Specifications 64 Roo - 7 — e-' ) '°' q
I , a F , 4: ' * ems
' 'a .t e , g..
5
c rop m .,, ,, ,. , r
ENGINEERING CALCULATIONS
2 TON RUNWAY DESIGN , ,.. ,,.
STRENGTH VERIFICATION
Drawing No. Sheet No. Rev. No.
001 - 0
Calculations 0
February 9, 2007
Revision 0
2: _61
1� P E jil>
4903 2
a
t-
* 5 �9��0=
'. A$Oti��, 07
For:
Nike Golf
15675 SW 72 Ave
Tigard, OR 97224
Fabricator:
US Crane and Hoist
P.O. Box 384
29375 S.W. Kinsman Rd.
Wilsonville, OR 97070
CALCULATIONS
FREE-STANDING COLUMN BENDING
Part Number Nike Golf F := I psf lb
ft` —
ksi : =1000
lb plf:= l b psi 1 z
in fi in
W H := 300 lb Hoist Weight
W T : =860 lb Bridge Weight
LL : =4000 lb Rated Live Load
Nov:beds : =2 Number of endtruck wheels
Load Conditions
WL :={ + W H t LL 2 Maximum Wheel Load (no Impact)
E 3
WL = 236510 lb
F r : =20 %• LL + W H Total Lateral Force (IBC 1607.12.3) Conservative since
Flat =1160 lb the lateral force can be distributed between both runways
F long 10 %- ■owheels Longitudinal Force (IBC 1607.12.4)
F 1 0 = 4 7 3 lb
F vat : =10 % Nowhcels•WL Vertical Impact Force (IBC 1607.12.2)
F care =473 lb
Determine Seismic Loedinos
Fa := t Fv : =1 1801605
Ss :1=1.5 SI : =0.6
S DS ? •(Fa•Ss) S DS = I Seismic Load Factor at 0.2 second period 5% damping
3
S . 3 '(Fv.Sl) S t =0.4 Seismic Load Factor at 1 second period 5% damping
Response Modification Factor (ASCE -07 Table 9.5.2.2)
i : =1 Importance Factor
S Ds EEANOERSON
C s C s = 0.4 Seismic Design Coefficient (eq. 9.5.5.2.1 -1)
DATE
LCF = =0.7 Seismic Load Combination Factor REVISION_' ..
Runway Characteristics
+ runway : '30 Of Runway Weight
W bar : =23 lb Runway Rail
yd
W otter := 10 Of Bus bar conductor
Lrunway • 1$ ft Runway Length between columns
CG 1 := L runway' W runway t W t W Runway Mass
CG = 858 lb
H 1 : =19 ft Location of CG1 above baseplate
Column Ch aracteristics
Z yy := 392 in Plastic Bending Modulus of Column
WFI 2x26
E := 29.10 psi Modulus of Elasticty
xx := 20.1 in Product of Inertial
F y := 50ksi Column Yield Stress
W001 : =26 plf Column Weight •
W cothcr - = =200 lb Other Weights on Column
L column:= 183 ft Column Height
CG 2 := L column' col + W cather Column Mass
H 2 : =9.2 fl Location of CG2 above basepiate
W := CG + CG 2 W = 1.334 -103 lb Total 1 column and 1 bay length of runway weight
CG
H := H = 14.682 ft Average Height of W
CG +CG
Overturn aro Moment
V : =C s •IL' V =61352 lb UnFactored Base Shear
F H := LCF •V F H = 429A64 lb Maximum Anticipated Lateral Force
M OT := F H'H E EANDERSON
M OT = 6305.10 lb•ft Maximum Anticipated Overturn Moment +Z _ 9 - py
DATE. -
REVISION �...� ..
