTEC [3�3tIF.EIOF3 DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5 -psf Framing RPL := 1.5 -psf Plywood RRF := 5.psf Roofing RME := 1.5.psf Mech & Elec RMS := 1 -psf Misc RCG := 2.5.psf Ceiling R1N := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX_Wall := 12•psf INT_Wal1 := 10.psf Roof Live Load RLL := 25.psf Floor Live Load FLL := 40•psf .A I i Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINECP.S • PLANY.CFS Designer: AMC Date: Pg. # 1tNC5C&FE AFCHUlEC15•51:F' EYOFS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: H Weight of Structure In Transverse Direction Roof Weight Roof Area := 843•ft RFWT := RDL -Roof Area RFw-I• = 14162•lb Floor Weight Floor_Area2 := 647.ft 2 FLRWI := FDL•Floor Area2nd FLRw - r2nd = 8411- lb Floor_Area3 65241 FLRWT3rd FDL•Floor_Area3 FLRWr3rd = 8476-lb Wall Weight EX Wall Area := (2203)41 INT_Wall_Area:= (906)•ft 2 WALLWT := EX_Wall + INT Wa1l INT_Wall_Area WALLWT = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) R,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T a := C x T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) t� h n) Si := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) dl r'l E • Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP t• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. Ec�, „EfRS; a,,,,«5 Designer: AMC Date: Pg. # LiO ? =nFE FCC +IE�i3�5,:�VEY7'!'.t SMS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) S �= 2 SMS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) ds 3 SMI := Fv S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) S �= 2 SMr SdI = 0.389 (EQU 11.4 -4, ASCE 7 -05) d1 3 Cst := Sds' 1e Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Shc le 12.8 -3, ASCE 7 -05 Csmax Csmax = 0.223 (EQU 7-05) T R ...and shall not be less then... C1 := if 0.044• Sd 1 < 0.01, 0.01, 0.044• Sds• 1 e) ( 0.5•S1•IEl (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if l SI < 0.6,0.01 , J R Csmin := if (CI > C2,C1,C2) Csmin = 0.031 Cs := if(Cst < Cs Cs , if(Cst < Cs Cs = 0.108 V := Cs•WTTOTAL V = 7220 lb (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 lb (Allowable Stress) n 1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A • HP !• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. cNCi :cane �Ln NNCRS Designer: AMC Date: Pg. # LANDSC AP= AHCNI T6CT3•SUA %E YOBS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20•ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 = 4 ft or w= .4h,;2ft a2 =25.6ft but not less than... a2min := 3.2 -ft a2nin = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetZOneB 3.21psf Pnetzonec 14.4•psf PnetzoneD 3.1psf Vertical • PnetzoneE —8.8 -psf PnetzoneF 12•psf PnetzoneG —6.4 -psf PnetzoneH 9.71psf Basic Wind Force PA := PnetzoneA'Iw.X PA = 19.9•psf Wall HWC PB := PnetzoneB'Iw'X PB = 3.2•psf Roof HWC PC := PnetzoneC'Iw'X Pc = 14.4•psf Wall Typical PD := PnetzoneD'Iw'X PD = 3.3•psf Roof Typical PE := PnetzoneE'Iw'X PE = — 8.8•psf PF := PnetzoneF'Iw'X PF = — 12•psf PG, := PnetzoneG' Iw' X PG = — 6.4• psf PH := PnetzoneH'Iw'>` PH = — 9.7•psf 9 a Harper Project: SUMMERCREEK TOWNHOMES UNIT A ' Houf Peterson Client: PULTE GROUP Job # CEN -090 - Righellis Inc. F4,G Designer: AMC Date: Pg. # L�RDs ARG- :TCr$.$u R:c oRS Determine Wind Sail In Transverse Direction WSAI-ZoneA (41 + 59 + 29)• ft WSAILZoneB = (19 + 0 + 23) ft WSAI ZoneC := (391 + 307 + 272)•ft (0 + 0 + 5) WSAILZoneD •ft 2 WA := WSAILZoneA WA = 2567 lb WB := WSAILZoneB'PB WB = 134 lb WC := WSAILZoneC'Pc WC = 13968 lb WD WSAILZoneD' PD WD = 16 lb Wind_Force := WA + WB + WC + WD Wind_Force := 10- psf- (WSAILZ + WSAILZoneB + WSJ ZoneC + WSAILZoneD) Wind_Force = 16686 lb Wind_Force = 11460 lb WSJ -ZoneE 94•ft2 WSAILZoneF = 108•ft WSAILZoneG 320•ft2 WS�ZoneH 320 -ft2 WE := WSAILZoneE'PE WE = —827 lb WF WSAILZoneF'PF WF = —1296 lb WG, := WSAILZoneG•PG WG = —2048 lb WH WSAILZoneH'PH WH = —3104 lb UPlift WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZone4 Upliftnet = 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION M Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP ►• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEEP3 • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARGNI tACT S• SUAVE IDRS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft aRcr„:= RDL•Roof Area RFINT = 14162-lb Floor Weight Floor_Area2 = 647 ft F�L= FDL•Floor Area2 FLRWT2nd = 8411-lb Floor_Area3 = 652 ft LL ,;.= FDL•Floor Area3rd FLRwT3rd = 8476-lb Wall Weight E?� Wall, tee (2203)•ft INT Wall Area = 906 ft NON A 6x,ck s := EX Wall + INT Wall 1NT_Wall_Area WALLWT = 35496.lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof l = I Component Importance Factor (11.5, ASCE 7 -05) &:= 6.5 Responce Modification Factor (Table 12.2 -I, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C h x T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) . _ Harper Project: SUMMERCREEK TOWNHOMES UNIT A H ouf Peterson Client: P ULTE GROUP Job # CEN -090 Righellis lnc. ENGINEERS • PLHwdERS - - Designer: AMC Date: Pg. # LANDSCAPE ARCNITECT_•SUR:'E /GRS N F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 3MS S Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) F Si SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2'SMI U 11.4 -4, ASCE 7 -05) ,UL 3 Shc = 0.389 (EQU Cst := Sds' le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) AWN R ...need not exceed... Shc'le E U 12.8 -3, ASCE 7 -OS CCs s �= Csmax = 0.223 (Q 7-05) T R ...and shall not be less then... a:= if(0.044•Sd < 0.01 ,0.0 0 . 5 •SI'le) 1 (EQU 12.8 -5 &6, ASCE 7 -05) if SI <0.6,0.01, J R N:= if (CI > C2,CI,C2) Cs = 0.031 Cs = if (Cst < Cs < Cs Cs = 0.108 V := Cs•WTTOTAL V = 7220 lb (EQU 12.8 -1, ASCE 7 -05) E := V-0.7 E = 5054 lb (Allowable Stress) MN • Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. L': GiNF6 RS - PLA r+e:cRS Designer: AMC Date: Pg. # LANDSCAPE AROHiTECTS•SOR'.EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2..1.20•ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 = 4 ft or .4-11 a2 = 25.6 ft but not less than... a:= 3-2-ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9• psf PnetzoneB = 3.2•psf PnetzoneC = 14.4.psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8.psf PnetzoneF = —12.psf PnetzoneG = —6.4.psf PnetzoneH = —9.7.psf Basic Wind Force Pte:= PnetZOneA'Iw•X PA = I9.9-psf Wall HWC PnetzoneB'Iw• PH = 3.2.psf Roof HWC P := PnetzoneC'Iw'X Pc = 14.4.psf Wall Typical PnetzoneD. Ir. PD = 3.3.psf Roof Typical P = PnetZOneE'Iw'X PE = — 8.8•psf := PnetzoneF'Iw.X PF = —12.psf Pte:= PnetZOneG'Iw•X Pr, = —6.4.psf := PnetzoneH'Iw.X Pr{ = —9.7.psf • Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. Ck plti[EFS PLPdN CRS -, Designer: AMC Date: Pg. # LTnOSCAPE a RCHpTEo S•taRVEVORS Determine Wind Sail In Longitudinal Direction W AIL :_ (48 + 59 + 40)•ft W�:= (10 + 0 + 44).ft WSN�M�:= (91 + 137 + 67).ft WSA NwMN Rea:= (43 + 0 + 113)•ft W,= WSAILZoneA'PA WA = 2925 lb yA:= WSAILZoneB•PB WB = 173 lb Wes:= WSAILZoneC' WC = 4248 lb Wes= WSAILZoneD'PD WD = 515 lb Win N,n = WA + WB + WC + WD Wind Forc �y= 10• psf•(WSAILZoneA + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 6520 lb WSN 1 ,49 = 148•ft2 W�:= 120•ft2 WSA N�Mw+n L R ek4A:= 323•ft2 W := 252• Wes:= WSA WE _ -1302 lb Wes= WSAILZoneF'PF WF = - 144016 WU,:= WSAILZoneG'PG WG = — 2067 lb Wes:= WSAILZoneH'PH WH = - 2444 lb NAPANg.„:= WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'• Uplift = 1243 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION AL Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail (ft Wind Net Design Wind Pressure (psf) Pressure (Ibs) n Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =) 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7275 lbs Resisting Dead Load= 8472 lbs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width (ft) (Ibs) Width (ft) (Ibs) Width (ft) (Ibs) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 Harper Houf Peterson Righellis Pg #: l Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv= 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMS 1.06 Equ. 11.4 -1, ASCE 7 -05 • S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (lb) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vnoor 2 (Ib) = 720 100.0% Yes Vnoor 3 (lb) = 1625 85.8% Yes Vroot (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear' = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. n I % t i a Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) . Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 lw= 1.00 Wind Sail ft2 Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =1 7861 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 lbs Resisting Dead Load= 8483 lbs E =I 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 lbs Upper Floor Diaphragm Shear = 3147 lbs Roof Diaphragm Shear = 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width (ft) (Ibs) Width (ft) (Ibs) Width (ft) (Ibs) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 20 2275 n _ e Harper Houf Peterson Righellis Pg #: .' Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMS 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (lb) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces % total of base shear Rho Check to Shearwalls (Ibs) !Cumulative to shearwalls Req'd? Veoor 2 (Ib) = 720 100.0% Yes VFloor 3 (Ib) = 1625 85.8% Yes V = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. ., 1 I e Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall I-I/L Line Load Line Load . Line Load Dead , V Panel Shear Panel M0 MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plt) (ft-k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 oK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 o K 8.00 1.52 8.00 .2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 o K 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 o K 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 11 II I 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 A 474 Single 1.40 11 201b 9 _ 2.71 10.79 3.32 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single . 1.40 II 301 8 3.92 _ 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 OK 8 2.32 166 Single 1.40 1 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 11 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line • H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • HarperHauf Peterson Righellis Pg #: 1 ' - Shea rwll Analysis - • P _ ,.,.. _,_ . Based on the ASCE 7 -05 fransvere Shearwalls - Line Load Controlled By: Seismic Shear H `' L Wall H/L Line'Load Line Load ;; Line Load `Dead -•` V Rho',V o/a Story • #-, • Panel - Shear Panel M MR " ' Uplift ' C Panel Lgth,_ , - From2nd Fir From'3rd Fir: _, From Roof•• 'Load '' - .. Strength Bays Sides - Factor Type 4 ?' ( t (ft) - ( _r .i_. , . ht 'I k ht I `k hi I ' (kit) (Pll) (PM, .; -:- i ' (ft (ft-k) . , (k) .. . 1.. 'c' ••' •Not_Used - ! .-.l.t 4 '-.:_: , ! -.'-:- - ' 102 -- - 7 - ?I.75' ' 3.50 4.00 8.00 .0.11 18.00 0.90 27.00 '1.27 ":651: '',846 - 0.10 ' 0.50 Double' '10.50, NO • -103 ' 7• 1:75 • 3.50 4,00 8.00 • 0.I1 - '8.00 0,90 8.00 - 1,27 ` " 651 , .•846 `0 :10'.` ' 0.50 ' 'Double- '0.50 "NG' ' , 103a 7 :4.00 4-00 1.75 otc' 8.00 -0 -48 ' 0.00 • . • - 0.00 - ' ,'120;: ' 156 ' ' :0.22' - 1:14 ' Single''-_: )00'∎ -1 ., - 1 104 • 8 '4:50 10.50 1,78 '.'.o,., .8.00 ' 0 . 1 3 . : 8.00 '_0.73' - 8.00 '1.44 219' "_284' -035 • ---1.13 Single^ .1.00 11 . - - `105 " " -'8 ' " 3.00.'. 10.50, 2.67 - 'oK' 8.00 - 0.13_• • 8.00 0:73 - -8:00 ' 1.44 ' := = 2 1 9 ' " • 284'-- '- '0.17- '' • 0.75 . Single 0.75, ' III : - , - 106 - - 8 3.00 10,50 2,67 '�,oK' 8,00 '0:13 8,00 033. 8.00. 1.44 _ _•, , 219, .. • :.284 0,17 :' ' 035 , Single 035 " III - :909 8 4,58 17.08 1:75 OK 8,00. • 0 :11 .18,00 0,90 27,00 ,. 1.27 = 134 - • 174•- ' ' 0,25 . •1:15' -- Single 1.00 „l :-.. - " - 110' ' 8 12 -50' 17.08 0,64 -,` • 8,00 '0.11': 8.00 -• 0,90-' 8.00 ' "1.27 - ,134 ' 174.. - NA "- .3:13' Single 1.00' . I Is ',. _, - _ l l l 8 - -4.50 7 :25 1178 OK =8.00 -0.13 .-8.00 . 0.73- 8.00 1.44 - :.316 - - :411'. 0:25 - .11:13 ' _ Single. ': 1.00 '.III` . 112 '• ' ' 5 1.38 7.25 3.45 : OK ' 8.00 - 0.13 '- 8.00 ' 0.73 8.00 : 7 1.44 .. -' 316 .' 411" 0.08 `:10.58 I Double: ' - 0.58: VII . . ' • 113. 5 .1.38 .7.25 3.45 ,, OK 8.00 • 0.13'. 8.00' 0.73' '8.00 1.44. _ f - -316 ,; 41 - - •. 0.58 •' • Double ' 0.58 "'VII_ •- _ . 201 - 9 '3.92. 1039. 2.30 OK - -'.- i '9.00 - 0.90, 18.00 1,27 _ ' • 200 - 261 - :' .' 0.87' - - 'Single • 0,87 II" 1- • 1 ' 201e '9 4.17 - 10.79. 2.16 ' - oK .- : 9.00' 0.90' '18.00 '1.27- __ :7200 - :261'- •: 0 :18 ", ..0.93: s 0.93 _II, . - ' 20Ib 9 2.71 - 10.79 3.32 OK' - 9:00 0.90 - 18.00 - 1.27:. - _ .