Loading...
Specifications 0 8 2009 v BUILDIDEC NG DIGARD . -:_-7,..., VISION ECLIPSE ENGINEERING INC. BuP2,,9- CO 1 q 5 c Structural Calculations oeks , . S �. R0( Steel Storage Racks By Pipp Mobile Storage Systems, Inc. Pipp P.O. #071368 True Religion Brand Jeans #5065 Washington Square (SO240872 -00) NOV 2 9585 SW Washington Square Rd. 2 5 009 - Spc. # B-12 QE D PROF �� � ��GI N F 9 s�01. Portland, OR 97223 , % 786 'P D ...... c- OR ..N co Prepared For: s faT , � 2� 2 � Pipp M Storage Systems, Inc. ° 6," -. J ;ilk' s. 2966 Wilson Drive NW • Walker, MI 49544 Expiration Date 11 i 2009 Please note: The calculations contained within justify the seismic resistance of the shelving racks, the fixed and mobile base supports, and the connection to the existing partition walls for both lateral and overturning forces as required by the 2007 Oregon Structural Specialty Code. These storage racks are not accessible to the general public. � 9 t 155 NE REVERE AVENUE, SUITE. A. BEND. OR 97701 o ' PHONE: (5411 389 -9659 FAX: (541) 312-8708 ��U I- STV r WWW.ECLI['SE- ENG1NEERING.COM \S � e ~ . 6 SC • Eclipse Engineering, Inc. True Religion Brand Jeans 11/25/2009 Engineer: Nick Bumam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE Pipp Mobile STEEL STORAGE RACK DESIGN kips:= 1000•Ib 2006 IBC & 2007 CBC - 2208 & ACSE -7 - 15.5.3 lb plf := ft — Design Vertical Steel Posts at Each Corner : Shelving Dimensions: psf:_ 1b Total Height of Shelving Unit - h := 10.0.ft lb Width of Shelving Unit - w := 4.00.ft pcf = f- Depth of Shelving Unit - d := 2.50.ft Number of Shelves - N := 8 lb ksi := 1000 • — Vertical Shelf Spacing - S := 17.15.in in Shelving Loads: Maximum Live Load on each shelf is 50 Ibs: Weight per shelf - W := 50•lb W = 501b Load in P Sf - LLi . W W - LLi = 5•psf Design Live Load on Shelf - LL := LL LL = 5.psf Dead Load on Shelf - DL := 2.0 • psf Section Properties of Double Rivet 'L' Post : Modulus of Elasticity of Steel - E := 29000• ksi b := 1.5 in h:= 1.5•in Steel Yield Stress - F .= 33 • ksi • r 0.47•in Section Modulus in x and y - 5 0.04.in r 0.47.in x •_ Moment of Inertia in x and y - I := 0.06•in t := 0.075.in Full Cross Sectional Area - A = 0.22•in h� := 1.42 in b := 1.42•in Length of Unbraced Post - L := 17.15.in L := 17.15•in i := 17.15•in Effective Length Factor - K := 1.0 K r : 1.0 K := 1.0 Section Properties Continued: Density of Steel - psteel := 490.pcf Weight of Post - W := psteel•A W = 7.4861•Ib Vertical DL on Post - Pd := DL•w•.25d•N + W Pd = 47.4861lb Vertical LL on Post - PI := LL•w•.25•d•N P1= 100lb Total Vertical Load on Post - P, := P + Pi P = 147.4861.lb 1 Eclipse Engineering, Inc. True Religion Brand Jeans 11/25/2009 Engineer: Nick Burnam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE Floor Load Calculations : Weight of Mobile Carriage: W := 90•Ib Total Load on Each Unit: W := 4.P + W W = 679.94441b Area of Each Shelf Unit: A := w•d A„ = l0ft Floor Load under Shelf: PSF := W •A„ PSF = 67.9944• psf NOTE: ACCUMULATED SHELVING LIVE LOAD IS LESS THAN 100 psf & THEREFORE, ACCEPTABLE. Find the Seismic Load using Full Design Live Load : ASCE -7 Seismic Design Procedure: Importance Factor - IE := 1.0 Determine S and S from maps - S := 0.947 S 0.341 Determine the Site Class - Class D Determine F and F - F := 1.121 F„ := 1.719 • Determine S and SM1 _ SMS := Fa•Ss SM1:= Fv•S1 SMS = 1.0616 SM1 = 0.5862 Determine SOS and SDI _ SDs := 3 • MS SDI := 3 • SOS = 0.708 SDI = 0.391 Structural System - Section 15.5.3 ASCE -7: 4. Steel Storage Racks R := 4.0 n := 2 Cd := 3.5 R := R a p • = 2.5 I := 1.0 Total Vertical LL Load on Shelf - W LL•w•d Wi = 501b W Vertical DL Load on Shelf - Wd := DL•w•d + 4.