SILT 2 OF_.._
Allowable Strength Design
1Z b • 1.67 ASD safety factor
M =F
M = 1.55.10 lb -ft Nominal Flexural Strength (AISC F2.1)
n 9-281.10 lb•t Allowable Flexural Strength
a
M
Complies if M QT S n , "SDK" , OK" ! Complies = "OK" Flexural Strength
O b
1! .= column D = 0- 366•in Allowable Deflection at top of column plate
600
a •
S := F H, I. column' S = 0.256"in Inches of Deflection
3 -Et xx
Complies -= if[S CA, "OK" ,"NOT OK ") Complies = "OK" Deflection Criteria
E E ANDERSON
DATE? -4 •, �7
REVISION
I I
CRANE BEAM DESIGN
An Educational Tool to aid in Crane Runway Beam Design in accordance with RISC 9th Edition ASD and AISC 3rd Edition LRFD
(Ref: MSC Steel Design Guide Series - Design Guide 7 "Industrial Buildings ")
Project Name: Nike Golf
Project Description: USCrane
Company: AISC
Designed By: Eea Date: 2/15/2007
SINGLE CRANE WITH TWO WHEELS PER ENDTRUCK P P
Crane Data s
Crane Capacity 2.0 Tons
Bridge Weight Wt. b ' 0.9 kips
Trolley + Hoist Weigh Wt Nh 9 0 3 kips
Max. Wheel Load P 2.4 kips L
Wheel Spacing s 4.50 ft
Vertical Impact i 0 1 1 % (Input 25% for cab operateduanls.10%f?arpsndant operated cranes)
Crane Runway
Runway Span Length L 1800 ft Crane Rail Weight= 1 23.0 f Iblyd
Runway Deflection Criteria
Vertical Deflection ` L / 600 ; 0.36 in, lx regd. = 86.9 in
Horizontal Deflection L / : 600 0.35 in. ly req'd. = 7.9 in.`
• Does NOT include Vertical Impact or Girder and Rail Weight.
Crane Runway Design
AISC Design Procedure ! ASD (ASD or LRFD )
Forces
Max, Vertical Load P v 2.37 kips / wheel (includes impact)
Max_ Horizontal Load P h •' 0.22 kips l wheel I side
" Total Horizontal For is 20% of the sum of weights of the lifted load and crane holey. exclusive of other parts of crane.
Bending Moment Mx 17.84 kip-R. (includes impact and girder and rail weigh;
Bending Moment My 1A8 kip-ft
Shear Vx 4.48 kips
Crane Runway Beam (Note: VALID for ASTM A6 rolled shapes ONLY!)
Crane Beam Type " W ( W Shape
W indicates W Shape and WC indicates W Shape * Cap Channel
Crane Beam Designation W10x30
Beam Weight Wt. 30.0 lb/ft
Yield Stress Fy 50.0 ksi
Deflection Checks
Vertical - Moment of Inertia X -X Ix = 170.0 in. o.k.
Horizontal - Top Flange Moment of Inertia Y -Y ly top = 8.3 in. o.k_
Summary Stress Checks
Check Bending about the X -X Axis CSR = 0.421 o.k.
Check Bending about the Y -Y Axis in the top flange CSR = 0.165 o.k.
Check Biaxial Bending in the top flange CSR = 0.587 o k.
Check Shear about the X -X Axis CSR = 0.071 o.k.
Check Web Sidesway Buckling CSR = 0.605 o k.
OPTIONAL LRFD Web Sidesway Buckling CSR = 0.1 32 o.k
GENERAL NOTES
This program is applicable to only rolled W shapes and W shapes with Channel Caps E E ANDERSON
In addition to the general crane beam design above, the following design checks MUST be made:
Design for cyclic loading (Fatigue). DATE 2 _ ?
Design of welds attaching cap channel tow shape beam.
Design of crane beam end connections and bearing stiffeners REVISION
Design of crane rail attachment to crane beam.
