Specifications A464_2011-00150 ,.
�1 a�G ��► z- 79 s w Flu-vvz kers Rd
CHARTER MECHANICAL TI
ROOFTOP HVAC
STRUCTURAL CALCULATIONS
•
SHEETS
MECHANICAL UNIT SUPPORT AND ATTACHMENT MM -MM 6
SKETCHES SKI & SK8
(25 PAGES TOTAL INCLUDING COVER SHEET)
S K R � Cr //p
��EO PROft
•
PE
•
OREGON
� ) 3 2 ° � �� Q
• S D. GP
EXPIRES: -// .; I •
April 26, 2011
CIDA PROJECT NUMBER: 110049.01
15895 SW 72 AVE, SUITE 200
PORTLAND, OREGON 97224
(503) 226 -1285 3 fax (503) 226 -1670
E -MAIL: info@cidainc.com
COMMERCIAL INDUSTRIAL DESIGN ARC[ IITECTURE P.C. CIDA INC.
il t
a..
r ommi n siolempo ot
4445 SW BARBUR BLVD., SUITE 200 PROJECT NAME: /k,f0/4. /hit L PRO/. No. SHEET g
PORTLAND, OREGON 97239 Av��
TEL: 503.226.1285 FAX: 503.226.1670 TITLE: By: r DATE:
E-MAIL: info @cidainc.com •
/jNtrS
e # /
X%it z - AtY - 75,5" ev= W, lir = '35 ` i % 5, • U
Qtoray �9
•
1 1 - 4" i✓ 0 - 7S ' • 98' ; 4111 k5 ' /7/ Is
C6 I oft. 1 =/j h' 9/y w /So .
•
•
•
186/
ARCHITECTURE • ENGINEER NG • PLANNING • INTERIORS • LANDSCAPE
•
ft 1
I . w
4445 SW BARBUR BLVD., SUITE 200 PROJECT NAME: PROJ. No. " SHEET Am
PORTLAND, OREGON 97239
TEL: 503.226.1285 FAX: 503.226.1670 TITLE: By: DATE:
E -MAIL: info@cldalnc.com
ME " d am, ,9s; o►_ .
ell /
I I L II I
AIM "111
iiiifii ' 1195!1111311
lfilillEll
1its . III
i`
n p/ t _ 19.1.A 111 II
ms Shaer S*`E(.izi I II P-/
MEE at' --
_S"
411 4
MA - Pn
IN
rn, - I"
0I ' ME f !1 , / / NL — /boo ?.,/2 M EMI kr0.V
V2 I%)( 11 44 Ti ( - ) 0
o ■igNIN d x / L Awe, i , si t v . co 3/0 a - IN
mommin ,p- sem
. 4, -
III II
//1111111M .
III
M MIRE= tl / a/< ((J eeXi; 1s 1{ Q-21111111
III ■ .
III
MIN_ II
ARCHITECTURE • ENGINSERING • PLANNING • INT =RIORS • LANDSCAPE
II ui
CID/), INC. "' Title : Job # f „ ��
15895 SW 72nd Ave. Suite 200 Dsgnr. l -
Portland, OR 97224 Project Desc.:
503 -226 -1285 Project Notes :
503.228 -1670 Fax
_ __•. __ - -_ __ __ Pr1ded.18APH2e11, 242PM
Wood Beam ENERCALC, INC.19832011, Ver, 6.1.10, N29413
•
Lic. # : KW- 06006865 Licensee :
Description : RTU 01 P1 w/ mach w/ added 2x12 Not and better
_Material Properties _ _ _ - Calculations per IBC 2006, CBC 2007, 2005 NDS
Analysis Method : Allowable Stress Design Fb • Tension 1,200.0 psi E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7 -05 Fb - Compr 1,200.0 psi Ebend- xx 1,800.0ksi
Fc - Pdl 1,550.0 psi Eminbend - xx 660.0 ksi
Wood Species : Douglas Fir - Larch Fc - Perp 625.0 psi
Wood Grade : No.1 & Better Fv 180.0 psi
Ft 800.0 psi Density 32.210pcf
Beam Bracing : Beam Is Fully Braced against lateral- torsion buckling .
0(0.278) D(0.278)
D(0.075)+ S(0.1704) �
+ v + i
I . .
•
1
5.0 X 11.250
ii •
Span = 19.330 ft
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.0750, S = 0.1704 , Tributary Width = 1.0 ft
Point Load : D = 0.2780 k @ 7.170 ft
Point Load : D = 0.2780 k @ 14.0 ft
DESIGN SUMMARY Crest • n OK
Maximum Bending Stress Ratio = 0.989 1 Maximum Shear Stress Ratio = 0.317: 1
Section used for this span 5.0 X 11.250 Section used for this span 5.0 X 11.250
fb : Actual = 1,501.93psi fv : Actual = 65.67 psi
FB : Allowable = 1,518.00psi - Fv : Allowable = 207.00 psi
Load Combination +D +S +H Load Combination +D +S +H
Location of maximum on span = 9.568ft Location of maximum on span = 18.480 ft
Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1
Maximum Deflection
Max Downward L +Lr +S Deflection 0.505 in Ratio = 459
Max Upward L +Lr +S Deflection 0.000 In Ratio = 0 <360
Max Downward Total Deflection 0.840 In Ratio = 276
• Max Upward Total Deflection 0.000 in Ratio = 0 <180
Maximum Forces & Stresses for Load Combinations
Load Combination Max Stress Ratios . Summary of Moment Values Summary of Shear Values
Segment Length Span # M _ V C d C W C r C m _ C 1 Mactual lb- design Fb-allow Vactual iv-design Fv allow
+D
Length =19.330 ft 1 0.502 0.159 0.900 1.100 1.000 1.000 1.000 5.25 596.77 1,188.00 0.96 25.71 162.00
+D+S +H 1.100 1.000 1.000 1.000
Length =19.330 ft 1 0.989 0.317 1.150 1.100 1.000 1.000 1.000 1320 1,501.93 1,518.00 2.46 65.67 207.00
+D+0.750L+0.750S+H 1.100 1.000 1.000 1.000
Length = 19.330 ft 1 0.840 0.269 1.150 1.100 1.000 1.000 1.000 1121 1,275.58 1,518.00 2.09 55.68 207.00
+0+0.750L+0.750S+0.750W +H • 1.100 1.000 1.000 1.000
Length = 19.330 ft 1 0.604 0.193 1.600 1.100 1.000 1.000 1.000 1121 1,275.58 2,112.00 2.09 55.68 288.00
+D+0.750L+0,750S+0.5250E +H 1.100 1.000 1.000 1.000 •
Length =19.330 ft 1 0.604 0.193 1.600 1.100 1.000 1.000 1.000 1121 1,275.58 2,112.00 2.09 55.68 288.00
Overall Maximum Deflections : Unfactored Loads
Load Combination Span Max. -' Defl Location in Span Load Combination - Max. '+' Defl Location in Span
- D+. - § -
+S - - - - 1 0.8403 9.762 0.0000 0.000 --
CIDA, INC. i' Title : Job # MA
15895 SW 72nd Ave. Suite 200 Dsgnr:
Portland, OR 97224 Project Desc.:
503 - 226.1285 Project Notes :
•
503 - 226.1670 Fax
- -_ _- _• , _ Palled: 19 APO 2011. 2:45PM
WOOd Beam . . ENERCALC, INC, 1988011, Vec 8.1.10, N28413
Lic. # : KW- 06006865 Licensee :
Description : RTU #1 P2 W/ meth
Material Properties _ __- Calculations per IBC 2006, CBC 2007, 2005 NDS
Analysis Method : Allowable Stress Design Fb - Tension 1,500.0 psi E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7 -05 Fb - Compr 1,500.0 psi Ebend - xx 1,900.Oksi
Fc - Prll 1,700.0 psi Eminbend • xx 690.0 ksi
Wood Species : Douglas Fir - Larch Fc - Pep 625.0 psi
Wood Grade : Select structural Fv 180.0 psi
Ft 1,000.0 psi Density 32.21 Opcf
Beam Bracing : Beam is Fully Braced against lateral - torsion buckling
D(0.278) . D(0.278)
D(0.052 S(0.177) t + +
+ i I
1
( )
[� 6x12 \
Span = 19.330 ft
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.0520, S = 0.1770 , Tributary Width = 1.0 ft
Point Load : D = 0.2780 k CO 7.170 ft
Point Load : D = 0.2780 k @ 14.0 ft
DE$IGSUMMA
NRY Desi • n OK
Maximum Bending Stress Ratio = 0.714 1 Maximum Shear Stress Ratio = 0.266 : 1
Section used for this span 6x12 Section used for this span 6x12 •
fb : Actual = 1,230.86ps1 fv : Actual = 54.99 psi
FB : Allowable = 1 ,725.00psi Fv : Allowable = 207.00 psi
Load Combination +D +S +H Load Combination +D +S +H
Location of maximum on span = 9.568ft Location of maximum on span = 18.460ft
Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1
Maximum Deflection
Max Downward L+Lr +S Deflection 0.423 In Ratio = 548
Max Upward L +Lr +S Deflection 0.000 in Ratio = 0 <360
Max Downward Total Deflection 0.638 in Ratio = 363
• Max Upward Total Deflection 0.000 in Ratio = 0 <180
Maximum Forces & Stresses for Load Combinations
Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values
Segment Length Span # M V C d C y C r C m C t_ Mactual fb- design Fb -allow Vactual fv- design Fwallow
•
Length = 19.330 ft 1 0.306 0.112 0.900 1.000 1.000 1.000 1.000 4.17 413.06 1,350.00 0.76 18.07 162.00
+D+S+H 1.000 1.000 1.000 1.000
Length = 19.330 ft 1 0.714 0.266 1.150 1.000 1.000 1.000 1.000 12.43 1,230.86 1,725.00 2.32 54.99 207.00
+D+0.750L+0.750S+H 1.000 1.000 1.000 1.000
Length = 19.330 ft 1 0.595 0.221 1.150 1.000 1.000 1.000 1.000 10.37 1,026.30 1,725.00 1.93 45.76 207.00
+D+0.750L+0.7503+0.750W +H 1.000 1.000 1.000 1.000
Length = 19.330 ft 1 0.428 0.159 1.600 1.000 1.000 1.000 1.000 10.37 1,026.30 2,400.00 1.93 45.76 288.00
+D+0.750L+0.750S+0.5250E +H 1.000 1.000 1.000 1.000
Length = 19.330 ft 1 0.428 0.159 1.600 1.000 1.000 1.000 1.000 10.37 1,026.30 2,400.00 1.93 45.76 288.00
Overall Maiiimum Deflections - Unfactored Loads
Load Combination Span Max ' -' Deft Location in Span Load Combination - Max. ' +' Defl Location In Span
D+S - -- -- . _ ._ .._ - 0.6384 9.762 0.0000 0.000
I
v
4445 SW BARBUR BLVD., SUITE 200 PROJECT NAME: PRO). NO. SHUT MI)5
PORTLAND, OREGON 97239
TEL: 503.226.1285 FAX: 503.226.1670 TITLE: BT: DATE:
E-MAIL: info@cldalnc.com
Ghee& , rich,/ 0 /
29f ` 6 L`' /64.k/ . d0 )
i/V= V 75oIPA 0
i r' - / 2.3��
/41 = V r � iC
ma /,zi 3 JI.' Z' 7'
•
ri = 72, 7y ,/#-r /, S% < Af
1 �J 67'c', 2 is /9t:46rr .�
ARCHITECTURE • ENGINEERINC • PLANNING • INTiRIORS • LANDSCAPE
`74 t
4445 SW BARBUR BLVD., SUITE 200 PROJECT NAME: PRO!. NO. SHEET
PORTLAND, OREGON 97239
TEL: 503.226.1285 FAX: 503.226.1670 TITLE: By: DATE:
E -MAIL: Info ®cIdaInc.com
M 4 m6'4 4/0"-/c
krif z_
2, 75" k
4
13, 6b,A4 z,a 'sye/e < sy, ' /(
•
/ f
rih . vio, r p
, r,= Z95;4 6/):-.74f/44 '!--1"
Gln,z , Mie Z, % ^'ai/ GS/' (�
•
(fp 0404 GS heif✓n l-‘
ARCHITECTURE • ENGINEERING • PLANNING • INTERIORS • LANDSCAPE
*1 4 Ni
F4=11:11:40.4 6147
4 SW BARBUR BLVD., SUITE 200 PROJECT NAME: PROJ. No. SHEET
PORTLAND, OREGON 97239
TEL: 503.226.1285 FAX: 503.226.1670 TITLE: By: DATE:
E -MAIL: Info@cidalnc.com
■■■■■■■__ 111111 I WO
EIMEMINIME211111e1M fr3 - A MIM
mi rodi n.--,
■■ ■■ ■■■ ■■■
MEMM■■■ __■ ■E 11111111111111111
III ,. EMIZEIM 121! t, 111111117111111111
■ ■■■■E■ 111111111.1111111111111 ■OMB
■■■■■■■ __■■■ ■11 ■NMI
11281111.11=111 EMI EMI ME
11111111111111111111 EMI E •1■11111■■1
E�! ENZI NMI EE■1111■rE111
■■■■■ ■ ■■ ■■
EISIENCUMIECEIZI1 pt E■ •
■■■■■ . ■■■ ■■
RENEE 7 v ■EE -- ■■
■MM■■ ■ ■ ■■
' IMER 's -t ■ ■ ■■
EIIMERIM1111111111 MI
■■■■E ■■■ MI
1121113ENZEIIIIMIEM p 4410f7104 ME
MIME= NNE ■■
M■■■■ ■ ■ ■■
IMIC ■M EEm 3 " ■■
■■■■■ ■■■ ■■
MIIMM , ■■■ ■■
■U■■■ ■■■ __E■
kEE ZPi ■ ■■ • MI
1111111111111111111111111•1111111111111 ; � Ell
• ■■RR■■ ■■■ ■■
kiELZKin E ■M 0 s� i.e Olraz2Ezz
1111111111111111 Mill ■ 1111
11111111111111111 11111111111 ■■
MIME= _■■■ ■■
■■E■■■_■■ ■M - ■■
■■■■■■ ■ ■■■ ■■
ARCHITECTURE • ENGINEERING • PLANNING • INTERIORS • LANDSCAPE
v 11
CIDA, INC. `) Title : Job # M4. g
15895 SW 72nd Ave. Suite 200 Dsgnr:
Portland, OR 97224 Project Desc.:
503 - 228 -1285 Project Notes :
503 - 226.1670 Fax
Printed: 28 APR 2011.11:56AM
[ Wood Beam • . Re: e.•ladradd�t11o049:11 charter .wile fceI
ENE110ALCG MC..18B32011, yet 8,1.10,1428413
Lic. tt : KW - 06006865 Licensee :
Description : BTU #3 new beam B2 wl meth
Material Properties _. - _ - _ _ Calculations per IBC 2006, CBC 2007, 2005 NDS
Analysis Method : Allowable Stress Design Fb • Tension 2,400.0 psi E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7 -05 Fb - Compr 1,850.0 psi Ebend- xx 1,800.0ksi
Fc - Pill 1,650.0 psi Eminbend • xx 930.0 ksi
Wood Species : DF/DF Pc - Perp 650.0 psi Ebend- yy 1 ,600.0ksi
Wood Grade : 24F - V4 Fv 265.0 psi Eminbend • yy 830.0 ksl
Ft 1,100.0 psi Density 32.210pcf
Beam Bracing : Beam is Fully Braced against lateral- torsion buckling
D(0.513)
i -..- __ _ V I D(0.053 -...- *
! c 2.5x13.5 ' 1
Span = 19.330 ft
Applied Loads _ _ _ Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.0530, S = 0.0880 , Tributary Width =1.0 ft
•
Point Load: D= 0.5130k 08.0ft
DESIGN SUMMARY . Desi•n OK
Maximum Bending Stress Ratio = 0.47R 1 Maximum Shear Stress Ratio = 0.228 : 1
Section used for this span 2.5x13.5 Section used for this span 2.5x13.5
fb : Actual = 1,298.08 psi fv : Actual = 69.63 psi
FB: Allowable = 2,760.00 psi Fv : Allowable = 304.75 psi
Load Combination +D +S +H Load Combination +D +S+H
Location of maximum on span = 8.505ft Location of maximum on span = 0.000 ft
Span # where maximum occurs = Span # 1 Span 4 where maximum occurs = Span # 1
Maximum Deflection
Max Downward L +Lr +S Deflection 0.302 in Ratio = 768
Max Upward L +Lr+S Deflection 0.000 In Ratio = 0 <360
Max Downward Total Deflection 0.603 In Ratio = 364
Max Upward Total Deflection 0.000 in Ratio = 0 <160
Maximum For4es 4 Stress#or LoadC Nina ldns
Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values
Segment Length Span # M V C d C w C r C m CMaclual lb Fb - allow Vactual fv- design Fv-allow
+D
Length =19.330 ft 1 0.311 0.151 0.900 1 .000 1.000 1.000 1.000 4.25 672.18 2,160.00 0.81 35.99 238.50
+D+S+H 1.000 1.000 1.000 1.000
Length = 19.330 ft 1 0.470 0.228 1.150 1.000 1.000 1.000 1.000 8.21 1298.08 2,760.00 1.57 69.63 304.75
+D+0.750L+0.750S +H 1.000 1.000 1.000 1.000
Length = 19.330 ft 1 0.412 0.201 1.150 1.000 1.000 1.000 1.000 720 1,138.34 2,760.00 1.38 61.22 304.75
+D+0.750L+0.750S+0.750W+H 1.000 1.000 1.000 1.000
Length = 19.330 ft 1 0.296 0.144 1.600 1.000 1.000 1.000 1.000 720 1,138.34 3,840.00 1.38 61.22 424.00
+D+0.750L+0.750S+0.5250E+H 1.000 1.000 1.000 1.000
Length = 19.330 ft 1 0296 0.144 1.600 1.000 1.000 1.000 1.000 720 1,138.34 3,840.00 1.38 61.22 424.00
:Overall Mazlininiti - Deflections • = )irt#aclo rl loads
Load Combination Span Max. -' Defl Location in Span Load Combination Max. '+' Dell Location in Span
D+S -- - 1 0.6025 9.568 - 0.0000 0.000
I
. n
n w it
4445 SW BARBUR BLVD., SUITE 200 PROIECT NAME: PRO/. No. S HEET MA
PORTLAND, OREGON 97239
TEL: 503.226.1285 FAX: 503.226.1670 TITLE: BY: DATE:
E -MAIL: info @cidalnc.com
KOJ , f�G g ski #7
1
4. re.