— N p Wd = 23.7431 lb Seismic Analysis Procedure per ASCE -7 Section 13.3.1: Average Roof Height - h := 20.0•ft Height of Rack Attachment - z := 0.00•ft (0' -0" Used For Ground Floor Space) 0.4•a zl Seismic Base Shear Factor - V := r 1 + 2• h l V = 0.1769 Rp Shear Factor Boundaries - Vtm;n := 0.3•SDS•I Vtmin = 0.2123 Vtmax 1.6• I p Vtmax = 1.1324 V := if(V > Vtmax , Vtmax • Vt) V := if (V < Vunin , Vtrnm , Vt) Vt = 0.212 2 Eclipse Engineering, Inc. True Religion Brand Jeans 11/25/2009 Engineer: Nick Burnam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE Seismic Loads Continued : V ASD, Shear may be reduced - V := t V = 0.1517 1.4 Seismic DL Base Shear - Vtd := Vp • Wd • N Vtd = 28.811b DL Force per Shelf : Fd := Vp • Wd Fd = 3.6 lb Seismic LL Base Shear - Vtd := V • WI • N Vti = 60.66 lb LL Force per Shelf : F1:= V • WI F1 = 7.58 lb 0.67 * LL Force per Shelf : FI.67 := 0.67•V • WI FI.67 = 5.08 lb Force Distribution per ASCE -7 Section 15.5.3.3: Operating Weight is one of Two Loading Conditions : Condition #1: Each Shelf Loaded to 67% of Live Weight Cumulative Heights of Shelves - H := 0•S + 1.S+ 2.S + 3.S+ 4.S+ 5.S+ 6•S + 7•S Total Moment at Shelf Base - M H•Wd + H•0.67•WI M = 2290.7ft•lb H = 40.02•ft Vertical Distribution Factors for Each Shelf - Total Base Shear - Vtotal := Vtd + 0.67•V Vtotal = 69.45 lb Wd•0.0.5+ WI.0.67.0.0•S Wd•1.0•S+ WI.0.67.1.0•S C1:= Mt C1= 0 C2: Mt C2 = 0.0357 F1 C1•(Vtotal) F1 = 0 F2 := C2•(Vtota1) F2 = 2.48 lb Wd• 2.0.5+ WI.0.67.2.0•S Wd• 3.0•S+ WI.0.67.3.0•S C3 := C3 = 0.0714 C4 := C4 = 0.1071 M M F3 C3 . (Vtotal) F3 = 4.96Ib F4 := C4•(Vtotai) F4 = 7.441b Wd•4.0•S+ WI.0.67.4.0.S Wd• 5.0.S+ WI.0.67.5.0•S C5 := C5 = 0.1429 C6 = C6 = 0.1786 M M F5 C5•(Vtotai) F5 = 9.92Ib F6 := C6•(Vtotal) F6 = 12.4Ib Wd •6.0•S+ WI.0.67.6.0•S Wd •7.0•S+ W1.0.67.7.0.5 C7 := Mt C7 = 0.2143 C8 := C8 = 0.25 Mt F7 := C7• (Vtotal) F7 = 14.88lb F8 := C8• F8 = 17.36 lb Wd •8.0•S + W Wd •9.0•S + WI.0.67.9.0•S C9 := Mt C = 0.2857 C10 := Mt C10 = 0.3214 Fg := Cg•(Vtotal) Fg= 19.84lb F10 = C1o•(Vtotai) F = 22.32 lb 3 G Eclipse Engineering, Inc. True Religion Brand Jeans 11/25/2009 Engineer: Nick Burnam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE Wd•10.S+ W1.0.67- 10.S W W • C M C = 0.3571 C12 := M C12 = 0.3929 t t F11 C11•(Vtotai) F11 = 24.8 lb F12 := C12•(Vtotal) - F12 = 27.28 lb CI +C2 +C3 +C4 +C5 +C6 + =1 V • Force Distribution Continued : Coefficients Should total 1.0 Condition #2: Top Shelf Only Loaded to 100% of Live Weight. . Total Moment at Base of Shelf - M := 7.0•S•Wd + 7.0•S W Mm = 737.7ft•Ib Total Base Shear - Vtotal2 Vtd + Fl . Vtotal2 = 36.39 lb , Wd•0.0•S+ 0•WI.0.0.S C1a M Cia = 0 . Fla Cia•(Vtotal2) Fla = 0 - ta Wd .7.0 -S+ WI-7.0•S Clia V M . Clia = 1 Fila C11a•(Vtotal2) Flu = 36.39 lb V Condition: #i Controls for Total Base Shear By Inspection, Force Distribution for intermediate shelves without LL are negligible. . Moment calculation for each column is based on total seismic base shear. Column at center of rack is the worst case for this shelving rack system. . Column Design .in Short Direction : M := 4 2 (Vm + v) M = 15.9831 ft- lb . . .Bending Stress on Column - fbx := MSS, 1 fbx = 4.7949•ksi Allowable Bending Stress- Fb := 0.6•F Fb = 19.8 -ksi Bending at the Base of Each Column is Adequate . Moment at Rivet Connection: , • , Shear on-each rivet - V. := V = 127.865lb - 1.5•in V d := 0.25-in _ d A := 4 A = 0.0491 • in V r Steel Stress on Rivet - f := f,; = 2.6062 • ksi A r Allowable Stress on Rivet - F := 0.4.80 • ksi Fvr = 32 • ksi RIVET CONNECTION IS ADEQUATE FOR MOMENT CONNECTION FROM BEAM TO POST 4 • Eclipse Engineering, Inc. True Religion Brand Jeans 11/25/2009 Engineer: Nick Bumam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE • Find Allowable Axial Load for Column : • Allowable Buckling.Stresses - - • • aex.x �2 E . (r = 214.9637. ksi KX•Lx r Qex := vex,x v = 214.9637. ksi • - Distance from Shear Center ec t•hc2; bk2 e = 1.2706 in to•CL of Web via X.axis 4 I • Distance From CL Web to Centroid - x := 0.649-in — 0.5•t x = 0.6115•in Distance From Shear Center x := x + e x = 1.8821 • in • ' to Centroid - Polar Radius of Gyration - r Jr + r + xa r = 1:996•in • — Torsion Constant -, 3:= 3 -(24;4 + h•t • J = 0.00063•in • Warping Constant- t•b Car P 9 := C = 0.0339•in 12 6•1)4 + h.t • Shear Modulus - G := 11300.ksi 1 7 r 2 E • • v := • • G • ] + 2 Q = 45.7969 • ksi Ap ro 2 ( Kt Lt� • L. 2 a := 1— — 3= 0.1109 • ',ro • F := 1 •[(v + Qt) = J(a + vt) — 4 •a•vex•at] Fet = 38.3801•ksi. 24 Elastic Flexural Buckling.Stress - F := if(F < v F v) F = 38.3801•ksi Allowable Compressive Stress - F„ = F > 2 , F 1— 4.F , F F = 25.9065•ksi e Factor of Safety for Axial Comp. - 0 := 1.92 • 5 . • • • • Eclipse Engineering, Inc. True Religion Brand Jeans • 11/25/2009 Engineer: Nick Burnam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE Find Effective Area - • Determine the Effective Width of Flange - Flat width of Flange - wf := b — 0.54 wf =1.4625.in Flange Plate Buckling Coefficient - kf := 0.43 w F Flange Slenderness Factor - of 1. 052 f n of = 0.935 t E 0.22 1 • pf Cl / . pf = 0.8179 l X f J X f Effective Flange Width - b := if(a > 0.673, pf•wf, wf) b = 1:1961•in Determine Effective Width of Web - Flat width . of Web - V w := h — t V w = 1.425•in Web Plate Buckling Coefficient - k., := 0.43 - w E = 0 Web Slenderness Factor - � := 1 t E �w 0.911 pw C l 0.22 1 p = 0.8326 • >w Xw Effective Web Width - h := if(x,,, > 0.673, p , w h = 1.1864.in Effective Column Area - A := t•(h + be) A = 0.1787• in Nominal Column Capacity - P := A P = 4629lb P n Allowable Column Capacity - P := P = 2411 lb - n Check Combined Stresses - V • 'rt• 2 •E•I u P P =6x 10 lb - (K • Pa := Pax P = 58388Ib ,Magnification Factor - • no. Pp a := 1 a = 0.9952 C := 0.85 Pa ' Combined Stress: V ?p + Cm•fbx = 0.268 ! MUST BE LESS THAN 1.0 Pa Fb.a Final Design: 16ga 'L' POSTS WITH BEAM BRACKET ARE ADEQUATE FOR REQD COMBINED AXIAL AND BENDING LOADS • NOTE: P is the total vertical load on post, not 67% live load, so the design is conservative 6 Eclipse Engineering, Inc. True Religion Brand Jeans 11/25/2009 • Engineer: Nick Burnam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE • STEEL STORAGE RACK DESIGN PER 2006 IBC & 2007 CBC - 2208 & ASCE -7 SECTION 15.5.3 Find Overturning. Forces : • . Total Height of Shelving Unit - H := 10.0•ft Width of Shelving Unit - w := 4.00.ft Depth of Shelving Unit - d := 2.50.ft WORST CASE _ Number of Shelves - N 