Loading...
Specifications I PERMANENT PLAQUE NOT LESS THAN p g 10 ,2003 — C 1 5 .. 0 50 SQ INCHES IN AREA TO BE PLACED / IN CONSPICUOUS LOCATION STATING 9� 3 IA/ 3700# CAPACITY @ 76', 152' 3' -4' 90' or 110' _ Ci , . . - I 1,9 PRO f ''',- \ I °� 1194•. r LOAD BEAM � / uu uu •'r a • e � 3' 19 'V / CONNECTOR J. vie- z 6' -4' B EXP. DATE: 12/0 J 0 u 16' -0' N LOAD BEAM z \-CONNECTOR z o 0 6' -4' BRACE u ce o_ o- D D (U QD : UPRIGHT LOAD BEAM ELEVATION ' a I- v cz wino z eL • O a� O w Cz ° I- LLJ z ~ in ¢ O N LLI � 9 c, D X U Lu J W 14 GA THK ° COLUMN 3' > w D w � CY 3 3/8x 4x 7 BASEPLATE A X Q cl W W C 1.5 x 1.25 1.5 (2) 1 /2's ANCHORS X J W (n > a-- LL z 3/8'x 4'x 7' 1/8 V1 -1/2' ' N ° (4 C� 0 C7 U 01 BASEPLATE 14 GA THK n BR ACE % EA SIDE N iii n II PU z - '` 2 CIF 1/8 w >¢ Q z Q Z M (2) 1/2'0 ANCHORS FILLET WELD %� FF a - t - J U W 3' lick END TO COLUMN = _y A w o w Q, cy BRACE . I I. ° -J I w � w 1/8 '1 -1/2' EA FACE 1/8' V1' 6' + c� 3 Z 3 CO Z p:1 t 0 ` P ! 6' CONCRETE SLAB ON GRADE W II u C3 I I W , W E__ V) COLUMN & BASE PL � J J d w z F (� BRACE CONN COLUMN BASE X- SECTION N. Q q) Q �) v' _I. u ? z V- 3 v: 0r _ = M a 1--"1 CY In � ' Q' w wW� W L� z I CI_ Z JWOa E O I--I 11) liJ a -rt.- 1 -5/8'H x 1' W (3) PIN CONN 'I CONNECTOR W II C7 2 W STE 0 �-, W cn A = z o ' 0 (3) AISI A502 -2 RIVETS z 0 0 Irt � i O F - II II W~ 1 N L ❑AD BEAM 7/16'0 2'oc f z II �� S 14 GA THICK ° H❑OK THRU SLOTS 3 0 A ® .--I C Z a 1 -5/8x 3x� 0 o I N COL UMN 0 P Ri �i u ° LE SPAN 'D' 3/16 90' 3.5' CONNECTOR THK W 0 1 /8V VERT EDGES 0 r 1 NO V 1 2 2003 I E 0 SAFETY PIN TO RESIST I D LOAD BEAM 11 4.0' 1 1000# UPLIFT LOAD CITY Q COLUMN -BEAM CONN BUILDING DIVISION G Calculations for : WESTERN FREEZER TIGARD, OR 11/06/2003 Loading: 3700 # load levels 2 pallet levels @ 76,152 Seismic Zone 3 100% Utilization Ca = 0.36 Cv = 0.54 110 " Load Beams Uprights: 40 " wide SINGLE ROWS C 3.000x 3.000x 0.075 Columns C 1.500x 1.250x 0.075 Braces 4.00x 7.00x 0.375 Base Plates with 2- 0.500in x 3.50in Embed Anchor /Column 4.00x 2.750x 0.075 Load beams w/ 3 -Pin Connector by : Ben Riehl Registered Engineer OR# 11949 19047 ICT. F o 11949 • ! • 31 1 ��� EXP. DATE: 1 2/ C�{ Cold Formed Channel Depth 3.000 in Fy = 50 ksi Flange 3.000 in Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R 0.1000 in Blank = 9.96 in wt = 2.5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2.6500 x bar 1.2423 b bar 2.9250 m 1.6690 c 0.5750 x0 - 2.9114 c bar 0.7125 J 0.0014 u 0.2160 'x web 1.2798 gamma 1.0000 x lip 1.7202 R' 0.1375 h/t 38.0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0.152 in2 A' = 0.595 in2 x bar = 1.478 in I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in Cold Formed Channel Depth 1.500 in Fy = 50 ksi Flange 1.250 in Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 3.73 in wt = 1.0 plf A = 0.280 in2 Ix = 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 14.3333 b 1.0750 x bar 0.3946 b bar 1.2125 m 0.5298 c 0.0000 x0 - 0.9244 c bar 0.0000 J 0.0005 u 0.2160 x web 0.4321 gamma 0.0000 x lip 0.8179 R' 0.1375 h/t 18.0000 Cold Formed Section HEIGHT OF BEAM 3.500 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 50.