D
1 1,P I P w T!d g � 711111
F - (05/�'p oef) toffr > X` l 7 3 `
p/;A : v X /3
•
X451. Z - 2-t t di i (442,,P /Or/ I- H ) y7‘, ! - -- —
imeg,t weir )_
•
■
■
ARCHITECTURE • ENGIN_ERING • PLANNING • INTERIORS • LANDSCAPE
' y
11 'ft
CIDA, INC. Title: Job # /lm-
15895 SW 72nd Ave. Suite 200 Dsgnr.
Portland, OR 97224 Project Desc
503 - 226.1285 Project Notes :
503-226-1670 Fax
Primed: 28 APR MIL 17.04PM
Woo • Beam Fife: eledcad Mitchel* Tnsuijot,irRh1 cs
_ . EN RCALC, INC. 1!189 2Q11, Vey 1 /f0 N1941$
Lic. N : KW - 06006865 Licensee :
Description : Joist at RTU #4 w/ meth and snowdrift
Material Properties _ Calculations per IBC 2008, CBC 2007, 2005 NDS
Analysis Method : Allowable Stress Design Fb - Tension 1,000.0 ps E: Modulus ofEJestclty
Load Combination 2006 IBC & ASCE 7 -05 Fb - Compr 1,000.0 ps Ebend- xx 1,700.0ksi
Fc - Pdl 1,500.0 ps Eminbend - xx 620.0ksi
Wood Species : Douglas Fir - Larch Fc - Perp 625.0 ps
Wood Grade : No.1 Fv 180.0 ps
Ft 675.0 ps Density 32.210pcf
Beam Bracing : Beam is Fully Braced against lateral - torsion buckling Repetitive Member Stress Increase
D(0.1 6 II -0 . S 0 0.056
`UVANIL 7
•
l) 1 . ; •
A 2 -2x8 !�
Span = 17.750 ft
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.0150, S = 0.0250 , Tributary Width =1.0 ft
•
Point Load: D= 0.1160k @ 4.50 ft
Point Load: D= 0.1160k @ 8.0 ft
Varying Uniform Load : S(S,E) = 0.0- >0.0560 k/it, Extent = 4.750 - -» 17.750 ft, Trib Width = 1.0 ft
DESIGN - SUMMARY Desi • n OK
Maximum Bending Stress Ratio = 0.878 1 Maximum Shear Stress Ratio = 0.220 : 1
Section used for this span 2 -2x8 Section used for this span 2 -2x8
lb : Actual = 1,390.89ps1 fir : Actual = 45.61 psi
FB : Allowable = 1,587.00 psi Fv : Allowable = 207.00 psi
Load Combination +D +S +H Load Combination +D +S +H
Location of maximum on span = 8.343ft Location of maximum on span = 17.218 ft
Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1
Maximum Deflection
Max Downward L +Lr+S Deflection 0.611 in Ratio = 348
Max Upward L +Lr +S Deflection 0.000 in Ratio = 0 <240
•
Max Downward Total Deflection 1.063 In Ratio = 200 . •
Max Upward Total Deflection 0.000 in Ratio = 0 <180
0401000 fArce$ & Stressesfor Load Combinations _
Load Combination Max Stress Ratios Summary of Moment Values _ _ Summary of Shear Values
Segment Length Span # M V C d C # C r C m C t Machlal lb- desIgn Fb -allow Vactual tv- design Fv -allow
+D
Length = 17.750 ft 1 0.508 0.117 0.900 1.200 1.150 1.000 1.000 1.38 630.51 1,242.00 028 19.00 162.00
+1)+S+H 1200 1.150 1.000 1.000
Length = 17.750 ft 1 0.876 0.220 1.150 1200 1.150 1.000 1.000 3.05 1,390.88 1,587.00 0.66 45.61 207.00
+0+0.750L+0.750S+H 1.200 1.150 1.000 1.000
Length =17.750 ft 1 0.756 0.182 1.150 1200 1.150 1.000 1.000 2.63 1,199.53 1,587.00 0.55 37.77 207.00
+0+0.750L+0.7505+0.750W+H 1.200 1.150 1.000 1.000
Length =17.750 ft 1 0.543 0.131 1.600 1.200 1.150 1.000 1.000 2.63 1,199.53 2,208.00 0.55 37.77 288.00
. +0+0.750L+0.7505+0.5250E41 1200 1.150 1.000 1.000
Length = 17.750 ft 1 0.543 0.131 1.600 1200 1.150 1.000 1.000 2.63 1,199.53 2,208.00 0.55 37.77 288.00
•
.r`
•
CIDA Mechanical Unit Attachment CDG
TEL: (503) 226 -1285 Charter Mechanical TI 4/19/2011
FAX: (503)226 1670 Portland, OR 110049.01
•
MECHANICAL UNIT ATTACHMENT - LATERAL FORCES
Aeon R0004 4 -ton unit •
W := 8901b Weight of unit W := 1201b Weight of curb W := W + W W = 10101b
L := 82in Length
w := 44in Width of unit
h := 43.in Height of unit
!l 14•in Height of curb w • = 40M Width of base
h := h + h h = 57 in Total height of unit on curb
SEISMIC PARTS AND PORTIONS (Portland, OR 97223)
Mapped S := 0.944 site class= D
Adiusted Maximum
F := 1.06
Sms = Fa Ss . Sms = 1
Design
2
SDS 3 Sips = 0.667
h := 24ft I := 1.0 a := 2.5 R P := 6 •
:= h Air side HVAC component •
0.4•ap S DS •l p z
Fp := 1 + 2• h )•W P Fp = 296.86lb 0.7•Fp = 207.8 lb Total seismic
WIND LOAD: BASED ON 2009 IBC / 2010 OSSC
Va := 94.5 Exposure B
I := 1.0 Kd := 0.85
K:= 0.70
G := 0.85
=1.0 Cf: = 1.3
qz:= 0 . 00256 •Kh•Kzt•Kd•lw V35
F := G•Cf•(O F = 15.03 psf
Pwind unit F•L•hm 1 wind unit = 368.05 lb Wind on mech unit
P := F•L -h kind = 487.88 lb Total wind Controls over seismic
E:ladcadd11110049.01 Charter
Mechanical TllstructgateraiMECH 4
ton.mcd
•
CIDA Mechanical Unit Attachment Al ta
TEL: (503) 226 -1285 Charter Mechanical TI 4/19/2011
FAX: (503)226 1670 Portland, OR 110049.01
OVERTURNING-Aaon R0004 HVAC UNIT
)_C # 7 0.6D +W
Overturning at unit to curb
hm •
Mot Pwind_unit' 2 M = 659.42lbft
Mres := W • Wm Mres = 1631.67 Ibft Mros = 2.47
• p 2 Mot
(Mot – 0.6.M)
t 'p"" – W 21 F upw = –91.311b <0 no uplift
m —
ATTACHMENT
• Deslan attachment for 370Ib sliding and Oib tension at curb to unit connection —18GA curb
Try (1) 6" long 18ga clip ea side w/ (4) Screws to unit and (4) #10 screws to curb
• V P " v ' d `�` V := 4741b F 91.31 lb <0 no u lift
cli 2 allow cli upw = – P
Per Clip Pwind unit = 368.05 lb
Va = 184.02 lb
U := Vlip U = 0.39 Use minimum of (1)18aa clia ea. side
Vallow clip
Overturning at base of curb from wind
h
Mot Pwind' 2 M = 1158.71bft
Mres := Wt. we Mres = 1683.33 lb ft ` Mres = 1.45 —
2 Mot
•
(Mot – 0.6.M)
F "p" s N , c F = 44.61 lb Uplift
ATTACHMENT •
•
Design attachment for 488Ib sliding and 45Ib uplift at curb to roof connection
Try #8 SCREW W/ 2" EMBED at 24" o.c.- (4) Screws Ea. Side
T := 176Ib V 1191b F = 44.61 lb
• Per Screw Per Screw Pwind = 487.88 lb
U := + U = 0.576 Use #8 screws at 24" o.c.
8 •V . Va,i llow 4 T allow
E:ladcadd11110049.01 Charter •
Mechanical Tllstruct\lateralMECH 4
ton.mcd
•
•
kW,
CIDA Mechanical Unit Attachment CDG
TEL: (503) 226 -1285 Charter Mechanical TI 4/26/2011
FAX: (503)226 1670 Portland, OR 110049.01
MECHANICAL UNIT ATTACHMENT - LATERAL FORCES
McQuay 4 -ton unit RTU #2 & #4
W := 5851b Weight of unit W := 1101b Weight of curb W := W + We W1 = 6951b
L := 75.5in Length
w := 46.5in Width of unit
h := 35•in Height of unit
h c := 14•in Height of curb w : = 42in Width of base
hmc := h + h h = 49 in Total height of unit on curb
SEISMIC PARTS AND PORTIONS (Portland, OR 97223)
Maimed S := 0.944 site class= D
Adjusted Maximum •
F 1.06
Sms := F S S = 1
Design
SDS := 3 •Sms SDS = 0.667
h := 24ft I := 1.0 a := 2.5 R := 6 z := h Air side HVAC component •
0.4•aP S 1l •
Fp :_ • + 2• hJ•W Fp = 195.12 lb 0.7.Fp = 136.59 lb Total seismic
R P WIND LOAD: BASED ON 2009 IBC / 2010 OSSC •
Va := 94.5 Exposure B
I := 1.0 IC := 0.85
K := 0.70
G := 0.85
K,:= 1.0 Cr := 1.3
q 0.00256•Kh•KeKa•Iw V
F := G•C •I,,, F = 15.03 psf
Pwind unit F•L•h Pwin unit = 275.83 lb Wind on mach unit
' wina F•L•hmc Pwina = 386.16 lb Total wind Controls over seismic
E:ladcadd11110049.01 Charter _
Mechanical Tllstruct lateralMECH 4 ton
rtu2 &4- revised.mcd
•
CIDA Mechanical Unit Attachment CDG
TEL: (503) 226 -1285 Charter Mechanical TI 4/26/2011
FAX: (503)2281670 • Portland, OR 110049.01
OVERTURNING- McQuav HVAC UNIT
LC # 7 0.6D +W
Overturning at unit to curb
. h
Mot Pwind unit• 2 M = 402.25 lb ft
K
Mres := W • wm M = 1133.441b ft — = 2.82
p • 2 Mot
_ Mot - 0.6.M
Fupw w tin Fupw = -74.92 lb <0 no uplift
m —
ATTACHMENT
Design attachment for 276Ib sliding and Olb tension at curb to unit connection --18GA curb
Try (1) 6" long 18ga clip ea side w/ (4) Screws to unit and (4) #10 screws to curb
V Pad unit V •= 4741b F 74.92 lb <0 no u lift
clip := 2 allow clip •- u p w = - P
Per Clip
Volip = 137.91 lb Pwind unit = 275.83 lb
U := V`l�p U = 0.29 Use minimum of (1)18ga clip ea. side
Vallow clip
Overturning at bate of curb from wind
:=
f -2- 1 h
Mot .- P`YQ1d 2 M 788.41bft
M
Mres := We — 2 M = 1216.25 lb ft ` � = 1.54
M*
Mot - 0.6•M
F upw
wc F = 16.76 lb Uplift
ATTACHMENT
Design attachment for 3871b sliding and 17Ib uplift at curb to roof connection
Try #8 SCREW W/ 2" EMBED at 24" o.c.- (4) Screws Ea. Side
T := 1761b V := 1191b F = 16.761b
Per Screw Per Screw Pwind = 386.16 lb
Pwind Fupw2 ••
U :_ + U = 0.429 Use #8 screws at 24" o.c.
8 •Vallow 4 Ta uw
E:ladcaddl11 10040.01 Charter
Mechanical Thstruct 1ateralMECH 4 ton
rtu2&4- revised.mcd
19
OS /5 r
CIDA Mechanical Unit Attachment CDG
TEL: (503) 226 -1285 Charter *Mechanical TI 4/26/2011
FAX: (503)226 1670 Portland, OR 110049.01
MECHANICAL UNIT ATTACHMENT - LATERAL FORCES
Aeon RN013 unit RTU #3
W := 171411) Weight of unit W, := 1501b Weight of curb W := W + W W = 1864 lb
L•:= 78in Length •
. vi := 58in Width of unit
h := 44•in Height of unit
h, := 14•in Height of curb w . = 51in Width of base
hmc := h + h hint = 58 in Total height of unit on curb
SEISMIC PARTS AND PORTIONS (Portland, OR 97223)
Mapped S := 0.944 site class= D
Adjusted Maximum
Sins := Fa Ss F := 1.06 S ins =
pesinr
•
2
SDS := 3 Sins SDS = 0.667
h := 24ft I := 1.0 a := 2.5 R := 6 z := h Air side HVAC component
Fp := 0 4 •iS Ip •I 1 + 2• h I•W Fp = 571.71b 0.7-Fp = 400.191b Total seismic
WIND LOAD: BASED ON 2009 IBC / 2010 OSSC
Va := 94.5 Exposure B
I := 1.0 ICd := 0.85
Kr, := 0.70 G := 0.85
Kit := 1.0 C := 1.3
9z 0.00256 •Kh•K
F := G•Cf -qZ 1 F = 15.03 psf
Pwind unit := F•L•hm Pwind unit = 358.23 lb Wind on mech unit
1 wind := F•L•h Pwin = 472.22 lb Total wind Controls over seismic
E:ladcadd11110049.01 Charter
Mechanical TI1structiateraIMECH rtu3-
revised.mcd
•
MR l
CIDA Mechanical Unit Attachment CDG
TEL: (503) 226 -1285 Charter Mechanical TI 4/262011
FAX: (503)226 1670 Portland, OR 110049.01
OVERTURNING Aeon RN0013HVAC UNIT
LC # 7 0.6D +W
Overturning at unit to curb
h
Mot Pwind unit' 2 M = 656.76 lb ft
M, 5 := Wp 2 M r�v = 4142.17 lb ft M s = 6.31
of
Mot — 0.6•M
Fupw w tin F, � pw , _ — 391.83 lb <0 no uplift
m —
ATTACHMENT
Design attachment for 3601b sliding and Olb tension at curb to unit connection -18GA curb
Try (1) 6" long 18ga clip ea side w/ (4) Screws to unit and (4) #10 screws to curb
V pwu'a �� V := 474Ib F = —391.83 lb <0 no uplift
clip �= 2 allow clip �— upw — — P
Per Clip Pwind unit = 358.23 lb
Volip = 179.121b
U := clip U = 0.38 Use minimum of (1118aa clip ea. side
Vallow clip
Overtuminq at base of curb from wind
E LT Mot Pwind' 2 M = 1141.19 lb ft
Mres := wt 2 Mres = 3961 lb ft � = 3.47
M a
Mot — 0.6•M
= —290.68 lb Uplift
ATTACHMENT
Design attachment for 4731b sliding and Olb uplift at curb to roof connection
Try #8 SCREW WI 2" EMBED at 24" o.c.- (4) Screws Ea. Side
T := 1761b Vallow := 1191b F = O lb
Per Screw Per Screw P = 472.22 lb •
P
U := + U = 0.496 Use #8 screws at 24" o.c.