•200' • 261-' . 0.12 ---- 0.60''''- Single '• '0.60' -,Ill - ,. , . 202A ": 9. : 2.96 11.96' 3:04.: oi: -- _ -' ''-. :9.00 ` 0.73 • 18.00 -1.44 • • 182:: -'236 :0.13 . , :0.66: . .'Single " • 0.66.' - ...III'. .. _ '_ ] _i; . , 202B - 9 3.00 1 1 . 9 6 3.00 " o K - 1 ' , 9.00 .'0.73 18.00 .1.44 • 182 236 :' - ' 0.13 - - 0.67 - ' ' ' Single'" 0:67' `.Ill, • ' -" ' t. ' - 203 •._9 - 3.00 -11.96 3.00 OK ' ' ' . 9.00 '0.73.- 18.00 - '1.44: - ,181' '236, "' 0.13 -- 0.67 ' ° Single 0.67 . III, • . ' - -- 204 ' 9'• 3.00 11.96 „3.00 . OK •. 9.00 - -0.73 18.00 r. 1.44 " . • °- "181 , -•. -236•- - 0.13- _ 0.67 .. 'Single- 0:67- . III' - - • . • 301- • 8 3.92 13.96 2.04 ' OK , , 8.00 1:27'; - 91 , a 118' 0.20 � 0.98 Single .` 10.98' ,.1, - ' -" -: - 302' 8 -5.79 13.96 1.38 oK' . _ . . 8.00 1.27- .. :91 `1'18 - •"0.29 ' '1 :45" Single', `1:00 I - - i { 303 8 • ' 4.25 13.96 1.88 UK ' - ' 8.00 1.27 - ` , "791 : ; 118 - --` 0.21: ' - 1.06 ••, r Single : - "•1.00 •• I • 304 -8 " '2.96 ' ' 5 . 9 6 " 2.70 OK ' " " , - , ': T r , ' - ' - ' '. 8.00, - : -242- • 3 1 5 - - - -•0.15 -. 0.74-- • :Single .. 0.74 , I l L - " . .. - 305 8 • 3.00 5.96 2.67 OK - - = - 8.00 -1.44 = ..,. 242 : 315. „ 0.15_ _ . 0.75 . •Single ' 0.75 Ill - . • • - Rho Calculation . , - _ - , • ' < ,4 - - - . r " Does the I st floor shearwalls'resist more than 35% of the total transverse base shear? _ Yes • • • • • Does the'2nd floor shearwalls resist more than 35% of the total transverse base shear? - Yes - . . - F Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes " • ' 'Total l st Floor Wall Length = "moo - • -- - ' • - .,,_ -' - - • . • - - • • - Total # 1st Floor Bays = 4.77 . Are 2 bays minimum present along each wall line? No 1st Floor Rho = rJ ' ' Total 2nd Floor Wall Length = 22.75 • r Total 4 2nd Floor Bays = s • Are 2 bays minimum present along each wall line? No 2nd Floor Rho = r-r : Total 3rd Floor Wall Length = 19.92 Total 4 3rd Floor Bays = s ' Are 2 bays minimum present along each wall line? No !, 3rd Floor Rho = 13 • r . Spreadsheet Column-Defi &- Formulas • - - • • - - - • • - • - •- - •• -. - ••- , L = Shear Panel Length ' - . H = Shear Panel Height ' Wall Length = Sum of Shear Panels Lengths in Shear Line . H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load•Rho / Total L • Story Strength = L / Total Story L (Required for walls with 19/L > 1.0. for use in Rho check) , #Bays = 2•1../1-1 • . Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) - Wall Shear' Shear Application ht - Mr (Resisting Moment) = Dead Load' L'' • 0.5 * (.6 wind or .9 seismic) 'Uplift T = (Mo -Mr) / (L - 6 in) • • l4'- 1 \c- Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plt) (ft -k) (ft-k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 _123.49 -0.19 I 205 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 1 34.62 59.15 -0.07 I 306 8 10.00 10.00 0.80 OK 8.00 1.14 0.29 114 Single 1.40 1 9.10 14.40 0.05 I 307 8 10.00 10.00 0.80 oK 8.00 1.14 0.29 114 Single 1.40 1 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • f Harper Houf Peterson Righellis Pg #: r Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 1 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 I 57.35 130.70 -1.40 I 205 9 13.00 13.00 0.69 OK 9.00 0.73 18.00 1.33 0.76 158 158 NA 2.89 Single 1.00 I 30.54 64.22 -0.64 206 1 9 1 13.00 0.69 OK 1 9.00 0.90 18.00 1.38 0.76 175 175 NA 2.89 Single 1.00 1 32.85 64.22 -0.45 I 306 8 10.00 10.00 0.80 OK 8.00 1.33 0.35 133 133 NA 2.50 Single 1.00 1 10.67 17.40 0.02 I 307 8 10.00 10.00 0.80 OK 8.00 138 0.35 138 138 NA 2.50 Single 1.00 1 11.00 17.40 0.06 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.7s Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = t.o Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load*Rho / Total L Vo Story Strength = I / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/11 Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) ,/� 1 \f- Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plt) (PM (Ib) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. J2 `, Harper Houf Peterson Righellis Pg #: r SHEAR WALL SUMMARY' • Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) (PM OW (lb) 107 254 _ 1/2" APA Rated Plyw'd w/ 8d_Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2", APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None • 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 _ Simpson None 0 306. 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 • Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 • NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. • • 4-, k rq Transverse Wind Uplift Design Unit A Shear . H ' Joist ' L Wail Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total To Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Up FIr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left - floors @ Left a t House Side of Above Above Rif • above if Right House rt Left @ walls Right ' stack) • (ft) ''(6) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k I 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 2C 103 . '8 1.1667 • 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 - 1.69 0.57 20.79 . 21.31 - 20.79 • 21 103A 8 1.1667. 4.00 - 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 . 6.00 ' 104 - 8 1.1667 4.50 10.50 1.516 2.8 _ 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 105 8 1.1667 3.00. 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 . 306 8 1.1667 - 3.00 10.50 1.516 - 2.8 2.26 6.576 626 • 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 • - '109 . .8 1,1667 4.58. • 17.08 6.737 . 2.8 2 :32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201 L . 201R 4.82 5.09 8.45 £ 1,10 8 1.1667 12.50 17.08 ' 1.737 2.8 2.32 6.857 401 .0.096 0.156 ,0.192 44.52 9.45 9.90 3.24 3.21 201 aL ' 201 bR 4.95 ' 4.88 ' 8.18 £ • -111 8 _1:1667.' 4.50 7:50 1.516 ' 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 £ 112 •8 - 1'.1667 1.50 - 7.50 ' 1 . 5 1 6 2.8 2.26 6.576 877 • .0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 1 1.44 ' f 1 11.3 8 1.1667 -1.50 7.50 1.516 2.8 2.26 6.576 87.7 ' 0.048 0.234 0.252 11.70_ 0.41 0.43 11.46 11.44 11.46 11 201 9 1.1667 - 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301 L 301 R 0.83 0.93 4.82 - ` . 201a' - 9 • 1.1667 - 4.17 10:8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R . 0.80 0.80 4.95 1 ' 201b' - - 9 1•1667 2.71' 10.8 • 2.8 2.32 5.12 474 • 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R .. • 0.91 0.80 5.15 z 202A 9 1:1667 2.96 11.958333 2,8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L '304R • 2.60 2.75 6.21 . ■• 202B ' 9 • 1.1667 ' 3 11.958333 2 :8 2 :26 5.06 423 0.173 0.052 0.216 12.09 0.93 1'.43 3.84 3.74 305L 305R 2.74 2.16 6.58 203 -' 9. 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 _0.216 0.312 12.09 2.04 2.33 3.62 3.56 • 3.62 - 204 • 9 1.1667 . 3 '11.958333 • 2.8 2.26 •5.06 423 0.225 0.312 0.432 12.09 1'.95 2.31 3.64 3.57 ' 3.64 . 301 . '8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 • 0.83 ( '302 - 8 • - ' '5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 :0.80 •( 303 :8 4.25 13.96 . 2.32 . • 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91' k - 304 8 ' 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 . 2.75 2.60 ' 305 8 . 3 5.96 . 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 • 2.16 2.74 Spreadsheet Column Definitions & Formulas I i . L = Shear Panel Length t H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Linc ' V (Panel Shear) = Sum of Line Load / Total L t ' Mo (Overturning Moment) = Wall Shear * Shear Application lit Mr (Resisting-Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) • ..Uplift T- (Mo -Mr) / (L - 6 in) :, _ . Transverse Seismic Uplift Design Unit A , Shear 1-I . Joist L Wall Line Load Line Load Linc Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Tot Height Wall Load (not Point Point nin Moment Moment Floor Shear @ Floor Shear @ Stacking Stacking From From Uplift U I Panel g Lgth. From 2nd From 3rd 'From ( g ki Q @ g g p P 1 - .. Fir. • Flr. Roof Shear including Load Load Momen n Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors n Left @ t House Side of Above Above Rig i above if Right House n Left @ walls Right • stack) - '(0) • (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k '102 ' • 8 1.1667 " 1.75 3.50 ' ' 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.1 I 0 0 7.91 7. -.103 8 1.1667 1.75 - 3.50 0.114. 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 . 7.11 7 103A 8 1.1667 4.00 4`00 0.481 0.481 120 0.04 2.016 1.664 • 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 ' -0 104 . 8 1.1667 4.50 10 :50 0.126 ' 0.73 1.44 ' 2.296 219 0.1 ' 0:8 0.078 8.96 4.61 1.36 ' 1.20 ' . 1.93 0 . ' 0 1:20 '1 05 8 : 1.1667 ' 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 - 0.156 5.97 0.97 0.68 2.04 2.14 0 0 . ' 2.04 2 ' 106 . 8 - 1.1667 3.00 !. 10.50 0.126 ' 0.73 1.44 . 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 , . 0 . . 2.14 2 - 109 ` - .8 ' 1.1667 4.58 ` 17.08 ' 0.114 0.9 1.27 2.284 134. 0.152 0.192 0.156 5.58 - 2.47 2.31 0.82 0.86. - 201 L 201R 1.13 .1.54 - 1.95 2 `l 1 '' 8 1'.1667 ' 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 - 0.192 15.23 9.45 9;90 0.56 ' 0:53 201 aL 201 bR 1.32 1.32 '1188 `1 1 11 8 :l :1667 ` 4.50 7.50 ' 0.126 • 0.73 1.44 2.296 306 0.144 0:8 0.078 12.54 5.06 1.81 2.00 2.73 0 . • 0 . - - . - 2:00 ' 2 '112 : 8 :1.1667 ` 1.50 7,50 0,126 - ' 0.73 1.44 2.296 306 0.048 " 0:252 0.234 4.18 0.43 0.41 3.79 , 3.82 0 0 3.7.9 .. 3 113. '8 1 :1667 1.50 . 7:50 0,126 - 0.73 ' 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 - 3.82 3.79 7 0 0 - . • 3.82 ' 3 '201 9 •1. :1667 -3.92: .10.80 0.9 • 1.27 2.17 - 201 • 0:225 . 0.432 0.156 - 7.63 3.42 2.34 1.16 1.41 301L 301R - -0.03 . 0.1.3 , ..:13 1 201a • !' 9 ! 1:1667 ' 4.17 - ..10.80 :- 0.9 • 1.27 2.17 201 0.225 ' 0.156 0.156 8.11 2.61 2.61 ' 1.38 1.38 302L . 302R' -0.06 ;. -0.06 1.32 • 1 201 b: • 9 ' 1:1667 - - 2.71 - 10.80 0.9 ' . 1.27 2.17 201 0.225 0.156 ' 0.432 5.27 1.25 ' 2.00 1.53 . 1.28 303L 303R . 0.10 -0.06 - l .63 202A = 9 1 1:1667 2.96. '11.96 • ' 0.73 1.44 217 181 0.173 0 :432 0.052 5.25 2.04 0.91 1.15 ' 1.50 304L ' - 304R' 1.28 ' 1.50 _ 2.43 - 3 202B • - 9 1.1667 3.00 11.96 r ' ' - 0.73 . 1.44 ' 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35' ' 305L - ' 305R 1.50 0 :63 '2.99 ' , 1 '203 ; - 9 ' 1 3:00 11.96 0.73 1.44 2.17 181 0,309. 0.216 0.312 ' -5.32 2.04 2.33 1.16 1.08 0' 0 : 146 ' 1 '204 • " 9 '1,.1'667 . "3 :00 11.96 -' - - 0.73 1.44 2.17 ' 181 '0.225 0.312. 0.432 • 5:32 1.95 2.31 1.19 1.08 • 0 0: ' 1.19 - 1 301 • • .8 - 0 - 3.92 ' 13.96 ' 1.27 1:27 91 . 0.232 0.384 0.204 2.85 3:29 2.58 -0.03 0.13 0 • 0 - . . -0.03 C 302 .8 ' . .0 ' 5.79 13.96 . 1.27 - 1.27 91 0.232 0.204 0.204 4:21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -C 303 '- • 8 - - 0 4.25 13:96 ' • ' l'.27 1.27 '91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 0 • 0.1'0 -C 304 • 8 ' ' - :0' -2.96 5.96 . 1.44 '1:44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28. 1.50 0 0 - 1.28 1 , .305 . .8 0. 3 5.96 1.44 1.44 242 0.232 0.136 1.104 5.80 . 1.45 4.36 1.50 0.63 0 0 1.50 C . { . . Spreadsheet Column Definitions •& Formulas • - • - 'L = Shear :PanelLength ' :H = Shear Panel 1- leight , -Wall Length = Sum of Shear Panels Lengths in Shear Line • ,V (Panel Shear) = Sum of Line Load / Total L . 'Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting;Moment) = Dead Load * L * 0:5 *.(.6 wind or .9 seismic) ' Uplift T = (Mo -Mr) / (L - 6 in) -_ TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 _ 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 III Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF 9.23 112 Wind 11.44 Holdown HDUI4 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDUI4 14.93 Wind 11.44 HDUI4 14.93 _ 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 /� 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 ('- 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 1 - 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 BY A\ , n n X DATE / ' V!o ko Joe NO C. - r.. PROJECT: RE. 3SW 1 — lv V1r Loo c4 J Ax .x\ Louc, l)\- 1 - 1N 1 O 2 L i j Cu.p(K . v) o SSW a\ `1`100 \\ s . c k11 Q CC kk Lai = n-32- fi 1b5 Iz, ►�S = 3 y- aq t wall c d.C, t1KA I < Ckp0 -6 • vk, 2 p C(t ryl (I - 1� ^) � 1 J41 X 3ct #- U r •r O •• cr O LL Z z O = I- a O U C ) I) °' 0 .°_n . s ,, @ . _. 5W TN IS LektoTO L01.1c n-115 LI rJC I 0 t6:1r* , (t 4 ) �o X 57 III w o r , y _� — _ ., L ___ J . 0 V- 1 r- 1 c, i 7 _, . 1 Sw RI% I.0 NC.