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 3.1500 1.7500 5.5125 9.6469 2.6047 0.0375 0.1181 TOP 1.4000 3.4625 4.8475 16.7845 0.0000 0.8750 1.2250 STEP SIDE 1.3500 2.6500 3.5775 9.4804 0.2050 1.7125 2.3119 STEP BOTT 0.7250 1.8375 1.3322 2.4479 0.0000 2.2125 1.6041 SHORT SID 1.5250 0.9375 1.4297 1.3403 0.2955 2.7125 4.1366 BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 3.4125 0.7371 2.5152 0.0004 0.0875 0.0189 2 0.2160 3.4125 0.7371 2.5152 0.0004 1.6625 0.3591 3 0.2160 1.8875 0.4077 0.7694 0.0004 1.8000 0.3888 4 0.2160 1.7875 0.3861 0.6901 0.0004 2.6625 0.5751 5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 11.8459 21.3500 19.0950 46.1967 3.1076 17.8875 14.6314 AREA = 0.888 IN2 CENTER GRAVITY = 1.612 INCHES TO BASE 1.235 INCHES TO LONG SIDE Ix = 1.389 IN4 Iy = 0.904 IN4 Sx = 0.736 IN3 Sy = 0.596 IN3 Rx = 1.250 IN Ry = 1.008 IN • Load Beam Check 3.50x 2.750x 0.075 Fy = 50 ksi A = 0.888 in2 E = 29,500 E3 ksi Sx = 0.736 in3 Ix = 1.389 in4 Length = 90 inches Pallet Load 3700 lbs Assume 0.5 pallet load on each beam M= PL /10= 16.65 k - fb = 22.63 ksi Fb = 30 ksi 75% Mcap = 22.08 k -in 29.43 k -in with 1/3 increase Defl = 0.34 in = L/ 263 w/ 25% added to one pallet load M = .23 PL = 19.15 k -in 87% 2i Cold Formed Section HEIGHT OF BEAM 4.000 INCHES /O MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 50.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 3.6500 2.0000 7.3000 14.6000 4.0523 0.0375 0.1369 TOP 1.4000 3.9625 5.5475 21.9820 0.0000 0.8750 1.2250 STEP SIDE 1.3500 3.1500 4.2525 13.3954 0.2050 1.7125 2.3119 STEP BOTT 0.7250 2.3375 1.6947 3.9613 0.0000 2.2125 1.6041 SHORT SID 2.0250 1.1875 2.4047 2.8556 0.6920 2.7125 5.4928 BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 3.9125 0.8450 3.3063 0.0004 0.0875 0.0189 2 0.2160 3.9125 0.8450 3.3063 0.0004 1.6625 0.3591 3 0.2160 2.3875 0.5157 1.2311 0.0004 1.8000 0.3888 4 0.2160 2.2875 0.4941 1.1302 0.0004 2.6625 0.5751 5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 12.8459 25.3500 24.0270 65.7748 4.9516 17.8875 16.0064 AREA = 0.963 IN2 CENTER GRAVITY = 1.870 INCHES TO BASE 1.246 INCHES TO LONG SIDE Ix = 1.934 IN4 Iy = 1.039 IN4 Sx = 0.908 IN3 Sy = 0.691 IN3 Rx = 1.417 IN Ry = 1.039 IN BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 4 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD Q BTM OF BEAM = 0.000 IN LOAD = 3700 LBS PER PAIR CONNECTOR VERTICAL LOAD = 925 LBS EACH RIVETS 3 RIVETS Q 2 " oc 0.4375 " DIA A502 -2 1st © 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 14% CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K -IN W/ 1/3 INCREASE = 5.232 K -IN RIVET MOMENT RESULTANT Q 0.9 IN FROM BTM OF CONN M = PL L = 1.1 IN Pmax = Mcap /L = 4.756 KIPS RIVET LOAD DIST MOMENT P1 2.844 4.100 11.659 RIVET OK P2 1.457 2.100 3.059 P3 0.069 0.100 0.007 P4 0.000 0.000 0.000 TOTAL 4.370 14.725 CONNECTOR OK WELDS 0.125 " x 4.000 " FILLET WELD UP OUTSIDE 0.125 " x 2.375 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE O " x 1.000 " FILLET WELD STEP BOTTOM O " x 2.750 " FILLET WELD ACROSS BOTTOM O " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 " THICK WELD L = 8.00 IN A = 0.600 IN2 S = 