Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Plans
1 )P2o©9 066t 2 TYPE "A" TYPE "B" 1 r - TQ � c , PERMANENT PLAQUE NOT LESS THAN PERMANENT PLAQUE NOT LESS THAN 11 � � 0 �� 50 SQ INCHES IN AREA TO BE PLACED 50 SQ INCHES IN AREA TO BE PLACED IN C❑NSPICU ❑US LOCATION STATING IN CONSPICUOUS LOCATION STATING 3000# CAPACITY @ 8', 54', 100', 136' 3000# CAPACITY @ 43, 85', 127' ..'' I. �� O 4' -0' 10' -0' 10' -0' ' Z ,�� • [ 1 :° ZaMt ' N w W - - - L❑ BEAM � � f p W W I LOAD BEAM I 49 x CONNECTOR 3' -0' 1 "` LOAD BEAM CONNECTOR 3' -6' Z Cu w D LOAD BEAM aJ CONNECTOR 3' - ���� ��� RE CEIVED12' -0' LOAD BEAM C ❑NNECT ❑R 3' -6 JAN 1 5 209 - x LOAD BEAM "" "" CITY OF TIGARD cz BRACE a l CONNECTOR 1 3 -10 ~ \ 1- ` CONNECTOR 3' -7• gUI� n�N� DIVISION Q lD D LOAD BEAM D a LOAD BEAM I--I _ W _ W 8' > > W I UPRIGHT LOAD BEAM ELEVATION LOAD BEAM ELEVATION , . =LIJ In I— > ly w (4- 0 Q C 1.5 x 1.5 1.5 I- (/) 0 F- 14 GA THK 14 GA THK fl COLUMN 3 a- ; o A z o Z 3 , 14GA THK C3x3x1/8 BASE 2' IL ELD 3/8x 5x 8 BASEPLATE U C 1 i ' I- W Q (2) 1/2'0 ANCHORS F- Q +; Q Q 0 V 3/8'x 5'x 8' 3' (1)1/2' ANCHOR EA END TO COLUMN 1/8 F1 - 112' 6'oc to o d > 1_1.1 ao BASEPLATE @ EA COLUMN BRACE E A SIDE ° J i° w U w 0 Q (2) 1/2'0 ANCHORS � ► F F W 3, Z - - N N rnW UM D L,J pg 3 � 13 9 0 0 5• 6' ■ N x Jw �> I — X 1/8 � 1 -1/2' EA FACE u \ ^ N d A O a N 1/8 ' 1 -1/2' EA FACE ii ` 5' CONCRETE SLAB ON GRADE w L,_I MI z C OLUMN & BASE PL B RACE i U w J a 9 @ TYPE 'A' COLUMN & BASE PL COLUMN BASE X SECTION Q Y A o w W a @ TYPE 'B' @ TYPE 'A' 0 5 Q U CO 0 NI A p l? U - w J M II 0 o L CO ■ BRACE CONN >,_1 % J V' N J w o p 0 In o 2 CA J in V z rn ' , COLU (11 U Rs w w M Ljj cc 14 GA THICK 1 -5/8'H x 1' W (2) PIN CONN I CONNECTOR C3x3x1/8 BASE Cz 1 II W V) ' v) STEP 0 (1)1/2'0 ANCHOR w U VI __I 0 LL Z ilit o ( 2) AISI A502 - 2 RIVETS 0 / 1/8 F1 - 1/2' i_ w ' z /I @ EA COLUMN c/) • � L❑AD BEAM 7/16' 4'oc 0 . ! EA SIDE J J ` H ❑ ❑K THRU SL ❑TS A w V) e g 1 -5/8x 3x o IN C ❑LUMN o 0 I ' '� FF Z ix 0� ° 3/16' THK c, a v) II �� N C] o W ° .7 1 /8V VERT EDGES p I 3.25' w II w A s w I CONNECTOR 0 0 5' a II W a w A z'' v 4 ) 0 LOAD BEAM 0 SAFETY PIN TO RESIST 1 1000# UPLIFT LOAD 5' CONCRETE SLAB ON GRADE Z II A V) J Q Q k COLUMN-BEAM CONN COLUMN BASE X- SECTION .-4 N M 4 to @ TYPE 'B' CANTILEVER RACK INOTES: PERMANENT PLAQUE NOT LESS THAN , 1.) DESIGNED PER 2006 IBC 2.) MATERIAL SPECS: Fy = 50 ksl EXCEPT AS NOTED W • 50 SQ INCHES IN AREA TO BE PLACED ALL WELDS E70xx ELECTRODES ' aj IN CONSPICU ❑US LOCATION STATING ,,, > 5' CONCRETE SLAB 2500 psi vi La- 500# CAPACITY PER ARM w /(3) ARMS /COLUMN N w I ALLOW S ❑IL PRESSURE 1500 psf 3.) SEISMIC Sds =0.71' Sd1 =0.39 ( ; � 4.) LOAD PER LEVEL: SEE NOTE ABOVE ELEVATION o 0 5.) ANCHORS T❑ BE HILTI TZ c h MINIMUM OF 3.25' EMBEDMENT PER ICBO REPORT #1917 Li 7 m ARM 5-- w - U - ca HORZ STRUT 0x BRACE DETAIL 2' PLAN VIEW 3/16' BRACKET W/ (2) 1/2'0 PINS ARM o r 3/16 2.25' 2° TILT FROM HORZ z in allill 10' -1 o o ELEVATI ❑N VIEW 48' u (2)PIN CONN ; ARM X -BRACE ARM DETAIL L W Q ' (4- = Z Y I— Q HORZ STRUT ...