-�TH T AmwH-C 1 Awycek Tkkt s LINE. ► .0 7 . . _ . . , . . . - . . . . . --1 . . I . . . - . . e . . . . . , . • . . . . ' . . ' . . . . • . — 3 > CP . : . , . - . Si 11.16 0. ,LEN)C--,ITI-1 - kn. Pr LoN c-i 1( LS L (NC • . . ..... . . . . . . _ . • _ ., . .. ......- . ___ . _, . --, . . • _ • —> Q : ' • . ... . .. ... I ., , .. . .. ... . I , . . 1.; . . . . • . . 4- 1 - . 0 f '" ,,,-. • - - - ----- • • - - , . . _ . • , , . I , - ..• I . . . 1 . .„.■;' _ . ...7)}... . 1:7 . . - . S. ie.. . • . ?.. i .. • - - - ., - ' . . ., . . , . CD -', -1 . '. • -:. . . . .. . . di Amik . s 4-7 [7,", ,.. _ ,. . • -, -....... , I i CI W - r • ._ _ _ .. . ._, O S kki 1 S L M GI Tit PrN bt pi 1- Awmtr, /If t s L 1 NIE • . . . _ . . i ..g, . . . . . . . . I . . ,. . . . . . ..._..... . F D _ . . Li ., . . 0 . _ • ,.. . . .. _ • . . • . ... ... . , . . • . . . I 1 • 105 C . , . Sw 1i LENCnTH A JC lfis ((A.i D.0 ... ��j 0. `r G I - g i ,,, , H . / ,I II . ,:t 1 +I i • .- o 4� � o 'i 0 1) !ll ---. II aob . 1 SW M\ co l,e t C- T1± F\ 4U,J G1 11 LI N t j I I ,1N11 S 11-1.1 L-) N c - 44..o.-)r43') S \ I-u, M 4 G )Nr1 s4Ni L;) r' m\J 0U J -)roll S BY DATE: - ao' O JOB NO.: / e A ' PROJECT: -` RE: ac: NC "1 I 1 kTV \r\c - a�. ` \ V 1 �� oP hoV 5c • Z v un.e.8 = os�� ���� fur,-rot) 6.5 w Oki gPhr�_r�rn ( Ai( d1�1 = au Ct O z • ❑ w 3a°1 pL.P (, .514 O w Cot pact of cm h (Aced ed C.��aphuuOn'1 L O = Ctpo = asacA -F � a Woc: Glgccrr1 Z Gi No ;r1 eci p c .h = (a55 pA l ,4 = 351 w o v._ O U f O li Z ❑ Z O O = I- a 0 • v • c L. c o T T fY =_ BY ; r1i'M DATE: ...... 0 _ ......_` JOB No c E. Ni t/ V PROJECT: Root/ a-4' -8 1-Is! . RE: De.s 'a i r\ og r\ \ 1 biac.' @ 5 ‘f S E OPTION 1.. • Z ill:-'4 2 TR►a I crrb o� # '�► ! i i . \c'- VW o x Li Max 5i tkK -,= m -a o W ‘s SI U Z DG5lc i W !NJ r0 PCeSSUf z f- 9 - 3'16' Q .� k ea '� - :.--r,_1-.-,, i - C . i-- ' TO4 - 5 ES 5 8' U 1 j Z 10 1 . -. Y . % (\ 4 ; iy ' ' ri y(...?1 '' DV 1 cilpLiz 3 r 2 o 7 u E 0 .. Li. o N'tcrox = $ z _ _l°1 s 2} #fit er a. = 1 V q°I J< _ ,_, s „ m 5?Ti ,,, ,___ 5."- _ 6 q 11 -4 '10 1 .. 1 .E . i 3 P^ 1 .2.5. ` r- L. = _ F'o�('- ; = (BSO?s .L 1 S )(1,IS)= - a3`!; 2 . <. 1 � ;-)a U n a o c � �, F �� (moo Esc . -cQ - a'-IO psL 7 '''2> '''2> �` Lt - __= 0 4",.. N C-\ T (j o c) lb sfl Z 4 - -1.7q Bv: - ,1 ( L DATE � lJ N \ 1 ` 1 f C 1 JOB No. ( � - - _ :'"1 c 0 �Vf /lam) 1� C N U PROJECT: r RE: QP 1 10 a 1 � 2 u, i U4It up f5rf■ . 2 o Lo71� LZ O W S o,\ i oon P: ck. 'IN E. 3 TWO?, F- W O E 2 ❑ TOO !-J :& tr\ or\ ,DINT — 13 -9' a irV 0 > l !3 \s'.).e r Sk 0v-e , .1 - - :- k2`- 01 U O w U � �e skG;, wkr�.�i 1 `�. re_,:1i e _ - a0.0 C p 7- F Z Lao d_ r s-\ '`G�.:t1 \ �� �,,\J CA- = al's,LF 0 ,7 I• i- I, t- y it) . .< Z y? f r - I, g 1� =,�(07 (o R. 2 o o _7' b Ff -- 7----.3-...--: — T.c-3 " . IL • Z \I rf' X = t -� S6 r. n W 1 Z o 3 1 i / � / _ j 1/ 1 `d L. 1 J--, - 1Z c - __ I'S , ,:1r.!'' 1 A 3,5 i.,, = 1� e^ o c..5 _ Atk= ' ...,, i '•N 1 c = CU U 7' -_ /1 U fJ C = 2 = - 1 �5 !� � r te.3., i - 3 I. -7rJ.5'15 - • `� • d ' 3. ', r0, vt,,).1- ,1�dA` 0 . �l,l7 s ; 0 0 }' S :1f # 3 * S, ?J +- 0 = ''r`I ,T r „_ _ %6% * c, it L. ;_(. -4s> _ crQ`i-p5 V — 5G? 3,4>S" L s = F.� C c N�C �CLCr C� .C- �. s _ I b = ($ 50pt.vi )s. ' 1, 1 5 ) 4 --- , \DL 10' = (aIa.c .X.t,06,0)(t. ko,cAYI.Z1)(I.0)C,,o> L 1_ 401T>` C31c--_ _ 1 _ . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN r Unit A - From Load WoodWorks® Sizer 7.1 June 24, 2010 12:49:04 • COMPANY I PROJECT RESULTS by GROUP - NOS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF ...= us Mnf Trusse == Not designed by request ===�a=>� a (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x0 By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR = a � == ===�z� == Not designed by request - Mnf Jst Sloped Joist Lumber-soft D.Fir -L No.2 2x6 @16.0 (2) 2x8 (1) Lumber n -ply D.Fir -L No.2 1- 2x8 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x0 By Others Not designed by request By Others 2 Not designed by request (21 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 5.125x10.5 406 Lumber -soft D.Fir-L No.2 4x6 (2) 206 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n-ply Hem -Fir No.2 3- 2x6 (21 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Notdesigned by request Mnf Jet Not designed by request Deck Jst Lumber -soft D.Fir -L No.2 208 @16.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 208 3.125x9 Glulam- Unbalan. West Species 24F -V4 DF 3.125x9 4x8 Lumber -soft D.Fir -L No.2 408 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 1- 2010 5.125X12 GL Glulam- Unbalan. West Species 24F -V4 OF 5.125x12 By Others 3 Not designed by request 3.125x14 L5L LSL 1.55E 2325Fb 3.5x14 (2) 2x6 Lumber n-ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 404 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir -L No.1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 204 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd ......===============Not designed by request = ______ CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values =========.======================- f et Pinst Not designed by request === u== Deck Jot j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x0 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 408 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125 %12 GL 610 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 69 Deflection 0.95 406 620 Bending 0.08 3.125x14 LSL 614 Deflection 0.73 (2) 206 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 r23 Axial 0.80 (3) 2x6 c29 Axial 0.75 6x6 c26 Axial 0.70 (2) 2x4 t39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request = w -= === :>s- =.= == ==- ==ss.= >= =�=_ =s_ DESIGN NOTES: _ = = ��� 1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of ND5 Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (chat is, o butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side- loaded, special fastening details may be required. 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NOS Clause 15.3. i/7 (, WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8' ��lv� w '� 105 b3 49' --6' tu4 ' - o u u�c o Iilll - - -_ __ - - - - - an I V:,' - - 44 - 4 .3-0 b1 . o yr - - -; 4 U -G 5 -'J Jv -. Jr -L. y7 - .. --- - - - - 30-0 54 -0 u� b2 3s -b ac - . - - - :.L - 7 J 1 -3 J OD _d-0 - - - -- - LID -6 V 6 cu b10 /c ;r b33 1 -Lu-. b32 - " -v '. 4 ' b19315 -6 DJ' 3 b -o _c =MAL b14 n D -o 7 r b30 be ,I -- - 3 -c ES'‘BB E C CCOjC0C CC CC% CCCCCCC` CCCODDDDC; DCi CDOCDDDDDDDDDCO ErEEEEEEEFEEEMEEEE% 0 2 4' p` 4 10 2' 1' 6 x 21J 22 24' 26 22 32 ZL. 3? -10 4 44 d4 48 5; 02` 54 56'.3 60' 72' L- COI 5 72' .,', i 3 _ c ; :2 :2 2.2 : 2!2•. •2 - 3: 1.. .. _ ...'3 .. .. - -i '!il, -44'4 5.5..E -.:,...7; . J 5 5•1 0._ 6-'5:3...6 41. 77 0 - . 77 f !--. o:..- WoodWorks® Sizer SO FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June "24, 2010 12:41:19 • Concept Mode: Column View `Floor 2: 8' c ( .)� r LOPtD c58 c14 lJ 105,-, - . _ . . .. - - - - - - - - U 4 `; . . - 4a O -o 11±3 `' - - - - - - .. -- - - c I)1l -. - _ - _ - - - __ - - - _- 4 vu y 4 3 . 1 - 4 -5 %/ :� • c69 c2 c c 71� .- . ' — - .. -- - - - --- - -- - -- -- - - - .. _ -_ 4 i 0 � - -' _ its n ` - a1 - i, _ - o n . - . _ -' . - . . . - -- . U -. - - L _ _ .. __ - - - --- -- L '.._ -s - • ' -c25 c12 - r c26 z.:',-c 2 1 r 1 - - : -c78 -. ,_ ..- - - ■ - -- .. :4-'J i +' - - -- _ - - - -- - - - -- - - - -- - t • • oc 'c77 ' _ + - r; b _Lr t .. c30 o ^ J • • � :- .... 1 - . .• - . L c 55 a cs O ' ° SCCCGCCC; K. CCG.1.: CCGCCCCCCCICC DOIDGuDi ;OD0vC}rC.O'DDDCS =C EEEEErLiEE EEEc %- rElEcEEZ n' _ 4' 6' S' 10' i 2' I - ' , ' 1 6 ' ' 16` 20' 2' 24' 26 28' 30' 32' 34' 38' 38' 40' 4 44 -- nu 50 52' 54' _ 33' 60' 82' 64' 65' 68' 7f7. 72' 74' 76 U', 37'F_ i'1 ,..`.2' 22:2 $ 1 ;_ . . dd fq.'_- 55:5-:'.5-5;;: � 5,63: .3:5 77 _,f :?' -- ., -6 ; :' ' 's,� 1.1. iI it . ,7 f ii - _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' �C��J l r b31 G,1�- • 1050..:: • ' 1 0 (24 .5 _ D 1UL .f . . 1W _ 40-0'- c b34 __ __ : 4 O • . _ - ..._. ..... .... - - -- ° .. . Yin - ■ - - -- -- - -- : - ::-7:--.-:-:-.7 . ... .., - ----7:--::-::::: -' -' — - - - - - - -- . - -'•-- - 13 40 a0 a' Sb n CS' d b2 s u -n'- OG - : - - -- - - -- - - - -- - -- -- - - • - - - - _ : --:: -_ - . ' JL-n 25! - - - - _ _ - -- - - . SI -b - 00 - - :.._ ... JU D : Ly b" t5J . . Cf -t- 0 .4 — - - - - ----- -__ - - - ----- .. : - _ _ .. _. - -- - . - . - --- -- Ln -o 0 1 20 -b ry - - : `7b10 � .. - L3-n 1r - - b33 • ra --- - . ...:; LU -n` !a t5-b 1L_ /4 - . -- - --- _ - - - - - _. -. . .. .. -. . _ -.. - - . - !1 -b - _ - - _ __ - - -- -- -- - _ lan (ti na - - -- -- Du. • b10 _ _ 13 O' LL b" n/ I I -b bb.. 04). - 3 - - _ . - c,. �. . b4 - b14 . 13 bu? b30 '�.. b35 4 -0 = o . - . - ilji . - - -'- . ......- - --•- i:......_ - - - -- -- -- - - - - •- - '. _ JVt . BBI BBBCCCCCCCCCCCCCCCCCCCCC CCICCCD DDDDDD DECO GDDDDDDDDDCDIDDDE; EEEE "EE'E1EEEIEEEEcEEEEEIEEEEZ 0' 2' 4' 6' 8' i 0' 12' 14' 16 18' 20' 22' 24' 25' 28'30' 32' 34' 36' 38' 40' 42' 44' 46'48'50' 52' 54' 56' 58'60' 62' 64' 66 68' 70' 72' 74'76' 0'1' 2' 3' 4' 5' 6' 7' 8' 51! 1 1: i: 1 1 ?111:111 :3:33'.3(3;313.=4(44:4 :4.4'!4!4 :5 :5'8' 8 8 (6 : 6,6 : 616 : 6 : 61 . 7 G' 77 J' 7 : 7' -6" • • • ./1 / a t WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load Wood Works® Sizer 7.1 June 24, 2010 13:14:35 ., Concept Mode: 105 Column View Floor 2: 8 ' ?,kP.R. c14 04 0.3 - / I LI ( 2 475 -G zig -1 - 5-0 c82 I c81 F 4(4 • c3 - . , 9 -9 4,4 I , D 0 5A.) 99 • .f.t. -0 OS 4 -0 • .. c25 c12 - c26 z.; 9 /0 1 Itz=cDrawarss@na=a - I - c72 c2 r. c73 z! -9 7 , nmse '--' zu -0 lb -t , 5 • / -(5 ! 4 c3 19-9 i 1 , c78 4',,i CI 4 -9 0 7 - 5 -0 00 c77 9 .! .,.4-4-444 E-1 09 - 94) C31 _ c_ 76 . c71 , s. ifF , 9 2 , _ - .. „ E . c30 l c32 9 -9 '. i • lir- --.---.I -.--- , , '.;-•.+. --.- I CP -0 CU; - V '• '"' a a . ' isi =' . c56 4 t c55 . _ 4 CH:CC CC COCCOCCC CDC° CODDO DCD DiCDD ED 12,D DODD DD:7DDID DE EE E E EE EtEEEEE E E EFEEEEEEEEZ 7: 2 4 ,:-..; 6 I C; 12' 1= 1-.-"." 16 20 22' 2-V 25 28 20 0234 34 3e: '. 42 z- 2 :6 -IF: 50 02: E-2 :36 :06 63 62 8463- 5,8' 73' 7 2' "7 ; 7 .''.1 0 ' 2 '7 3 :E: '''_' SI 1 . .1 ■ i 12(2 222 22...''3 3 A 7r WoodWorks® Slier SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 =c,_ 4 .. - - -.'- _ — --- - - - -. - --- --. - - '- -- -- - -'-.: - -- / 4 0 1U60 1UL - _ --' , - .... . . - 40 -0 1U'(b b 79- 43 . - - - - - - --- - -. - 4L �' -' 21 :< _._L -" ® _ - . : - - , _ _ -. -. : --__= - - ' v 37 -b a - -- :.._ ▪ -u 111 �i 5'b J_ _ -._ -_._ _. ti b7 : ..5s b 00 - - - -- " -- - ' - -- *- -- -- -- - - - - - -- -- - -' - -- -- -- -- - - - - 5C b 0;: - - . . , . - L7 -0 _ L I ' -b - L0 4> CSI .. -- L3 -0 ZS -0 Ib -- -- o- � _ -- - -- - - - - -' --- - - --•- .- -- - - -- _ . : -' - -- -• - -- LL-0 II ' b22 : I . - L'I -n L U-n /b '[ -- - - ,. .- -. _ ; � - - , - . -. - 14 -b - . .. .. - - - ... - - -- ---- . . _ ._ ---- ---- -- - - 15 -C of I o ,u o2 b34 u 5 - b 04.. ' b8. 01 _ �. . -- - - - - - ' - - - - � . _ - _ . - . ' .,_ k.. - 0 EB16.B BCCCCCCCCFCCCCCCCCCCCCCCClCCCDDDD DOD MCC/ CDDD DDDDCDCD1DDDEEE E E EEEiEEE EEiEE'EEEEEEfEEEEZ 0' 2' 4' 6 8' 10'12' 14' 16' 1 8' 20 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48 52' 54 56' 58' 60' 62' 64' 66' 6 &' 70' 72' 74' 76' 0'1 '2'3'4' 5`8"7'8'9 1 (1 '1;1:1 02 222 3:324.3f3 4 :4 :4 4)4;5(5'5 :5 :5 , 5:5(5'5(5 6(6 8 :6:6 :6(0!7(7'7 77 <7 t7177' -6" • I WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 • Concept Mode: Column View Floor 3: 17' 1050 4n - b Iva - - -- - -- - -'- ------ - --- 4 /-b 1US .- - - -.. - - -- - ----- -- --__ .._ .. - - - 4o -o r 40 -to IUI0_ - -' - - - - -- - -- - '.'. - -- - -- - - - . - -' - -- 44 -b IUU - : -. -- - .. - 43-b - '- c62 c61 . -c15 -i c16 . . 41 -b Va 3y -o VO. • - -- -' - --- - -- - - - - - -- - - --- ._- - -- - -- - - -- - -- - 30-0 y' - - --- -'-- - ' ®--` - --- - _ -- .. . .. .. .. .... .._ - - 34-0 `:U - -. - - JS -b dd - : - --- - - - - - - • - - . - . 3 1 -b b! . - Ju -o - -. ' -- -- .. . --- --. _ 0G . L J -b °U- ' - c39 c24 -- - - - . -- c23 -- - -- - - .Z..5 -b • ; y _ - --- --- - - - -- -- --- - - - -- - -- - - -- - -- -- LL -b � .■ .:- -;c59� � Lim . ____ GU -b ra C60 IV (4 a - f = f ' ._ Ib -b / 1 c37 - , - _ .. _ - - - - - - 14 -a rU _ - 1J b � �}s , _ I L -C c35 1 r-b b` -',U-0 bb. _.. .- - ---- -. - ---- _... . -' -- - -- ... .. . . . .... . . .. _. _ _ ' . _ .. y -a 53s ; "67) - C66 -- - . c63 � I aG. II c756520 . c1 c6c74 . _ b . b .. a 11 - -- ■' .. • 4 b� 3 b r ... _._ .