0.400 IN3 Fir = 26.0 KSI Mcap = 10.40 K -IN W /1/3 INCR= 13.87 K -IN Co • In Upright Plane SINGLE ROWS Seismic Load Distribution per 1997 UBC Zone 3 Z = 0.30 1.33 Allowable Stress Increase I = 1.00 R = 4.4 Ca = 0.36 V = (2.5 *Ca *I) /(R *LF) *W LF = 1.4 Weight 60 # per level frame weight Columns @ 40 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 152 3760 572 732 111 76 3760 286 366 28 O 0 0 0 0 KLx = 76 in O 0 0 0 0 KLy = 4 3 in O 0 0 0 0 A= 0.595 in O 0 0 0 0 Pcap = 17694 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 7520 857 1099 139 Column 41% Stress Max column load = 7239 # Min column load = 281 # Overturning OTM = 139.2 K -IN X 1.15 = 160.0 K -IN RM = 150.4 K -IN REQUIRED HOLD DOWN = 0.24 KIPS Anchors: Special Inspection(Y or N)? NO 2 T = 241 # 2 2 0.5 " diameter Hilti -KB II 3.5 "embedment in 2000 psi concrete Tcap = 2333 # 10% Stressed V = 549 # per leg Vcap = 4907 # = 11% Stressed COMBINED = 5% Stressed Braces: Brace height = 43 " Brace width = 40 " Length = 59 " P = 1613 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 146 Pcap = 2674 # 60% I In Upright Plane SINGLE ROWS Seismic Load Distribution TOP LOAD ONLY per 1997 UBC Zone 3 Z = 0.30 1.33 Allowable Stress Increase I = 1.00 R = 4.4 Ca = 0.36 V = (2.5 *Ca *I) /(R *LF) *W LF = 1.4 Weight 60 # per level frame weight Columns © 40 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 152 3760 572 554 84 76 60 5 4 0 0 0 0 0 0 KLx = 76 in 0 0 0 0 0 KLy = 43 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 17694 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 3820 576 558 84 Column 23% Stress Max column load = 4022 # Min column load = -202 # Uplift Overturning OTM = 84.5 K -IN X 1.15 = 97.2 K -IN RM = 76.4 K -IN REQUIRED HOLD DOWN = 0.52 KIPS Anchors: Special Inspection(Y or N)? NO 2 T = 519 # 2 2 0.5 " diameter Hilti -KB II 3.5 "embedment in 2000 psi concrete Tcap = 2333 # 22% Stressed V = 279 # per leg Vcap = 4907 # = 6% Stressed COMBINED = 9% Stressed Braces: Brace height = 43 " Brace width = 40 " Length = 59 " P = 819 # 1 . Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 146 Pcap = 2674 # 31% PAGE 1 MSU STRESS -11 VERSION 9/89 - -- DATE: 11/06/:3 - -- TIME OF DAY: 11:10:15 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 2 Levels Type Plane Frame Number of Joints 10 Number of Supports 6 Number of Members 10 Number of Loadings 1 Joint Coordinates 2 5 8 10 1 0.0 76.0 S 2 0.0 152.0 S 3 56.5 0.0 S 4 56.5 76.0 5 56.5 152.0 1 4 6 169.5 0.0 S 7 9 7 169.5 76.0 8 169.5 152.0 9 226.0 76.0 S 10 226.0 152.0 S 3 • 6 Joint Releases 3 Moment Z 6 Moment Z 1 Force X Moment Z 2 Force X Moment Z 9 Force X Moment Z 10 Force X Moment Z Member Incidences 1 1 4 2 2 5 3 3 4 4 4 5 5 6 7 6 7 8 7 4 7 8 7 9 9 5 8 10 8 10 Member Properties 1 Thru 2 Prismatic Ax 0.963 Ay 0.674 Iz 1.934 3 Thru 6 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 7 Thru 10 Prismatic Ax 0.963 Ay 0.674 Iz 1.934 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 4 Force Y -1.88 5 Force Y -1.88 7 Force Y -1.88 8 Force Y -1.88 4 Force X 0.053 • I PAGE 2 MSU STRESS -11 VERSION 9/89 - -- DATE: 11/06/:3 - -- TIME OF DAY: 11:10:15 5 Force X 0.106 