=)--- COLUMN -BASE D0p` Q CY I I-1-1 CONNECTION DETAIL , • �� 1 1-. Z W BASE SECTI ❑N . 47 44 Z i/ CY A • COLUMN SECTION p o• O BASE a 2 a W Q O V I BASE I t9 = V u, > 3 °•d ti �' ►- J (3 "q 55" 5 414 5 FRONT ELEVATI ❑N r s ,9.4 1 - M Q ` Q wu'� IDE ELEVATION -I 1-1!- 2 -1 /2'x 0.18' COL UMN SECTION FACE SECTION DIAGONAL BRACE IS 1/2'0 ROD f TYPICAL W/ 112'0 GRD 5 BOLT EA END zo a 1/8 2' @8' STRUT IS C 3x 1 -5/8x 14ga ' ~ T. 00 or L2x 2x 1/8 3/16' WEDGE SIDE PL —\ W/ 1/2'0 GRD 5 BOLT EA END WELDED EACH SIDE COLUMN 3/16 V N o r ❑F COLUMN W o v 1/4' TAB WELDED TO Q 1' 1 -• COLUMN TO CONNECT P° BRACES di 2.5' 2.5' 3/16 ° COLUMN SECTION HORZ STRUT , , E D FORMED 0 o Q 3/16' FORMED ■ 3/16 r _.\ • in 2' 2' •: f 1/2'0 GRD 5 BOLT WEDGE BRACKET r 1/2'0 ANCHOR BOLT @ I 4.5' 1 D WELDED TO EACH 1 EA END OF BASE 4" -J SIDE OF BASE SECTI ❑N ` g 1' 3/16 V v 0 u BASE SECTION - o tiQ' l.- 8 • cgo rn ,, - - , - - FF 1-1 5 IoGA MAT'L BRACE DETAIL I I (1) 1/2'0 GRADE 5 BOLTS @ BASE 1/2'x1.5' CONN BAR I O >. 0 BASE SECTI ❑N - COLUMN-BASE C❑NNECTI ❑N • • • Calculations for .LEAF GUARD NORTHWEST tik TIGARD, OR 01/12/2009 Loading: 3000 # load levels 4 pallet levels ® 8,54,100,136 - Seismic per IBC 2006 100% Utilization Sds = 0.707 Sdl = • 0.387 I = 1.00 120 " Load Beams Uprights: -" :A8 - . C 3.000x 3.000x 0.075 Columns C 1.500x 1.500x 0.075' Braces 5.00x 8.00x 0.'375 •.B Plates with.2- 0.500in x 3.25in Embed Anchor /Column 4.00x 2.750x 0.075 - Load beams w/ 2 -Pin Connector by : Ben Riehl Registered Engineer OR# 11949 • ���� G P O F N / • ac 11949 9 OREGON 0c 9,.0% e FN J. or • EXP. DATE: 12/ /6 / 03,0 • • Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.4365 Longitude = - 122.782 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.939 (Ss, Site Class B) 1.0 0.338 (51, Site Class B) • Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.4365 Longitude = - 122.782 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 Site Class D - Fa = 1.124 ,Fv = 1.723 • Period Sa (sec) (g) 0.2 1.056 (SMs, Site Class D) 1.0 0.583 (SM1, Site Class D) IBC 2006 LOADING SEISMIC: Ss= 93.9 % g S1= 33.8 %g Soil Class D Modified Design spectral response parameters Sms= 105.6 % g Sds= 70.4 % g Sm1= 58.3 %g Sd1= 38.9 %g Seismic Use Group 1 Seismic Design Category D or D le = 1 R= 4 R= 6 Cs = 0.1760 W Cs = . 0.1173 W Using Working Stress Design V = Cs*W /1.4 V = 0.1257 W V = 0.0838 W �(/ Cold Formed Channel Depth 3.000 in Fy = 50 ksi Flange 3.000 in Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R 0.1000 in Blank = 9.96 in wt = 2.5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2.6500 x bar 1.2423 b bar 2.9250 m 1.6690 c 0.5750 x0 - 2.9114 c bar 0.7125 J 0.0014 u 0.2160 x web 1.2798 gamma 1.0000 x lip 1.7202 R' 0.1375 h/t 38.0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0.152 in2 A' = 0.595 in2 x bar = 1.478 in • I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in Cold Formed Channel Depth 1.500 in Fy = 50 ksi Flange 1.500 in Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 4.23 in wt = 1.1 plf A = 0.317 in2 Ix = 0.125 in4 Sx = 0.166 in3 Rx = 0.627 in Iy = 0.075 in4 Sy = 0.079 in3 Ry = 0.487 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 17.6667 b 1.3250 x bar 0.5060 b bar 1.4625 m 0.6531 c 0.0000 x0 - 1.1592 c bar 0.0000 J 0.0006 u 0.2160 x web 0.5435 gamma 0.0000 x lip 0.9565 R' 0.1375 h/t 18.0000 Cold Formed Section HEIGHT OF BEAM 4.000 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 50.