- - - -- .... - _ -- -0 : BB)BB BCCCCCCCCrCCCCC CCCCCCCCCCICCCOOODDDDDiCDDCD DD DDDDODCDIDDDEEE E E EE EI•EEE,EE'EE'EEEEWEEEEZ 0' 2' 4 ' 6' 8 10` i 2' 14' 13 1 e' 20' 22' 24' 26' 28' 30' 32' 34 36' 38' 40' 42 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' ; u' 7Z 7 4 76 '44:4 - 4 c -- S '"t 'r -r 7^ -7r-,• 0'1'2'3'4'56'7'6'9111 1;11 ! "tt "1 E1�t2222 4 ( 4 :4 a. 5, S5r5.C600.6�.66'6:I =.:t- ?: a ., .f _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 49'--5" IUuo un -b • IUS - - _ - - '- - - _ - - - ur - b IUL`S. . - - . - - -- - 40-0 IUI -- - - -- -- '- --- -- - -- - -- -- 1 Vo l:, -- - 44 -b • 9 43 7 ya :b23 .___, b24 - = - - 4•-o r. ®- - " - - - ul -u ---- - - — - -- ---- - - - :-- -- 50 y S . _ : : - - - - - - ,`. r - b 30 - 10 y -- -- -- - - - - - _ V b - tlb 0b _ ___ __ ___ ___ _ ._ _ _ _ .__ ._ .. 0! 51 -0 00 . J1 -0 LZ5 b 03 - L! b 01 ` L0 -0 • GU - --- - - - - - -- - - -• - - - - -' '- - -- - - (y - - - L3 -0 LL -b !t b25 - LI-13 fo LU -b !4 - 10-0 IL _ . - .__ .. __..._ _._ _ Ib -b (U .._ _ - -- -- - -- - - - - -.. - --- - - - _ - .._:_ 14-0 - -- -- -- - -_ - 13 -0 00 iG b -- - - - 1 I -) 100, - - __ .__ -. ._ .... ..... .. .. . _ __ ..... _ . 00 . IU b 0 7 b27 b28 s bL - � - - - - b -b 0 b BB1E. BBCCCCCCCCfCCCCCCCCCCCCCCC' CCCD0DDDCDD ;CDDCDDDDDDDDDCDIDDDEEEE EEEEIEEE::EEEEIEEEEE,IEEEEZ 0' 4' 6' 8' 10' 12' 14 10 18' 20' 22' 24• 26 28' 3C 32' 34 36 36' 40' 42' 44' 46 aB 50' 52' 54' 56' 56' 60' 32' 64' 66 68' 70' 72' 74' 76' 0'1 c ' (1 ¶1-111' r2 V- •3� 3' 3`3 •3 r 4 -4: "4.. •5 =5•5r G - - b t 7;1 :7,7f7 -5: '1;1:11 1. 2 2;2.2<<2E22 %2I 31 �.3: i31 .,3.4 4:4:4 . ,4 - 4c4f, _55;0. .,- 5 "._t�`�:60.0:6�.6."'6�.��%7 . /7 f • r WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 . Concept Mode: Column View Roof: 25' IJ4 - -- -- - . .--------' -- -- - - -- '— _ 4/ _0 II../L / 4 4 90 • c42 c43: :_.:c44 - c45 - - 42 -0 41 • yb--- .: ...- - ---- -"- - - - - -- - -__. - - 30 - " "- - - - -- ' • - - ---'- - - ------- - - - -------------------- . 30-0 _ - • 30-0 90 34 -0 09 - - 33-0 0U 3L -0 0! _ 3U -t tSb _ -- .. -- -- - --- - 29 4 L0-0 b .} .._ _. __.. ... _ .. ..___ - - _ _ - _ _ . LO O 20 -fp 61 _ _ _ _ -- - - - - L4 f0+ 10 - _ . - -.- C 46 -- LU � /! _ _ . _ ._ ( 4 0 -0 13 ._ - .. - b I i -- - . . - _ 4-0 09 '-U- - 00 - -- - _. - -- _ ._ - Or I I -0 00 I - O4; - _ c51:-...50 c52 - — c53 ' -- . - . b 0:: Oz:' 611"°.C-11mV•iffolNimmimmimmEr•CM_ L.G.. BB \BB BCCCCCCCCtCCCCCCCCCCCCCCCICCCDDDDDDDDFCCDCDDDDDDDDDCDrDDDEEEEE EEEFEEE'EESEEEEEEEEIEEEEZ 0' 2 4' 6' 8' 10' 12'14' 16' 18' 20' 22' 24' 26' 28 30' 32' 34' 36' 38' 40' 42' 44' 46' 43' 50' 52' 54' 56' 58' 60' 62' 64' 66' 88' 70 72' 74' 76' 0'1 2'3'4'5'6'7'9'Si(1 1:•1 :1/1!i(1'11122 23.3 :3 `4(4 :4:44!4 4 5 ;5 5'515`. t '6 6:6E ^^i 7:7:7 3" 4 t t� 5:�.5�b.,:i" 6 6fi:6. �.c....7G ' -6' 1/I /_ '�' - - , • COMPANY PROJECT 1 l WoodW . SOFTWARE FOR WOOD DESIGN - . r June 24, 2010 12:42 b1 .. _ De C Cal She - - Sizer7.1 '%• ' LOADS (Ibs, psf, or pif) : Load Type Distribution Magnitude Location [ft] Units ,Start . End Start .- End', 1 w61 Dead Partial UD '613.2 613.2 2.50 3.00 .plf 2 w61 Snow Partial UD ,795.0 795:0 • • 2.50 3.00 ,,plf • 3 c61 Dead Point ' 622 •2.50 lbs 4 c61 Snow Point - 1192 _ 2.50 lbs - „ - - 5_j28 Dead Full UDL 47.7 plf • 6_j28 Live Full• "UDL 160.0 plf, 7 j33 Dead Full UDL 120.2 plf. , . , 8 j33 Live Full UDL 370.0 plf ' ' . MAXIMUM RE . ^ , • • 1 0 , 31 Dead -391 ' , ' 1061 Live 795 - - 1615 Total 1186 2676 Bearing: - Load Comb #2 -- #3 Length 0.63 - - . - , -- - 1.43 ' • Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; • ' Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : - " • - Criterion Analysis Value Design . Value Analysis /Design • Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 - • Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 - Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 . Total Defl'n 0.01 = <L/999 0.15 = L/240 - ' 0.05 , *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 •, ADDITIONAL DATA: FACTORS: F/E CD CM Cr CL CF Cfu Cr Cfrt Ci .Cn LC# . Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 - Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - S , E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.'58 million 1.. - 00 1.00 - - - - 1.00 1.00 - 3 • Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +•75(L +S), M = 1178 lbs -ft • ' Deflection: LC #3 = 'D +:75(L +S) EI= 158e06'lb =in2 /ply ' - , Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction „CLd= concentrated) , (All LC's are listed in the Analysis output) - „ - - Load combinations: ICC -IBC - S .- - - DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • r COMPANY PROJECT I I WoodWorks® • SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : t - • ,i . _ . A I 9 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 . #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam - Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 - Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ,/ 1I. c1 COMPANY PROJECT 1- WoodWorks® SOFTWARE FOR WOOD DESIGN' June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 _ c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 81 Snow Partial UD 431.2 431.2 5.00 6.00 pif 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS fibs) and BEARING LENGTHS (inl : Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = B05 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT di WoodWorks® SOFT IRE FOR WOOD DCSILN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j14 Dead Full UDL 113.7 plf 2 114 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 2 sK Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. n f n COMPANY PROJECT ii 1 WoodWorks® SOF/WART FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb 02 #2 Length 1.74 1.74 Glulam - Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L /381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ,� �` Erf COMPANY PROJECT 1 WoodWorks® ..... SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS I lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 Live Partial UD 680.0 680.0 0.00 4.50 No 3 Dead Point 267 2.00 No 4 c39 Live Point 822 2.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No • 11 Dead Partial UD 120.2 120.2 4.50 7.50 No 12_j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 Live Partial UD 350.0 350.0 4.50 16.50 No 15 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 Live Partial UD 310.0 310.0 3.00 4.50 No 17 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 Live Partial UD 370.0 370.0 7.50 13.50 No 19 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 Live Partial UD 370.0 370.0 13.50 16.50 No 21 Dead Partial UD 120.2 120.2 0.50 1.00 No 22_j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23_632 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0• 16-6i Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50' 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support. top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 . ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs-ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L El= 1328e06 1b -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live 5 =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross - section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). A f_ , COMPANY PROJECT f fl WoodWorks SOFIW %R( FOR WOOD DFS10'. June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 pit 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - .:- - `� _ at- `� : ---4,- �,. . _ . � - ' - - fi r ..� � � . _ e r g. -� ,- �+.••�. • ya - �, if i + '~� - • wr - - S .'c +T - . - .. ''."' 'M4.` 'nom Mil Ilr.. 1 0 , 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 83 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT di WoodWorks® - SOFTW4PE FOR WOOD DESICK June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2_w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7_w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 Dead Full UDL 113.7 plf 14j36 Live Full UDL 350.0 plf 15 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 pit 19 j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : � _� - =r �'�a.We� _ - 1 -- --- w -.---- s --- -+.- 1t/'..... r,.•s - . - yam i.� . .<"`yG� � 1 12 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) •fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. _ a COMPANY PROJECT (II WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REA(=TI(]NR 1Ihcl and RFARIN( I FN(;TI -IR 1inl • 10 3'-6'( Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ./) S o COMPANY PROJECT I Ill 1 1 WoodWorks® - SOF7WARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS (Ihs1 and RFARIN(, LENGTHS (inl : A a K I0 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 7 lea COMPANY PROJECT • 1 WoodWorks . SOEf WARE FOR WOOD DESIGN'' June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9 j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf ll_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : IO' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fly = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). n - —. _._ _- r, . I .\ r i ( i l! • '• - � s • 7 4 , ! " . • 1 • � _ .. t . t;, a ��' t r, - r - n - i - - 6 ., ii 1 I :j _ - � - - _ P r ?� at1, ' _ F, • WWW o �` : I I I ■ I t , ( - ''•" y x = �. 1,-, • • A ? I - +, I , { o � ' • T >. ti r _ o + ~ ' • - I _ ;+ r 1 .. 1 'I,I� il, ^ r( —,, a r :- 1 9 I ,. ;u j _ j a% U • - -' , r.'' till _ .. . _A i i ..`17., 3. a -e • Y' (,� • I,;. l, z : s '' a '1 t'` 1 y : L. • 1 I' 9 o ',..ti- 1• �f - c , •,:;.. r- f 9 �'' t co 55 0 2 �, E 1 1 u W I - - - -v' •a te :a _ J . . re ,�^ 9 , •f _ - I K • 1 �� - - I _ t u q a — _ CO m - ,. �' 1 - a pp ( .�6 R a I' ! 1 B ii. a -t ,,, m,,.mh��, ,. titinn. a.am,. a, ,. ��aa. �. ,.aa. �.w,�m �.� „ad . - W t ,d '1 5 ( I 3 z - - a - p �S q '.ii � t t -��� . 1 :.• o : n r “t, , : F a :l e s -o _ r - :11 a 1i Ill •I l C ,,.N� �r ., O�rinv • - ■ • - -- - -- - - -- - - -- ` . r ,. _, i ti C OMPANY ` .. _ " PROJECT - ` . . l %Vo _. ,.. SOFTWARE FOR WOOD DESIGN - . , y - __, ,) , June 24, 2010 12.49 b35 ■ y a .Design Check Calculation Sheet V f - - Sizer7 • . a . LOADS ( lbs, psf, or plf) : ; Load Type Distribution Magnitude Location (.ft] Units - 'Start . End Start . -.End :.. _ ' . - 1_j21 Dead Partial UD '120.-2 120.2 0.50 1.50„ plf • i 2_121 Live Partial UD- 370:0• -370.0 0.50 L.50 -plf- -- - -- A 3_j59 Dead Partial UD 120.2 120.2 - 0.00 0.50 plf; 4_j59 Live Partial 'UD , x370.0 .37010_ 0.00„ 0.50-' plf ., , - ! ; 5 5 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf • 6 j60 .. Live -- Partial - -UD _ .370.0 370.0 -, 1.50-. 3.00 olf - , _ _ .. . - MAXIMUM R . - , ... .....,.. .. • - -,. • _ • ". - _ : • � O 3 ' Dead 188 - - -- . _ -.. ,...• . .. -. • , . .:. . • S. 188 Live 555 555 Total . 743 . • • - 743 Bearing: - __. . Load Comb #2 _ 5 #2 Length 0:50' . 0.50" 'Min. bearing length for beams is 1/2" for exterior supports . . Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys - Self- weight of 5.17 plf included in loads; - , . ' • Lateral support: top= full; bottom= at supports; . - Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : . , - -- . Criterion Analysis Value Design Value Analysis /Design. Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 _ Bending( +) fb = 254 Fb' 1080 fb /Fb,' _- 0.24 • ' - Live Defl'n 0.00 = <L/999 ` 0 : 1 0 . ' = L/360 - ' 0.04'`- ' ' - - •• Total Defl'n 0.01 = <L/999 '0.15'"= L • 0.04 - . ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# ' Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 - • Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - , • E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs-ft Deflection: #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. ID -dead L =live' S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations:. ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is. no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • - A COMPANY PROJECT Wood Works® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): I 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 _ fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. ./1 COMPANY PROJECT WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): d = -_ -: - f_��^'i e�.� - y�ir_`.T: w _` -/ c''�';� . � � y � � t �..���- . �+ L�� = " -= " �.V ` .�Y..r ..'� 0' 8' Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - .1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. , /7 T e N - - - - - -- COMPANY PROJECT I I wvoodWorks® • SOFTWAREFoRWOODDUMN . , . , June 24, 2010 12:53 c23 _ • - Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) . Load Type Distribution Magnitude Location [ft] Unit Start End Start. End . 