Page 1 of t SHT `� OF-,
•
�.,.•.- i tf� „..-
CRANE BEAM DESIGN CHECKS Now Gott
USCrane
Crane Runway Beam WIOa30 Al SC
Eea Date: #0013i:de
SECTION PROPFRT1ES
Total Srscton Wergtd Wt. 30 0 pt Moment of Inertia It 16.70 in.' Area A top 2 963 In_'
Cross- secttonai Arca A 6 640 in.' Section Modulus Se 5:75 ill' Depth 1 Flange Area d t AI to 3 594
Total Depth dicta 10 5000 n. Radius of Gyration rY 1.370 es. Rados of Gyraton IT Ito 1.558 in
Distance to N. A_ y 2 52500 n. Plastic Modulus Zt' 8 11. Moment of inertia It 6.34 in `
Distance to N A y 1 52500 to W Depth d 10.5 in. Section Modulus St 2 87 In.'
Moment of Inertia lx 170 00 in.' W Web Thickness Iw 0.3 am PTasle Modulus Zt 4.30 in '
Section Modulus 52 3240 in.' W Flange Wdth bf 5.81 ai Radius of Gyration ry top 1.677 in.
St 32.40 In. W Flange Thickness If 0.51 el. Torsional Content 3 0 622 n.•
Radius of Gyration r• 4 380 in W Web Depth h 8 9 it, Warping Constant Cw 414 wt.`
Plastic Modulus Zs 38.60 in.'
ASD DESIGN LRFD DESIGN
Orson Loads Oesuon I oafs
Max, Vertical Wheel Load ' P v • 2 37 kips/ wheel Max. VerllcX Wheel Load • Pu • = 3.70 kos I wheel
Max. Htwizorttal'Mid toed •• P h = 022 kips / wheel f side Max. 14oriontal Wheel Load " P. - • 0.34 kos 1 wheel f side
• Includes rived • I'ratde6 repel
Total Hor¢autal Fate. P It is 20% Cr the cure at warms of r toted load - Tow( Ha satlat acne. P n a 70% okra sr+ of .rgtne of the tiled oad
and owe rdley a•dusr a of oder Reefs G awe ah3 Aorta butler exclave of =vows of sane
pigskin Forces De7411 Forces
Bending Moment X•X Axis ••• Ma = 17.64 k.p.E Bentfay Moment X -X Are ••' Mom = 27.34 k4-ft
Bending Moment Y -Y Axis My = 1.48 kip ft Bending Moment Y -Y Axis tit.y= 2.37 krptt
Shear X-X Axis '•• Vx • 4.46 kips Shp X -X Axis '•' Vu. = i.88 kips
IncLades impact net ourdar and rail weight --• kneSirlos mead and grder and rs1 weight
C>teck Ly Burkina Check Local Buckaro
LAISTI FENEDEtEIE.N75 x.revact ONSTIFFE EOEIEMFY7S compact
Flanges of W -Shape (brt)w = 5.70 Flanges of W -Snaps a = (brew = 5.70
Flanges of Channel {tvl)c • MlA Flanges of CAannd ). • (bilk = N/A
Compact Limit ep= 038(E/Cy)"'= 9.15 CompiCLint 1p•0.38(EfFy)"= 9.15
Nanmrtpad Limit : r =1.0(E'Fy) " = 26.93 Noncompect Unit 1 r = 1.0(E/Fy)' • 28.93
SriFFEAiEDELE5/EliTS en•^pa:s S71FF=E EDFLEAENT$ compact
Web of W.Shape Mt)`•' = 35.00 We of W -Shape k = (WOG,. 35.00
Compact Limit 640/(F y) = 90.51 Compact Limit e.o = 3.76(E/Fy)" = 90.55
Noncompact Limit 9701 {F 0 • 137.19 Naneanpad Limit Zr • 5.70(EfF y3 4 = 137.27
Web of Charnel Vitt)c = WA Web of Channel k • (hR). • N/A
Compact Lend 1901(F A • 26.67 Compact Limit kb a 1.12(E/F = 26.97
•
Noncompac Lima 2361fF y)"' = 33 66 Norrampact Land kr = 1.40/E/Fy) -2 = 33 72
Check Bending ;bolt the X -X .4„s cnext Bendel* about the X -X Axis
Amoral Unbraced Length r_la = 216.00 n. Actual Unbraced Length to = 216.00 in •
OOlerwrne trading L. erat ifo -Vaceu Larne
TENSION RISC EQ. Fl-4 Le • 71 09 in
Actual Bending fax 1 = 6.61 ksi Compeasana Residual Stress Fr = 10 00 kit
Marc Bending Fox I s 30 00 kal FL • ( Fy - Fr) FL = 40.00 ksi
Rix t F Fox e = 0.220 a k, Limiting Budding Moment Mr = 52 Ft = 1290 00 kip -in.
