Specifications •
• ti 5 695 s-J `�� ��—K, TUp°Zozo`t - adz) covi
RECEIVED
•
APR 3 0 2009
CITY OF TIGARD
04/24/09
BUILDING DIVISION
Mezzanine for:
FRED MEYER
• TIGARD, OR
125 psf Live Load
• Seismic
per 2006 IBC Ss = 95.4 %g
S1 = 34.1 %g
Soil Class "D" Use Grp "1" Design Cat "D"
Cs = 0.203
19.5 ft Wide •
48 ft Long
11.1 ft Top of Deck
Deck: 1-1/8" T & G Plywood Rated 2-4 -1
2.67 ft Span
•
scV" P N OFf � fi
1 9
1194• �
f
..•• •
. c 3, 1 9�ry vox
4901 j. EXR DATE: 12/ 2 °(0
• Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Latitude = 45.4397
Longitude = - 122.7539
Spectral Response Accelerations Ss and S1
Ss and S1 = Mapped Spectral Acceleration Values
Site Class B- Fa= 1.0,Fv =1.0
Data are based on a 0.05 deg grid spacing
Period Sa
(sec) (g)
0.2 0.954 (Ss, Site Class B)
1.0 0.341 (51, Site Class B)
Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Latitude = 45.4397
Longitude = - 122.7539
Spectral Response Accelerations SMs and SM1
SMs =FaxSs and SM1 =FvxS1
Site Class D - Fa = 1.119 ,Fv = 1.718
Period Sa
(sec) (g)
0.2 1.067 (SMs, Site Class D)
1.0 0.586 (SM1, Site Class D)
Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Latitude = 45.4397
•
Longitude = - 122.7539
Design Spectral Response Accelerations SDs and SDI
SDs = 2/3 x SMs and SDI = 2/3 x SM1
Site Class D - Fa = 1.119 ,Fv = 1.718
Period Sa
(sec) (g)
0.2 0.711 (SDs, Site Class D)
1.0 0.391 (SDI, Site Class D)
it
IBC 2006 LOADING
• SEISMIC: Ss= 95.4 % g •
S1= 34.1 % g
•
Soil Class
Modified Design spectral response parameters
Sms= 106.7 % g Sds= 71.1 % g
Sml= 58.6 % g Sdl= 39.1 % g
Seismic Use Group 2
Seismic Design Category D •
or
le =
R = 3.5 Ft = 3.25
Cs = 0.203 W Cs = 0.219 W
Using Working Stress Design
V = Cs*W/1.4
V = 0.145W V = 0.156W
It1/ C2 4',c
%so cos-
0, 14-5( 58 „a),
0 ,uf c e oas
e.2
ao ej
•
•
Cold Formed Channel, 04/24/09
Depth 10.000 in Fy = 55 ksi
Flange 3.250 in
Lip 0.900 in
Thickness 0.0750 in ,TOTST SEC'TON
R 0.1000 in
Blank = 17.76 in wt = 4.5 plf
A = 1.332 in2
Ix = 20.068 in4 Sx = 4.014 in3 Rx = 3.881 in
Iy = 1.840 in4 Sy = 0.781 in3 Ry = 1.175 in
a 9.6500 Web w/t 128.6667
a bar 9.9250 Flg w/t 38.6667
b 2.9000 x bar 0.8547
b bar 3.1750 m 1.4268
c 0.7250 x0 - 2.2815
c bar 0.8625 J 0.0025
u 0.2160 x web 0.8922
gamma 1.0000 x lip 2.3578
R' 0.1375 h/t 131.3333
lamda 0.8782
p 0.8534 b 2.474967 15% Flange Reduction
WEB BENDING 55 ksi 8 FLGS 53.08 ksi 8 WEB
k 4 lamda 2.8707
p 0.3217 be 3.104 68% Web Reduction
o 1.721 Ii 0.032 0.258809
LOAD CAPACITY I eff= 19.526 in4
S eff= 3.713 in3 10.21 k -ft Cap
AISC 32. BEAM
0.347 KLF UNIFORM LOAD
11.300 FT SPAN
0.000 K -FT MOMENT COUNTERCLOCKWISE ON LEFT
0.000 K -FT MOMENT CLOCKWISE ON RIGHT
R1 = 1.961 KIPS
R2 = 1.961 KIPS
M3 = 5.540 K -FT 8 5.650 FT 54% Stressed
b = 5.650 FT M =0 8 0.000 FT AND 11.300 FT
I = 19.53 IN4 E = 29500 KSI
8 5.650 FT
Vx = 0.000 KIPS DEFL = 0.221 IN
Mx = 5.540 K -FT = L/ 613
4
Steel Wide Flange Beams Fy = 50 ksi
Dead
Span = 15.3 ft 0 Partition •
Spacing = 3.5 ft OC 5 Deck
1.7 Joists Y 1
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt = 14 plf
Total dead = 37.6 plf 6.7 Total •
Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k -ft) (L / ?) (in4) (in) (L / ?)
Dead 38 0.3 1.1 180 1.6 0.02 10181
Live 438 3.3 12.8 360 36.5 0.21 875
Dead +Live 475 3.6 13.9 240 26.4 0.23 805
W 12x14 34% Bending 4.04 psf I = 88.6 in4
4 7- 1 7 7 —;
�pL • J•� i (DC
_ ''rr 7,2,q k Pr P•
•
•
•
•
•
•
•
•
•
Steel Wide Flange Beams Fy = 50 ksi
Dead
Span = 15.3 ft 0 Partition
Spacing = 7 ft OC 5 Deck
1.7 Joists 13'
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
• 0 Ceiling
Assume Beam wt = 14 plf •
Total dead = 61.0 plf 6.7 Total
Load Cond w V M . Defl I req'd Defl Defl
(plf) (kips) (k -ft) (L / ?) (in4) (in) (L / ?)