1 b9 Dead , Axial - ' 1478 (Eccentricity = 0.00 in) 2 b9 Live . Axial . , 4320 (Eccentricity = 0.00 in) , S: . MAXIMUM REACTIONS (lbs): - • , . • - . • - • • _ • . . Lumber Post, Hem-Fir, No.2, 4x6" • • • Self-weight of-3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design ' • - Axial fc = 303 Fc' = 379 fc/Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc/Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP .CF- Cfu. Cr - Cfrt Ci. LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - 1.00 1.00 2 ' Fc* 1300 1.00 1.00 1.00 - 1.100 - 1.00 1.00 2 Axial : LC #2 = D+L, P = 5834 lbs • (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES! 1. Please verify that the default deflection limits are appropriate for your application. • • • • • A COMPANY PROJECT rill woodworks® SOFTWARE FOR WOOD °(5N June 24, 2010 12:54 c26 - • . _ Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or plf) • Load Type Ditribution Magnitude Location [ft] Units Start-- End Start End. . . • 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4326 -(Eccentricity = 0,.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4b10 Live Axial 3436 (Eccentricity = 0.00 • MAXIMUM REACTIONS (lbs): • - • • -- - • • 8' • • Timber-soft, Hem-Fir, No.2, 6x6" . Self-weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and DeftectiOn (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 346 Fc' = 492 fc/Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc/Fc* = 0.60 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc 575 1.00 1.00 1.00 0.856 1.000 - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 1.000 - 1.00 1.00 2 Axial : LC #2 = D+L, P = 10465 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIG... June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY .PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End l b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® . SOFTWARE FOR WOOD DESJG.N' June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7. LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location '[ft] Units . Start End Start End 1 b21 Dead ' Axial 267 (Eccentricity = '0.00 in) - • 2 b21 Live 7 Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): - - . 1- - - : " g ; ,^- r , • . .. .-., : ,,, , . ' ^. - , '`�v+ _z r, A � -* ,�' 6 Vii;: - . =y..: s a' ` ^ `� . N -. ^ a � r _ { .- , . „ s ,, i e. �_ 2 - . 1-t. : _ 5 _ "` '. = "c. ; i _ r - F� �,. w i • i . - :,.rsnse. .a : -= �!.r.ii w' ,., .+ t. s .ry . �__ s _S -.f-�. �: .Ya;.. _ _ _ _ ,: a+4. . _ . ?u 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built- up ,fastener: nails; Ke x Lb: 1_:00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; • Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value - Analysis /Design Axial fc = 106 Fc' 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 . fc /Fc* = 0.07 ADDITIONAL DATA: • FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: . 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): I 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. O • - B DATE I _ � 1 O JOB NO.: Q �o . ,. _ 1 1 I PROJ ECT: ' i I � � j . C . � � � � • • R � Cl!ll- 1_x'. Co �'_t M �^ \ ��� ' • F W I i •O 2 - 1 — - - .... _I.,::.;.-4.----__P .:.. ?r: -_l - -,r- • 74 4_-1-- ...t.....- J--,... z:;_ -- . - - -- -.. ; ' - -- - -. • • a J I I. I • j f v J_.r._� t , ' _ _ __I - Vi : - Z Lx _L_. - -b e arn,.. _ _1. _•_ - - -wc __ a4) ;.; - aa -i - �,_.,_ao, g 5 vrac.2 - . _.. C.e_o,L . i . _ >> se ESm6 L - rca -c14� c _ . o = = - Z I • f . *.. . • 0 • ' J A I I !. . • r - .. .. _ _ _ • -. __. . - --- - _ ' L - -- - • • --- . - • .. 1- - . - % 1 '' / COMPANY PROJECT l WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units • Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS fibs) and BEARING LENGTHS (inl : I 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv• = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S -snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS lint : +" ,- - _ - " �''- - :a '- .,:,,t , : . . -' ? =tii'z s:,--- s ",fir .', .r . :'.- � ,' " } „ ` . . . _,- f - t- + t t- `v_ ` � ,4 • � T' � 'S: 1--, _ S .I; 'S'" ~„p- `-'` ,. • - - '._ -,• _v :,e,' -t: - .4 10' Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. n i - - COMPANY PROJECT ' i I W oodWork-s . . . .,.. , • .. • , : . . . . . • . . . , . SOFTWARFFOR wood ofSrca June 24, 201013:09 b14 LC1 Design Check,Calculat Sheet Sizer 7.1 LOADS ( lbs, psf, or pit) : .. . _ . , Load Type Distribution Magnitude Location [ft] Units ' Start End Start End . - - . 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf • . 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs ' 4_c19 Live Point 1050 9.00 lbs _ : 5 c20 Dead Point 357 3.00 lbs - 6 Live Point 1050 3.00 lbs . 7_w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf ' 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf - 9 c64 Dead Point 165 10.50 lbs lb _c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs ' 12 c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 . plf ' 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf . . _w67 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf ,. ' 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 _ plf ' 16j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf , 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22j44 Live Partial UD 25.0 25.0 0.50 1.50 plf . 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf • 24j45 Live Partial UD 25.0 25.0 1.50 3.00 plf , 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3 -00 , 9.00 'plf , 28_j70 Live Partial UD 25.0 25.0 3.00 • 9.00 plf , 29_j7 Dead Partial UD 17.0 17.0 9.00 10.50 plf ' 30 j71 Live Partial UD - 25.0 25.0 9.00 10.50 plf , WIND1 Wind Point 3560 3.00 lbs , WIND2 Wind Point -3640 9.00 .lbs . wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 - • - lbs - MAXIMUM. REACTIONS (Ibs) and BEARING LENGTHS (in) : ` "_ --- ..st >>"" , - - .-: - 77 - . - m eet ' = - 7 . ..a,.T - ice" :- _ -�� = -.-- •_' •"`� - - - -__ - ,r �' _. - - aF i ce = �' - � ��Srli -4. �•-'- ��.,713, -•;_ . ._ -1. , E = Gam ID' - • -- - - 121 Dead 2207 - 2207 Live 4350 4350 Uplift 499 . _ - _ 479 Total 6557 6557 Bearing: - Load Comb " #2 -' ' - - ' " - #2 Length 2.34 _ 2.34 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; - Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: _ . Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 • - ' Bending(*) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 ' Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 _ Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - . - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs ' Bending( +): LC #2 = D +L, M = 16527 lbs -ft - Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) . - (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: .. 1. Please verify that the default deflection limits are appropriate for yo application. ' ' 2. SCL -BEAMS (Structural Composite Lumber): the attached S CL selection is for preliminary design only. For final member design contact your local SCL 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editoi - n r COMPANY PROJECT I WoodWorks° SOFtWARF FOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 Dead Point 165 10.50 lbs lb' _c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3 -00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 Dead Full UDL 113.7 plf 18 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point _ -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : i • I O' 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Eb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs - Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer.' 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. n r r COMPANY PROJECT f a WoodWorks° SOFTWARE/ON wooD 0(120,4 June 24, 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location MI Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6 -50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM RFACTIONS (Ihs1 and BFARING LENGTHS (inl : F ...�� -..ir' ���.. � .. -- .--sew `. vv, --- - -` = -.. -..- +c%,a �� t.- �. ` T �� __7 4 "11M1.1 1 1 . -.... 7 --- „- n r ' , aW.° - ate #...►`_ -R• - -rte ^.-i- `_. i ~.. err.. /6i. - .a+o� . ��7.A: f� � ■ y , w..iC�.�� i..� +�ry •,.�- - .fir �. - �-�_ � _ _ 4.r.. ...- � -- - � ti..a `' I D' at Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 6822 Bearing: Load Comb 144 143 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 FV' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 03 = D +.75(L+S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer 3. Size factors vary from one manufacturer to another for SCL materials, They can be changed in the database editor. .77 / n COMPANY PROJECT WoodWorks° . SOFTWARC FOR WOOD DfSIGH June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS l lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plc 14 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20_632 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTIONS fibs) and BEARING LENGTHS lin) : + _ - ..e 4:r ^�S.. ` ,-,,,:_„_-- +�C - 7R� �� r � � ��. "=?O!� yam r - a...+ _� -�.�- -nom- • _ _ter_ �, -� ± �_ - • "���'= + �f.� - " . s ....-, ` ! t � ; _ -.. lbw -. ma y . ate ∎ :... ... l- - - :r -.... .-' ' _ =.mac - -�_ "Ii. �ti' S:_ Vic... = - �a + .1 p is 1 0' 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 04 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads, Lateral support: top= full, bottom= at supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 tv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fir' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'a 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 143 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) a Live Load Deflection. (D =dead L =live S =snow W =wind I= Impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. A /' o • COMPANY PROJECT A 1 1 11 11 0 . I Wood Wo r ks June 24,2010 1319 b341.C1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sim 7.1 LOADS ( Ns. PM.. P .,•:-.. T-1 star ,a :.:..., ',ad 3ar:La Ln .5 '.. 317 5 3..7 •, - _ 5:713 cs ....6, Dest Parc,: -D C 3.. 5, 1 •= - lf --.--- 7 .- 2 .1 Ur = • 3.7 " ,7.. 13.. 7:3 rast Pr,: 42 7 .. cs 4 prrtr 1,2 3.07 7.47 Parrla 4., 313. C13 2 ,.. 7.. I 5-4.32 zrr, Pert, jr 725.- 335.3 ,.00 3.73 ,., 3:+35 L'ear. scr_ Part, . 3 5,3.0 7.. 3.5, pl _,... • Fart, . 1E7.. .2.1 1 13.)0 p, 127, Part, .7D 4 47. 4.57 3.E0 pl _76, Pop: 73:_la 21.' 47. :7.: 7 .50 11.10 pi ,E: 51:e Pa7tla U7 1E0.. 1..0 7.5, 11.00 p: .. :775 Tea. - i'ar,la . • - 1." " 3., 2.. pl .1:7,33 Tea. - F•r .2:: - ...T.,..: .1.1: '.57. o 3:34 ,37. 3E reac 33-:35 ._;.,p Pc.7141 1. 37,. 3 3.77 11.00 . 0,,, Pac73. Ur •- 1.23., 4 ' " 1 3=13- • 52,..134: 0..., 3ar7, -0 1.. •-' ' ,.. 2.50 Ds, 22 1:ve 34,742. -7 2.. 3 4.77 4.53 44 ea 7.,,p , a- - •• 4.= 133. 4 .' ^ ... 1 p 45 35 r•sac Parcie .., 4 3 ". - :I.. p 47:733 041., Firlt. 'JD 4 4 4.07 3.3.0 p re 753 . -1.24 3.23, . 137.; 4 c' .4.72 1.57 p 3 3 ,35 roe, 51 :ea, 50 2,77• 27 a ,:. '. -- ..^.7 p 53 0.eac Parcla . 3 4'. ■ ,..7 4.33 p • 4, wt-,, 3,17.3 5.3.0 11.73 It lc MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : . . ... -.3 7 5...3 Glulam-Bat., West Species, 24F-V8 DF, 5-118x22-1/2" Sed-reesgra Al 26 55 plf Inducted in bads. Lateral rapport tope NI, bottom. al auppats Analysis vs. Allowable Stress (psi) and Deflection (in) aaa, am ZOOS: Te-olaV- I Ft ' - 2.3 rt - C.31 ADDITIONAL DATA: Pc..C7:54 Frr cn c n: 71. 7., 73. 0 rct ••73as - r 7., Prp• 33.7 - 7.71 .77 - - 3.043,43.3.- . +a • , - 5 2-77 7 • :C.= 1cs-ft ref,e77.,: 1., •3. • --. 2-.7_ ...• r'. , 14-1-, DESIGN NOTES: 1 Please seedy that &adore. deflecbon WAS are &pommels for your epigram:en 2 Gluten design values are for matenals colarrning to Alit 117.2001 and rrenufachoed al accordance oath ANSUAITC A1901-1932 3 GLULAM IDA . salmi breadth • actual depth a Gluten Beams shall tea Merely supported wending Cod. proorrons of NOS Clause 333 5 GLUUVa beanng length based on smaller of Fcrattenaron). Fop(condin) COMPANY PROJECT 11 411 Wood Wo r ks® June 24, 2003 19 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet ea...7A LOADS ilbs. PM. N INI / ' ,fo Tyre .71s7 ,pnilL.s. :ssaeftr. if,: 0.-L75 S7s.st E .,sst E". . 1 rear FassfaI Jr 522.2 522 2 0.00 0.02 p_f 2_6.62 2ss. Fass_aI .72; 7 26..0 725.0 0.20 2.00 plf 3 .725 :eat Par,fa2 rr 517.5 527.5 7 .5; 12.2 :-. Sr, 5 a- -- s , Ur 321.2 .71.: 7.53 II . 20 ;If 5 :vat 2.17, :435 " -- Ira E Ent. 2404 IL." Ica ' real 2,r, 1252 _ra 3 0r7. - 4 lc 17.C2 Ira - .54 :gas 2a=0.s1 Ur 62 52 17.02 15.0; 22: I 1.5. rest Fs Lrf 522 7.02 'ce 2:r5 :roc 27=7, 1112 7 .22 ta 1_.5 Seat 3J2st 5:2 4.00 cs Seas sa t.7, 612.2 5 ' 2 ' 2.; 4.22 2f 5 2- - -a UD 755.; 795.; 2.0 4.02, -If 7 2eas Farsfa UD G1 52 15.; 73.00 :14 5 .5 DP7. Fas77a ID 622.2 521.2 ' - 22.2; -2f 7wss 2mr,la. rD EIS,. 