MSC EQ. FI-6 LI = 174.37 in
GOMPIES$IQN Bending Coefficient Cs= 1.00
Actual Bending fbx c = 6 61 ksi YIELDING Lb c 10
76bfISQRT(Fy)= 6245 in. PlasbcMOmenl Max =- 1830.00 kip-in.
20.000 / {d/A') SORT(Fy) • 112.86 MSG EQ. F1 -I Ws = 1630.00 kip -in.
AISC EQ. F1 -2 Lc = 62 45 in. LATERAL - TORSIONAL BLICIC-InG to c L
L/ rr = 138.66 MSC EQ. F1-7 Mrs = 1296.00 kip-in
Bending Coefficient Ce = t 00 AISC EQ. F1 -2 ta-x • 1089.39 lc
AISC EQ. F1 -1 Fox = 0.00 ksi LATERAL- TORSIONAL &hCIQJHG La > t'
AISC EQ. F1.3 Fox • 0 00 ksa Factor 01 = -0.0008
AISC EQ. F1-6 Fag = 0.00 ksx Factor 82 = 0 2848
Max, MSC EQ. F1-S. F1 -7, or Ft Fbx = 15.68 kw RISC EQ. F1 -13 Mcx = 982.81 kip-in
Plow. Bending Fox c = 15.68 ksi AISC EO F1.12 Um x 982 81 kip -in.
tow c t Flax c = 0.421 a k. Nannal Flexural Strength Mess = 982.01 kip -in
or Maa • 81.90 kip-ft.
Flexural Cason Strength Skiing = 73.71 kip -ft. ( o = 0.90 )
AC. 1¢Mru= 0.371 o. k_
Check Bending about rte Y -Y Ames in the top eanoe Cheat Bendfmo apQut the Y -Y Axe in the tap flenee
COMPRESSION Plastic Moment Mpy • 215.20 kern.
Actual Bending by c = 6.20 ksi Mrsr = 215.20 beet.
AISC EQ F2.1 Flay c 37 50 kit or Miry a 17.93 lop-ft c
MSC EQ. F2 -2 Foy = 9.00 ksi Flexural Design Strength bMny • 16.14 krlrfl. (0 = ANDERSON
Aloxe. Bendeig Fby c = 37 50 ksi Muy f liMnp = 0.147 0 k.
for c / Fby c s 0166 o k. �L r7
('3utcit Biaxial Bendamo In re trim flanoe Check Blamer Betldino in the tco Flange DATE? - . -_
COMBINED BENOiNG COMBINER BENDING y/ �
MSC EQ. H1 -3 fox. r st-x • iby / Fby = 0.687 alt. AISC EQ. 111 -lb Min t4Mry • Mvr r 01,,t-7 = 0.518 "r* REVISION t(J
SHT. OF.
Civcck Shear about the X -X Axu Chsrtk Shr`.ar aboy1 the X-X Az
Actual Shear (v = 1.42 ksi Clear &stance between stiffinen a • 218 00 In
Clear distance between sthfeners a ■ 210 00 it ath = 24.32
/h = 2432 kv= 5.00
kv = 5.35 AtSC £Q A-F2 -1 VIII = 94.50 kip
Cv • 2 10 AISC EQ. A-F2 -2 Wye • 0 00 kip
AISC EQ- F4-1 Fv = 20 00 ka. AtSC EQ A•F2 -3 Vru = 0.00 kip
AISC EQ F4-2 F = 0.00 ksi Shear Design Strength Wax = 85.05 kip-It (n= 0.90 )
Plow. Shear F. • 2000 ksi Vim/ OVra • Q0$1 o.k.