8' Vallow 4 Ta llow
•
E:ladcadd111 \0049.01 Charter
Mechanical TllstructllateralMECH rtu3-
revised.mcd
r
I I N I i
I I I
I (E) GIRDERI I I
--[ 0
I
JI 01 I
• c " i I 11 m (DI I •
101 -t4-11p II
GI^11 'in'
I v I IN N
ti
I I
I IICV �I
\ (N) 4x8
Z
W I
v
t I 1 S l R U C T up
�p PR F `
• I � � $ GINA , / „l
2 I 1 , .7.
0 C:' , _
I I I
/ ,
AO
OREGON
I I I O
Zip; 6 13, 1,04644,-
(N) 4x8 I iS D. OP
11 ON CURB tUNIT (EXPIRES: 6/30/13 1
. II I I
I II I I
(E) GIRDER 1 1
I I I
0
I I I I
1 'V —
O . •
Il k 0 FRAMING @ RTU #1
1/4. ” - ' —
� - 1 0
CHARTER MECHANICAL TI tier FRAMUM
PORTLAND, OR 04.21.11
_ 110049.01
16696 SW 72ND AVE SURE 200 PORTLAND. OREGON 97224 TEL: (603) 226 -1286 MAX: (603) 226 -1670
ARC 1-I I - I I C - 1 [JUL. • CNCIN .1-RING' • PLANNING • IN - 1 ENIORS
@ 2011 CU. ANC. ALL RICERS R6QHm •
(E) CONC. WALL
IIIIIIIIMIMIIIII,r111MMIMMM
•
I I I
I I i
1811 --8 "t I S�R UCTL,
� I �
PROff 4
G I NA, ,SfjO
6 54PE � ' 4'
v 0
OREGON
• NEW 585LB UNIT i LT f z ��
ON CURB I /p 13. ��
(N) x8 S D. GPG
I I
I EXPIRES: 6/30/13
i
11E41
I I (E) GIRDER •
I I
•
O
2 FRAMING @ RTU #2
SK 1/4° = 1' -0"
CHARTER MECHANICAL TI FRA1AvG
PORTLAND, OR 04.26.11
c CDG 110049.01
�+' 16508 SW 72ND AVE SURE 200 PORTLAND. OREGON 57224 7E (603) 226 -1266 PAX: (6O3) 226 -1670
ANC I - I I - f - f = C I UNI= • I • PLANNING • INTI7NIONS
® 2011 am QC. ALL RICHIS RESERVED
•4I r
e
(E) GIRDER
u
CN1 IV
Csl
g 1RUC TUR .4
� � P R OOF '
d j't . i... • ::‘" / � 4, G 1 114' � � /
� / .
OREGON
ma c. 6 13. 2c
. lilli I S D. G PG
EXPIRES: 6/30/13
•
•
E GIRDER lir
. 11111116L ill
o
,a
o .
• like FRAMING @ RTU #3
"
1/4" = 1'-
/ 0
. CHARTER MECHANICAL TI arc UN T FRAMING
PORTLAND, OR 04.26.11
CDG 110049.01
15895 SW 72ND AVE SURE 200 PORTLAND. OREGON 97224 TEL: (503) 226 -1255 FAX: (503) 220 - 1670
AI i CII I I F Cl UIRE • ENGINEF-RI G • PLANNING • INTERIOR''..;
® 2011 ODA, M. ALL I CWS WOWED
,
.4, ,
N
NEW DUCT
I I I
I 1 PENETRATION
I I I
o
I I I I I I AbD HEW 2xI3 NIA I II I II I II I II I
I I I 1 I I 1 1 I TO EXISTING JOISTS 1 II 1 II I II 1 11
III I I (4)1 LOPATIJN R I U3D ; II I ij 1II I I I I I I I I I I I I I I I II 1 1
I
I I 1 1 1 I 1 1 I I I 1 1 1 t II 1 II 1 1 1 1 I 1
<> I I I I I I I I I 1 1 1 1 I Jj 1 HO II I
i I 1 1 1 1 1 1 I 1 I 1 1 1 1 II 1 11 1 1 II I 1
III I1 1 I 1 1 I I 1 I 1 1
1 1 I I 1 1 I I I • 1 1 1 &Tai
— —I
I I 1 1 1 I 1 I. I I I 1 1 1 I 11 1 II 1 11 1 11 1 1 I
III 1 1 I (E)2xrl ATI 14 de. tISIS NEV' 7 5LE11 UINIIT I I
ON CUB
1 I I I I I I I I I I I 1 I 1 II 1 11 I 11 1 11 1 I i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1
O s /RUC TUR
IN■� FRAMING @ RTU #4 4 G I Nz / ,
1/4" = 1' -0"
OREGON
2 ee 13, Ze�q •
�
!EXPIRES:. 6 /30/13
•
•
MECH UNIT
CHARTER MECHANICAL TI FRAMING
PORTLAND, OR 04.21.11
� �,� CDG _ 110049.01
�+ R/� l 16697 SW 72ND AVE SURTE 200 PORMAND, OREGON 07224 TE.z (603) 226 -1288 FAX* (60.3) 226 -1670
A NC I - I 1 - 1 I_ C I U RC • IFNCINC: L:1-2ING • PLANNING • INIL
® 2011 amt INC. ALL RIMS w
•
n S �RUCr� q .
R •
����0 P�OFF�s �j
MI
i
OREGON
NOTE: PROVIDE PROTECTION OF THE WOOD
0 23
-
5. � G ,Q T a 13. Z SCREWS TO MOISTURE AND DAMAGE
IT i
- � S D GP • CAULKING
C ■ EXPIRES: 6/30/13
ta
- n A 0 � v
(4) 10x1/2" LONG TEK
7 S SCREWS PER CLIP AT
0 r BASE OF HVAC UNIT
-
z g 16GAx6 "CUP AT AND AT CURB (8) TOTAL
EA. SIDE OF UNIT
IT 1
•
° (E) WALL RIGID �� 1
T � METAL CURB PER ,,�+
INSULATION .I
UNIT SUPPLIER
$ o #8 SCREW AT FLASHING (16GA MIN)
N EMBED O .C. WBEAM - REMOVE DECKING AS • I
/----- REQ'D FOR DUCTS I
• 111
T.
r •
, g X . K. • •
7. o '� ` (E) 2x DECKING '
0 • SIMPSON HU48 FACE MOUNT HANGER
g EA. END OF NEW 4x TYP•
.
ADD NEW 2x12 DFL Not AND BETTER
P _ $ i TO FACE OF (E) 4x12 -- ATTACH WITH
(2) ROWS OF SIMPSON 1/4 "0x4 "SDS .
' SCREWS AT 18" .0.C. STAGGER ROWS 9"
o . . SECTION AT MECHANICAL UNIT 3
o
-0 0 i = i .
O 0 •
•
.
•
0 g'(RUCTURq!
��,3 P ROre
�C,
G I N 4 ,/ 3 ,/
n 6 3354PE �' 9
711 / ,
- 0 5:1 " ,„ OR2GON
33 MI0 NOTE: PROVIDE PROTECTION OF THE WOOD
0 e e 13. ti�o � a- SCREWS TO MOISTURE AND DAMAGE
0: 5b n 21
m �� "S D. GP CAULKING
C)
C z = ' EXPIRES: 6/30/13 I
;Li 13
a
M C) (4) #10x1/2" LONG TEK
z o > SCREWS PER CUP AT
O r BASE OF HVAC UNIT
- 0 16GAx6 "CUP AT AND AT CURB (8) TOTAL
z I EA. SIDE OF UNIT
• P INSULATION i ,1 1 METAL CURB PER ��
$ UNIT SUPPLIER
- o c) o #8 SCREW AT FLASHING (16GA MIN)
• Z 0 :lu 24" 0.C. W/ 2" REMOVE DECKING AS
c �_ EMBED INTO BEAM /--- REVD FOR DUCTS
4 , tal K rt c K K 5 K K K K K K C C
(E) 2x DECKING I '1(1
z w •
- C
- m
O n g 1.
/
(E) JOIST SIMPSON HU48 FACE
PER PLAN MOUNT HANGER EA.
i END OF NEW 4x TYP.
0 i
a i s SECTION AT MECHANICAL UNIT
/J ... SK in = 1'-0" v.
UI p
O 0
•
0 `/ SlRUCrV q
33 2 �D PROF `. y.
n z 6335'_ 4 2
OREGON NOTE: PROVIDE PROTECTION OF THE WOOD .
� '
v fB 13 � Z oo ms � � SCREWS TO MOISTURE AND DAMAGE
m GAT "S D. GP CAULKING
c N 2 EXPIRES: 6/30/13
A
Z _ .
• E n V
(4 ) #10x1/2" LONG TEK
z o > SCREWS PER CUP AT
r BASE OF HVAC UNIT -
— 71 16GAx6 "CUP AT AND AT CURB (8) TOTAL
Z ° I EA. SIDE OF UNIT
7 o R IGID � METAL CURB PER I •
o ' INSULATION J UNIT SUPPLIER " .
(16GA MIN) REMOVE DECKING AS
Z o FLASHING #8 SCREW AT " REQ'D FOR DUCTS
iv 24 " O.C. W/ 2 I I
II °�' V ' EMBED INTO BEAM I
• K c \ Cc 5 c C c C
- o
V \ I
ri ... (E) 2x DECKING
a SIMPSON A34 AT 24"
z l LENGTH OF
NEW BEAM •
§ M N SIMPSON HU48 FACE .
S IMPSI�QUM3F14NGER EA. END
z R 2 FACE MOUNT PPNt>J 4 - fP•
4
- (E) GLU —LAM _
I T v GIRDER BEAM ER LAM
3 r PLAN -
,
1.
1
•
SECTION AT MECHANICAL UNIT
o c
i� 1" = 1' -0"
c 0
}
O 0 5- ftUCTU q
R
����D PRO
fl 1 F. 1 L. i
OREGON NOTE: PROVIDE PROTECTION OF THE WOOD.
Ti 0
0 & f e 13, /SP <,' SCREWS TO MOISTURE AND DAMAGE
u
Mil rn T / S D. GP CAULKING
C i = (EXPIRES: 6/30/13 I .
.2 Z "V
. M n
z 8 > (4) SCREWS PER CUP AT •
n r BASE OF HVAC UNIT •
0 16GAx6 "CUP AT AND AT CURB (8) TOTAL
0 EA. SIDE OF UNIT
.
T. ° RIGID METAL AL CURB PER g
r� o INSULATION ��
_ i :; UNIT SUPPLIER t
$ o o #8 SCREW AT FLASHING (16GA MIN)
o i . o 24" O.C. W/ 2" REMOVE SHEATHING
• • j
EMBED AS REQ'D FOR DUCTS
7 4
4x6 BLOCKING BETWEEN
..... z A + ` ` JOISTS lk +
z,,
(E) JOIST PER PLAN —I
p i W/ NEW 2X8 WHERE
� SHOWN
I1 c_--, u , ATTACH NEW 2X TO (E) JOIST W/ (2)
ROWS OF 16d NAILS OR #10x3" SCREWS
9 z i AT 18 "O.C. -- STAGGER ROWS 9"
U
1 J o -i 8 SECTION AT MECHANICAL UNIT
O
° SK 1" = 1 — o " la
C 50
O
J
_ A A CC_2_ 41 I CO I so
- FEl . � � II
1 I 1 DESIGN ENGINEEaING I PLANNING
TECHNICAL SERVICES � MAY 0 6 2011 j RTH
•
By
• SEISMIC RESTRAINT OF MECHANICAL EQUIPMENT • • •
• FOR TENANT IMPROVEMENT •
7940 HUNZIKER ROAD :
• TIGARD, OR 97223 •
•
. project:' 11 -122 '
• prepared for: -
CHARTER MECHANICAL •
• . • 9636 SW HERMAN ROAD ' •
TUALATIN, OR 97062 •
• 5003 CTU RA4 .
5����`p PROfFs
E O
. v y
• ' . 12956 9 l • ,
4d ;f v&.&-
v d OAEGON 26. h
O 6z Y Ig6
..
A / C
M W O .
• EXPIRES: 6ff® .
. • • . - prepared by .
• • . JOHN M. WORTH, P.E. /S.E. . •
• • • Worth Technical Services • • .
• • 3004 &E.-50th Avenue •
• Portland, OR 97206 - •
. May 4, 2011 - . '
•
•
3004 SE 50TH AVE. PORTLAND, OREGON 97206 PHONE 503.771.8256 WRTHTEC @AOLCOM FAX 503.771.8407
Ile •
• •
. •
• C H Ae.TE.e m EGN A o<I I C A L
r 1 g 40 APJA/Z/ KEll 'oAD
•
776A2 D, OR `17 zL 3
5coPL : R FC.2 S 2EL4rED To 5 E I S m i c re 25re,A lAJ
F1'1 1Arcoa Eau/ Pen &Mr #Cf3a TuvAir 2 /ME.A/r
uo r wT LocAri a ,J
•
•
RTU - I 8 9 a n. IZooF
.GO,e8 7Sie TOTAL - ciL5it
•
Pro - Z 585 Ro04
•
•
•
Cuet • 7 re,rAc. - 4.4o
•
Rry - 3 /9G7v- Rcor
Guk 92 TOTAL - 20S ti •
R 7"u-4 zooF
Guie 5 7 rbrA t - 4.60
HP- 1 /370e st. 48 ror4t, - 137ott
alga -rye TAN lc TbrA L.- / 3161A.
•
fr (z )(5.6) = 34.6
(2)Y477(z) 6.3 =
40,9 $� 7940 HUNZIKER ROAD
Date and Time: 5/3/2011 4:05:06 PM
' /4 ":. 0ZA
40.9 rY . 0z.08 46:5 %, or MCE Ground Motion - Conterminous 48 States
= 3 15 4' Zip Code - 97223 Central Latitude = 45.44033
Central Longitude = - 122.776223
/ZOGA it .1331 .* 6z.4 1 7 c c Period MCE Sa
/opt (sec) ( %g)
0.2 106.1 MCE Value of Ss, Site Class B
• 1.0 037.2 MCE Value of S1, Site Class B
Spectral Parameters for Site Class D _.
•
0.2 114.6 Sa = FaSs, Fa•= 1.08
•
1.0 061.7 Sa = FvS 1, Fv = 1.66
•
AAA JOB NO. l /_- / ZZ. .. DATE Macr!_
PROJECT !4 Q- - r�l2 -_p2 L-I .__vAJ , r
I I I I I I l t l SUBJECT _r_
BY _ PAGE
• .� DESIGN tNGINtfRING PLANNING �/�(_�- _ OF ..
WORTH TECHNICAL SERVICES
1 I 41
SEISMIC ANALYSIS
•
Site Class - D Project - 7940 HUNZIKER
•
Ss := 1.061 •
•
date - MAY 3, 2011
Si :_ .372
Importance Factor I := 1.0 task -. RTU -1
From table 1615.1.2
•
Fa := 1.08
Fv := 1.66
•
Spectral Coefficients
equation 16 -38 Sms := Fa•Ss Sms = 1.146
equation 16 -39. Smi := Fv•Si Smi = 0.618
• equation 16-40 Sds := ().Sms Sds = 0.764
•
Mechanical and Architectural Components
from tables 9.6.2.2 and 9.6.2.3
Ap := 1.0
Rp : =2.5 •
Compenent weight Wp := 965
height of attachment z := 1
•
• height of roof h := 1
•
•
Seismic Force. Fp : _ [( + C2 ) Fp = 353.848
` J�
(Rp)
•
Multiplier M := Fp M = 0.367
Wp
Fp Maximum Fpl := 1.6•Sds•I•Wp • . Fpl = 1.179 x 10
• Ml := Fpl Ml = 1.222
Wp
•
Fp Minimum Fp2 := .3•Sds•I•Wp Fp2 = 221.155 .
Fp2
• M2 :_ — M2 = 0.229
•
Wp
Allowable Strength Design
Fp3 := .7-Fp Fp3 = 247.693 Fpv := .2•Sds•Wp . •
M3 := W 33 M3 = 0.257 Fpv = 147.437
P •
AAA JOB NO. . DATE _IMAM' 3 - (__-_ _
PROJECT Cr!aar — E. .
I I i I I I I I I I ► SUBJECT .5x150 ! 2 7 2 1 _7 . _._ ... _ ... _ • •
. DESIGN LNGISEERING PLANNING BY 0- __ _ PAGE Z. OF •
. WORTH TECHNICAL SERVICES •
A
r •
•
•
•
SEISMIC FASTENER DESIGN •
LATERAL LOAD LATLOAD := 248 POUNDS RTU - 1
UNIT TO CURB CONNECTION
FASTENER TYPE - #10 SHEET METAL SCREWS •
CAPACITY (PULL -OUT) CAPPULL := 129 POUNDS EACH
CAPACITY (SHEAR) CAPSHEAR := 272 POUNDS EACH
NUMBER OF EFFECTIVE FASTENERS (PULL -OUT) NUMPULL := 4
NUMBER OF EFFECTIVE FASTENERS (SHEAR) NUMSHEAR := 8 .
TOTAL CAPACITY (PULL -OUT) TOTPULL = CAPPULL•NUMPULL TOTPULL = 516
TOTAL CAPACITY (SHEAR) TOTSHEAR := CAPSHEAR•NUMSHEAR
TOTSHEAR = 2.176 x 10
FACTOR OF SAFETY (PULL -OUT) FSPULL := TOTPULL FSPULL = 2.081 TO 1
LATLOAD
•
•
FACTOR OF SAFETY (SHEAR) FSSHEAR := TOTSHEAR FSSHEAR = 8.774 TO 1
LATLOAD
CURB TO ROOF CONNECTION
FASTENER TYPE - #10 WOOD SCREWS •
CAPACITY (PULL -OUT) PULLWOOD:= 130 POUNDS EACH
CAPACITY (SHEAR) CAPWOOD := 140 POUNDS EACH
NUMBER OF EFFECTIVE FASTENERS NUMWOOD:= 4
TOTAL CAPACITY TOTWOOD := CAPWOOD•NUMWOOD TOTWOOD = 560
TOTAL PULL -OUT PULLTOT := PULLWOOD•NUMWOOD PULLTOT = 520
•
FACTOR OF SAFETY FSWOOD:- TOTWOOD FSWOOD = 2.258 TO 1
LATLOAD
FACTOR OF SAFETY (PULL) PULLFS := PULLTOT PULLFS = 2.097 TO 1
LATLOAD
•
NOTE - FACTORS OF SAFETY ARE BASED ON ALLOWABLE CAPACITIES
• JOB NO. I / - iZ Z . _ DATE PP/4.Y 3, Z21_l
PROJECT CN_4.Q?'fse - MS
1111111111111
SUBJECT 604-5111 [G._J S rg.AJ6se
DESIGN ENGINEERING PLANNING BY lin _ __ PAGE 3 .