522.2 7 .2 7 - .50 rlf Car: a jD "65.0 725.0 7.1 7.22 _If 1 reas ra___a Cr 47.7 47.7 1 25.02 :If 2eas Par-21 a JD 1 60. 0 162.0 1 2 2 7 0 , 2.772a jr 4 2 4.5 7.52 - f 4_12 Elva . 5_15 7eat Farf_a Cr 47.7 4 - .5' 22.22 f 0 1.7. 2arffa jr 2'0.0 270.: 2.51. 4.a, , f 1 7tat Fat,Is ,a 127.2 122.2 4.S '.52 F f 212 Parl_a Jr 20,2 2 4.5 ' ET p f 2_11 read . 4 .1 2.12e 2as,fs JD 2 2 7 .2 2.22 r 1 22 • 2asfla Cr 1 2 " - 2 p f 29:15 Seas 2arsfa Ur '-' - '" - 2.02 1.52 r f rom. :ars, Ur 120.: 222.2 4.22 4 5C p f 4: ;4- 1.Iva Fs.721. .10 2 2 4.2 4 52 p f 72 reas rarfLa jC 4 4 2. 20 - p f 45_1(- ryas 2as7Is Jr 47.7 4 I5.22 -- '' p f ✓ ear 5assLa 2: 4'." 4 4.00 4.50 p f 42 :=. .assla Ur :52. 162.0 4.22 4.52 p ! 42 rest 5aff.la Jr 122. 222.2 2 15.22 p f 21_1E5 LI., Fa- • a J., 3 D. . 272.0 1' . C 1 :0.21 . f 21_1E2 reas 2aftla rD 220. 125 ' '. - 7 2.2.01 ; f a: 1E5 IL' a as.7. 2arfla rr 4". 4 2.22 4.52 ; f SE:i 2.1.re Pass, JD 152.3 ' 77- ' 3.22 2.2; r f W: 2,1=, 5552 4.01 2ss W2 I,rd - ses, 11.cn Ica 2N aIns 2 5555 .7.0; Ise W5 -5652 22.60 Ir. MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ... 705 Elve 3250 52'5 7,2.2 171E: 2-2.5 2eas1227 Lens, 2.21 5.15 Glulam-Bal., West Species, 24F-V8 DF, 5-118x22-112" Sell-emote of 2055 ptl educed In loads, Lome suppyt thp= lot Soften= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NUS MN t '-------. A-alvsfs 0a17. rents- Va2ne a=a27sla/resssn Sheaf :Ise ref:, 2.41 5 0/521 0.5 . I6251 7. 2,171'. 2.34 . 0/225 I.-0 . 2/042 7.54 ADDITIONAL DATA: FirTURI: 2/32 72 r". 7, 22. T.' 7±J 7= fr7 Ws7.2 7n 27. Ser,10=i-, Er .3 . r.. '3 5 55252 1=s-ft 7-_a: refless. n . ' 5 2 ,- eas ...as DefIestsf, - Eire Esas - I 2 - 7:eas E. I Lve 2 . S7.., .1 ,..., : 3 2. : - , - . , .--,• , . • , ca. _ • .. _,• , : .: IFEI Er's a=e :fates Is fr. 60alusfs 2,02%,' ,ras sr.:net:fro: 277-22C DESIGN NOTES: 1. Meese vertly trot the deaun deflect., Nets are appropree for yew app1Osbon. 2 Ghslem deep redoes are tat marmite atoforreng to AJTC 117.2001 and rnaradoebaed es accordance with ANSIIAITC 41501-1992 3 GLULAM bad = actual NemIth x act./ depth 4 Geer, Beams shall be bewaily supported sufordIng to the pronsona of NOS Caws 333 5 GLULAM Lamm length based on smaller of FopgenstonL Fep(cerron) ....., .•••• • COMPANY PROJECT 11111 I Wood Wo r k 0 June 24,20101320 n3.11 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Seer 7.1 LOADS ( Paf. Loao 7 21 n ocic-tIon Map L5PAolon Ito; Un:Ox Coo, Ern 55ero Sod 0eao Par,ta UD 6:5.2 612., 2.00 p_f Sr,a 6aro:a O65.3 2.00 1 p1f Scao Parsla 77 61 C17.5 7.50 11.10 p17 Unn. :att. 7D .. 2:122 7.20 11.00 c17 5:711 7:ad 631r: 1436 ": Ito E o:S Snou So.no 2434 11,0 los o :Cao Soon: 13E, lo.10 Ico E Snow Po:ro :4 3: Ica 9 7eai Forola= 61o.5 61 : := 20 p:f Far7la: eLl., : 15.00 plf 11 .reen io:no 6,, 7.02 12:o61 Sno. FoLno 115: 7.20 Dear Fo,no 6,, 5 earslm 7: Ele.: • 2.00 4.00 p Part:a UD 725.0 722.2 :.20 4.SC p Lead Pattie 70 21 El', 17.0G p e Far,LA i01.2 .-• . 12,0 21.00 n =Oa. Partla E12..2 212.1 7.SC 7.50 c 7antla 7r - 11 15E.S 7 .SS n : Par,. 7D 1C1. 120.0 1 le.:: p 2:17E Dead Fart-, 7C .-.- 47.7 4.e0 211 roan Farsle 7D 4-.7 47,7 7 ,60 P.00ls ,0 16:.: 122.0 7.ES 11.2C reap Pardie UD 120.: 1:2.: 2.C1 p. ,tve Pardla e 270.: D.:, C.S.1 p read Farlle -7 171.: 1:1.1 2.!..0 4.0, p Dees Pare_a 27 :17.2 111.7 4.5C 1 .5: p :eat • Fettle 77 2 2'2.0 2.21 11.SJ t :est - Perela 711 2 1 11.12 1 p • _ DeAm - are, U0 :vat Pattie 77 1:0.2 1::.: 4.2: 4.5: p _ 7 5 •• :/a7 eastia 70 4 4 11.32 c = Ilve eartia j: 105.2 120.: 11.21 1 p : 5 :vas petd7e 47. 47.7 li.:1 :1.:: p tart, JD -e1.1 :CO.: 21.11 p cEs rest =artia jD 4 4.1: 4.12 p Ears_a 1C,.1 4.:0 4.e: p Seat Dart, JD 1::.2 1:7.: 7 .11 •. p read Pattie U7 1:1.: .. 2 F Pattie jD 2 2 . -. p Deav Parsta 70 4 4 - . - 7.0: 4.:11 p Partca 7= 161.1 15:.: 7.:- 4.:1 F read Peptta 27 1C,.- 103.: p 4 4inn P717., Ftlfs 4.:2 1-s =Lips 1ds 17= ec1tt 2E11 17.05 :pa Wino -5=5: 02.0 MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ,cao 7,5 Soon: : , Evar, Ltat ,77= Glulam-Bal., West Species, 24F-V8 DF, 5-118x22-112" Self-weight of 26 55 pH Included in loads Legend support top ful1, beam. at suppods, Analysis vs. Allowable Stress (psi) and Deflection (in) ..1ng SOS good Snear fc :2,, So 26:4 !cfrc 2.30 Lfos Defl 0.41 . - _,521 D.2 - 2,36: 7ota: Sefl'o 0.54 . - 2,40 ADDITIONAL DATA: 1 , 1,21, Jae:, • 12:21 1te 2e -1..g1-1_ 177 .1 . .1 • 261.2 1ce-lt See: e tt1nF: 27 .4 . D-.'d r-E-Wi = 1t-i-1 DESIGN NOTES: 1. Please yenta that the 20555 201160551 brats are appraised* for 9515 599100600 2 Game design values we ter metere:, conforreng IOAJTC 117.2001 end menufactured trt acoardanu wan ANSUAITC 0190 1.1992 3, GLULAM bed e 55955 breadth .91159 060th 4 Gluten, Beams stud be laterally suppstad according to the prow:ere of NOS Clause 3 3 3 5. GLULAM 602 nng length based an smear of Fcp(tersaon). Fep(carnp n) COMPANY PROJECT di WoodWorks® - SOFIWARf FOR WOOD DFSIGh June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 1T c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 291j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf 81 Wind Point 5850 0.00 lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs WS Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 0 1 1 I c 2 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb #2 #2 Length 2.17 2.11 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = 1 /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only E1= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) * Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). n • COMPANY PROJECT i.W o - • . . . . • r .SOFEWARE FOR W000 DESJGN June 24, 2010 13:22 :b34 L NO LL • Design Check Calculation Sheet . _ . - . Sizer7.1 LOADS ( lbs, psf, or plf) : Load. - Type Distribution Magnitude Location [ft] Units Start End Start End ' 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs • 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf - . 21 Dead Partial UD 47.7 47.7 17.00 18.00 'plf. . - ' . 23_ j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf . 27 j48 • Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 - 332 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 . Dead " Partial UD 120.2 120,-2 4.50 7.50 plf - , 33_j34 Dead Partial UD 120.2 120.2 7.50 8 :00 plf " 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 367 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf ' 43_j63 Dead Partial UD 47.7 47.7 .11 -00 17.00 plf 45j65 Dead Partial UD 47.7 , 47.7 18.00 20.00 plf - - _ 47 j66 Dead - Partial UD 47.7 47.7 4.00 4.50 plf 49_ j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf _ _ 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf .. W1 Wind Point -5850 0.00 lbs ' W2 Wind Point 5850 4.00 lbs W3 Wind ' Point ., -5850 11.00 _ lbs " W4 Wind Point 5850 17.00 lbs - - W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : la 201 Dead 7189 6822 Live , Total 7189 6822 Bearing: . Load Comb 01 #1 Length 2.16 • - 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" • Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear - fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 . 0.41 , ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# • Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 - 1 - Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. ' (D=dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) • Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Har Project: HP '- Houf Peterson Client: Job # .Righell Inc., ... .. _ ENGIN_ERS • FLANNE4S - Designer: , Dat e: Pg. # - LANOSCAFE AftcHirECrY•SURL'EYORS - • - - '- •"' _ _ W := 10 lb —8- ft•20•ft Wdl = 1600-lb gYN 11 . Seismic Forces Site Class =D Design Category =D W := WdI , 1 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped; spectral responce acceleration at short period z := 9 Height of Component h 32 Mean Height Of Roof • F := 1.123 Acc -based site coefficient @ .3 s-period . , (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 Sms F a S s Sm1 := F v S1 . • 2.Sms - • S ds :- Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections . • a := 1.0 Rp := 2.5 , (Table 13.5 -1, ASCE 7 -05) . F 4ap Sds "lp 1 + 2•—)- W EQU. 13.3 - • P R ( h P P Fpmax:= I EQU. 13.3 - . - . . F pmin := 3 • S ds• I p .W p EQU. 13.3 - F., if(F > F pmax , FPmax, if(F < F pmin , F pmin , Fp)) F P = 338.5171-lb Miniumum Vertical Force . • 0.2 • S ds• W dl = 225.6781•lb ... ; r• . Harper Project: HP '• Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSGAP= ARCH, TEC rS• SURVEYORS W dl : = 10 — -8-ft-20-ft Wdl = 1600 -lb ft Seismic Forces Site Class =D Design Catagory =D W := W dl ip: 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S : = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F • = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F - S s Sml := F S 2S ms S ds : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) . 4a P •Sds' F : R - 1 + 2- h l-W P EQU. 13.3 -1 P J Fpmax 1.6- S 1 W EQU. 13.3 -2 F pmin .3 • S ds• l p .W P EQU. 13.3 - := if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171 -lb Miniumum Vertical Force 0.2- S ds' W dl = 225.6781 - lb Harper HP HoufPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ a 1.•,nL.e r. ,� . n1�o-� �, i �. PHONE NO.: PHONE CALL: D MEETING: ❑ A 'D CO Fl 73 O RI c> 3 0 1./` — 1 I l 03 TIC) n 67- (r .._jr- 4 11 l ki..1 o 6 4F f s �a 0 m 1 I y n ul -I -I • N. ` >..... II 1 7 O f) I. 1. 1 , 4 Z r o n 1. 1 G 1 -tO ': 4 0 = ...-# QZZ7VZ) = ' ) ' 1121 -a ,1Z 07 'l, Os S a` U �S - ;J14 1C-e _ '")IIz,) # 1002 _ ='ol 41/ �9, =-� t. o - z L is j.7) m- E 4 ..- g. T.- p --,. �. C_ l l Cf� LLi 1 ,l _A 1 ^ L ' 0 o 1 c7) - " -� — — — . ---- -- , °: I -r- Ch`QII = !v0-Ia M I o z ❑ m -. 1 c) — C' oth� 0 3 0 i 0 _ - _____A _ __ 3 S1s�oC ! G� i,d \�' Z ,L _ - -u - -- Spluo Z -i- N' z I� , vu� ° '' ° I) _ Z pi ,;11-___- o • z C1 m 0 = 0 , 4 ,_ 1!-Ixit*Ii.cyre-)1.=--- (looklpteeocsoc•I) > , 0 1 ❑ 3 m $1 o Z nq :173 road - - - -- - - 1: ON eOr :31Vp dir6 J 4 - :AEI ." t DATE: JOB NO. • - - - BY: ffl f\\t)1( cio tit • E �. • PROJECT: RE: I J � P r �,•� in " � - �'y �"" i �. tp - 1 62;1+ L.i:1 t'i s.. _ . ❑ ❑ w _ _ e LL r LOPN C F\ .]_ a F w 4.--- ZOO* f • ❑ J M - moo (4a • w ; SL *IN) w O ca Z T= C alloo iht,a __ ay00 3.s i U Z u SivrnSor\ NDu 5 o O Jc f CC O IL Z w ❑ Z 0 • a LoRr CAc M� aa0 (40‘' zoo r_ —) Borx° #IN T - - : : ° #ir\I __ ' I `� 3.5" 4 1 4 9 6 < a. .'- H-DV4 3() ,( y i I CLo xl� EE)C (4 R't Harper • P ftoufPeterson COMMUNICATION RECORD Righellis Inc. TO ❑ FROM ❑ MEMO TO FILE ❑ EIIGIREEP^ .. PLAII.IENS LAIIC:'.:9P AR CrIITECT“ •SU r..r. • PHONE NO.: PHONE CALL: ❑ MEETING: ❑ :J m m Q —y c 70 — I m . 0 )< 11 0 n GI al I 1 37 4� d . pp ___ L t 9 `n O 0 cl. 1 6 V. -1,--% c n o 1 1 n RI T i —I O L 0 w 7. z 0 • • E narper H P HoufPeterson COMMUNICATION RECORD Righellis Inc. TO ❑ FROM ❑ MEMO TO FILE El El . PLA•1r:ER. LO: La A;.cuirEr78 - su ?v _vuH,: PHONE NO.: PHONE CALL: ❑ MEETING: ❑ . A 'D CO P1 11 O rn o -1 / ...—a—ns......... — P I P t d m ....f lc Le r` 1 1 n > U 0 • 7 C Ci C. ry r n 1 • m Z 0 COMPANY PROJECT g WoodWorks® SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 ,lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A i , l0' 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self- weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fir = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Fb' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending( +): LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. -,-, / COMPANY PROJECT /`' d WoodWorks SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rai12 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : IO' si Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self - weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. - . i . . WoodWOrkse Sizer • SOFTWARE FOR WOOD DESIGN • Unit A - Front Load Wood Works® Sizer 7.1 June 22, 2010 '13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8 1O5 . 0#'' ‘ 49%-6" i U.3,,% - -: 1600 L- '-''• --- .- - -'',-. - : -- : - •- _ 1600 L : - : - : -_-, -- : - € -.., - --,. --- -. i - .' - • . -- : --: - -.: 4/ -:-: 619 D - ! . _ 619D - - .. 43 -b 4C -0 iiiimM•10•01.4. VD : . • 1193 L153 2404 L : 2404L : • . - .5 -0 :: 625 D105911439 D :1394 D , : . - : 1 : 111 . : .. . 34'-v 315L 358 D , - - 3U-o' ., , .. --- ; - • ! • • - . .zo•- - 315 L • ' - : - ' - ------- • • 1 :: Lo 100 L _ zi---o • • • - • •- - € " - \ . . .. _ _ i5U- - -.• :96 D • - : r • -;----- . F 2_ _ _ . 11, ,., • _ : . : ; ... 