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 3.6500 2.0000 7.3000 14.6000 4.0523 0.0375 0.1369 TOP 1.4000 3.9625 5.5475 21.9820 0.0000 0.8750 1.2250 STEP SIDE 1.3500 3.1500 4.2525 13.3954 0.2050 1.7125 2.3119 STEP BOTT 0.7250 2.3375 1.6947 3.9613 0.0000 2.2125 1.6041 SHORT SID 2.0250 1.1875 2.4047 2.8556 0.6920 2.7125 5.4928 BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 3.9125 0.8450 3.3063 0.0004 0.0875 0.0189' 2 0.2160 3.9125 0.8450 3.3063 0.0004 1.6625 0.3591 3 0.2160 2.3875 0.5157 1.2311 0.0004 1.8000 0.3888 4 0.2160 2.2875 0.4941 1.1302 0.0004 2.6625 0.5751 5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 12.8459 25.3500 24.0270 65.7748 4.9516 17.8875 16.0064 • AREA = 0.963 IN2 CENTER GRAVITY = 1.870 INCHES TO BASE 1.246 INCHES TO LONG SIDE Ix = 1.934 IN4 Iy = 1.039 IN4 Sx = 0.908 IN3 Sy = 0.691 IN3 Rx = 1.417 IN Ry = 1.039 IN 1, BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 4 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD @ BTM OF BEAM = 0.000 IN LOAD = 3000 LBS PER PAIR CONNECTOR VERTICAL LOAD = 750 LBS EACH RIVETS 2 RIVETS @ 4 " oc 0.4375 " DIA A502 -2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 4.266 KIPS 18% CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K -IN W/ 1/3 INCREASE = 5.232 K -IN RIVET MOMENT RESULTANT @ 0.5 IN FROM BTM OF CONN M = PL L = 1.5 IN Pmax = Mcap /L = 3.488 KIPS RIVET LOAD DIST MOMENT P1 2.844 4.500 12.797 RIVET OK P2 0.316 0.500 0.158 P3 0.000 0.000 0.000 P4 0.000 0.000 0.000 TOTAL 3.160 12.955 CONNECTOR OK WELDS 0.125 " x 4.000 " FILLET WELD UP OUTSIDE 0.125 " x 2.375 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE O " x 1.000 " FILLET WELD STEP BOTTOM O " x 2.750 " FILLET WELD ACROSS BOTTOM O " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 " THICK WELD L = 8.00 IN A = 0.600 IN2 S = 0.400 IN3 Fv = 26.0 KSI Mcap = 10.40 K -IN W /1/3 INCR= 13.87 K -IN 7 In Upright Plane Seismic Load Distribution per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 *.67 LF = 1.4 Weight 60 # per level frame weight Columns @ 48 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 136 3060 416 472 64 100 3060 306 347 35 54 3060 165 188 10 KLx = 8 in 8 3060 24 28 0 KLy = 41 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 19514 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 12240 912 1035 109 Column 43% Stress Max column load = 8397 # Min column load = 1823 # Overturning OTM = 109.3 K -IN X 1.15 = 125.7 K -IN RM = 195.8 K -IN REQUIRED HOLD DOWN = 0.00 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 0 No uplift anchors req'd 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 4356 # 0% Stressed V = 517 # per leg Vcap = 5678 # = 9% Stressed COMBINED = 9% Stressed OK Braces: Brace height = 41 " Brace width = 48 " Length = 63 " P = 1361 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 130 Pcap = 3818 # 36% V In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 LF = 1.4 Weight 60 # per level frame weight Columns Q 48 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 136 3060 416 400 54 100 60 6 6 1 54 60 3 3 0 KLx = 8 in 8 60 0 0 0 KLy = 41 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 19514 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 3240 426 409 55 Column • 14% Stress Max column load = 2768 # Min column load = 472 # Overturning OTM = 55.1 K -IN X 1.15 = 63.3 K -IN RM = 77.8 K -IN REQUIRED HOLD DOWN = 0.00 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 0 No uplift anchors req'd 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 4356 # 0% Stressed V = 204 # per leg Vcap = 5678 # = 4% Stressed COMBINED = 4% Stressed OK Braces: Brace height = 41 " Brace width = 48 " Length = 63 " P = 538 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 130 Pcap = 3818 # 14% g PAGE 1 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 - -- TIME OF DAY: 16:04:54 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 4 Levels Type Plane Frame Number of Joints 18 Number of Supports 10 Number of Members 20 Number of Loadings 1 Joint Coordinates 4 9 14 18 1 0.0 8.0 S 2 0.0 54.0 S 3 0.0 100.0 S 3 8 13 17 4 0.0 136.0 S 5 61.5 0.0 S 6 61.5 8.0 2 7 12 16 7 61.5 54.0 8 61.5 100.0 1 6 11 15 9 61.5 136.0 10 184.5 0.0 S 5 10 11 184.5 8.0 12 184.5 54.0 13 184.5 100.0 14 184.5 136.0 15 246.0 8.0 S 16 246.0 54.0 S 17 246.0 100.0 S 18 246.0 136.0 S Joint Releases 5 Moment Z 10 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 4 Force X Moment Z 15 Force X Moment Z 16 Force X Moment Z 17 Force X Moment Z 18 Force X Moment Z Member Incidences 1 1 6 2 2 7 3 3 8 4 4 9 5 5 6 6 6 7 7 7 8 8 8 9 9 10 11 10 11 12 11 12 13 PAGE 2 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 - -- TIME OF DAY: 16:04:54 12 13 14 • 13 6 11 14 11 15 15 7 12 • 16 12 16 17 8 13 18 13 17 19 9 14 20 14 18 Member Properties 1 Thru 4 Prismatic Ax 0.963 Ay 0.674 Iz 1.934 5 Thru 12 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 13 Thru 20 Prismatic Ax 0.963 Ay 0.674 Iz 1.934 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 6 Force Y -1.530 . 7 Force Y -1.530 8 Force Y -1.530 9 Force Y -1.530 11 Force Y -1.530 12 Force Y -1.530 13 Force Y -1.530 14 Force Y -1.530 6 Force X 0.008 7 Force X 0.053 8 Force X 0.097 9 Force X 0.132 " 11 Force X 0.008 12 Force X 0.053 13 Force X 0.097 14 Force X 0.132 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2006 IBC wi di widi2 fi fidi # in # 3060 0.0156 1 16 0.2 8 16 3060 0.1821 101 106 19.3 53 106 3060 0.3264 326 194 63.3 97 194 3060 0.3798 441 264 100.3 132 264 0 0.0000 0 0 0.0 0 0 • 0 0.0000 0 0 0.0 0 0 12240 870 580 183.1 . g = 32.2 ft /sec2 T = 580 0.6965 sec I = 1.00 Cs = 0.0984 or 0.2827 Cv = 0.386666 Cs min = .14 *Sds= 0.0989 or 1.5% R = 6 Cs = 0.0989 LF = 1.4 V = (Cs *I) /(LF) *W *.67 V = 0.070666 W *.67 = 580 # 100% ll PAGE 3 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 - -- TIME OF DAY: 16:04:54 