fvtFi= 0.071 o
Check Web Srfeswat Bucong CheakVtfab Sdasesy Bscklina
AISC EQ. K1 -7 AISC EC K1.7
(A^.w ( (L tel) • 080 < 1 7 fh:tw) 1(L1bf) • 0 80 < 1 7
Max. CaroenlrateC Lead R abcw = 3.91 kips G= 860000
Pv f Raa:w • 0.605 o.k Nominal Strength of Web Rn • 33.84 kps
Design Strength d Web +Rn = 28.77 kips ( 8. 0.85
OPTIQMOL LRFD Satesway 9,16 *Q Q Cheek Puv ! 4Rn = 0.129 a k.
A1SC LRFD EQ K1 -7
Oita) f (4b4) = 0.70 1.7
Cr • 960000
Max Concentrated Lead R aacw = 17 98 kips
PI 1 Raacw = 0.132 o_k
E EANDERSON
DATE? - q - °?
REVISION
SHT. Df
COMBINED SECTION PROPERTIES
W SHAPE BEAM
Design Section W10x30
y
Total Section Weight WI. 30.0 ptf
Cross Area A 8.840 in. wt _ - •- •--- •--- •- •-- •--- •- - -.___ _ ..
Total Depth d total 10.500 in.
Web Depth h 8.9 in. y 1
Distance to N. A. y 2 5.2500 in.
IMIMIIIIIIIIIIIIMI
Distance to N. A. y 1 5.2500 in
Moment of Media lx 170.00 in.' Area Top A top 2.963 in .
Section Modulus 52 32.40 in. Depth t Flange Area d / Af top 3.544
Si 32.40 in. Radius of Gyration rT top 1.558 in
Radius of Gyration rx 4180 in Moment of Inertia It 8.34 in.4
Plastic Modulus Zit 36.60 in. Section Modulus St 2.87 in.
Moment of Inertia ly 16.70 in,4 Plastic Modulus Zt 430 in.'
Section Modulus Sy 5.75 M. Radius of Gyration To ry top 1.677 in,.
Radius of Gyration ry 1.370 in Torsional Constant J 0.622 in.
Plastic Modulus Zy 8.84 in.3 Warping Constant Cw 414 in.6
INDIVIDUAL SECTION PROPERTIES .
W SHAPE BEAM
Shape Designation W10x30
Weight Wt_ 30 tiff
Area A 8.84 in.
Depth - d 10.5 in.
Web Thickness tw 0,3 in.
Flange Width bf 5.81 in.
Flange Thickness tf 0.51 In
Distance k design 0.81 ii.
Distance k derail 1125 in.
Distance T 8.25 in.
Compact Criteria bf /2 tf 5,7
Compact Criteria d f tw 35.0
Web Depth h 8,9 M.
Compact Criteria h J tw 29.5
Radius of Gyration rT 1.56 in.
DePthlArea of Flange d / Af 3.54
Buckling Factor X1 2900 ksi
Buckling Factor X2 x 106 2150 (1 /ksi)
Moment of Inertia ix 170 in.
Section Modulus Sir 32.4 in.
Radius of Gyration rx 4.38 in.
Plastic Modulus Zx 36.6 ai:'
Moment of Inertia ly 16.7 in."
- Section Modulus Sy 5.75 in.
Radius of Gyration ry 1.37 it
Plastic Modulus Zy 8.84 in'
- Torsional Constant J 0.822 in . E E ANDERSON
Warping Constant Cw 414 in. , - ,
DATE REVISION ')
Sill._ OF ....`.�..
tsii
•
•
A mu
PLAT LI21 L3 107 L9
a
F s +.� r - CG, 3a 5 c 1 o
M Fz, to Iz I,4
(17 `4a t%4X q)
tit o 2i 93 43/3
m t
=
c
z eu
e re
H
0
W
Q
N
E E ANDERSON
DATE 2 - Q • a7
REVISION. (4 .
SHT $ OF
CALCULATIONS
ANCHORAGE TO CONCRETE - ALLOWABLE STRESS DESIGN
HILT1 HIT HY-150 EPDXY ANCHOR BOLTS .