WORTH TECHNICAL SERVICES
•
•
SEISMIC ANALYSIS
• Site Class - D Project - 7940 HUNZIKER
Ss := 1.061
date - MAY 3, 20.1 1
Si :_ 372 •
Importance Factor I := 1.0 task - RTU -2
• From table 1615.1.2
Fa := 1.08 •
Fv := 1.66 •
Spectral Coefficients
equation 16 -38 Sms := Fa-Ss Sms = 1.146 •
equation 16 -39 Smi := ().Sms FvSi Smi = 0.618
equation 16-40 Sds := Sds = 0.764
Mechanical and Architectural Components
from tables 9.6.2.2 and 9.6.2.3
Ap := 1.0
Rp := 2.5
Compenent weight Wp := 660
•
height of attachment z := 1 •
height of roof h = 1 • • Seismic Force F _ [ (.4d5:wP)].[[i + (2. )]] Fp = 242.01
• P: ` JJ
•
Multiplier M := —
• M = 0.367
Wp
Fp Maximum Fpl := 1.6•Sds•I•Wp Fpl = 806.7
Ml := Fpl M1 = 1.222
Wp
Fp Minimum Fp2 := .3•Sds•I•Wp Fp2 = 151.256
M2 := F p 2 M2 = 0.229 •
Wp
•
Allowable Strength Design
Fp3 := .7-Fp Fp3 = 169.407 Fpv := .2.Sds.Wp
M3 :_ W 3 M3 = 0.257 Fpv = 100.837
Wp
AAAAA NO. _ - I2Z _ ____. DATE .itt4 1 .
PROJECT (.'�.iA_Q-L 4,4 TS .
I I I I i I I I I I I SUBJECT �S.LG.... -
DESIGN ENGINEERING PLANNING BY . 10 1 .. PAGE _. OF
WOR TH TECHNICAL SERVICES
I
. r
•
SEISMIC FASTENER DESIGN
LATERAL LOAD LATLOAD := 170 POUNDS RTU - 2
•
UNIT TO CURB CONNECTION
FASTENER TYPE - #10 SHEET METAL SCREWS
CAPACITY (PULL -OUT) CAPPULL := 129 POUNDS EACH
CAPACITY (SHEAR) CAPSHEAR := 272 POUNDS EACH
NUMBER OF EFFECTIVE FASTENERS (PULL -OUT) NUMPULL:= 4
NUMBER OF. EFFECTIVE FASTENERS (SHEAR) NUMSHEAR := 8
TOTAL CAPACITY (PULL -OUT) TOTPULL := CAPPULL•NUMPULL TOTPULL = 516
• TOTAL CAPACITY (SHEAR) TOTSHEAR := CAPSHEAR•NUMSHEAR
TOTSHEAR = 2.176 x 10
FACTOR OF SAFETY (PULL -OUT) FSPULL = TOTPULL FSPULL = 3.035 TO 1
LATLOAD
FACTOR OF SAFETY (SHEAR) FSSHEAR := TOTSHEAR FSSHEAR = 12.8 TO 1
LATLOAD
CURB TO ROOF CONNECTION •
FASTENER TYPE - #10 WOOD SCREWS
CAPACITY (PULL -OUT) PULLWOOD := 130 POUNDS EACH
• CAPACITY (SHEAR) CAPWOOD := 140 POUNDS EACH
NUMBER OF EFFECTIVE FASTENERS NUMWOOD := 4
TOTAL CAPACITY TOTWOOD := CAPWOOD•NUMWOOD TOTWOOD = 560
TOTAL PULL -OUT PULLTOT := PULLWOOD•NUMWOOD PULLTOT = 520
FACTOR OF SAFETY FSWOOD TOTWOOD FSWOOD = 3.294 TO 1 •
LATLOAD .
FACTOR OF SAFETY (PULL) PULLFS := PULLTOT PULLFS = 3.059 TO 1
LATLOAD
•
NOTE - FACTORS OF SAFETY ARE BASED ON ALLOWABLE CAPACITIES
•
. AAA JOB NO. _ /l-.IZZ _.._.____._ DATE )19 _3 7A/.I__ _
PROJECT &t_l_Aar r2- "_. _ IECA1 _UA/JTS._-.... _
• 1 1 I I 1 I 1 I I 1 1 I 1 SUBJECT 5 le. A95 4Q,.
DESIGN ENGINEERING PLANNING BY _r/77A/__..._ ___ PAGE S . OF .__ _ ..
WORTH TECHNICAL SERVICES
•
• •
•
•
•
•
SEISMIC ANALYSIS •
Site Class - D Project - 7940 HUNZIKER
Ss := 1.061
Si .:= .372 date - MAY 3, 20 :11
•
Importance Factor I := 1.0 task - RTU -3
From table 1615.1.2 • •
Fa := 1.08
Fv := 1.66. •
•
Spectral Coefficients
equation 16 -38 Sms := Fa•Ss Sms = 1.146
equation 16 -39 Sini := Fv•Si Smi = 0.618
equation 16-40 Sds :_ (}Sms Sds = 0.764
Mechanical and Architectural Components •
from tables 9.6.2.2 and 9.6.2.3
Ap := 1.0
•
Rp := 2.5
Compenent weight Wp := 2059
height of attachment z := 1
height of roof h := 1
Seismic Force Fp :- [(4.AP.ScJs.WP)][[ .+ (2.)]] Fp = 754.997
•
Multiplier M.:= Fp M = 0.367
•
Wp
Fp Maximum Fpl := 1.6 Sds I Wp Fpl = 2.517 x 10 •
•
• Ml = Fpl M1 = 1.222
Wp
Fp Minimum Fp2 = .3•Sds•I•Wp Fp2 = 471.873 •
M2 = Fp2 M2 = 0.229
Wp
• Allowable Strength Design
Fp3 := .7•Fp Fp3 = 528.498 Fpv := .2•Sds•Wp
M3 := W 3 M3 = 0.257 Fpv = 314.582
P
AAA . JOB NO. !i' _. DATE _/n.AY3 o// _._.
PROJECT _(,AMA TLR - N1 N .uN!r$__: _
III 1 1 1 1 1 1 1 1 I i SUBJECT S/rtlC '~ ! TV 3 . _.___.._ _ __
DESIGN ENGINEERING PLANNING BY J PAGE _4___ OF
WORTH TECHNICAL SERVICES
•
•
SEISMIC FASTENER DESIGN
LATERAL LOAD LATLOAD := 529 POUNDS RTU - 3
UNIT TO CURB CONNECTION
FASTENER TYPE - #10 SHEET METAL SCREWS
CAPACITY (PULL -OUT) CAPPULL := 129 POUNDS EACH
CAPACITY (SHEAR) CAPSHEAR := 272 POUNDS EACH
NUMBER OF EFFECTIVE FASTENERS (PULL -OUT) NUMPULL := 6
NUMBER OF EFFECTIVE FASTENERS (SHEAR) NUMSHEAR := 12
TOTAL CAPACITY (PULL -OUT) TOTPULL := CAPPULL-NUMPULL TOTPULL = 774
TOTAL CAPACITY (SHEAR) TOTSHEAR := CAPSHEAR•NUMSHEAR
TOTSHEAR = 3.264 x 10
FACTOR OF SAFETY (PULL -OUT) FSPULL ;= TOTPULL FSPULL = 1.463 TO 1
LATLOAD
FACTOR OF SAFETY (SHEAR) FSSHEAR := TOTSHEAR FSSHEAR = 6.17 TO 1
LATLOAD
CURB TO ROOF CONNECTION
•
•
FASTENER TYPE - #10 WOOD SCREWS
CAPACITY (PULL -OUT) PULLWOOD:= 130 POUNDS EACH • •
CAPACITY (SHEAR) CAPWOOD := 140 POUNDS EACH •
NUMBER OF EFFECTIVE FASTENERS NUMWOOD := 6
TOTAL CAPACITY TOTWOOD := CAPWOOD•NUMWOOD TOTWOOD =
TOTAL PULL -OUT PULLTOT := PULLWOOD•NUMWOOD PULLTOT = 780
FACTOR OF SAFETY FSWOOD:- TOTWOOD. FSWOOD = 1.588 TO 1
LATLOAD
FACTOR OF SAFETY (PULL) PULLFS PULLTOT PULLFS = 1.474 TO 1
LATLOAD
NOTE - FACTORS OF SAFETY ARE BASED ON ALLOWABLE CAPACITIES
•
AAA JOB NO. / i / 1- _ . DATE /!1' 3, awl_.__
PROJECT c.thq. _erg.12 - Awe/4 _._ _thzer_S
i I I I I I I t I SUBJECT 5�4 Ism,c /�ASr��t/- .�.5__- _�e 3 . _
. DESIGN ENGINEERING PLANNING BY - PAGE 7 , _ OF ,. -_ --
WORTH TECHNICAL SERVICES
v
• q
•
to SEISMIC ANALYSIS
Site Class - D Project - 7940 HUNZIKER
Ss := 1.061
date - MAY 3, 20 if •
Si :_ .372
• Importance Factor I := 1.0 task - RTU-4
From table 1615.1.2
Fa := 1.08 •
Fv := 1.66 •
Spectral Coefficients
equation 16 -38 Sms := Fa. Ss Sms = 1.146
equation 16 - Smi := Fv•Si Smi = 0.618
• equation 16 -40 Sds := (}Srns Sds = 0.764
Mechanical and Architectural Components
from tables 9.6.2.2 and 9.6.2.3 •
Ap := 1.0
Rp := 2.5
Compenent weight Wp := 660
height of attachment z := 1 •
•
height of roof h := 1 •
•
• Seismic Force • Fp [ (.4.AP . s:s.wP)][[i + (2.)]] Fp = 242.01
•
Multiplier M := W M = 0.367
P
• Fp Maximum Fpl := 1.6 Sds I Wp Fpl = 806.7
•
M1 := FPl M1 = 1.222
Wp
Fp • Fp2 :_ .3 Sds I Wp Fp2 = 151.256
M2 := F p 2 M2 = 0.229
• Wp
Allowable Strength Design
Fp3 := .7-Fp Fp3 = 169.407 Fpv := .2•Sds• Wp
M3 W 3 M3 = 0.257 • Fpv = 100.837
P
AAA. -
JOB NO. J_/_- lZZ_ DATE _ //Mg . •
PROJECT G0.01. - _. [Al. is .
' ( 1 1 1 1 1 1 1 1 1 1 1 1 SUBJECT ISWG _! -,4' . . .. _
DESIGN ENGINEERING PLANNING BY %V PAGE g . OF ..
WORTH TECHNICAL SERVICES
y y
•
•
•
•
SEISMIC FASTENER DESIGN • •
LATERAL LOAD LATLOAD := 170 POUNDS RTU - 4
UNIT TO CURB CONNECTION
•
• FASTENER TYPE - #10 SHEET METAL SCREWS
CAPACITY (PULL -OUT) • CAPPULL := 129 POUNDS EACH
CAPACITY (SHEAR) CAPSHEAR := 272 POUNDS EACH
NUMBER OF EFFECTIVE FASTENERS (PULL -OUT) NUMPULL := 4
NUMBER OF EFFECTIVE FASTENERS (SHEAR) NUMSHEAR := g
TOTAL CAPACITY (PULL -OUT) TOTPULL := CAPPULL•NUMPULL TOTPULL = 516
•
TOTAL CAPACITY (SHEAR) TOTSHEAR := CAPSHEAR•NUMSHEAR
• TOTSHEAR = 2.176 x 10
•
• FACTOR OF SAFETY (PULL -OUT) FSPULL := TOTPULL FSPULL = 3.035 TO 1
LATLOAD
FACTOR OF SAFETY (SHEAR) FSSHEAR := TOTSHEAR FSSHEAR = 12.8 TO 1
LATLOAD
CURB.TO ROOF CONNECTION
•
FASTENER TYPE - #10 WOOD SCREWS
CAPACITY (PULL -OUT) PULLWOOD:= 130 POUNDS EACH •
CAPACITY (SHEAR) CAPWOOD := 140 POUNDS EACH
NUMBER OF EFFECTIVE FASTENERS NUMWOOD := 4
TOTAL CAPACITY TOTWOOD := CAPWOOD•NUMWOOD TOTWOOD = 560
TOTAL PULL -OUT PULLTOT := PULLWOOD•NUMWOOD PULLTOT = 520
• FACTOR OF SAFETY FSWOOD TOTWOOD FSWOOD = 3.294 TO 1 •
LATLOAD
FACTOR OF SAFETY (PULL) PULLFS := PULLTOT PULLFS = 3.059 TO 1
LATLOAD
•
NOTE - FACTORS OF SAFETY ARE BASED ON ALLOWABLE CAPACITIES
A •AA JOB NO. DATE ../$10.7. /t__
PROJECT cEAl2r'>>rd2 I?1E,C/�,F vaJ / T. S
I1I1IiI1I1III .-
.
SUBJECT - .5!►'if /546.77641_442.S. - ¢
DESIGN ENGINEERING PLANNING BY ,jyl� PAGE OF ___._._.
WORTH TECHNICAL SERVICES
SEISMIC ANALYSIS
•
Site Class - D Project - 7940 HUNZIKER
Ss := .1.061 •
• Si :_ .372
date - MAY 3, 2011
Importance Factor I = 1.0 task - HP -1
From table 1615.1.2
Fa := 1.08
Fv := 1.66
•
Spectral Coefficients '
equation 16 -38 Sms := Fa•Ss Sms = 1.146 •
equation 16 -39 Smi := FvSi Smi = 0.618
•
Sd ().Sms Sds = 0.764
• equation 16-40 Mechanical and Architectural Components
• from tables 9.6.2.2 and 9.6.2.3 •
•
• Ap := 1.0
Rp := 1.5 (shallow)
Compenent weight . Wp := 1370
•
height of attachment z := 0
height of roof h := 1
•
Seismic Force Fp : _ [(.4.AP + 12 ill Fp = 279.085
\ JJJ
•
Multiplier M := W M = 0.204
P
Fp Maximum Fpl := 1.6•Sds•I•Wp Fpl = 1.675 x 10
M1 := Fpl M1 = 1.222 •
Wp
Fp Minimum Fp2 := .3 Sds I Wp Fp2 = 313.971
M2 := F p 2 M2 = 0.229
Wp
• Allowable Strength Design
Fp3 := .7•Fp Fp3 = 195.36 • Fpv := .2.Sds.Wp
M3 :_ 3 M3 = 0.143 Fpv = 209.314
AILAA
JOB NO. 1 /- 1Z Z DATE P'AI" 3 (._ _
PROJECT :ale -Me ^ . »'1EC T_S° ..
i l i I i I I l i I, j SUBJECTS 5Pll_G, - HP I
DESIGN ENGINEERING PLANNING
BY _ - _ _ PAGE ....IA_ _ OF .
WORTH TECHNICAL SERVICES
•
•. + .
• •
Wpmax •
CGh Wpmin
•
•
•
•
•
• BASE DIMENSIONS
Fpa
CG minimum demens = Width 31.5
CO • other dimension - Depth = 59
vert. center of gravity - CGv :. 37
A width B horizontal center of gravity Width
y - CGh :=
• • 2
number of effective anchors - Ne := 4
•
Wpmax := Wp +Fpv Wpmax = 1.579 x 10
Wpmin := .6Wp — Fpv Wpmin = 612.686
•
Fpa := Fp2..7 ASD Fpa = 219.78
SUMMATION OF MOMENTS - (max)
reaction at B Bmax := I(CGv Fpa) + (CGh Wpmax)] • Bmax = 1.048 x 10 •
Width •
reaction at A Amax = Wpmax — Bmax Amax = 531.503
If Arriax is a positive v - there is no bolt tension
. SUMMATION OF MOMENTS - (min)
rection at B Bmin ;_ [(CGv Fpa) + (CGh Wpmin)] 13min = 564.497
• Width
reaction at A Amin := Wpmin — Bmin Amin = 48.189
If Amin is a positive value - there is no bolt tension
. For Shear Design Shear per anchor Vb; F p a Vb = 54.945
Ne
•
•
•
•
•
•
AAA JOB NO. it ' I L.__ .._ DATE .MAC
PROJECT C it-IALi'E _: eCF•6 . ave.