7 Force X 0.053 8 Force X 0.106 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 1997 UBC wi di widi2 fi fidi # in # 3760 0.9925 3704 106 105.2 50 106 3760 1.2560 5932 212 266.3 99 212 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0 0.0 0 0 7520 9635 318 371.5 318 g = 32.2 ft /sec2 T = 1.627904 sec I = 1.00 Cv = 0.54 V min = .11 *Ca *I *W = 0.0396 W R = 5.6 V = (Cv *I) /(R *LF *T) *W LF = 1.4 V = 0.042 W = 318 # 100% I() PAGE 3 MSU STRESS -11 VERSION 9/89 - -- DATE: 11/06/:3 - -- TIME OF DAY: 11:10:15 Structure Storage Rack in Load Beam Plane 2 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.127 0.00 1 4 0.000 0.127 -7.15 2 2 0.000 -0.031 0.00 2 5 0.000 0.031 -1.73 3 3 3.739 0.157 0.00 3 4 -3.739 -0.157 11.96 4 4 1.869 0.096 3.00 4 5 -1.869 -0.096 4.31 5 6 3.739 0.161 0.00 5 7 -3.739 -0.161 12.21 6 7 1.869 0.116 3.66 6 8 -1.869 -0.116 5.14 7 4 -0.008 -0.136 -7.81 7 7 0.008 0.136 -7.60 ,,y�d�, ���� 8 7 0.000 -0.146 /•//' 8 9 0.000 0.146 0.00 /4,0 9 5 0.010 -0.042 -2.58 9 8 -0.010 0.042 -2.14 10 8 0.000 -0.053 -3.00 10 10 0.000 0.053 0.00 APPLIED JOINT LOADS, FREE JOINTS JOINT FORCE X FORCE Y MOMENT Z 4 0.053 -1.880 0.00 5 0.106 -1.880 0.00 7 0.053 -1.880 0.00 8 0.106 -1.880 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS li PAGE 4 MSU STRESS -11 VERSION 9/89 - -- DATE: 11/06/:3 - -- TIME OF DAY: 11:10:15 JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.127 0.00 2 0.000 -0.031 0.00 3 -0.157 3.739 0.00 6 -0.161 3.739 0.00 9 0.000 0.146 0.00 10 0.000 0.053 0.00 FREE JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 4 0.9925 - 0.0165 - 0.0027 5 1.2560 - 0.0247 - 0.0010 7 0.9925 - 0.0165 - 0.0025 8 1.2560 - 0.0247 - 0.0006 SUPPORT JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 1 0.9925 0.0000 0.0009 2 1.2560 0.0000 - 0.0002 3 0.0000 0.0000 - 0.0182 6 0.0000 0.0000 - 0.0183 9 0.9925 0.0000 0.0017 10 1.2560 0.0000 0.0009 I Beam - Column Check C 3.000x 3.000x 0.075 Fy = 50 ksi A = 0.595 in2 • Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.333 Point P M Lx Ly Pcap Mcap Ratio 7 3.8 12.2 76.0 43.0 17.69 27.03 66% 8 1.9 5.1 76.0 43.0 17.69 27.03 30% O 0.0 0.0 76.0 43.0 17.69 27.03 0% O 0.0 0.0 76.0 43.0 17.69 27.03 0% O 0.0 0.0 76.0 43.0 17.69 27.03 0% O 0.0 0.0 76.0 43.0 17.69 27.03 0% Load Beam Check 4.00x 2.750x 0.075 Fy = 50 ksi A = 0.963 in2 E = 29,500 E3 ksi Sx = 0.908 in3 Ix = 1.934 in4 Length = 110 inches Pallet Load 3700 lbs Assume 0.5 pallet load on each beam M= PL /10= 20.35 k -in fb = 22.41 ksi Fb = 30 ksi 75% Mcap = 27.24 k -in 36.33 k -in with 1/3 increase Defl = 0.45 in = L/ 245 w/ 25% added to one pallet load M = .23 PL = 23.40 k -in 86% I Base Plate Design Column Load 5.4 kips Allowable Soil 1500 psf basic Assume Footing 22.8 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = wl'2/3 Use 4 "square base plate w = 10.4 psi 1 = 6.42 in Load factor = 1.67 M = 239 # -in 6 in thick slab f'c = 2500 psi s = 6.00 in3 fb = 40 psi Fb = 5(phi) (f' c . 5) = 163 psi OK !! Shear : Beam fly = 19 psi Fv = 85 psi OK !! Punching fv = 31 psi Fv = 170 psi OK !! Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 339 psi fb = 16288 psi Fb = 27000 psi OK !! a