Part Number Column Baseplate
Inspection "YES" Special Inspection required?
Materials Used: Threaded Rod or equal A36 or A193B7 or 304 SS
Normal Weight Concrete at 4000 psi minimum
OCC : =133 Short Term Allowable Load Increase Factor
Fire Resistance Construction Not Mowed
Fatigue Loading Condition Beyond Scope of ICBO Report
Cracked Concrete Condition Performance Information Not Available
Ma dmum Temperature before adjustment 100 F
Seismic SERVICE LOAD CONDITION
P s :=2193 ib Applied tension service load
V s : -107 lb Applied shear service load
Bolt Size 3/4 inch A -325 quality threaded bolt
D:= 0.75 in Nominal Bolt Diameter
Embed : =4 in Embeddment Depth
1? tall := 3680 lb Allowable tension service load. Table 6 ICBO (based on
concrete strength)
s := 6.75 in Bolt Spacing
c := 5 in Distance from center bolt to edge.
Tension and Shear Load Adiustments
S cr : =6.75 in Crtical Spacing
S min : =0.25-S cr S m = L687•in Minimum Spacing
C cr := 5 in Crtical Edge Distance
C mio 033-C-0. C m in = 1.65'in Minimum Edge Distance
• f : =0.7 Tension Spacing Reduction Factor
E E ANDERSON
f ns
m m = 0.138+ sb a of reduction curve ' '
S cr' S min in P D ATE °� p
b := I - m -Scr b = 0.067 Y intercept REVISION— A.
SHT `L OF__._
y := m + b y= 1 Reduction Factor it Tension
RF t if sn cr , I .y
r
RF t = I Saacvw Reduction Fagg
f =0.6 Tension Edge Distance Reduction Factor
m := f in = 0.179 slope of reduction curve
C cr -C m i n to
b := l - m•C cr b = 0.104 Y intercept
y = Fuss t b y= 1.313 Reduction Factor nTension
RF : =if s >C I ,y
RF = 1 gdae Reduction Factor
Pt P tell'RF t •RF c P = 3.6E - I0�b Factored Allowable Tension Service Load
Shear Load Adjustments
P vall : = 4380 lb Allowable Shear Load Capacity
S CT •=6.75 in Crtical Spacing
S min 0 _25'S cr S min - I.6S79in Minimum Spacing
C5 in Crilicai Edge Distance
C min ' =0.33 cr C m = 1.659in Minimum Edge Distance
vse 0.7 Shear toward & not toward edge shear spacing reduction factor
f
m vsc nt = 0.1389- sbpe of reduction curve
S S in
b =1 - mS cr b = 0.067 Y intercept
y: =m.stb y =1 Reduction Factor in Sheer
RF v := if s >_S cr . I . y�
RF v = I Spacing Shear Reduction Factor
E E ANDERSON
DATE 2 - 9 -
REVISION - -
S
J
f vtc : =0 2 Shear toward edge distance reduction factor
m := fvte m = 0.061- slope of reduction curve
Cc. - -Cmin in
b : =1 -- m •C cr b = 0.701 Y intercept
y : =m•st b y = 1.104 Reduction Factor in Shear
RF ci if S>_C cr . t,Y
RF cl = 1 Edge Reduction Facbr
f r+r►te := 0.6 Shear not toward edge distance reduction factor
m := fvntc m = 0.179.1 sbpe of reduction trove
C —C in
b := t — m•C cr . b = 0.104 Y intercept
y := m•s t b y = 1313 Reduction Factor in Shear
RF c2 := iE'stC cr ,1, y.
RF c2 = 1 Edge Reduction Factor
RP c'?" 1 Selected reduction factor in shear
V 1 : =P,311'RF R1: c V t = 438. 103"tb Factored Allowable She Service Load
Ratio s : =if P "OK ","NOT OK
'P
Ratio = "OK"
V
Ratio v :- i S S I , "OK" , "NOT OK"
V t :
Ratio„ = "OK"
Ratio c := P s V s
P V
Ratio = 0.62 E EANDERSON
Ratio c := if 'Ratio c< 1, "OK" , "NOT OK" Ratio c = " DATE I — 1
REVISION
et
s oF._"..