I I I I I I I SUBJECT SL /. *21.c_ .... _. . . • - . -
DESIGN ENGINEERING PLANNING BY f/yf� ._._ ... PAGE __.. 11 _. OF ... _
WORTH TECHNICAL SERVICES 1
•
•
•
•
•
SEISMIC ANALYSIS
• Site Class - D • Project - 7940 HUNZIKER
Ss := 1.061
Si :_ .372 date - • MAY 3, 20'11
Importance Factor I := 1.0 task - WATER TANK •
• From table 1615.1.2
Fa := 1.08
Fv := 1.66 •
•
Spectral Coefficients
equation 16 -38 Sms := Fa•Ss Sms = 1.146
•
equation 16 -39 Smi := Fv•Si Smi = 0.618
equation 16-40 Sds := ().Sms Sds = 0.764
Mechanical and Architectural Components
from tables 9.6.2.2 and 9.6.2.3
•
Ap := 1.0
Rp : 2.5 •
Compenent weight • Wp := 1396
•
height of attachment z := 0
•
height of roof h := 1
Seismic Force Fp : _ [(.4.AP + (2. Fp = 170.629
Multiplier M := Fp M = 0.122
Wp
Fp Maximum Fpl := 1.6 Sds I Wp Fpl = 1.706 x 10
Ml := F P 1 Ml = 1.222
Wp
•
Fp Minimum Fp2 := .3•Sds•I•Wp Fp2 = 319.93
M2 :=
Fp2 M2 = 0.229
Wp
Allowable Strength Design
Fp3 := .7•Fp Fp3 = 119.44 Fpv := .2•Sds•Wp
M3 := 3 M3 = 0.086 Fpv = 213.286
Wp
AAAk JOB NO. _ _/1. - . /2Z - -__ -- DATE ZD --
PROJECT (sli(/_Ar . - _. nt4c4 . fJ A) / r5.
i l i l l l l i l l SUBJECT 5 5 ,ae_ uA.rg - -
DES IGN ENGINEERI PLANNING BY TIVW - __ _ ____ PAGE __(Z OF
WOR TH TECHNICAL SERVICES
ti •
•
•
•
ANCHOR DESIGN - SHEAR - PER ACI 318 APPENDIX D
CONCRETE IS ASSUMED TO BE CRACKED POWERS WEDGE BOLT
JOB REFERENCE - 7940 HUNZIKER
DATE - MAY 3, 2011 •
DESIGN PARAMETERS
anchor diameter d := .375
area Ase:= .103
•
number of anchors N := 1 •
edge distance C := 5
spacing . S = 0
depth of concrete H := 5
concrete stength fc := 3500 'psi
min. embedment depth: Hef := 2.125
min. depth of concrete Hmin := 4
. minimum edge distance Cmin 1.75
minimum anchor spacing Smin := 2.5
•
• Minimum depth of hole Ho := 2.5
steel strength . SS := 4825
tensile strength Futa := 10300 psi
reduction factor - shear theta2 :=
concrete factor - craked - cast -place 24
concrete factor - post - installed -17 concrete factor Kc := 17 •
BASED ON VALUES FROM ESR - 2526
•
•
AAA" JOB NO. _ 1 '1Z Z . DATE M4!1f_ _ .3, Lott
PROJECT G'f,EA __. t & AI_ rS .._._...
1 1 1 1 1 1 1 1 1 1 1 1 1 SUBJECT _CG4l.C1e!¢!"__
DISIGN ENGINEERING PLANNING BY jfl _ _ PAGE 15. ._ ,•_• _ __
. OF
WOR TH TECHNICAL SERVICES
•
•
•
•
job reference - 7940 HUNZIKER
• date. - MAY 3, 2011
SHEAR DESIGN •
•
• CALCULATE STEEL STRENGTH •
•
Vs := N• 1000 Vs = 4.825 kips
• Vsf := theta2.Vs Vsf = 2.895 kips
•
• CALCULATE BREAKOUT STRENGTH IN SHEAR
Avo := 4.5.(C Avo = 112.5 sq in
second edge distance at a corner C2 := 0 make entry
Avl := 2•(1.5•C)•H Avl =75 sq in
•
Av2 := 1.50(1.5.0 + C2) Av2 = 56.25 sq in
Av3 := [2.(1.5.C) + S].H Av3 = 75 sq in •
modification for eccentricity e2 := 0 make entry
•
Wecs :_ _ 1 Wecs = 1
CI _( •
•
modification for edge effect •
• Weds := .7 + [.3.[ 2 -1] Weds = 0.7
if C2 is greater than 1.5C use 1.0 •
•
enter appropriate value
Wedsa•:= 1 make entry
Wcr := 1 concrete is cracked
L Hef •
•
•
AAAAA JOB NO.. ../.I- /ZZ___. DATE A :__3,TAt ( _ _
PROJECT CEfRR f.Ode . vN / T,$
1 1 1 1 1 1 1 1 1 1 1 1 1 SUBJECT _.00.V 1�_ ./e44De S _......__ —_ •
DESIGN ENGINEERING PLANNING By - .17414./ .. _.._ PAGE 14' _ OF _,.. ._ _
WORTH TECHNICAL SERVICES E
s.
it
•
job reference - 7940 HUNZIKER •
date - MAY 3, 2011
•
[7-[( dd.5} lfc 5l ( J
Vb : Vb = 4.011 kips
1000
•
•
Vcb Avl
l W� Wedsa•Wcr•Vb Vcbgl = 2.674
g ( Avo )
• Vcb A Vcb = 2.006
( A vo ) . wecs.wedsa.wcr.vb
Vcbg3 := ().wecs.wedsa.wcr.vt Vcbg3 = 2.674
Avo
enter appropiate value Vcb := 3.515 •
Vcbf := theta2•Vcb Vcbf = 2.109 kips
Ultimate shear of steel Vsf = 2.895 kips
enter controling value Vu := 2.109 make entry
Va := Vu Va = 1.506 ' . ADS .
1.4 • •
•
•
AAA JOB NO. _l&' /L Z _ DATE 0104 / 1 _ 3 .1.2. 0 112----
PROJECT CWA /Z ._- _ .fih6 L_._t/jc! /TS _ _
I � I 1 I I' 1 1 1 SUBJECT Oat/ G2Fd �9NcrccQ�s ....__ ,_
DESIGN ENGINEERING PLANNING BY �� ._.._. PAGE 15 __. OF _
WORTH TECHNICAL SERVICES •
•
ALLOWABLE TENSION •
•
•
. steel strength in tension Nsa := 10300 •
•
reduction factor theta3 := .65
•
• steel strength Nsag :_ (theta3 N Nsa)
1000
Area 1 Anco := 9•Hef 2
Area 2 Anc:= [(1.5•Hef) + C]•[(3•Hef) + C]
eccentricity Wee := 1
edge distance Wed := 1 •
cracked concrete We := 1 Wcp := 1
•
•
• Nb (Kc•fc•5)•(Hef 1.5)
•
group of anchors Not apn
Anc
_ C J•Wec• Wed •Wc Wcp-Nb
breakout strength Ncbg A"co
g g 1000 '
•
Steel strength Nsag = 6.695 kips
Break out strength Ncbg = 7.139 •
•
•
Enter controling value Ncon := 6.695
• Allowable tension Nallow := Ncon . Nallow = 4.782 kips
1.4 •
Allowable shear Va = 1.506 kips •
actual tension
actual shear
JOB NO. I1 -12.Z DATE _An Y__31242/ ).
PROJECT e$MeTE4 '.f ff -41-!VI
I 1 I 1 I 1 1 1 I l l 1 1 - SUBJECT 6taiCAL.Irla DESIGN ENGINEERING PLANNING
BY - �m- �- - - - - -- PAGE :lb -- •OF - - - -• - --
WORTH TECHNICAL SERVICES
•
Front Left Back Left •)
• •
Corner: Corner: .
21.5 Ws 202 lbs
4 4 "— . .
--„------Z=:-..----
le.====ncrnaen ■ ,1 e - .4,'"wl 0
HI
, \ / i i 1. i :Hi a
I .0 1 i:
„
n , y ,••
SLi
8 ,.... 1.••• 11
1,4 '
N I 0 f...• : 1 :
•
, _.=...--=.1..-..._ .
....•••••:••._. .._-z.z...4•_ ---------------- . i .1:: %.!':
trilt .
i s ' - ',14 17 ';... 1 - 1 i ■ I L Z,..,..j
Front Right 1 D'+X Back Right . •
Corner:
Corner:
244 U3S
. 0' • 82" 229 lbs
CGx: 39.7'
CGy: 20.5'
Total We;ght:
/390 lbs
COIL suPewcafvER
. . .. .. .
. . _
„..-
# t
...• .... ...---1
- -
\ / I 193
• . _
( •
/ 318
48-
r
• —.,--
-• o I•M'/IIIIIIIIIIIIII INOMIIIIIMIODEOI
ea i — I • Ku. toomc 5Z-4- r --
A 52J
1 ll .. i unvic Luc
\ CAI (Al4) (4 CORNCRS)
\ /
• lag
..-/ AT= strfaNiraiSZE
—
Or umturAcruRCR FOR ORAiN
co:in/CCM.
DETAIL A .3...
rop. :: .,„ 1...11
(2 ,.,.....
i
SEC DETAIL
.....
•
f
I I
LW l itcht
.. . e.. .... :
I 14/ di
.Y.°).-
/ rt, i Iii I I
• \ p.m L'WYW I Ng .1,4
slohlyAbutri me m .. a aa 73 xp— 6 ir . .s3. ''. I
— — I SE Dt1alt. p
MG muse MMHO . . _ ...t; - .. j ..- ,.. ....-
Eezt F aa
•A•
II? _—_,.3_—, 4 -..-3,g 9 --1 -• 61
DISTAOL 83
VIEW .
I —I— • FRONT FRONT i I - real
RIGHT MC VIEW
411 44 r r 4.—
ROV FILTER ER COIL ik
svIrci Is
., i ONTROLS AND .
i
n HEATER 4 I COMPRESSOR :N ISMIRIIIN.
I-I ACCESS ACCESS \
11111 6 L i
nut !pi III
1 ii
wrd,• . I.' OUTSIDE
,..._ I=I I--; .0::■111■_.„ „, NMI 111111=1•Mi :1111 AIR
• L-- - ---401--17d
SUPPLY WW1
oirot BASC PK
7. 131 a"
tom
. 14 .. 82 _
&MX 11AtI RA.
• OISISCC SW RNL
R0-00007 NEW 03/16/10 SJS
:
• NOTE: ALT DILIENSTONS ARC IN INCHES
,• •
AAA JOB NO. a'/Ze- DATE MA.Y__3.,_Wi I. . .
PROJECT de_oi.ot-ri&_e_7_" ___!_tfegg.....4 TS
. •
I 1 I i I 1 1 1 I i I . SUBJECT .i.drs — gra-/
DESIGN INGINFIRING• PLANNING BY _•thins). . ___ • PAGE OF
_._ _ 1 1
WORTH TECHNICAL SERVICES
•
•
•
•
•
•
•
74112in1.D.
I T I t:
I
7 7/8 in 183/4 in
SA
10114 in
25118 in
361 /4 in 34118 RA in
ID .
I-
AL A •
I
• PLAN
•
II I I ,
ELEVATION
1 Weight 751bmass
Knocked down Roof curb TC-5
Aaon RQ 002 -006 Standard
I PT nailer
•
AAA . .
JOB NO. _ .. _ DATE MAY__ A. 2 (
PROJECT et[ enE.R. _ G EL — . v'V %TS___.__..._.. _
1 1 1 I' 1 I 1 I 1 I 1 1) SUBJECT (4.1.1_ L..__. .,.._..
DESIGN ENGINEERING PLANNING ' � _
•
_.
WORTH TECHNICAL SERVICES BY �.__.._._. PAGE O r F
., , I CORNER WEICIIMBT PEACE/RADE
p • 27•13A I xI! E II
C zM 201 1 • •
I tIaI m) r8 1
��0�' 1191A
v x .: =
. FLUE OUTLET
<p
- % ,1„)... ` . 4 L _ \\
SUPPLYO/3 /r�( / `�j���l� A
ENTRY
( mn l NPT •, - .1 .A . •
\off
L21 • (MI
1181 men) (889 mm) •
a n INLE T oa � `\ \ • � � I II it , . / •
16 2 1 4 0 .4 Allf DISCONNECT - III Ij ' rI IV' i
' SUPALISO WNN �l4
\'e POWER ENTRY
ms
•
BURNER CONTROL ENTRY
•
_ EsSO I4 i
ACCESS LS 17 9.37
y �
1238 rRm)
(233 Rlmt
•
�/ \ \ DAS6EIZTR10At
•
ENTRY OMEGAS . „a •
I
ops,.
I ib III Ill
I. 1 .. ,
(tee.' v j*;�, 1
a
(SIEMI)• i ` , • ' � �\ 4 � +�j�` lasi
1 9
•
\.� �0 \ yam` IReismN •
(112t mmI � I -
2.0 .
19
. I Unit Description:
McCluay Model Number: MPS004B
•
I Unit Dimensions & Weights:
Unit Length: 75.5 In -
Unit Height: .35.0 in •
Unit Width: 48.5 in vi
Unit Weight: 585 lb
AAA . JOB NO. . _JL_IZZ__... _._ . DATE NA'fV . 31 ZA/ I .
PROJECT . & m u t e 4...' ._ 1 E _ C a _ _ . . . . .-
I I I I I I I SUBJECT ..St/SS /DL?1..5___.- _.._1QT0_7 - ..-- -.....
DESIGN ENGINEERING PLANNING BY �/1(U______. ___ PAGE . H.._ OF
WORTH TECHNICAL SERVICES •
d; r
•
TC -5 Non - Insulated Roof Curb for McQuay Units • '
ThyCurb
,.___ ' by the fabricating division of
�� Thybar Corporation MPS 003A -006A
• 1 . w® MP 003B -005B
•
•
•
/ 38 1.D.
67� g I.D.
\ �
•
;�� 13 20
•
•
A I I 4;%,
:,..- ...%, ie. --..„.....,:>,...„_...-- •
�\ I
-- 13
+ 8
\ i • _ ,- 1 4 (TYF ) • r
1 I
2016 I ii .
j____.11 _._...._.
•
7 Supply Duct Size
T 2x4 Wood
Nailer
I I - A - 4 1
I ..... ......... Gaiv. Steel is
Construction 201
16 i;
Typical TC-5 Section
• If pitched, please Indicate amount of pitch, ditectlon and minimum height on drawing. (Refer to
General Information section for Roof Curb Pitch Information)
- Qty McQuay ThyCurb # A B H Tag
• MPS 003- 005A,B MQ5RC01062 22 37 7/8 12. Li*
MPS 008A MQ5RCO2275 27 518 43 3/8
2110 .
AAAA JOB NO. 1I_/ZZ .. - -- -- DATE .W1. . -. _
PROJECT .4#/ zr ,Q /#4.414 _ vIV/fs - -_.. --
I I I I I I- I I I I I J SUBJECT _ U'. ...._( .. .. _..._ ___ .
DESIGN ENGINEERING PLANNING fl l /_
BY _ _ � /�(�(,/- ---- - - - - -- PAGE - 2.4.___ OF ... _.....
WORTH TECHNICAL SERVICES'
•.
I t •
• • 7 1222
L ZS FORCED UP
eo.
0U751Q AIA\ 24 •
• KAU:! •.11ft•AR•
17 DETAIL B
♦..0 -- I •
. 2325 102244
t, CCL
•
72125 fA°!M!a•M4 cc]: • •
r u n 213 NUMBER OF CONDENSER FANS
':'• . 8-10 TON - 1 FAN
13-15 TON - 2 FANS
4 Lb
_t 9 Ca l
• 1 2.281~ 911 ' um
12271•
4.552
87294 •t"tt.•,, 4 ul.mec.t°•.t.ct 7175
Ecor.°IttA
�I Q IN _
Kenn UV • tstu ACCESS TO CONTROLS _
�bCQ /P9ESSORAND ,3,,. •�._ 1 ;�Ir
1 .�1.
{4302 t1EAT2tO VESTIBULE ! "101 � 7 �
l�p•4t
.LR l ` ��` �
im .• ,w lam', ' na Y°" mot.
° 1 _______
2375 °.
•
27.527 20375
mu, 'a... tvc 1
• ttiGLIM1p /9184 /u20.0.iI
77.75 t.•rumst
KA It l• •VSVp COf�� DAIP 4! 211
110T25.: E cwsay2TTU Lgar CW1ZZCRDY.
• AU. DV / ES1077S T000TSI DE I
ALLOW .02$' SCREW CLEARANCE AROUND UNNDERSIDE OP SASE.
•
Tag: RTU -3
Job Information Unit Information
Job Name: Charter Medi Offirec Approx. Op./Ship Weights: 1067 / 19671ba.
Job Number: Job #18 Supply CFM/ESP: ' 3200 / 1.5 in. Ntg.
Site Altitude: O fl Final-Filter PV/ Qty: 23040 fp n / 4
Refrigerant R••110A Exhaust CFM/ESP/TSP: 3000 / 0.50 / 0.72 in. Ng.
. Outside CFM: 1030
Ambient Temperature: 95 °FDB / 75 711'B
•
•
. AAA .
JOB NO. 1.1 'qZL .___.___ . DATE mi4f__5 .2.0l1.. .
PROJECT C n i € _;_..i?j ILL. elate r'S • - - -•- ' - •
I I I i I i I I II 1 1 I •SUBJECT _OUTS. 47.inf. 6 - 2TU 3
•
DESIGN ENGINEERING PLANNING BY .N/2id PAGE ,__ZI .- OF ._ ---
WORTH TECHNICAL SERVICES
•
•
0
a C —
-I
•
= _
y
4 I 3 2
m
I 1
n • • 72 7/8 in Curb ID
x n —
• •
nT
_— o 0
r Z
N
A> 13
SA g 0
/
_ 0 15/16 in �' 32 3/8 In
n_ 3915/16 In �
0
p / O B
< z
�, _ SA O
_ A -,--- ----- -
r• •
1 \\ � � v
15 5/16 in 18 7/8 In
-C C O 115 {16In • Q O
� C Z 4
.
;. , -I .... - [... 14121n-'j -- 221/41n 2212 in -1-13 5/8 In
R ; . [ I KNOCKDOWN
-1 I-.-112in
1 11 SECTION A,A
' x 4 Wood Nailer
•
; •
i . 1— 12 in ( 48 7/8 in 12 in
— 1 I 14 In 18 Ga. GaN.
:1 A Steal
A
•L la In
0 06
1 • • o • I
1 send 25 FT t 1/T x VC Gask aing/rure SECTION B -
Approx. Corporation
N ; 1 r.5 style Root cure Approx. Approx. curb Weight Toro �, I. �.