-Dead 61 0.5 1.8 180 2.5 0.03 6270
Live • 875 . 6.7 25.6 360 72.9 0.42 437
Dead +Live 936 7.2 27.4 240 52.0 0.45 409
W 12x1$ 67% Bending 2.02 psf I = 88.6 in4
•
Steel Wide Flange Beams Fy = 50 ksi
Dead
Span = 15.3 ft 0 Partition
Spacing = 11.4 ft OC 5 Deck
__- 11.7 Joists v 4
3l
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt = 19 plf
Total dead = 95.3 plf 6.7 Total 3
• Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k -ft) (L / ?) (in4) (in) (L / ?)
Dead 95 , 0.7 2.8 180 4.0 0.03 5892
Live 1425 10.9 41.7 360 118.8 0.47 394
Dead +Live . 1520 11.6• 44.5 240 84.5 0.50 369
W 12x19 76% Bending 1.66 psf I = 130 in4
67
• Steel Wide Flange Beams Fy = 50 ksi
Dead
Span = 19 ft 0 Partition
Spacing = 11.4 - ft OC 5 Deck /p
• 1.7 Joists iv
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt = 26 plf
Total dead = 102.4 plf 6.7 Total
Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k -ft) (L / ?) (in4) (in) (L / ?)
Dead 102 1.0 4.6 180 8.2 0.05 4494
Live 1425 13.5 64.3 360 .227.5 0.71 323
Dead +Live 1527 14.5 68.9 240 162.6 0.76 301
W 12x26 75% Bending 2.28 psf I = 204 in4
Steel Wide Flange Beams Fy = 50 ksi
Dead
Span = 19 ft 0 Partition
Spacing = 6 ft OC 5 Deck - B -‘p
1.7 Joists
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
. 0 Ceiling
Assume Beam wt = 19 plf
Total dead = 59.1 plf 6.7 Total
Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k -ft) (L / ?) (in4) (in) (L / ?)
Dead 59 0.6 2.7 180 4.7 0.05 4959
Live 750 7.1 33.8 360 119.7 0.58 391
Dead +Live 809 7.7 36.5 240 86.1 0.63 362
W 12x19 62% Bending 3.16 psf I = 130 in4
1
•
1
COLUMN:. TS5x 5x 0.1875
•
Trib: 11.3 ft x 9.8 ft
Live: 125 psf Dead: 10 psf •
0% Live load reduction
Pmax = 14.9 kips
Ht = 10.6 ft Pcap = 72.12 kips
21% stressed
Seismic:
R = 3.5
Cs = 0.203
25% Live + Dead W = 4.6 kips
•
V = Cs * W /1.4
V = 0.66 kips per column
M= 3.51 -ft
•
•
Mcap = 12.31 k- f t
29% stressed
Column Conn: 12 in Deep 1 Connections
gamma 3
M =, 127 k -in
T = 9.08 k per pair of bolts
5/8 in Diameter Grd 5 Bolts Ab = 0.61 in2
T cap = 24.54 k per pair of bolts Ft = 40 ksi
37% stressed
Plate: Fy = 50 ksi
M = 5.90 k -in 5 in Wide Plate
t req'd = (M *6 /W *Fy) ^.5 = 0.43 in Thick
• Use: 0.5in x Sin x 1 2in Plate
w/ 6- 0.625 in Diameter Bolts
•
•
•
Base Plate Design 04/24/09
Column Load 14.9 kips •
Allowable Soil 2000 psf basic
Assume Footing 32.8 in square on side
Soil Pressure 2 psf •
Use 32 square base 1p ate
w = 13.9 psi 1 = 10.40 in
Bending.
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax = w1A2 /3
Load factor = 1.67 M = 837 # -in
6 in thick slab f'c = 3000 psi
s = 6.00 in3 fb = 139 psi •
Fb = 5(phi)(f'c ^.5) = 178 psi OK !!
,Shear :
Beam fv = 40 psi Fv = 93 psi OK !!
Punching fv = 30 psi Fv = 186 psi OK !!
Base Plate Bending Use 5/8 " thick
1 = 5.50 in w = 104 psi
fb = 24119 ,psi Fb = 37500 psi OK !!
Restrained Base 04/24/09
• 0% Stress Increase •
Column Moment 42 k -in 3000 psi Concrete
Axial • 4.6 kip
5 Inch wide column
Base Plate 12 inch X 12 inch
Anchors @ 1.5 inch from the edge •
2 -5/8" dia x 4" Embed Tcap = 4072 1 90% —
Concrete Load at 1.25 " from edge of Base Plate OK
p Arm M
Bolts 3.665 9.25 33.90
Axial - 4.568 2.75 12.56
8.23 46.46 k -in 91% stressed
Concrete Pressure 0.366 ksi 2.100 ksi Allow 17% stressed
Plate Bending 16.98 k -in Fb = 37.5 ksi
t req'd = 0.476 inches
•
9
gz.O,Z(7214)_z - 34 -' ":
/C .�. �7Cr���� z !o. z .s*
- - _ y A55 i x Z: ( ,3 /
1 -(4 z $414 -')
• �v sue. 14-: RiPe"
frix
- . . . . .
a go:- /5)1,7 /750c4 ! - ;- -
a 7 / -/M-? . ..
/vl s -h 3 </e � _ :4 •
- . 4 gAi.-4--Ar- .
•