• Nike
MCE Ground Motion - Conterminous 48 States
Zip Code - 97224 Central Latitude = 45.407291
• Central Longitude = - 122.79903
Period MCE Sa •
(sec) ( %g)
0.2 105.3 MCE Value of Ss, Site Class B
1.0 037.0 MCE Value of S1, Site Class B
Spectral Parameters for Site Class B
0.2 105.3 Sa = FaSs, Fa = 1.00 7 /3(1.0)C - 1. 1,5) = 027 ° 5
1.0 037.0 Sa = FvSI, Fv = 1.00 zt3C 1.P xaE3) o•25 s'S
Spectrum for Site Class B
Period MCE Sa
(sec) (%g)
0.000 042.1 T = 0.0, Sa = 0.4FaSs
0.070 105.3 T = To, Sa = FaSs
0.200 105.3 T = 0.2, Sa = FaSs
0.351 105.3 T = Ts, Sa = FaSs
0.400 092.5
0.500 074.0
0.600 061.7
0.700 052.9
0.800 046.3 •
0.900 041.1
1.000 037.0 T = 1.0, Sa = FvS1
1.100 033.6
1.200 030.8
1.300 028.5
1.400 026.4
1,500 024.7
1.600 023.1
1.700 021.8
1.800 020.6
1.900 019.5
2.000 018.5
E EANDERSON
DATE? - -
REVISION C
SNT I Of ,__„�
T.
•
J
• Page 5 Of 10 ER-5193
TABLE 6- ALLOWABLE TENSION LOADS FOR THREADED ROOS INSTALLED IN 2,000 psi
. AND 4,000 psi NORMAL- WEIGHT CONCRETE, USING INLA1 HY -150 ADHESIVE ''''''
ANCHOR EMBEDMENT CRNTRCAL CRITICAL ALLOWABLE ALLOWABLE TENSION LOAD BASED
*AMETER DEPTH EDGE SPACING, TENSION LOA.) ON STEEL STRENGTH (pounds)
(Inches) (inches) DISTANCE, S. BASED ON BON OR
G (inches) CONCRETE CAP 1TY
(Inches) (pounds)
AST14 ISO ass kL3714 AISI
/, = 2,000 /', : 4,000 A 36 Class 5.8 A 193 s61316
p psi Grade 55
87
1I 2 3'! 675 1,185
34 3' /, 5'/. 7 1,780 2.540 2,115 2,840 4.556 3,645
5'!, 8 10'! 2,470 2,625
2 3'/. 4'1, 1,145 1,475
1 / 2 4'/, 614 84 2,555 3,690 3,775 4.700 8.100 8.480
6'!, 9'1 12'1. 4,035 4,965
2'! 3'1, 5 1,520 1,865
9 f. 5 7'1 10 4,120 4,920 5,870 7,340 11655 10.125
7'1 11' /,, 15 5,845 7,715
>- 31, 5 6 2,215 3,1390
':. 6 10 137. 4,365 8,330 8,456 10,570 18.225 12,390
10 15 20 8,920 11,380
3'!, 5'!, 7'! 2,890 4,560
'i, 7Y 11 15 7,356 10,250 11,510 14,385 24.805 16.865
11'!, 17 22'1 12,495 15,605
4 8 8'!. 3,230 4,560
1 8'!. 12'/ . 16'! 7,810 10,910 15,030 18,790 32,400 22,030
12'!, 18'/, 24'1, 14,570 18,305
6 9 12 4,356 6,565
•
1'/, 12 18 24 14,520 19,475 23,490 29,360 50,620 34.425
15 22`/ 30 18,010 25,140 _ _
For SI: 1 inch = 25.4 mm. 1 list =4.45 N, 1 psi = 6.89 kPa
'Allowable load shalt be the lesser of tabulated bond or concrete and steel values. Load - reduction factors given in Table 4 for reduced edge
distance (c) and anchor spacing (s) shall be applied to values in the bond or concrete capacity column. Linear interpolation may be used for
intermediate spacings, edge distances, embecknerts and concrete strengths. Load - eduction factors are cumulative for anchors with multiple
anchor spacings or basamateaal edge distances.