.a • ' Form tnaita��s•cownct 921b Qtr �roen: bixattn3rzoos ❑ .
A1
t 1.'t 4 Dawn Bymesek
•
I 3 2 own. No.RCo4Y13.id,v CI
O 12.
•
I 1
•
• .
1 ,
i .
•
•
CORNER W MUM BY PERCENTAGE
• * •
• q C 12w 1 ! 1 M 1 26%
(1186 mm) •
< qP ' 's
4 X qi- 711.61
0618 n6r4
•
FLUE OUTLET � '�a
■ .
SO
O ` � SC -
ENTRY G� ��%5 A
!/ 113 . m 1183 m) �! i i (B69•roNni \�� i I I
AAIRINLET ON �.
t i ll
1 i .
24.2- �\ i
(8KM mml � <` ` i 11111
011 � j
, /
DISCONNECT `� ii I II! lI iII
• PIJ
SUP b WfuNIT \I' �' , , S'� �
�POWER ENTRY
BURNER ACCESS � I,
• CONTROL ENTRY
CONTROL BOX B 8.37
1457MM
ACCESS 1233 .1 [2311 mm) .
IrASE E ICAL
•
FMRY x A I ~ . I �. 1 r i
•
� ii • .
�3at . / � . \� Ill"
lea6 mm) e�� 20A0
�- 0 i505mmJ s �•
i � 40 13.11 201
2p � (339 mm) �'' �)
i51mm) ie o . �� ` -00 �� � ` i. 14.4 �•'
a7m 9.57
( zm) 6.81 (1nmrRJ \ � ��al 73.24
gq 1 (183SmmJ
• (11 21. ` ` ` y ' 0 .
• 4 \ ..--- a01
(51 mm)
[Unit Description: I
McQuay Model Number: MPS004B
Unit Dimensions & Weights: I
Unit length: 75.5 In •
• Unit Height: 35.0 in
i - Unit Width: 46.5 in .
Unit Weigh!: 585 lb •
•
AAA JOB NO. .// Ji2_ - :. .. DATE /.'!1l¢ ._3 p.D./ J . __
PROJECT eNogTeL - =- C-1`iec . t/.vir _ . _... .
I I I I. I I I I I I I I. I SUBJECT GtJTS_A_L!X ... le..TV __ ___ .___.__.. ...
OE S I GN ENGINEERING PLANNING _ BY .._find . ____.. .. PAGE Z ✓_ OF _
WORTH TECHNICAL SERVICES
•
•`t
• 0
- 1 N
x n
z _
m — . - - - --' ---- --
x = —
Z n
n - T
a
7n as
N _
T ^
A - 67( LE. _e_
i
n z _
- 29E--1 rDUCTCOLlAR — 6 — —
m [1
I _ Z
r
Q Er O
Et. zg
42a 382 5 g t
0o cn v c-
s
•
-<c 73 O ?
al Q W
L L L aK4PRPSSURE
m 24• W TREATED NAILER
n 0 p -
-{ PP ViFW
�►C PLAN VIEW 7 18 GA. PRIME GALV.
I� i 24 7g 1--
^t ',l lu
- i- oucrLINER
! C 1'p `_ it - _ !� II INSULATED FLOOR PAN
! ,ID 01 II j� �9G.��
! A 1 11 24 -121`
r 11 I
I I
11 • TYP, SECTION VIEW
P 0 p FVATUIN VIEW
m `' m SUBMITTAL ONLY
i KNOCK DOWN CONSTRUCTION FOR SHIPPING
. gy p i • �k DIMENSIONS TO BE VERIFIED
•
1 .I2 4126 MOVED HORIZONTAL OPG LOCA LOCATION O C. Horizontal Supply Rev. Int I Date 0
TI I pply �'� Un4nsulated Roof Curb For l Plies
,� A NIcQuay MPS0048 Thybar Corporation •
No Return Air Tag RTtld ThyCurb
•
•
otrl wt,e: loafaarlent ❑
®81dp1GD Drawn By: JZIMMER
Sheet of ❑ We A,sOn. Dwg Na 111149 RC Suhndto! ❑
• r , . . • • 4.0
Jo' SINGLE MODULE
T ROTH:
Y r----- ---
ASP-10/.152 A9 -76Y ASP -702 I. NOOBSTRUCRONS ALLOWED ABOVE
DU1 IMMERSER FANS.
WWII
r w ti{ ♦■ A I 57 7/8" 7Y 84. 3 .RFWI@EOAIRINtAxECLEARANt><42:'
8 59 7/ 78 • I 88• 4. REQUIRED QEARAhYEFpnN ANY HIGIVOIW�PANEi l2' .
^j; ii! C 174 7/e' : 77 ,/Y .aa s/,a' S. REOWREDCIEARAKE FROM ANY mOLLIEDWALL:38:
= 'Er 0 31 I/r ae• .35• it NO CLEARANCE MIMED MROM
„ .:QM* •
ii •
■IIMI•111.11\11■11• 11•0•0111.1.11 • 1 L 1 t t,
4 ROln t -- -- / \
— .•\ /
I X I , /"
I --sr
SCUM q- P �\'i
0 win \I 1 mamma "•` �/•
�' 10118Nf10rJ1 '
•
r •• \� /
— ill
,>C: .\
A --
EQOIflVtY 8I88T5IOO5 r REARVIERF
• 'Now IrinadFatknlsIn a pha nos vans TAW air Wks than madakr, pkasewawa A ulusi Ld1rdearaam
General Data Table of Air Cooled Standard —X Modules .
Compressor ASP -10X ASP -15X ASP -20X ASP -30X ASP -60X ASP -61X '
Type SCROLL SCROLL SCROLL SCROLL SCROLL SCROLL
Nominal Capadty (per compressor) 5 7_5 10 15 30 30 .
Qua " 2- TANDEM 2- TANDEM 2- TANDEM 2- TANDEM 2- TANDEM 2-TANDEM •
Evaporator ASP -10X ASP -15X ASP -20X ASP -30X ASP -60X ASP
Type BRAZED PLATE BRAZED PLATE BRAZED PLATE BRAZED PLATE BRAZED PLATE BRAZED PLATE
Weight 54.4 63.8 I 83.7 100 214.4 214.4
Eva p Water Storage (gallons each) 1.08 1.4 I 2.03 2.54 5.86 5.86 -
Quantity 1 1 I 1 1 1 1 1
Header Storage (gallons per header) 3.2 3.2 6.24 10,5 18.2 18.2
RefrigerantType 410 410 410 410 410 410
Number of Circuits 1 1 1 1 1 1
Condenser Fans ASP -10X ASP-15X ASP -20X ASP-30X ASP -60X ASP -61X
• i Motor Type Totally Endosed Totally Enclosed Totally Endosed I Totally Enclosed Totally Enclosed Totally Endosed
! HP 1 I 1 2 I 2 2 15
Quantity 2 2 I I 2 4 1
Fan Type Axial Axial Axial Axial Axial Axial
Fan Material Composite Composite Composite Composite Composite Composite
Air How dm rmodule 6 8 16 22 000 44 000 44 000
Condenser Cogs* ASP -10X ASP-1511 ASP-20X ASP-30X ASP -60X ASP -61X
Fin Material Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum
Tube Material • Copper Copper Copper Copper I Copper Copper
Tube Diameter (in.) 3/8 I 3/8 3/8 3/8 I 318 3/8
Number ofRows 4 I 6 6 6 I 6 6
•
Coil Dimensions (Quantity) 32 x 51 (2) I 30 x 49 (2) 30 x 611/2 (2) 42 x 731/2(2) 142 x 731/2 (4) 42 x 7316 (4)
Free Cooling Coil Water Volume (gallons) 33 I 3.5 4.6 4.6 I 7.2 7.2
Module Dry Weight (lb.) _ 1370 I 1400 I 1700 2100 I 4,000 I 5,400 •
*On Free Cool Modules, coils are utilized as water precoolers rather than for refrigerant condensing.
• NP-
JOB NO. t " / _ _ __.. DATE ../NAB 3 vv.
PROJECT dRQriete. — •N7 (4J,T ,$_
I I I l I I I t I I I I I SUBJECT W.TS /.n1.5 - . - . ... .- . •
DESIGN . ENGINEERING PLANNING BY 'P /--- • -_ —.•_ -_ __ PAGE !� _ -, OF _,____ ,_
WORTH TECHNICAL SERVICES PPI !!!
Y
• •
• • 1 •
AIM
- - . . -;" .3 , t i . r.*
FEATURES:
• ' • Heavy gauge steel construction
f at°uon ice_ • Baked epoxy coating on both interior and exterior
t -Y • Epoxy coating complies with F.D.A.
". '''' t' '''''
: - • Tested to 100 psig (air)
h ��l lop - : • Maximum working pressure - 75 psig
T $ aI • 3 Year limited warranty
.
. i
I Epoxy Retention Tanks
I , i ; 1 `? Model No. Volume Tank Dimensions (in inches) System Drawdown
I �, (Gallons) Acceptance Volume (Gallons)
I. /f ) A B C D E F G 20/40 30/50 40/60 50/70
ERT42T 42 16 53 14 9 29 46 100% 6.5 4.2 3.0 2.2
t 5 ERT42S 42 20 36 17.8 8.5 20 28 100% 6.5 4.2 3.0 2.2
'
- ::-:1 - y FRTAO AO . 90 A4 17 A A S 74 51 S . 100% 124 A1 54 A2
T f jl ERT120 120 24 66 22.1 6.5 32 56 100% 18.6 12.1 8.6 6.3
ERT220 220 30 77 6.5 36.5 14 7 100% 34.1 22.2 15.8 11.7
1 _ ERT315 315 36 78 6 5 36.5 14 7 100% 48.8 32.0 22.7 16.7
-- 11/4 FNPT A.'''
1 1/4' FNPT
•
• '. ` 1/4 FNPT
�� ri ss>��
pp 12'FNPi(SQ
0 AAA / 4" FNPrtz)
I
It "F' 1 1/4 FNPT (3) q1111 .
or II" 0
WWI "D" 2" FNPT Will 1 1
'C"---ii
PLUG
1' NPT PLUG
I ERT42T, 42S. 80 & 120 I I ERT220 & 315 I
•
•
" AAA. .
JOB NO. /1- /ZZ _.__.... . DATE if AY_ ._ ? �.. , ZO /l
PROJECT e.4g -- - -- FC/'e - Cl_-'V! - ______
•
l 1 I I I I I i I 1 I 1 I SUBJECT Pill 5 _ •• ..s/./4. - ri.2 77 1r ! .... .. ___...-
DESIGN ENGINEERING PLANNING BY PAGE 4.(v_ __ OF - _- _. -.._
WORTH TECHNICAL SERVICES
r
:.SUGGESTED ALLOWABLE PULLOUT AND SHEAR VALUES FOR SCREWS IN PbUNDS'
• #6 SCREW #8 SCREW #10 SCREW #12 SCREW
' GAUGE THICKNESS, DIA. = .135 IN. MIN. DIA. = .161 IN. MIN. DIA. = .183 IN. MIN. DIA. = .209 IN. MIN.
INCHES PULLOUT, SHEAR, PULLOUT, SHEAR, PULLOUT, SHEAR, PULLOUT, SHEAR,
• LBS LBS LBS LBS LBS LBS LBS LBS
u 25 0.0188 37 137 N/A N/A N/A N/A N/A N/A
22 0.0283 52 161 66 194 N/A N/A N/A N/A
• 20 0.0346 85 207 96 251• 129 272 121 287
18 0.0451 136 274• 149 327• 184 371• 192 421
' 16 0.0566 183 320 184 366 241 499 267 625
14 0.0713 N/A N/A N/A N/A 349 517 370 657
• 12 0.1017 N/A N/A N/A N/A 404 547 509 718
•
' NOTES:
1. Values for 25 and 22 gauge are based on ultimate values divided by a safety factor of three. Values for 20 through 12 gauge based on
lesser of the ultimate value divided by a safety factor of 3 and the allowable bearing capacity per AISI Para. E3.3 for single shear and
no washer. Pa = Fp•dia.•thickness /2.22 . Fu = 45 ksi for 25, 22, 20 and 18 gauges and Fu = 65 ksi for 16, 14 and 12 gauges.
2. Values with asterik (•I indicates bearing capacity governs. Those with N/A indicate screw is not typically used with that gauge thickness.
3. Suggested minimum of 0.50" edge margin and spacing for #6, #8 , #10 and #12 screws. Distances based on AISI paragraph E3.1 .
4. Engineer should confirm screws ultimate failure data and the appropriate factor of safety for a particular loading condition.
5. When joining materials of different gauges the value for the thinner material shall be used.
SUGGESTED ALLOWABLE FILLET AND FLARE GROOVE WELD LOADS IN LBS/INCH -
• . GAUGE THICKNESS WELD ALLOWABLE LOAD •
SIZE
20 0.0346 1/8" 467 lb / in '
18 0.0451 t/8" 609 lb / in
16 0.0566 1/8" 1104 Lb / in
•
. 14 0.0713 1/8" 1390 lb / in
12 0.1017 5/32' 1983 lb / in
NOTES:
1. Values may be increased by 1.33 for wind or seismic.
2. When joining materials of different gauges the value for the thinner material shall be used.
• 3. Values are based upon Fu, the ultimate tensile strength of the material, with the allowable load = 0.75(t)(Fu)/2.5 per
AISI Section E2.
• 4. Fy = 33 ksi and Fu = 45 ksi for 20 and 18 gauge. Fy = 50 ksi and Fu = 65 ksi for 16, 14 and 12 gauge.
r' I
•
_JOB NO. // DATE may 3 20/ (
PROJECT GVf/AtrG2 - tract./ 14.), re,
1 1 1 1 1' 1 1 1 1 1 1( SUBJECT 547- raf • ....g.09./.4./ 64 P4cd r /6-5
DESIGN ENGINEERING PLANNING BY :Tel < PAGE 2 1 OF
WORTH TECHNICAL SERVICES JJJ
ID
•
•
J — I i i Fag and Connections 5 59 • I •
I j - -- : � I—,- ALLOWABLE LATERAL LOADS FOR WOOD SCREWS :I :- I l l - i !-4
t —,..;
I 1 . _ � - i i . --i- . _; For one wood screw under normal duration of loading installed in side grain of seasoned wood i • • -- • • -' ? 1
1 : •- - : " - -:!-•• and embedded approximately 7D in the member receiving the point. See Table 5.1 for species ' ! - "'" ' " - ""' ' --"
I. r - • - - , - - - f . : ----- in each group. I , .--1--. _____
-.-
. .. t 1. -i
' 1,000 = _ _ _ - - - -_- _ 1_1_1. _ *_. - ..._
• i .1.--:- ._ . '� i 800 - --- - +-� -r ! ' i-�-� i -
• I_ 1
i ° ...... ii Eiin
•• � • . —• I I • - -... 600 = _ _ _ _................._ L I I .. _ — — -
1 r • j 500 E. E. _ - -_- _ - =c .. - __
'�_ . ;_f i _ � �.._.1 400 = - ..1x.11 ,..'... ...._ . ____ I .
I . - - • I . = ,, --- i
• :r i I._:_ , I 111,1. ■•1 ■. 1 - - ; -- ' I
• -- 1 I — 1,,.111 — ,. ' - +
' -' 1 • I 1 3 - m,nna1 _ uuuuu • -
I
f .__ 250 - - -, • -• —•- -
f - t 7 -1-1- - -- I I l i i - -�
I • 1.4_ .... ..1....1-1. . a 200 ' == - - r: F ' I- ■
I J 0 '�
. .. I 150: 'rte• r
m • ■ n un R• I uunuum y I ' T
1 i EIr Siuuu1L111111 uu1111111111 J 1
III uEDleun111111111 ^ > 1 i
— °— 1 ; ■uuauusilln 111111111 — I
r - r" ,• - - 1 . • 1 0 ■•NIIuIllI , ■16101111 r 1111111111111111
! ■u•UuU11111 /1,,111:111 /4 1111111111IIIIIIIIII111111111111111111111111111111111 .— . .
I • I ' I a 100IIII• •■ 1r 11111111111111IIIIII11 M11nmm�lrunnllm111 _
- . . _ 1 ' ...1 70 C.:: '':.:..,,..., : _j I i t-T+ 1 '
= UrLI/M 1 1 1
' 1 - — . i .. 60 . .....,,
E...... ■' . ■. 1
1 I =_ =_
i 50 - -
� •
,__ 1., • ,I 1 . : _
. I I ..n I -i I ,
.. ..' ! l..
- • I t - 1 1 25 = _ Gage of screws EEcE = :: : : : : : : : : : : : : : : :,.,,._ - r !-;
1 ___ 12 14 16 18 20 24
• • ' • 0.01 , 0.15 . -.. 020 0.25 ...
.25 "� 0.30 0.40 0.50 0.70 T - • ' 1 • Shank diameter of screw, D, in. -- • 1 I__r._ S 1 --- .. _
I
! • 1 1 r- T I 1 -1.• •
•
. . ..._ __ .. ( I'"'' _._ _ _ • 1 _�. .._. __ I ._
• 1 _ .. I i t
1.
`. ' I -�•• ..:. I-_ i -_ .. I - i• - I i : _. 1 ; i - ` 1 -. . 1
. -- • .. _ . I_ _. -• -'. - _ _..._i_- I ._ -. -.� __ -•� ' I I. ! I 1 _ . _ -.,-- ! - --... —.