8.0 Vertical Shelf Spacing - S := 17.15•1n • Height to Top Shelf Center of G - h top := H h top = 10 ft Height to Shelf Center of G - h :_ (N 2 1) •S h = 6.4312•ft From Vertical Distribution of Seismic Force previously calculated - ` Controlling Load Cases - Weight of Rack and 67 of LL - W :_ (W + 0.67•Wi)•N W = 457.94441b • Seismic Rack and 67% of LL - V := Vtd + 0.67•Vn V = 69.4497lb Ma := F + F + F + F + F + F6.5•S + F F M : Ma Overturning Rack and 67% of LL - M = 496.3ft•Ib Weight of Rack and 100% Top Shelf - W :• Wd N + W1 W = 239.94441b Seismic Rack and 100% Top Shelf - V := Vtd + FI V = 36.3888 lb . Overturning Rack and 100% Top Shelf - M := Vtd he + F h top M = 261.1 ft•lb . Controlling Weight - W := if(W > W , W, W W = 457.944lb Controlling Shear - V := if(V > V V, V Vc = 69.45 lb . Controlling Moment - M := if(M > M M , M M = 496.28ft•Ib Tension Force on Column Anchor - T := d� — 0.60.2` T = 61.13 lb • per side of shelving unit T = if(T <0•Ib,0•Ib,T) T= 61.1271b V Force on Column Anchor - V := 2 V = 34.7 lb USE HILTI KWIK BOLT TZ ANCHOR (or equivalent) - USE 3/8"4) x 2" embed installed per the requirements of Hilti Allowable Tension Force - T := 915•Ib For 2500psi Concrete Allowable Shear Force - V := 485•1b i 1.0•T 1.0•V Combined Loading - r T 1 + r V 1 = 0.138 MUST BE LESS THAN 1.33 a J 1 a 7 • • • Eclipse Engineering, Inc. True Religion Brand Jeans 11/25/2009 Engineer: Nick Bumam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE STEEL ANIT -TIP CUP AND ANTI -TIP TRACK DESIGN • Tension (Uplift) Force on each side T = 61.127051b V . Connection from Shelf to Anti-Tip track: • , V • Capacity of 1/4" diameter bolt in 16 ga steel - -V Z.,:= 312•Ib • if(T < 2.Z "(2)'1/4" Bolts are Adequate" , "No Good ") _ "(2) 1/4" Bolts are Adequate" Use 3/16" Diameter anti-tip device Yield Stress of Angle Steel - V F Y := 36•ksi . V Thickness of Anti-tip Head - t := 0.090-in Width of Anti-tip Rod + Radius - br := 0.25.in, V Width of Anti-tip Head - ba = 0.490-in V • • b — b • Width of Anti-tip Flange - L := 2 Le = 0.12.in Tension Force per Flange leg - T 0.5•T T = 30.5635 lb Bending Moment on Leg - M1:= T2La M = 0.152818•ft•Ib • • 2 • Section Modulus of Leg - SI := ba 6 Si = 0.0007 in3 V MI Bending Stress on Leg - f := fb = 2.7722 -ksii • f b V Ratio of Allowable Loads - = 0.1027 MUST BE LESS THAN 1.00 0.75.F V Width of Anti-Tip track - L := 5.1 . in Thickness of Aluminum Track - t t := 0.25-in Average Thickness • • Spacing of Bolts - Stb := 24 -in • Ltt 2 • Section Modulus of Track - St := 6 S = 0.0531•in V T . Stb Design Moment on Track - M :_ 8 M = 15.3 ft-lb for continuous track section ' Bending Stress on Track - f := M = 3.4519 - ksi • at' Allowable Stress of Aluminum - Fb := 21•ksi ANTI - CLIP STEEL CONNECTION AND TRACK ARE ADEQUATE 8 • Eclipse Engineering, Inc. True Religion Brand Jeans 11 /25/2009 • Engineer: Nick Bumam, PE Consulting Engineers PORTLAND, OREGON Template: Rolf Armstrong, PE Connection from Steel Racks to Wall Ib Seismic Analysis Procedure per ASCE -7 Section 13.3.1: p '= Average Roof Height - h = 20ft Height of Rack Attachments - zb := z + 10.ft zb = 10ft At Top for fixed racks connected to walls 0.4.a zb Seismic Base Shear Factor - V := 1 + 2•— V = 0.3539 • Rp h • Shear Factor Boundaries - Vtmin := 0.3•Sps•I V tmin = 0.2123. • Vtmax 1.6• 5DS•I p Vtmax = 1.1324 V := if(Vt > Vtmax , Vtmax , Vt) Vt := if(V < Vtmin , Vtmin • Vt) Vt = 0.354 . • Seismic Coefficient - , V = 0.3539 Number of Shelves - N = 8 . Weight per Shelf - Wtt := 50•Ib • • Total Weight on Rack - WT := 4•P WT = 589.94441b 0.7•Vt-WT Seismic Force at top and bottom - T„ := 2 T = 73.0657lb • Connection at Top: Standard Stud Spacing - Stuud := 16•in Width of Rack - w = 4ft • Number of Connection Points N := floor(w J N = 3 on each rack - . l Sstud J Force on each connection F := - F = 24.3552lb point - Nc • Capadty per inch of W := 135 - Ib embedment - in F Required Embedment - d := W ' d = 0.1804• in For Steel Studs - e Pullout Capacity in 20 ga studs T20 := 83•Ib For #10 Screw - LARR #25294 LARR #25670 MIN #10 SCREW ATTACHED TO WALL IS ADEQUATE TO RESIST SEISMIC FORCES ON SHELVING UNITS. EXPANSION BOLT IS. ADEQUATE, BY INSPECTION, FOR THE BASE CONNECTION 9 • • I ' • • Conterminous 48 States 2005 ASCE 7 Standard • Latitude = 45.45 " Longitude = - 122.78194 Spectral Response Accelerations Ss and S1 • Ss and S1 = Mapped Spectral Acceleration Values • Site Class B- Fa= 1.0,Fv= 1.0 Data are based on a 0.05000000074505806 -deg grid spacing • Period Sa. • (sec) (g) . 0.2 0.947 (Ss, Site Class B) • 1.0 0.341 (S1, Site Class B) . " • Conterminous 48 States 2005 ASCE 7 Standard • Latitude = 45.45 • Longitude = - 122.78194 Spectral Response Accelerations SMs and SM1 • SMs =Fax Ss and SM1 =FvxS1 Site Class D - Fa = 1.121 ,Fv = 1.719 Period Sa (sec) (g) • • 0.2 1.062 (SMs, Site Class D) • 1.0 0.585 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.45 • • Longitude = - 122.78194 • . Design Spectral Response Accelerations S Ds and SD1 - SDs = 2 /3x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.121 ,Fv = 1.719 Period Sa (sec) (g) 0.2 0.708 (SDs, Site Class D) 1.0 0.390 (SD1, Site Class D) Page 11 of 14 ESR -1917 TABLE 9 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC TENSION (ASD), NORMAL - WEIGHT CRACKED CONCRETE, CONDITION B (pounds)' _ Concrete Compressive Strength Nominal Embedment f c = 2,500 psi Pc = 3,000 psI Pc = 4,000 psi f c = 8,000 psI Anchor Depth her • Diameter (In.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel 3/8 2 1,006 1,037 1,102 1,136 1,273 1,312 1,559 1,607 1/2 2 1,065 1,212 1,167 1,328 1,348 1,533 1,651 1,878 31/4 2,178 2,207 2,386 2,418 2,755 2,792 3,375 3,419 5/8 31/8 2,081 2,081 2,280 2,280 2,632 2,632 3,224 3,224 4 3,014 2,588 3,301 2,835 3,812 3,274 4,669 4,010 3 3/4 2,736 3,594 2,997 3,937 3,460 4,546 4,238 5,568 3/4 4 3/4 3,900 3,900 4,272 4,272 4,933 4,933 6,042 6,042 For SI: 1 Ibf = 4.45 N, 1 psi = 0.00669 MPa For pound -inch wits: 1 mm = 0.03937 Inches 'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318-05 and conversion to ASD in accordance with Section 4.2.1 Eq. (5) is required. 2 Values are for normal weight concrete. For sand - lightweight concrete, multiply values by 0.60. 2 Condition B applies where supplementary reinforcement in conformance with ACI 318-05 Section D.4.4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. TABLE 10 -KB-TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC SHEAR LOAD (ASD), (pounds)' Nominal Allowable Steel Capacfty, Seismic Shear Anchor Diameter Carbon Steel Stainless Steel 3/8 999 1,252 1/2 2,839 3,049 5/8 4,678 5,245 3/4 6,313 6,477 For SI: 1 lbf = 4.45 N 'Values are for single anchors with no edge distance or spacing reduction due to concrete failure.