74(847 5611 L 756 L . _ , .. .. , '0 - : € • -- 4E452 D ' 5546 D " - 2g1 D ' '. : .: ; ' ' . ----- 625 L, ..: • € r -o • ' 203 D : , 10 -o ; € :; - --- - - . : - • , 5 D- . , . • _ 14 -.0 , I 3 , , o1 105 L307 . _ (... y k _ _ _ _ _. : • • • : • C., 46 IX . - .. . \ : 1 , . ' ' _ . _ • -•- ! -0 : -245 L c._, ' 3 D 1 - . . . . . • . :5 V .- — II- V5 ' - II - : - € . ' 1 . - ::- 1: - r•': °I 3599 i' :--- I;" 87 L: •2 587 L 0 . -0 .:..209 LD 8 DI. 1 '1963 D : . ' ih, :1963 D ' , ---------------------------- - • - 4 -0 , - _ . 154 D 112363 . . , , .': _ -f t5 Uri - - . . • • - ___, _ _, , 1:) ---: • 78 D5 D € - • 106 D BB \13 a BCCOCCOCCFCCC CC CO-CCOCCC CC1CCCDDDO DODDEDO CD DD DODDDD DiDDDEEEE E Et FEEEEE 0 2' 4' S' 8: 1012' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42 44: 46' 48: 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 012 345 67561 :1 1,1:1 i :1;1 ;111122 222 2:2 4A:44;4:4' 5:5:5 7;7:7 -6 T 1... Is,/ 0 (..)1 ... O1- i....zt?„,$) • • /1 , , . WoodWorks@ Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load Wood Works® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' • 1' 1600 L -- - ----- 1600 L - -------- 4( -0 i UZ7 619D 619D 40 -0 , d9. .. . '..),!-.) • 4 / -0 ! _ . ‘--, I -■:.■ . . , VtJ . • : ‘.' t) -.!:" 'ZPO _ 13274 L 3304 L - . . - - - - . . E - 7153 D 7072 D 'fl )0 -0 b'zI 315L ......: --G 358 D • r n - ) - • - - - - - , - ':0 01 • - - - - . _ ._ ._ E2s - 1) CEE) 315 L • z f - ,'.•r.,.! - -_ „ . _ . .. - • zo -0 tt t 100L - 358D - ' c - \ ' 0t.) 96 D c I ' ' .E... -..:. -') ...., -- - z -0 74(8 42 611 L 56 L , it - f to - - - 4 - . . . - 452D 5546D ' i ;: `2 - : - - • 16 - - : - 50 10-0 . c 203 D _ r 1 - 5 D - (U_ 908 L _. . . . .. . _. _ . . . ) -0 0 105 L307 D c -e: ....A - - no '1._ i il -o 245L' J -0 . c.; - ...) c. r' - 0 Z. -0- 599 1 -1EN'i8137 L .. - ‘ 2587 L - . . . .. . .. • --3 et, 209 LD 8 D 11963 D •,.- , 1963 D . . , a -o. ,.. , . • - 154 D un. 7 -, L 2219 D . . . ._ . _. _ - ....::::11 zo 78 D DD 617 D' D BBkBBBCCCCCCCOCCC CC CCCCOCCOCCICCCIDDDD D DD DCOD ED DD COD D DC. CUDDDEE E E E EEEFEEEEEEEEEEEf EIEEEEZ 0' 2' 4' O 8' 10' 12' 14' 16' 18 20 2124 25 28' 30' az 34' 35 38' 40' 4 2' 44 4 43' 50' 52 54' 56 58' 60' 52' 6e-' 66' 68' 7 0' 72' 74. 6' 0 l "2'3'4 557 i'l "1:1.1(1:1 F11=12(2 222,22(2-212I3(3'3.3,3,3I3-3-3I3I4t4 d!d.;c-4!2::3,5 53-5,.5,7,5-53,,-.3 €35 7 , 7 7 ,7.7, 77 -...,, ..-- OCT IN) (f‘ \( Our L , "REPri Lot=vD A Iir-',..--.. Aio Bentley Harper Houf Peterson Righellis Inc. 1. C .•rent Date: 6/24/2010 1:41 PM 1 system: English Foie name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code : ACI 318 -05 Footing type Spread Column type Steel Geometry • IOW 2 in I + 4.25 ft • • I ft 4.25 ft ft 4.25 ft PanP1 Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, fc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0. [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio 0.75 Bottom reinforcement // to L (xx) : 6-#4 © 9.00" Bottom reinforcement // to B (zz) . 6-#4 © 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL . D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip*ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1 Min. safety factor for overturning 1.25 Paget , . Controlling condition S2 • Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] ' [in] -' ' [�1 ......, ...(oho) - FSx -FSz ' , ' slip:_ S2 1.38E03 1.38E03 0.0826 18.06' 1 '' 100 • 1000.00 1000.00 • "1000.00 - - . • • Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 - [in] [in] [in] [in] . zz Bot. 20.11 7.04_ 19.75 19.75 . xx Bot. 20.11 7.04 19.75 - 19.75 V V Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq / Asprov Mu /($•Mn) . [Kip * ft] [Kip`ft] [in2] [in2] zz Top DC1 0.00 ' 0.00 0.00 0.00 0.000 0.000 'I : • I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 I I I xx Top DC1 . 0.00 0.00 0.00 0.00 0.000 0.000 V • I • I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I I I Shear Factor 4) 0.75 Shear area (plane zz) 3.10 [ft2] - Shear area (plane xx) 2.92 [ft21 Plane Condition ' Vu Vc Vu /(4'Vn) • [Kip] [Kip] xy D2 8.99 46.09 0.260 I = I yz D2 8.68 48.88 0.237 I _ I I . Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu/(4'Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I 'i V I Notes Page3 lr-� * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * — I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. *qmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. Page4 n i" Seam Shear bcol := 5.5•in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 36-in V :_ 4) 4 • f psi -b -d V, = 16.32.kips 3 Vu qu (I) bcol) c V = 7.83-kips < V = 16.32.kips GOOD Two -Way Shear bs := 5.5•in Short side column width bL := 5.5•in Long side column width b := 2.(bg + d) + 2•(bL + d) b = 54•in := 1.0 0•( + 8 /• f -d V = 48.96.kips 3 3•0 Vmnax := 0.2.66• f Vnmax = 32.56•kips ,V,, N : qu - ( + d)2] V = 15.88•kips < V nmax = 32.56 -kips GOOD Flexure 2 Mu == qu ' C b — 2 bcol • - ) M = 4.98 ft kips A:= 0.65 2 1:= = b d S = 0.222•ft 6 F := 5 f psi F = 162.5•psi M f :_ — f = 155.47•psi< F = 162.5•psi GOOD 'Use a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc := 150•pcf Concrete density Ysoil := 100•pcf Soil density gall := ,1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2659-lb PdI:= Totaldi Totalli 7756• lb P11 := Totalll P Pal + P11 Pti = 10415.1b Footing Dimensions t := 10•in Footing thickness Width := 36-in Footing width ,A,:= Width Footing Area clnet gall — tf"Yconc net = 1375 Pt' Areqd gnet Areqd = 7.5754E < A = 9•ft GOOD Widthreqd A req d Widthreqd = 2.75-ft < Width = 3.00 ft GOOD Ultimate Loads ,,Pa Pdl + tf'A' Yconc P := 1.4•Pdl + 1.7•P11 P = 18.48-kips P q := A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F4 2500•psi Concrete strength f := 60000-psi Reinforcing steel strength E ":= .29000•ksi Steel modulus of elasticity leonc 1 Concrete density 'Ysod := 100-pcf Soil density gall 11500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 5001-lb Pdi := Totaldi Totalp := 7639.16 Pil := Total!' Ptl := PdI + Pp P = 12640-lb Footing Dimensions t := 12-in Footing thickness Width := 42.in Footing width A := Width ' Footing Area gnet gall — tf'"'Iconc net = 1350•psf P Areqd gnet Areqd = = 9.363 ft < A = 12.25•ft 2 GOOD Widthreqd Areqd Widthreqd = 3.06-ft < Width = 3.50 ft GOOD Ultimate Loads M me := PdI + tf'A'1`conc P := 1 .4•Pd1 + 1.7•P11 P = 22.56-kips P qu A qu = 1.84•ksf • /1 � f i Beam Shear b01:= . 5.5• in (4x4 post) • d = tf =2•in := 0.85 _ _ ; ,. ,> , .. . b := Width b = 42 -in ; :- .. . . - ° . • V, := 43- 4 • ' f� psi -b -d V, = 23.8 -kips 3 r b — bcotl Vu := q I 2 J•b V = 9.8•kips < . V, = 23.8•kips,:.•, GOOD Two -Way Shear b :=: -5.5- in Short side column width bL:= 5.5•ip Long side column width b := 2 -(bg + d) + 2•(bL + d) b = 62 -in ac := 1.0 V .= 4 + 8 ^ f�•psi b•d � V„ = 71.4 -kips (3 3•(3 Vnm•x x-2.66- psi -b•d V = 47.48 -kips Vim:= qu[b — ( bcoi + d) V = 19.49 -kips < Vnmar = GOOD Flexure - 1 b- bcoil 1 M := gut( J • \ -1•b M = 7.45 -ft -kips 2 2 := 0.65 , 2 S := b -d S = 0.405 -ft 6 F := 5.4• f F = 162.5-psi . • M f :_ —° f = 127.79•psi< F = 162.5-psi GOOD S lJse a 3'-6" x 3'-6" x 12" plain concrete footing 4 _i7 • Plain Concrete Isolated Square Footing Design: F3' - f := 2500-psi Concrete strength f : 60000•psi Reinforcing steel strength £S := 29000•ksi Steel modulus of elasticity 'Yconc:= 150•pcf Concrete density • 'Ysoit = l00•pcf Soil density g := 1500•psf Allowable soil bearing pressure ' • COLUMN FOOTING Reaction Total := 2363.1b Pdl := Total di • Totalti := 4575•Ib Pp := Total it Pt1 Pdl + Pll Pt' = 6938•Ib Footing Dimensions t f := 10• in Footing thickness Width := 30•in Footing width A := Width . Footing Area clnet gall — tf'"Yconc lnet = 1375•psf Ptl Areqd net A red q = 5.046 ft 2 < A = 6.25.ft 2 GOOD Widthregd A Widthregd = 2.25•ft < Width = 2.50 ft GOOD Ultimate Loads . := Pat + tf' A'"Yconc_ • P := 1.4•Pdl ± 1.7•PII P = 12,18-kips P qu A q = I.95 -ksf Beam Shear - . b ( post) d := tf — 2•in (I) := 0.85 b := Width b = 30.in V, := 41).- V, = 13.6.kips 3 , := qu. b- bco1 V = 4.97.kips < V, = 13.6-kips GOOD 2 Two-Way Shear bs:= 5.5.in Short side column width bL := 5.5-in Long side column width b, := 2.(bs + d) + 2.(bL + d) 13 = 54.in := 1.0 4 8 A = (— + b • d V„ = 40.8-kips 3 3 '1 3 c V := (1).2.66-Or V, = 27.I3-kips 2 1 A V mg‘ := - kb, d) V = 9.71-kips < Vth = 27.13-kips GOOD Flexure 21 M u := qu. [(b - 2 bcoi) . M u = 2.54-ft-kips ‘ t:= 0.65 b.d S = 0.185.ft 3 "' 6 F := F = 162.5-psi Mu fi := s f = 95.19-psi < F = 162.5-psi GOOD lUse a 2 x T-6" x 10" plain concrete footing Plain Concrete Isolated Round Footing Design: f5 f := 3000•psi Concrete strength f := 60000.psi Reinforcing steel strength E := 29000. ksi Steel modulus of elasticity "yconc 150•pcf Concrete density - ysoj1 := 120•pcf Soil density gall := 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldi := 619•lb Pdl := Totaldi Totalll := 1600•Ib PII := Totalll Pt1 Pdl + P11 P = 2219•Ib Footing Dimensions t := 12• in Footing thickness Dia := 18•in Footing diameter Tr•Dia A := Footing Area 4 9net gall — tf''(conc gnet = 1350•psf Pt' Areqd gnet A red= q 1.644 ft < A = 1.77 ft GOOD J Areqd -4 Dia Diareqd = 1.45-ft < Dia = 1.50 ft GOOD iT Ultimate Loads = PdI + tf'A'"yconc P„ := 1.4 -Pdl + 1.7•1 P = 3.96 -kips P q := — A q„ = 2.24 -ksf / ) 7 - 5 \ Beam Shear - bcol_ 3.5•in (4x4 post) d := tf - 2.in 4:1) := 0.85 - b := cos(45•deg)•Dia b = 12.73•in V := 0 4 f -b -d V = 7.901•kips 3 Vu := qU (b – 2 toll = 0.91 -kips :'< Vo = 7.901 -kips GOOD • Two -Way Shear bg := 3.5-in Short side column width bL := 3.5•in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 54•in (3 1.0 • Vim..= � • 4 + 8 f V, = 23.703•kips C3 3.3c Vnmax :_ 2.66 f psi b d Vnmax = 15.76 -kips . = qu•[b – (bc01 + d)2] V = –0.31-kips < Viu = 1 5.76 -kips GOOD` z. Flexure . Mu qu I b – bcoll (1) b Mu = 0.18 -ft -kips \ 2 / 2 ) 0.65 V 2 b •d S = 0.123-ft 3 F t:= 5.(1). f F 178.01 -psi . M f :_ — f = 9.9 -psi < F = 178.01-psi GOOD S I Use a 18" Dia. x 12" plain concrete footing I lc Plain Concrete Isolated Square Footing Design: F7 f := 2500.psi Concrete strength f •= 60000 -psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoil 100•pcf Soil density g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 1200 -lb Pdl Totaldi Totalll := 3200 -lb P11 := Total11 Ptl Pdl + P11 Ptl = 4400 - Footing Dimensions t := 10.in Footing thickness Width := 24-in Footing width A := Width Footing Area net gall ' tf'Iconc g net = 1375•psf PtI Areqd gnet Aregd = 3.2- ft < A = 4 ft GOOD Widthreqd A reg d Widthreqd = 1.79-ft < Width = 2.00 ft GOOD Ultimate Loads PdI + tf'A''Yconc P := 1.4•Pdl + 1.7•Pi! P„ = 7.82-kips Pu q„ := — q„ = l.96•ksf A Beam Shear bcoi := 5.5 -in (4x4 post) d: = tp -2•in := 0.85 b := Width b = 24-in • V :_ ck• 4 f psi•b•d V = 10.88•kips 3 C / V qu• b 2 col1.b V = 3.01 -kips < V = 10.88•kips GOOD Two -Way Shear b5 := -5..5. in Short side column width bL := 5.5• in Long side column width b 2•(bg + d) + 2•(bL + d) b = -54•in Rc := 1.0 V 0. 4 + 8 J f • psi•b•d V = 32.64•kips C 3.0 Vnmax 2.66 f psi b d Vnm„ = 21.71-kips , ,y 444 := clu'[b – ( bcol + d)21 V = 5.35-kips < Vnmax = 21.71 -kips GOOD Flexure 2 1 - M ;= qu b bcol 2 ] Mu = 1.16- ft-kips 0.65 • 2 b•d = 6 S = 0.148. 1 F := 54- f F = 162.5-psi M ft := —° f = 54.45.psi < F = 162.5•psi GOOD S 'Use a 2' -0" x 2' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F& • f := 2500 -psi Concrete strength f 60000 -psi Reinforcing steel strength Es 29000 ksi Steel modulus of elasticity ,Yconc 150•pcf Concrete density 'Ysoil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl 7072 -lb Pd1 Totaldi Tofalll := 13304 -lb Pal := Totalll Ptl Pdl + P11 P = 20376 -lb • Footing Dimensions t 15 -in Footing thickness Width := 48-in Footing width A := Width Footing Area clnet gall – tf'"Yconc gnet = 1313 -psf Pt! Areqd — 15.52541 < A = 16•ft GOOD %et A = Widthregd Aregd Widthregd = 194 -ft < Width = 4.00 ft GOOD Ultimate Loads A:= Pdl + tf'A "Yconc P := 1.4 -Pd1 + 1.7 -P11 P = 3612 -kips Pu qu A q = 2.29-ksf Beam Shear bag := 5.5 -in (4x4 post) d := tf - 2•in := 0.85 b := Width b = 48 -in - V := •:1)• 4 • f -b•d V„ = 35.36 -kips 3 C / Vu := qu b – 2 toll b V = 16.26-kips < V = 35.36 -kips GOOD Two -Way Shear bs 5.5 -in Short side column width bL:= 5:5.in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 74 -in := 1.0 = (1)• 4 + — )- f c psi b•d V = 106.08 -kips (3 3 J := 0.2.66• f psi•b -d V = 70.54 -kips ,Ny4„:= qu•[b – �bc01 + d)2] V = 31.26 -kips < V„,„„ = 70.54-kips GOOD Flexure 2 mu := qu ( b – bcol (1 l M = 14.39 -ft -kips I \ 2 J l i := 0.65 2 S := b•d S = 0.782 -ft F := 5.0• f F 162.5 -psi M f := —° f = 127.75 -psi< F = 162.5 -psi GOOD 'Use a 4' -0" x 4' -0" x 15" plain concrete footing • • "n 2 F .. -- - - - _. . ...