JOB NO. L / /Z Z DATE NAY 3 j 2 i (
- - - - PROJECT 64-A, -TES - MEG#cI av r TS
I : I .:. I ..: ' :: I I :. • I :;.._ I I I I 1 I SUBJECT 4)00 5GpA CAP/964 r
DESIGN ENGINEERING PLANNING • BY ; J))114 J PAGE
OF
WORTH TECHNICAL SERVICES -
. ,.. .
. . . .
•
•
. .
• HUBBARD
••.allfYrIAPPoiScs.lt•••,. _. . _ _ , ..
I STRAPc' 1 20
Water le' ater Restraints.
...odd* OS 1215
1 . -"'"""IIIIIIIIIIIIIIIIIIIIIIII
: . ...:i • 11
Galvanized Steel Straps
• -
for Water Heaters , • . ,
- L. u L p to 120 Gallons I ::_ . _ , . ,
......, ::
1 4,,..:1
.-,N.
--„..4..._021.. ;..:
•
I
_,......-.......-
3 11,7
r I i ■11110 ra.
InstruccioneS
EX I Espanol -,.iiiri 1. i
. .--,..z.i.A., 141-Toca
Indus Francais
ljail
HUBBARD ENTERPRISES Toll Free (E-00) 321.0318 ' www.toldrlte.corn
,,_....;
. .
•
. .
•
• AAA JOB NO. ...11-.. /22- . DATE /7ftf' 3L242i_t__
PROJECT dkigler'F.4.7:..10.6.C./4 (lairs . _ . .
I SUBJECT ..50/SV./G. . i4./4_77E,4., 7:74Afx,_ _ ... .. .
DE SIGN ENGINEER INC PLANNING BY ...riyed._. PAGE OF
WORTH TECHNICAL SERVICES
. . .
. •
• : ' .
. •
. • .0,11 411
00TS • .1r1..0
*110111/4.40 /0.112 • !irill IIII " i .
tril I M 1r r Iiii;.!wi 1 •
MM. P. . .....!..1-A 0.4...13 1 l'7,0-,4./N1; .4'44
summit:6Y PM I ii 4. .4 - - .1 'I III f./..4
404.4 MOS* egt ' " . 743
..... 4 • Inn Texp.1-4.3 -IN .
• N., - - -.-.1.
- .- 11111111111 •
. . • - . - . . 1
P i
(I - elM/WZNi'' . ---'--- T _ I - __
_______
. -__ = .._—_ _._ _ - _ - _= _-_ _ __ ._- - - - 4 -
-=_—..---.=-----•----• . i3 p 9 . I 1 t. 1 ....—.=--.— ..—• --- ,
_— - -= .
5 . –, -. . – --
_
I a ( 1 ----------- . 1 - . - - - i .. 14.1 I 10.8 *TO 4
._.
7.
. _
= - ' i . i 1
0 , 1 ■
7 ; t ..: 1 1 1 . a g ,
rt 1
•••% 00 -- - .00 WA •••■14017•91 -.--f —
F, _ 4
4 4 4 i
m ■
.......
z ,- . .8. • Vt t IP i
(1)
I
*
M i d . t 1 4 . . ' RI I :
4 a ki % IL a
.C1 I( -. - r t , :
c
.....
'0 i } - - - _ 1 .... i .__(,._,
.... Oki
3 (_ . _
. ........
fD 1 1 1 i i 1
. . . . . .
r P 1
1 I
01 t - - •r... - -
1 1
n al : f. f a L . , I i 5 i 11
i . r i .
i ...1'
1 .1 i
X : 1 t r A - 1 - -
fD A r .1 - i ti .1 Li t t ,. , 1 • A . . • d • , ' 1
4 4 it f I '• 1 t it•. • .P ' t
D
1 I
n) I
= (A — • -,,,, ... 1 -H. - - -1- - - ,, -
FT ._ ,
i r--
7 !
1,. )
- (D
9 9 / 1 1 r■ 5 I
{ . . 1
_ I
CJ= ( 3) - - - .. — — •..7-....- .910
rt . .'
1•••4 gill . ----
i i 1 j s .
.11 li 111 • C • . ) . • 1 • 1 4 1 .
4 .. 4. •
• 41 „. . — . 6 R• 1 • h % ' . -. i r I _ f
I [ ......... . ....... _
- - -
( { h. to ..H,, - 1 .... - 1. - j rai - I — 1 1
CD fD 44 ."" ' 0 1 1 1 f ---H . -"''''
t ; 4
--1..... -- -1-- ...,... [ 1 , 1
J. 61
1 1 I
= . 5 li el g ,I t i
r-P .
liqqW { ..V.1 dig
(2-')-- I-- - "'I - 1 -- ] i ----w ‘l 1--i-i- -I-- — ' 1
1
1
azza.
Hg a, k
;4 "1 • '-', i' , d - •
4 ........., 1 _h_l 1_ ,.. •..
tair412 • fi I' f .".„1 c
_ a q ,,, i l l . ir 1 , ... , ..1
1
tP.1A
, il crill... - INI 1 , 1
..,
o.t ( 9 i •
.... 1 - . i .--• 1 7 I. .4 . . ,, , : .1 - . l ir, f 1 H
1.1••• ,., , , , 1
C)
h. dd 4 d 4 4 . I : ... . . - ) ; I ..
F • a 5 H a - H . 9 a v . ti r: . — 11
i ra 1 A i•
I .1 3
1. . AZIjitt:LS " II I
#°° ,--
t 9 )
..... ..,_ . ii,, „__.___,...._..._,._................; .„_______._-, .!111n_i____ . _
. ,
(
t 5 )
., - :1111 =m7=-
wen d'A •••••
4.314.4,1 _ (E..)
c .,. (Z)
-..
t I
.. •
so • •. ••
es •
RTU
BOTTOM FLANGE
OF CURB
(6) #10 WOOD SCREWS
_ CUB FLANGE
TOP
16 GA STRAP W /(4)
#10 SHT MTL SCREWS
(4) PLACES
RTU
FRONT / SIDE
2x12 T &G
INSTALATION DETAILS FOR
RTU -I RTU -2 RTU -4 Worth Technical Services
3004 SE 50 Ave.
SCALE: 1/2" ° I' 0" Portland, OR 97206
a
• s
*
RTU
BOT FLANGE
OF C URB
(6) #10 WOOD SCREWS
THRU CUB FLANGE
e va
TOP
16 GA STRAP W /(4)
#10 SHT MTL SCREWS
AL (6) PLACES
RTU -3 / uw
,
co CX1 [XI
CURB
FRONT SIDE
INSTALATION DETAILS FOR
RTU -3
SCALE: VT - r 0- Worth Technical Services
. 3004 SE 50 Ave.
Portland, OR 97206
t
HEAT PUMP
—HOUSE KEEPING
•, PAD
TOP
, HEAT PUMP
SIDE
(2) #IO SHT
MTL SCREWS
EA CLIP
SUPERSTRUT
AB -252 -I
1166i 1
FRONT HOUSE KEPPING POWERS WEDGEBOLT+
PAD SCREW ANCHOR
INSTALATION DETAILS FOR 3/8" DIAM - 2 1/8" EMBED
HP -I 5" MIN EDGE DISTANCE
Worth Technical Services
SCALE: 1/2" = I' 0" 3004 SE 50 Ave.
Portland, OR 97206
.`
•
POWERS WEDGEBOLT+
SCREW ANCHOR
3/8" DIAM - 2 I /8" EMBED
5" MN EDGE DISTANCE
TOP (4) PLACES
120 GAL WATER TANK
HUBBARD
(co o (NI QUICK STRAP 120
OR EQUAL
N
FRONT
INSTALATION DETAILS FOR
120 GAL WATER TANK
SCALE: 1/2" = r O"
Worth Technical Services "
3004 SE 50''' Ave.
Portland, OR 97206
CHAPTER 12
HYDRONIC PIPING
SECTION 1201 TABLE 1202.4 — continued
GENERAL HYDRONIC PIPE
1201.1 Scope. The provisions of this chapter shall govern the MATERIAL STANDARD (see Chapter 15)
construction, installation, alteration and repair of hydronic pip - Lead pipe FS WW-P-325B
ing systems. This chapter shall apply to hydronic piping sys- Polybutylene (PB) plastic pipe ASTM D 3309
tems that are part of heating, ventilation and air - conditioning and tubing
systems. Such piping systems shall include steam, hot water, ASTM D 2513; ASTM D 3035;
chilled water, steam condensate and ground source heat pump Polyethylene (PE) pipe, tubing ASTM D 2447; ASTM D 2683;
loop systems. Potable cold and hot water distribution systems and fittings (for ground source ASTM F 1055; ASTM D 2837;
shall be installed in accordance with the Plumbing Code. heat pump loop systems) ASTM D 3350; ASTM D 1693
1201.2 Pipe sizing. Piping for hydronic systems shall be sized Polyvinyl chloride (PVC) ASTM D 1785; ASTM D 2241
for the demand of the system. plastic pipe
Steel pipe ASTM A 53; ASTM A 106
SECTION 1202 Steel tubing ASTM A 254
MATERIAL
1202.1 Piping. Piping material shall conform to the standards 1202.5 Pipe fittings. Hydronic pipe fittings shall be approved
cited in this section. for installation with the piping materials to be installed, and
Exception: Embedded piping regulated by Section 1209. shall conform to the respective pipe standards or to the stan-
1202.2 Used materials. Reused pipe, fittings, valves or other dards listed in Table 1202.5.
materials shall be clean and free of foreign material's and shall TABLE 1202.5
be approved by the code official for reuse. HYDRONIC PIPE FITTINGS
1202.3 Material rating. Materials shall be rated for the operat- MATERIAL STANDARD (see Chapter 15)
ing temperature and pressure of the hydronic system. Materials Brass ASTM F 1974
shall be suitable for the type of fluid in the hydronic system. Bronze ASME B16.24
1202.4 Piping materials standards. Hydronic pipe shall con- ASME B16.15; ASME B16.18;
form to the standards listed in Table 1202.4. The exterior of the Copper and copper alloys ASME B16.22; ASME B16.23;
pipe shall be protected from corrosion and degradation. ASME B16.26; ASME B16.29
Gray iron ASTM A 126
Malleable iron ASME B 16.3
TABLE 1202.4
HYDRONIC PIPE ASTM D 2466; ASTM D 2467;
Plastic ASTM D 2468; ASTM F 438;
MATERIAL STANDARD (see Chapter 15) ASTM F 439; AM77 l
Acrylonitrile butadiene styrene ASTM D 1527; ASTM D 2282 ASME B16.5; ASME 6 - 9; J
(ABS) plastic pipe Steel ASME B16.11; ASME B16.28;
Brass pipe ASTM B 43 ASTM A 420
Brass tubing ASTM B 135
Copper or copper -alloy pipe ASTM B 42; ASTM B 302 1202.6 Valves. Valves shall be constructed of materials that are
Copper or copper -alloy tube ASTM B 75; ASTM B 88; compatible with the type of piping material and fluids in the
(Type K, L or M) ASTM B 251 system. Valves shall be rated for the temperatures and pres-
Chlorinated polyvinyl chloride ASTM D 2846; ASTM F 441; sures of the systems in which the valves are installed.
(CPVC) plastic pipe ASTM F 442 1202.7 Flexible connectors, expansion and vibration com-
Cross- linked polyethylene/ pensators. Flexible connectors, expansion and vibration con -
aluminum/cross- linked ASTM F 1281; trol devices and fittings shall be of an approved type.
polyethylene (PEX- AL -PEX) CSA CAN /CSA -B- 137.10
pressure pipe
Cross - linked polyethylene ASTM F 876' STM F 877
(PEX) tubing
(continued)
kd 1 i 0
2007 OREGON MECHANICAL SPECIALTY CODE 95
6
HYDRONIC PIPING •
SECTION 1203 1203.3.8 Mechanically formed tee fittings. Mechanically
JOINTS AND CONNECTIONS extracted outlets shall have aheight not less than three times
1203.1 Approval. Joints and connections shall be of an the thickness of the branch tube wall.
approved type. Joints and connections shall be tight for the 1203.3.8.1 Full flow assurance. Branch tubes shall not
pressure of the hydronic system. restrict the flow in the run tube. A dimple/depth stop
shall be formed in the branch tube to ensure that penetra-
1203.1.1 Joints between different piping materials. _
Joints between different piping materials shall be made with tion into the outlet is of the correct depth. For inspection
approved adapter fittings. Joints between different metallic purposes, a second dimple shall be placed 0.25 inch (6.4
piping materials shall be made with approved dielectric fit- mm) above the first dimple. Dimples shall be aligned
with the tube run.
tings or brass converter fittings.
1203.3.8.2 Brazed joints. Mechanically formed tee fit -
1203.2 Preparation of pipe ends. Pipe shall be cut square, tings shall be brazed in accordance with Section
reamed and chamfered, and shall be free of burrs and obstruc- 1203.3.1.
tions. Pipe ends shall have full -bore openings and shall not be
undercut. 1203.4 ABS plastic pipe. Joints between ABS plastic pipe or
fittings shall be solvent - cemented or threaded joints conform-
1203.3 Joint preparation and installation. When required by ing to Section 1203.3.
Sections 1203.4 through 1203.14, the preparation and installa- 1203.5 Brass pipe. Joints between brass pipe or fittings shall
tion of brazed, mechanical, soldered, solvent- cemented, be brazed, mechanical, threaded or welded joints conforming
• threaded and welded joints shall comply with Sections to Section 1203.3.
1203.3.1 through 1203.3.7. •
1203.6 Brass tubing. Joints between brass tubing or fittings
1203.3.1 Brazed joints. Joint surfaces shall be cleaned. An
shall
approved flux shall be applied where required. The joint 2
Secctt ion n 103.3.
2 0zed, mechanical or soldered joints conforming to
shall be brazed with a filler metal conforming to AWS A5.8. Section
1203.7 Copper or copper -alloy pipe. Joints between copper
1203.3.2 Mechanical joints. Mechanical joints shall be or copper -alloy pipe or fittings shall be brazed, mechanical,
installed in accordance with the manufacturer's instruc- soldered, threaded orr welded joints conforming to Section
tions. 1203.3.
. 1203.3.3 Soldered joints. Joint surfaces shall be cleaned. A 1203.8 Copper or copper -alloy tubing. Joints between cop -
flux conforming to ASTM B 813 shall be applied. The joint per or copper -alloy tubing or fittings shall be brazed, mechani-
shall be soldered with a solder conforming to ASTM B 32. cal or soldered joints conforming to Section 1203.3 or flared
• 1203.3.4 Solvent - cemented joints. Joint surfaces shall be joints conforming to Section 1203.8.1.
clean and free of moisture. An approved primer shall be 1203.8.1 Flared joints. Flared joints shall be made by a tool
applied to CPVC and PVC pipe joint surfaces. Joints shall designed for that operation.
be made while the cement is wet. Solvent cement conform- 1203.9 CPVC plastic pipe. Joints between CPVC plastic pipe
• ing to the following standards shall be applied to all joint or fittings shall be solvent - cemented or threaded joints con -
surfaces: forming to Section 1203.3.
1. ASTM D 2235 for ABS joints. 1203.10 Polybutylene plastic pipe and tubing. Joints .
2. ASTM F 493 for CPVC joints. between polybutylene plastic pipe and tubing or fittings shall
3. ASTM D 2564 for PVC joints. be mechanical joints conforming to Section 1203.3 ' or
heat- fusion joints conforming to Section 1203.10.1.
CPVC joints shall be made in accordance with ASTM D 1203.10.1 Heat - fusion joints. Joints shall be of the
2846. • socket - fusion or butt - fusion type. Joint surfaces shall be
1203.3.5 Threaded joints. Threads shall conform to clean and free of moisture. Joint surfaces shall be heated to
ASME B1.20.1. Schedule 80 or heavier plastic pipe shall be melt temperatures and joined. The joint shall be undisturbed
threaded with dies specifically designed for plastic pipe. until cool. Joints shall be made in accordance with ASTM D
• Thread lubricant, pipe joint compound or tape shall be 3309.
applied on the male threads only and shall be approved for 1203.11 Cross -linked polyethylene (PEX) plastic tubing. .
application on the piping material. Joints between cross -linked polyethylene, plastic tubing and fit -
1203.3.6 Welded joints. Joint surfaces shall be cleaned by tings shall conform to Sections 1203.11.1 and 1203.11.2. .
an approved procedure: Joints shall be welded with an Mechanical joints shall conform to Section 1203.3.
approved filler metal. 1203.11.1 Compression -type fittings. When compres- .
1203.3.7 Grooved and shouldered mechanical joints. sion -type fittings include inserts and ferrules or 0-rings, the
I Grooved and shouldered mechanical joints shall conform to fittings shall be installed without omitting the inserts and
the requirements of ASTM F 1476 and shall be installed in ferrules or 0-rings.
accordance with the manufacturer's installation instruc- 1203.11.2 Plastic -to -metal connections. Soldering on the
tions. • metal portion of the system shall be performed at least 18
96 2007 OREGON MECHANICAL SPECIALTY CODE
•
HYDRONIC PIPING
inches (457 mm) from a plastic - to-metal adapter in the same SECTION 1205
water line. VALVES
1203.12 PVC plastic pipe. Joints between PVC plastic pipe 1205.1 Where required. Shutoff valves shall be installed in
and fittings shall be solvent- cemented or threaded joints con- hydronic piping systems in the locations indicated in Sections
forming to Section 1203.3. 1205.1.1 through 1205.1.6.