The tabulated values are for anchors installed in concrete complying with Section 2.2.4 and having the designated compressive strength (I'd or
higher at the time of installation
'Allowable loads based on bond or concrete strength have been calculated using a safety factor of 4.0.
'Concrete thickness must be equal to or greater than 1.5 tunes the anchor embedment depth.
'When anchors are used to resist short -term bads, allowable loads must be calculated in accordance with Secbon 2.3.2 of this report
E E ANDERSON
DATE - �
REVISION
Is
SHT.aF,-
•
. •
•
•
4
• Page a of 10 ER -5193
TABLE 7--ALLOWABLE SHEAR LOADS FOR 3MREA ED RODS INSTALLED IN NORMAL-WEIGHT
r CONCRETE USING HILT! Her-0{pounds) ) 50 ADHESIVE {p w
ANCHOR - EMBEDMENT CRITICAL CRITICAL ALLOWABLE SHEAR ALLOWABLE SHEAR LOAD BASED ON
DIAMETER DEEPTF! EDGE SPACING, LOAD BASED STEEL STRENGTtt (pounds)
(inches) (inches) DISTANCE, S BOND OR CONC
C (inches) CAPACITY (pou)
) As/hi ISOeSO AStM AISI
te a 2,000 F.hs 4.000 A36 Class A 193 3041315
psi psi 59 tirade 53
Sr
1 2 3'4 .- 1,010 1,010
itr 3'/ 5'4 7 1,675 2,395 1,090 1,360 2,345 1,875
5'/4 8. 101/2 3635 4.715
21/2 3$,, 4'4 1600 1,900
'J 4'!, 6' g . 2,540 3,.'190 1,945 2.420 4,170 3,335
II 9 12 5,090 7,150
2 3xi, 5 2.985 2,985
Gtr 5 7'1 10 3.575 5,1390 3,025 3,780 8.520 5,215
7't 11 15 7.125 10,0110
•
s 3"h 5 6 4.380 4.380
2 4 81 10 13 6.005 8.824 4,355 5,445 9,380 5.385
10 15 20 12,275 17,390
3'!. 534 7'!2 5,700 5,7O0
74 7 11'1, 15 7685 11,150 5690 7.410 12,790 8,590
11'1/2 17 22 15,705 22.215
41/2 6'4 51/ 7005 7,005
•
1 8'4 12'! 16'!., 9.660 13,645 7745 9.600 16.690 11,350
12 18'4 , 2434 19,225 27,190
6 9 12 11,790 11,790
1' #. 12 18 24 19,510 27,590 12,100 15,125 4080 17,735
15 22'/ 30 _ 28,510 40,315
Far SI: 1 inch = 25.4 mm, 1 lbf =4,45 N, S psi = 6.89 kPa_ •
'Allowable load stall be the lesser of to bulaled bond or concrete and steel values. Load-eduction factors given in Table 4 for reduced edge
distance (c) and anchor spacing (s) shall be applied to values in the concrete capacity column. Linear interpolation may be used for Intermediate
spacings, edge distances, embed aunts and concrete strengths. Lcad'eeductian factors are cumttatrve for anchors with multiple anchor spacings
or base material edge distances,
'The tabulated values are for anchors installed in concrete complying with Section 2.24 and having the designated compressive strength (f1) or
higher at the time of installation.
'Allowable beds based on bond or concrete strength have been calculated using a safety factor of 4.0_
'Concrete thickness must be equal to or greater than 1.5 braes the anchor embedment depth,
1 When anchors resist short teen loads, allowable shear loads most be calculated in accordance with Section 2.32 of this report.
r
I
s i
L E ANDERSON
y
Q .
4 R S1ON... ._.
SHT 14 OF-6 ;
1 ,