- - - - o OW - • , 2. • - -- "\C I 0 0 S . - - C ; C c: = 77-4- :. 0 0 J g1 . o 1)1(:)- 9 -- u. >Afi • 47 C S � 0(s' _ 1 7-$ --iq . ___.. ..-:-. (€ ---- L . ‘7\s,k_ so , r.) _iv y W - C-2,m e +_SZ.: Ll 4-j t-. :1 = a- . d `e' b- i;s . - toj e _ l W ' _ 0 XI -- -cl,e) m1C,, e rt SZ 1 - t 4 Q 4 TZ) - (,s' - , ds'` _� o a- -. )1 1S ° ,QS — .... OAj\4 -k. : 1i+ 1 1'SS =.1p o 1 j D ' r777--- - t et --_---,----,-t . 0 m i j i I 3 O I m o i p - . - o \ - - - - - - . - il - -i ik 't•1 —�- -- - - .. � — -- -- - 1- �-- -- — --- . ❑ ❑ . , ._:_. _ i l _ . .., ?cool {. .. w) . jki .. _ 9 1 un S X - x `� 1 ° ., { �L° _ f { , ' ' v ' ' 0 1 ge --.. C ± ± b0 V .. Q ON 80: _ �atv :A9 TNi Bentleyn Harper Houf Peterson Righellis Inc. • Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Front Load 2.etz\ M33 =51.9 [KipIt] M33= -12.19 [Kip'ft] • • • • .' . Harper'Houf P Rughetlis Inc - -- - - _ . _ _ _ - `Current Date: 6/22/2610'16:35 AM . Units system: English • . , - - File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \talcs \Unit A \foundations \Front Load.etz\ i UM • • • • / M33 =25.66 [Kip'ft] • . - . l J / �1;' . �l i i I . _ ` / . . y L_ 5 • . M33 =3027 [Kip'ft] . • . Y. 5 • b . • • • A A _ ' � .. t^ r+ S f...- s...... %-• -- - - - - - - - - --- ----- - -- - - - . .. ___ . . ... • = .=--,i • __ , • - - - •-x 0 ,. -; - 1 - st..1 - cxxs 1 > .;k F_ ' \ .. -. .xWict .-.:-; (-D .••.> CD ' 7 •:-: , = "t1 . "1 s)ec • : = 7,1 0 0> ■.3 !IJ4,-.V3, . : e) 0 . • m -. ' • -' ctZ)C - - $I e:"` °" ( 9 — --LQZ•7:)(: _ sbyl „,.., :_.,,...: s _ o...__'0_ s__ • . ( ) ") -- --- - -- ----- --• - lob. 9 .... )s •c, Ara -- i ZtO'L --,- c2, 7 ( ' = X -0 H • i 0 2 o p, , s , j. __ ,‘... _ii c ( 2 00 ,1_ ,...r. o 0 X) K . - . R-il . - E (e)(j I ) c )(: 1'0) = - -73 W. (-) 0 3 \ 0 "---- • - V\ 3 Z • - - ki ft 0 -- - 6 z ..14-------- t ‘e.'e : -, -0 z n • - .1q‘ - -- - It \ tt - m o n r 7 0 1----ls • . 't ', 1• • T Aii . - - - • - - - - 0 ..• , _ . . • 3 0 _ 1‘__C.5t ti . _ - rn 0 • L t, , =I m Z — 0 r .. P1 . 1 P ■Vot. IA lb•c'e 'A - - • i\ — • V. ._ "A cel k.: Z - -.'" e Tt•I -C3' 1 - -----1 .;: a ;- \,/ 1V Nn , --,. . • , • , ' \DA-S! ' . . 1 • ' ' , 1031 : 023,4 . . . .- __ 1 _ •_, , I, --, _ . ,, ,- „ ,- • , , -, - ON 1301 . 0 \ ONe :3-LVCI )Nil \ :A8 • - . . . .-, . va• �.�t "' -. � ^._'•' .f�1- i�� -, -: __•°'Y' e .. '� .. °• -•_ mri ... -�- - _•_'.4 -_. -.� �a- ...�_. -- ''S -..t • -+ ✓— _ 1› Har "Hou f , P.etereon':Ri hellis Inc:';- , '•y'S,'. �';-'; 'Y ='. °y�:;! .' „Current Date: 6/22 10`38.AM ' '' - g .. • i ;;�� , Eii, Ei�:�� ; �i. z s i' Units system: Englisfi • - ^ : < -File name: 0: \HHPR Projects \CENT' - - 'Centex Homes ( 309) \ - Plan \CE -09 S u mm er C iee k _T \t \Un A\f R - etz\ ` .tea. i •. • . d I ,. d' .' -' • ,i M33 =43.24 [Kip`ft] • • fir - . / i (- . M33= 45 [Kip`ft] . , • s • . • - �• • • ' ,,° 3 _ t7) _ � i , . - - i. • . • . , • , , Har per • H o uf Pet erson Ri I • c. ; l Current Date: 6/2/2(110 10:43AM c +'. - Units system; English ...�.�• , -... . ' .,� ` File name: C+; \HHPR Projects \CEN - ,Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear•Load2.etz \: ,, • M 33 =41.88 [Kip* ft] • ,.' 1 �� A : V • ti N • M - 46.37 [KiP'ft] - it —• • j\IV:5 • 14 C i t — -- O co cq 1 d04 'i O ..' cc S ,— <<c.cr.,' 1 ? 0 3 -I 0 ( )c. (31(X)1 ° , )c - t ) 1 ° ) b ° W o cl" -Xcs S) CCO0f0,)fi1°)'0 = -2 hl) r�'V 1- ) 1 0 n Z' S L ' $► 1L (z1 00 - S9( . 900 1 0 c,)( tt Q ' 00 (-11 0bfi' — ( fi2x000EA'of c F-th'0 = \O 'LNG °O - 7'Q ‘,O\ 11 4 \ti) V\ lir o '431 Cie Te D (7/601,, - I bC • 0)0b p Z \N 1 o 0 1 0 0 t ) . 0 ( 1 , - 0 ( 0 0 0 S ) ' 0 / ( 0 0 0 ' ) =)0 3 3 a'71 C A's , — ' 1 9 lib -p Esvovo 1/9 t"-In m p n A a r O /11 `e:q +`u° = xbua� 3 0 m O Z � X1 X „O -1 ❑ ❑ ukQa3 Vow :„ 173 roa Q b I- f ;79 ON 9or Q KT J .3IVa \ 1 ' :A8 •� t4,.._-- - MO '- z. ?9 -C.- 1 ) ° 11'e - 7 : 0 NI t.,`WO = (..) . 71 - :' cer0/ '00, . �a�'Q) z v) = 't 1 s � -c =S • 70 „7.,k a 10 -. C>-.11 = = z x = ow _ r CD 10 ' .• h h - '.g< SQ.' h 2 _ o � C o — sl X ono'o°? Lyz :00 = `a W 0 (v i a , ° 1-L o e c7..-rxcx5o£)(�'o) / ( oer?)cbZ: \) _ `D zr`' ` N° 1 11 ;5\4 ' D i° 0 01 0 34- G`i I `Ac'' � �. < 't) _ <�ct '1) 3'3t.. � t\°n'C) - 59c000bn)<4t0' -∎ )O\ Q = ‘-two Jot &s -i- zb n ko = Lz+7 j9 oOQ - ) / Lcx�o'oq � % *o' \) = v F , - e z 01 c3t.ol \ = s v • ' O , ' a .s 4 < C 1 hb 'Sg < '..Pt 0 00,oq.\ _ ( 2 /Egz' - 9(_Cr)0'8 c 0b'0 = u ANi0 = o L ......... _ Q ° , N\ - 1 h) OOO 9' a / S (9JO 0 °) ' 0) = b 0 P xi 1P h0 OA') - <-- "D k u(\ -Th 511hs cell -p' C' z = m ? (` z n t'k h h L� c ' v A \ A n m ° _ IMP C�1'IB - -k. \.)(-\ _ ° W D 3 al 3 O 11 - O �1�1 q �y's � r ri �� X it E `er ❑ ❑ 0 s 'vol ku :a :103r02id oN eof alva A9 . . . , r . . , i7,,: A ID ":. • • • _ , . „ •. , • , . . , ■ 1 , , • •. • f . ! ' ■ -.- J _ ! — • i , _ PROJECT: I . I i. 4, 7 i . 1.- ; , 1 : ' : ' . • le)! )( (.■ ._ .-- . — r - 5J 5W ' . 1 w • •• • : , . aL -', - -.. • - E z 17 — - • • ' - • 5 .■ -\ , • 2 ' - ' : - . • '', .0 w - -- - - . 1-- . H ._i . ., 1. I:: , V- ' • CC u . : 0 1::= 1 -4-: 7 4 1 .1:. ' ---- -' • 1 -II-L4' . . - t . — 2--. - - -- --• . U . - . - . - .. . .- . . • , 0 - . •, ; • F- . __ . ,. ,. .. .., : - • . . _ ._ . . A0I-__'7- 03 • • , • I •-=:(tIO. - 141.01.0( '- , 5 . (...)(. - c s - ,;,CL ),+- _I r z).. 7 .- s.(,.. ? 1■S O.Y., _-.7._ 4 t ._A ._ .. . . . _ . 8 - fx 0 L - N — - lor — a( —. , • , ._ . . ' . ._ • _ •• L z - -7 w 1 , ;. \ C) i . ■ _ .. __ _VrO•sX ' .: 7 - .... ' 3 . . _ . . __' • . . .4 . . _ 6 14C -2.e..) -.! 3(3)(-co -Q(a, '. _ . - - - • - - ECi '-.1 i t \t's(4 • - t:e rl'i7; 1 C-CI , 1 L. •. _ . ._ . _ _ . . _ , • ••• \ -----'t ---- • . . - • . . • - I " ' ( es\ - ()tie ( furl)) .() . ■ , , ,. i 1 ' M -,--- a (., ,O . • . \ c • .. . .f\f,\R__t_ :-_- q_Dl_ _._, • • .-,,, = .- . ' _C,... e-• . ; , -.--; _LI•.5 +7 q. _DI— .,: - . _ _ -- (5C ,_. (:).; = -._:•: . • MCg, tr.. (S ( 1. LC. 1 .-. 3 ) r k4 Di, . . - - - - _ _ - y - . i:' i%' __1•:_'5M0 < 1`11. (_-_ . . .,..- - • ..._______ • \_ Js__ 4s.cic. i--..4. DI... • • . ' •:fi • 1.L= -, : 1, ")- . , - ,- • -- - , - U. :. 546. loo-hn i 3 o \c_. . . . . . . ., ; - .-_-- (.5;2 +:?) - 1- I, 1- -1 5 •-• . - - - • • 1 -- _3c1:1-.i- 3:D1_ • N1e- :(1-{t)(1-31» . . • • . . • ; \ . ],; . s'Mo c M.,(4.' . \ (2..(.,,, 03) -..-__ 2 ;2i)- +.: 3S2 .. . . - •- - __•_ __: . _ . I c-- k _ ac_ _ - . • _ ---r)R 1 -1Gt. -...-=_ .J_(-1 i ‘. • f. • . ,---- . , - i(0.,•aS i-.-5 • I.S - - . . ,, . - - - - • .. __ .. . 6 1— orvxse = 1 4( iR , 1.) > ^ BY: DATE•' , ( I f � ' ) 1`_ JOB NO. • . t . 7 1 T i ' 1 - � -1 - -- = - _ C� PROJEC _ . -- - - - ., Re.` ; t + L r j - o L - - - -- - - f- 4 -(_ ,-c_;= `rxa ° 5 ■ S - "a DI 7 .'. � �, ?_ _ - - I. ; - I - — -_, -- L ❑ = == _A ._j72_ _e _ - -1 .AO - a�.3s d . -- ' - - 3_C (�- 2 __ . . _ . _ __ - • .__ ._.- - : _ 1. ._ - - 5 - - - -4 t . _ Z 7 �C�,. �' .. _ - .-- __.1.,b(41 _e - ;14 f __ LCo.�35 • — ,. rho �_(;l . (,, (0 5-"-- _ ` q . F 0 k- 1 ^(3-fi h�f 4- - # r ry 10a d-s v cic. O I . r . - O . `� I if., - + 1 • s, r.. O j - C) 4 r 17,;;-. i — . -_ 1 - _ i r. I. 1 c' - 1 F - , - - . - - -- • j , _ __ • r H arper Houf Peterson Righellis • • Current Date: 6/22/2010 1 AM Units system: English .. °' • File name: O ; \HHPR Projects \CEN`= Centex Homes (309) \CEN - Plaris \CEN=090 `Summer Creek Towrihomes \cake Uriit.A\foundatiens \Interior 2.etz \; • - .1 • • • • • M33 =23.55 [Kip`ft] N • I • • • �.j M33= - 17.88 Kip' ft] Y 8 • Z -� _ _ _ . • • - - - %BentLev Harper Houf Peterson Righellis Inc. . Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects\CEN - Centex Homes (309)\CEN - Plans\CEN-090 Summer Creek Townhomes\calcs\Unit AVoundationantenonetz\ • • - • • • M33=32.26 [Kipft] _ - M33=-9.27 [Kip*ft] • a • • amer\ LC? - r:f2r1 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches hef = 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or Cmax = 5.25 inches the foundation and does not consider stem w� Fnd Width = 36.00 inches c = 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast -in -place anchor yf 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction facb Calculations Calculations ANc = 68 in` A = 1296 in` ANa = 110.25 in` ANo = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds W ed,N - 0.8286 Wed,N — 1.00 N = 4,399 pounds N = 55,121 pounds 4)N = 3,299 pounds 4)Neb = 41,341 pounds Combined Capacity of Stem Wall and Foundation (1)N = 44,640 0.754)N = 33,480 I 1 DATE: JOB • NO_ C , - l• 1 I 1 i I I ; : . I i I I , I , • ! 1 ' , t . I ---- - -I - -- -4- --1 ± : 7 , , -, 7 -L--1- t - , - - • - - PROJECT: 1 ■ ; 1 ; ; i ■ ....„._ L i _1_1 .-1-1- -:___-! . i__ _ ____ 1 .-• .,.__ . -._ .. . . _ . . . , - - • ., , , • -- 1------ ' ' 1- ` '_:- ''' ' . ..:.;_ ' .'-' ' L . 1 ... i • , '.. -; .4 ,, ,,;__ _ ! _ ____!. __ ( i : L .4 .., ,_ .__ _ __ t _. _ ' - - . IRE- • I : ) ' ' I - I 1 • , 1- ' 0 r‘' ' J P, -2 5 1 ., _._,_._. _ i a_ HD. _vetar . ___ 3incA f-- . A i_._ L_______, , • • . - - ---_----7--- , . -.-: ) ,,---_-_-,ii-,:,,-.:, , ; _ ; 4 ! i ;", -; t I t (....... ....-1 i I : ( i - . t ..,, - •t , • ; (.. - ; (...:1 '-. it'',..:, , , ._,. ( A J.- W .. ' V \ n\\ %.:XI.- )_O ,j, i 5 1 _ i 1 M : _:-V - 3-1,56\ct : j 1 1 ' , %.,-, -,-----1-- --- 1 ' -7, ' --. 771- ----7 7 7' 7 -4 - 7 —7 7 1 : ± r77..7 -- ;7 - .-:~ :- - - r c:( M _ t __, _ _ .,.I.,_ al i .41 4 ,.-,I. ; 1 1 I --- • ( • - t , ; . • , - ,..-----F ----,- L 2 1 0 _ , , U ' 5 X 1 • --h- : _L . ,__ , ; .. '" t -.. h I • 1 , , - i• ' 0 J • ' I • 1 I • ' _ t ' ' ' -4 ! / ,-: - -. - 1,.(.... ' ' _ .-- _.- cc a • --h-- -,-- • 0M 0 9 b_,_,. • bIL '4 r 2... ) ----- : -1 . .., O w .. . z • ---, -! -- - . 0 i ,, : . . A _7 A t,; ..• i. A k . I , . . 1 - ' '' '. C.A; :' ti i -3 DI 1 - 1 ' . cc z l• ' !TC 1)14 q= "e -II '. .• ' l', A s o_Ls \ N .2- • -I-- F .■ - - - r ` - C51 S l 1:42"66) i .. , , I- - JO ' a C3 OCK:1X? ) < 1 j 0 ' q 0 - ' ' • - t • ' - 1 Z ' 0: , 1\A 0 2 . _ ; .- . : _ . . - ..:2_, -.i.;a4 .-BCCd'-376-)..-- --[.oS5 tj--, 2 _:: 0.-1 t.,',• ;; : .. ";•: ! --' . ( .' '1 I ' 1 : - ; ' - I 1: . _ - - - - • O . . O ' ---;. 7 --- - - --TX.1.)-(1-)!-At-4 '1 . b_4‘.-.15•__ . . __ .: - 7 ,--r-r.y.--.. --.. 1-- - - • I - , • . O • - X d 0.3 CLIO .-). Ot.g.ag0;66)(3ia ) -- . . . w , i , _ 7..„( 0 : .i• i'' . . , y .4. • P 1 - _ - _ : VA ---:' 0'. q 0(6351 3 0 00D) _12,r. • .2,-, i , . i • " , , , ------ ------- - ------t----r---- .. . r ' , i i , - - -- ------ ,-- - - --c-7-7•,--1---;:- — -- - ;:- T: - . . ,-; - ; r -•;.:-..- :-.---y-- _ •. _ . , . • _ ! • , . , • . • - _ _ _ ;- -.-- — . • --- , ..... ; -: - • - -: - t. --,-- ----,----•,--- -i- --- ,---i--r---• 1 i... u • 1 I . i ' , .!- I . . , i / 1...., .p.; = i;. . ; i" ' i - ■ . . ' _ :ii I P.; = .= i7.--• . I 0 . 9 I ,________________,__________ _ --; --., - . , f , , , • • .__ rf-Tri . • , , • , , ■ 1 -I t • . .1 , 1 4 4 i , _,,... • ___ .1. : _,...L i • : ,. ; • i•- • ' i ; , 1 ' I ; ' 1 , ( • . - — --r- "( _i _, , . i . t_ ' • • 1- ' - . . r : • i r 1 • : 4 . t --L " -4 4 - - 1 - i '--- - '" ■ . . - . -..-- . : . ....„- .-.:-.. I .Li..- , -..... I .-..4 -.;__ _L.,..- ' ., ...I,- f ' • ' -1 . , 1 ' , V ■ , , ' , .; ' , I I , . : t ■ i . • I • . . . 1 I. ! • • Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi cmin = 18.00 inches j = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4Nsb = 173,393 pounds Concrete Pullout Strength Givens A bly = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds DNS = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks BY: DATE JOB NO . • s. PROJECT: RE: S Ve rc Wa11 Coo ,ny - ❑ ❑ ' t S; cues C F B) i IcL �s W. J Z F o w 1 01...? asc t (kt ine) = 300 P Lc - u.) t ❑ S cXCz \eve\s>(13 sc = a ob p - S oor cc 401N. (t50 pc �('I . liz� _ 3 - m P sre Li 0 o ( >C IS O(w = 100 w PLC if _ `- . W = L u...--4 Z Z � i LL o (5F i tevpels Coo v ") p Lilo »- r F _Y 1co 0 z Teal load. = 1 I - toOu.) ol*' , 2 moot, sbp v oo P -- tsoopu- • c&1 0 1 y.51 + (cow ►snow _ 0 - w = 100 0 x. is" i f & 0 U _ Z ❑ o e rear C-fO *.- or bo i 1a, r\op 0 = F- 0- Dl...; as =. 300 pLp- x_11 ( c 1 Xl Level p si - a 2) 4 ptF ,P \oaf-. 4o►N(1so X' /i C ,a1= 3s3 p� s\-e C it2)(t5o U )° Mow ''r1 (18 ) = Soto -c • tcx) F L L (C4& = 2) P Lc o< .:, Tl.e ','34" +- a. a a,3u3 t toow IS xa W_ t,(1 ^' a,1 \NI @ v,niVF} A" , - e unijse 1 ;C_ x = Boone c mIr Stoor 1oc6t TL: \32bC\ . \QQJJ w = 1,00 .r os-e 1• C P0\(iwc,L1 DL. Q a5(\2)(7 )= (000 pa: wull ( 8)(2 X (3x7- = t-} pL,F S tool - 40kal5opc0)C 112)( 331C/1- 5>err (� 110 ,9 u.):-. oo LL o (e >L4o'Ct> = \2 O PLC= d ' tL: 0,6a9 +100W LA) = Lb x 2311 use a4 IN