1203.13 Steel pipe. Joints between steel pipe or fittings shall 1205.1.1 Heat exchangers. Shutoff valves shall be
be mechanical joints that are made with an approved installed on the supply and return side of a heat exchanger.
elastomeric seal, or shall be threaded or welded joints conform- Exception: Shutoff valves shall not be required when
ing to Section 1203.3. heat exchangers are integral with a boiler; or are a com-
1203.14 Steel tubing. Joints between steel tubing or fittings ponent of a manufacturer's boiler and heat exchanger
hall be mechanical or welded joints conforming to Section packaged unit and are capable of being isolated from the
shall
b. hydronic system by the supply and return valves.
1205.1.2 Central systems. Shutoff valves shall be installed
1203.15 Polyethylene plastic pipe and tubing for ground on the building supply and return of a central utility system.
source heat pump loop systems. Joints between polyethylene
plastic pipe and tubing or fittings for ground source heat pump 1205.1.3 Pressure vessels. Shutoff valves shall be installed
loop systems shall be heat fusion joints conforming to Section on the connection to any pressure vessel.
1203.15.1, electrofusion joints conforming to Section 1205.1.4 Pressure- reducing valves. Shutoff valves shall •
1203.15.2, or stab -type insertion joints conforming to Section be installed on both sides of a pressure- reducing valve.
1203.15.3.
1205.1.5 Equipment and appliances. Shutoff valves shall
1203.15.1 Heat - fusion joints. Joints shall be of the be installed on connections to mechanical equipment and
socket - fusion, saddle- fusion or butt- fusion type, fabricated appliances. This requirement does not apply to components
in accordance with the piping manufacturer's instructions. of a hydronic system such as pumps, air separators, meter -
Joint surfaces shall be clean and free of moisture. Joint sur- ing devices and similar equipment.
faces shall be heated to melt temperatures and joined. The
joint shall be undisturbed until cool. Fittings shall be manu- 1205.1.6 Expansion tanks. Shutoff valves shall be
factured in accordance with ASTM D 2683. installed at connections to nondiaphragm -type expansion
tanks.
1203.15.2 Electrofusion joints. Joints shall be of the 1205.2 Reduced pressure. A pressure relief valve shall be
electrofusion type. Joint surfaces shall be clean and free of installed on the low- pressure side of a hydronic piping system
moisture, and scoured to expose virgin resin. Joint surfaces that has been reduced in pressure. The relief valve shall be set at
• shall be heated to melt temperatures for the period of time the maximum pressure of the system design. The valve shall be I I
specified by the manufacturer. The joint shall be undis- installed in accordance with Section 1008.
turbed until cool. Fittings shall be manufactured in accor-
dance with ASTM F 1055.
1203.15.3 Stab -type insert fittings. Joint surfaces shall be SECTION 1206
clean and free of moisture. Pipe ends shall be chamfered and PIPING INSTALLATION
inserted into the fittings to full depth. Fittings shall be manu- 1206.1 General. Piping, valves, fittings and connections shall
factured in accordance with ASTM D 2513. be installed in accordance with the conditions of approval.
1206.1.1 Prohibited tee applications. Fluid in the supply
SECTION 1204 side of a hydronic system shall not enter a tee fitting through
PIPE INSULATION the branch opening.
1206.2 System drain down. Hydronic piping systems shall be
1204.1 Insulation characteristics. Pipe insulation installed in designed and installed to permit the system to be drained.
buildings shall conform to the requirements of the Building Where the system drains to the plumbing drainage system, the
I Code, shall be tested in accordance with ASTM E 84, using the installation shall conform to the requirements of the Plumbing
specimen preparation and mounting procedures of ASTM E Code.
2231; and shall have a maximum flame spread index of 25 and a •
smoke - developed index not exceeding 450. Insulation installed 1206.3 Protection of potable water. The potable water system
in an air plenum shall comply with Section 602.2.1. shall be protected from backflow in accordance with the
Plumbing Code.
Exception: The maximum flame spread index and smoke -
developed index shall not apply to one- and two - family 1206.4 Pipe penetrations. Openings for pipe penetrations in
dwellings. walls, floors or ceilings shall be larger than the penetrating
pipe. Openings through concrete or masonry building elements
1204.2 Required thickness. Hydronic piping shall be insu- shall be sleeved. The annular space surrounding pipe penetra-
lated to the thickness required by the Building Code. tions shall be protected in accordance with the Building Code.
2007 OREGON MECHANICAL SPECIALTY CODE 97
HYDRONIC PIPING
1206.5 Clearance to combustibles. A pipe in a hydronic pip- pressure loss testing shall be performed and the actual flow
ing system in which the exterior temperature exceeds 250 °F rates and pressure drops shall be compared to the calculated
(121 °C) shall have a minimum clearance of 1 inch (25 mm) to design values. If actual flow rate or pressure drop values dif-
combustible materials. fer from calculated design values by more than 10 percent,
1206.6 Contact with building material. A hydronic piping the problem shall be identified and corrected.
system shall not be in direct contact with building materials 1208.1.2 Cross - linked polyethylene (PEX) tubing sys-
that cause the piping material to degrade or corrode, or that terns. Before a continuous looped systems using PEX tub -
interfere with the operation of the system. ing is embedded or concealed, the assembled system shall
1206.7 Water hammer. The flow velocity of the hydronic pip- be pressure tested at 100 psi (689 kPa) for 30 minutes with
ing system shall be controlled to reduce the possibility of water no observed leaks.
hammer. Where a quick- closing valve creates water hammer,
an approved water - hammer arrestor shall be installed. The SECTION 1209
arrestor shall be located within a range as specified by the man- EMBEDDED PIPING
ufacturer of the quick - closing valve.
1209.1 Materials. Piping for heating panels shall be stan-
1206.8 Steam piping pitch. Steam piping shall be installed to dard- weight steel pipe, Type L copper tubing, cross - linked
drain to the boiler or the steam trap. Steam systems shall not polyethylene (PEX) tubing, cross - linked polyethylene /alumi-
have drip pockets that reduce the capacity of the steam piping. num/cross - linked polyethylene (PEX -AL -PEX) pressure pipe
1206.9 Strains and stresses. Piping shall be installed so as to or polybutylene rated at 100 psi (689 kPa) at 180 °F (82 °C).
prevent detrimental strains and stresses in the pipe. Provisions 1209.2 Pressurizing during installation. Piping to be embed -
shall be made to protect piping from damage resulting from ded in concrete shall be pressure tested prior to pouring con -
expansion, contraction and structural settlement. Piping shall crete. During pouring, the pipe shall be maintained at the
be installed so as to avoid structural stresses or strains within proposed operating pressure.
building components.
I 1209.3 Embedded joints. Joints of pipe or tubing that are
1206.9.1 Flood hazard. Piping located in a flood hazard embedded in a portion of the building, such as concrete or plas-
area shall be capable of resisting hydrostatic and hydrody- ter, shall be in accordance with the requirements of Sections I
namic loads and stresses, including the effects of buoyancy, 1209.3.1 through 1209.3.5.
I during the occurrence of flooding to the design flood eleva- 1209.3.1 Steel pipe joints. Steel pipe shall be welded by
lion. electrical arc or oxygen/acetylene method.
1206.10 Pipe support. Pipe shall be supported in accordance
with Section 305. 1209.3.2 Copper tubing joints. Copper tubing shall be
• joined by brazing with filler metals having a melting point
1206.11 Condensation. Provisions shall be made to prevent of not less than 1,000 °F (538 °C).
the formation of condensation on the exterior of piping. 1209.3.3 Polybutylene joints. Polybutylene pipe and tub-
• ing shall be installed in continuous lengths or shall be joined
SECTION 1207 by heat fusion in accordance with Section 1203.10.1.
TRANSFER FLUID 1209.3.4 Cross- linked polyethylene joints. PEX pipe shall
1207.1 Flash point. The flash point of transfer fluid in a be joined using cold expansion, insert or compression fit -
hydronic piping system shall be a minimum of 50 °F (28 °C) tings.
above the maximum system operating temperature. 1209.3.5 Cross - linked polyethylene/aluminum /cross-
1207.2 Makeup water. The transfer fluid shall be compatible linked polyethylene. PEX- AL-PEX pipe shall be joined by
with the makeup water supplied to the system. mechanical, crimp /insert fittings.
1209.4 Not embedded related piping. Joints of other piping in
cavities or running exposed shall be joined by approved meth-
SECTION 1208 ods in accordance with manufacturer's installation instructions
TESTS and related sections of this code.
>I 1 1208.1 General. Hydronic piping systems shall be tested
hydrostatically at one and one half times the maximum system
design pressure, but not less than 100 psi (689 kPa). The dura-
tion of each test shall be not less than 15 minutes.
Ground - source heat pump loop systems and cross - linked poly-
ethylene (PEX) tubing systems shall be tested in accordance
with Sections 1208.1.1 and 1208.1.2.
1208.1.1 Ground source heat pump loop systems. Before
connection (header) trenches are backfilled, the assembled
loop system shall be pressure tested with water at 100 psi
(689 kPa) for 30 minutes with no observed leaks. Flow and
98 2007 OREGON MECHANICAL SPECIALTY CODE
R Ca. l F7t Pn • C`
z . 4,
.. ��
1
411° . .
I .
1 &Rat
f:';_ :; L H 1
x c
4 .
'�
'z' 1 - itsior,,,.
a� _
• I Radiant Heating and Cooling Systems
x.
.
Y
:" I
`a+ 3 `. W
.,r. _
'i
•� ` ... .. - r r '� i
« .- '
I ii - cY +,,,..:. 4 ..R* . • . '' * -,, t,' < " r, — �r.
•S 1 a •: 40, , _ . • , _.:,. - . - 1 . • • -
1 cvww. uponorpro.c•, i� OO 321.4739 39
=r, 1 '; • , Radiant Heating and Co , *ystenis 7
Uponor Radiant Heating and Cooling Systems
Barrier Tubing r - �
T
o , Wirsbo hePEXTM Tubing, Coil Wirsbo hePEXT"' tubing, featuring our pate - pending oxygen barrier and tested to DIN 4726, is intended
c for closed -loop hydronic radiant heatin d cooling applications. It is compatible with Uponor's ProPEX
o and QS -style fittings and is manufactur in full compliance to ASTM F876 -09 (including dimensional
t ° , i requirements for barrier tubing) d F8 .,Tubing is rated and listed by the Hydrostatic Stress Board of PPI
-a at 200 ° F at 80 psi, 180 ° F at 100 p and73.4 ° F at 160 psi.
c
m
rn .: oat Part No. Part Description Coils /Pallet list Price /Ea.
c
;, A1140313 Vie" Wirsbo hePEX, 100-ft. coil 30 $102.25
v A1180313 Vie" Wirsbo hePEX, 250 -ft. coil 40 $255.60 a
S
Al220313 Vie" Wirsbo hePEX, 1,000-ft. coil 12 $1,022.30 El
c ,
4 A1140375 Sib' Wirsbo hePEX, 100 -ft. coil 28 $111.35
Ic
fa Al210375 %" Wirsbo hePEX, 400 -ft. coil 18 $445.35
cc
Al220375 3/4" Wirsbo hePEX, 1,000-ft. coil 12 $1,113.40
A1140500 'h" Wirsbo hePEX, 100-ft. coil 22 $108.55 0
Al250500 th" Wirsbo hePEX, 300-ft. coil 18 $325.60 0
Al260500 1" Wirsbo hePEX, 500-ft. coil 12 $542.60 El
Al220500 'h" Wirsbo hePEX, 1,000 -ft. coil 8 $1,085.20 0
A1140625 %" Wirsbo hePEX, 100 -ft. coil 15 $140.05
Al250625 4b" Wirsbo hePEX, 300 -ft. coil . 12 $420.05
Al220625 4 " Wirsbo hePEX, 1,000-ft. coil 5 $1,400.05
A1140750 3 Wirsbo hePEX, 100-ft. coil 11 $166.50
Al250750 3/4" Wirsbo hePEX, 300 -ft. coil 12 $499.35
Al240750 3 /4" Wirsbo hePEX, 500 -ft. coil 8 $832.30
A1141000 1" Wirsbo hePEX, 100 -ft. coil 12 $283.35
Al251000 1" Wirsbo hePEX, 300 -ft. coil 5 $850.10
Al241000 1" Wirsbo hePEX, 500 -ft. coil 6 $1,416.80
A1141250 1 Wirsbo hePEX, 100-ft. coil 7 $471.85
Al251250 1W Wirsbo hePEX, 300 -ft. coil 2 $1,415.50
A1141500 11" Wirsbo hePEX, 100 -ft. coil 7 $644.90
Al251500 11/2" Wirsbo hePEX, 300 -ft. coil 2 $1,934.70
A1142000 2" Wirsbo hePEX, 100 -ft. coil 5 $935.25
Al252000 2" Wirsbo hePEX, 300 -ft. coil 2 $2,805.70
Al252500* 21/2" Wirsbo hePEX, 300 -ft. coil 1 $4,245.30
Al253000* 3" Wirsbo hePEX, 300 ft. coil 1 $6,010.20
A1143500* 31/2" Wirsbo hePEX, 100-ft. coil 1 $2,846.10
A1144000* 4' Wirsbo hePEX, 100 -ft. coil 1 $3,699.40
*Wirsbo hePEX coils for 2 ", 3 ", 31/2" and 4" tubing and other non - standard lengths are available on
a made -to -order basis. Allow six weeks for delivery. Call Uponor Customer Service at 888.594.7726 for
availability and pricing. Wirsbo hePEX 21/2", ", 3 ", 31/2" and 4" tubing uses WIPEXTM fittings (see page 69 for a
listing of WIPEX fittings).
U Price reduced
8 Radiant Heating and Cooling Systems www.uponorpro.com 800.321.4739
. a
Uponor Radiant Heating and Cooling Systems
v
E TruFLOW Manifold Assemblies
u,
T
Ln
o, TruFLOW Jr. Assembly The TruFLOW Jr. Assembly with Balancing Valves and Valveless manifold comes fully assembled and ready
°— with Balancing Valves / for installation. The manifold body (1" barrel diameter) ends have R32 unions and the loop outlets have
c
and Valveless Q520 male threads. Maximum recommended flow to the manifold based on manifold body diameter is
u 14 gallons per minute (gpm).
c Part No. Item Description Dim. (Body - Outlets -Body) Each Qty. List Price /Ea.
m
Cr ' A2660200 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $26730
..� y 1 1 Valveless, 2 -loop
m
67 42660300 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $325.75
2
c 1 Valve 3 -loop
1
'_° A2660400 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $387.50
Valveless, 4 -loop
t A2660500 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $497.55
' Valveless, 5 -loop
42660600 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $555.60
Valveless, 6 -loop
A2660700 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $636.45
Valveless, 7 -loop
A2660800 TruFLOW Jr. Assembly, Balancing Valves and R32 -R20 -R32 1 $675.40
Valveless, 8 -loop
. LOW Jr. and Classic The TruFLOW Assembly with Balancing and Isolation Valves manifold comes fully asserted and ready for
Assem .. • s with Balancing installation. The manifold assembly is shipped with the appropriate number of TruFLdW Manifold Actuator
and Isolatio alves Adapters (A2630028). Maximum recommended flow to the manifold is 14 gprri for Jr. (1" barrel diameter)
and 21 gpm for Classic (1'/4" barrel diameter).
Part No. Item Description Dim. (Body - Outlets) Each Qty. List Price /Ea.
IV,e
A2660201 TruFLOW Jr. Assembly, B &I, 2 -loop R32 -R20 1 $341.10
•
•■ .•1301 TruFLOW Jr. Assembly, B &I, 3 -loop R32 - R20 1 $420.95
4 1 •
(_ A266040 TruFLOW Jr. Assembly, B &I, 4 -loop R32 -R20 1 $493.75
42660501 Tru - ■ Jr. Assembly, BM, 5 -loop R32 -R20 1 $634.00
1 1 42660601 TruFLOW Jr. •. -mbly, B &I, 6 -loop R32 -R20 1 $707.95
r 42660701 TruFLOW Jr, Assemb , ' : 1 7 R32 - R20 1 $784.35
42660801 TruFLOW Jr. Assembly, B &I, 8 • . R32 - R20 1 $885.30
A2610200 TruFLOW Classic Assembly, B &I, 2 -loop R32 -R20 1 $383.30
Il , A260300 TruFLOW Classic Assembly, B &I, 3 -loop R32 -R20 1 $476.40
r
42610400 TruFLOW Classic Assembly, B &I, 4 -loop 's. • 0 1 $569.60
a = I I A2610500 TruFLOW Classic Assembly, B &I, S -loop R32 -R20 1 $687.90
alb
•r 42610600 TruFLOW Classic Assembly, B &I, 6 - loop R32 - R20 $781.25
1 • 42610700 TruFLOW Classic Assembly, B &I, 7 -loop R32 -R20 1 :74.60
_ - 42610800 TruFLOW Classic Assembly, B &1, B -loop R32 - R20 1 $1,00 '.
r
Sr tiP 42611000 TruFLOW Classic Assembly, B &I, 10 -loop R32 -R20 1 $1,239.55 w
42611200 TruFLOW Classic Assembly, B &I, 12 -loop R32 -R20 1 $1,416.90
14 Radiant Heating and Cooling Systems www.uponorpro.com 800.321.4739
[Page Too Large for OCR Processing]
[Page Too Large for OCR Processing]
[Page Too Large for OCR Processing]
[Page Too Large for OCR Processing]
[Page Too Large for OCR Processing]