Structure Storage Rack in Load Beam Plane 4 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.072 0.00 1 6 0.000 0.072 -4.41 2 2 0.000 -0.082 0.00 2 7 0.000 0.082 -5.06 3 3 0.000 -0.047 0.00 3 8 0.000 0.047 -2.90 4 4 0.000 -0.013 0.00 4 9 0.000 0.013 -0.78 5 5 6.085 0.287 0.00 5 6 -6.085 -0.287 2.29 6 6 4.557 0.277 6.64 6 7 -4.557 -0.277 6.08 7 7 3.035 0.217 4.58 7 8 -3.035 -0.217 5.42 8 8 1.518 0.103 1.26 8 9 -1.518 -0.103 2.45 9 10 6.085 0.293 0.00 9 11 -6.085 -0.293 2.35 10 11 4.557 0.287 6.81 10 12 -4.557 -0.287 6.41 11 12 3.035 0.241 5.09 11 13 -3.035 -0.241 5.97 12 13 1.518 0.161 2.18 12 14 -1.518 -0.161 3.62 13 6 -0.002 -0.074 -4.53 13 11 0.002 0.074 -4.52 14 11 0.000 -0.075 -4.64 14 15 0.000 0.075 0.00 15 7 -0.006 -0.090 -5.60 15 12 0.006 0.090 - 16 12 0.000 -0.098 -6.03 C1K4V, COA/144 16 16 0.000 0.098 0.00 & f - 17 8 -0.018 -0.060 -3.78 /40N447)4/7-- Ir 17 13 0.018 0.060 -3.64 18 13 0.000 -0.073 -4.51 _ 18 17 0.000 0.073 0.00 19 9 0.029 -0.025 -1.66 19 14 -0.029 0.025 -1.37 20 14 0.000 -0.037 -2.25 20 18 0.000 0.037 0.00 /2 PAGE 4 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 - -- TIME OF DAY: 16:04:54 APPLIED JOINT LOADS, FREE JOINTS JOINT FORCE X FORCE Y MOMENT Z 6 0.008 -1.530 0.00 7 0.053 -1.530 0.00 8 0.097 -1.530 0.00 9 0.132 -1.530 0.00 11 0.008 -1.530 0.00 12 0.053 -1.530 0.00 13 0.097 -1.530 0.00 14 0.132 -1.530 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.072 0.00 2 0.000 -0.082 0.00 3 0.000 -0.047 0.00 4 0.000 -0.013 0.00 5 -0.287 6.085 0.00 10 -0.293 6.085 0.00 15 0.000 0.075 0.00 16 0.000 0.098 0.00 17 0.000 0.073 0.00 18 0.000 0.037 0".00 FREE JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 6 0.0156 - 0.0028 - 0.0017 7 0.1821 - 0.0150 - 0.0021 8 0.3264 - 0.0231 - 0.0014 9 0.3798 - 0.0262 - 0.0007 11 0.0156 - 0.0028 - 0.0017 12 0.1821 - 0.0150 - 0.0020 13 0.3265 - 0.0231 - 0.0013 14 0.3797 - 0.0262 - 0.0004 SUPPORT JOINT DISPLACEMENTS • /3 PAGE 5 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 - -- TIME OF DAY: 16:04:54 JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 1 0.0156 0.0000 0.0008 2 0.1821 0.0000 0.0007 3 0.3264 0.0000 0.0001 4 0.3798 0.0000 - 0.0003 5 0.0000 0.0000 - 0.0020 10 0.0000 0.0000 - 0.0020 15 0.0156 0.0000 0.0009 16 0.1821 0.0000 0.0013 17 0.3265 0.0000 0.0012 18 0.3797 0.0000 0.0008 • / L. Beam - Column Check C 3.000x 3.000x 0.075 Fy = 50 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.333 Point P M Lx Ly Pcap Mcap Ratio 11 6.1 2.4 8.0 41.0 19.51 27.03 40% 12 4.6 6.8 46.0 41.0 19.51 27.03 49% • 13 3.1 6.0 46.0 41.0 19.51 27.03 38% 14 1.6 3.6 46.0 41.0 19.51 27.03 22% O 0.0 0.0 46.0 41.0 19.51 27.03 0% O 0.0 0.0 46.0 41.0 19.51 27.03 0% Load Beam Check 4.00x 2.750x 0.075 Fy = 50 ksi A = 0.963 in2 E = 29,500 E3 ksi Sx = 0.908 in3 Ix = 1.934 in4 Length = 120 inches Pallet Load 3000 lbs Assume 0.5 pallet load on each beam M = PL /8= 22.50 k -in fb = 24.78 ksi Fb = 30 ksi 83% Mcap = 27.24 k -in 36.33 k -in with 1/3 increase Defl = 0.59 in = L/ 203 w/ 257 added to one pallet load M = .282 PL = 25.38 k -in 93% / Base Plate Design Column Load 6.3 kips Allowable Soil 1500 psf basic Assume Footing 24.6 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1 /3 Use 5 "square base plate w = 10.4 psi 1 = 7.29 in Load factor = 1.67 M = 309 # -in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 74 psi Fb = 5(phi)(f'c".5) = 163 psi OK !! Shear : Beam fv = 25 psi Fv = 85 psi OK !! Punching fv = 44 psi Fv = 170 psi OK !! Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 252 psi fb = 12092 psi Fb = 37500 psi OK !! • l( Calculations for : LEAF GUARD NORTHWEST TIGARD, OR 01/12/2009 Loading: 3000 # load levels 3 pallet levels © 43,85,127 Seismic per IBC 2006 100s Utilization Sds = 0.707 Sdl = 0.387 I = 1.00 120 " Load Beams Uprights: 48 " wide C 3.000x 3.000x 0.075 Columns C 1.500x 1.500x 0.075 Braces 3.00x 3.00x 0.130 Base Plates with 1- 0.500in x 3.25in Embed Anchor /Column 4.00x 2.750x 0.075 Load beams w/ 2 -Pin Connector by : Ben Riehl • Registered Engineer OR# 11949 17 In Upright Plane Seismic Load Distribution per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 *.67 LF = 1.4 Weight 60 # per level frame weight Columns @ 48 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 127 3060 389 387 49 85 3060 260 259 22 43 3060 132 131 6 KLx = 73.1 in 0 0 0 0 0 KLy = 41 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 17920 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 9180 780 776 77 Column 35% Stress Max column load = 6188 # Min column load = 1477 # Overturning OTM = 76.7 K -IN X 1.15 = 88.2 K -IN RM = 146.9 K -IN REQUIRED HOLD DOWN = 0.00 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 0 No uplift anchors req'd 2 1 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 4356 # 0% Stressed V = 388 # per leg Vcap = 5678 # = 7% Stressed • COMBINED = 7% Stressed OK Braces: Brace height = 41 " Brace width = 48 " Length = 63 " P = 1021 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 130 Pcap = 3818 # 27% G' v In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 LF = 1.4 Weight 60 # per level frame weight Columns @ 48 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 127 3060 389 394 50 85 60 5 5 0 43 60 3 3 0 KLx = 73.1 in 0 0 0 0 0 KLy = 41 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 17920 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 3180 396 401 51 Column 15% Stress Max column load = 2643 # Min column load = 537 # Overturning OTM = 50.5 K -IN X 1.15 = 58.1 K -IN RM = 76.3 K -IN REQUIRED HOLD DOWN = 0.00 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 0 No uplift anchors req'd 2 1 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 4356 # 0% Stressed V = 201 # per leg Vcap = 5678 # = 4% Stressed COMBINED = 4% Stressed OK Braces: Brace height = 41 " Brace width = 48 " Length = 63 " P = 528 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 130 Pcap = 3818 # 14% PAGE 1 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 - -- TIME OF DAY: 16:16:32 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 3 Levels Type Plane Frame Number of Joints 14 Number of Supports 8 Number of Members 15 Number of Loadings 1 Joint Coordinates 1 0.0 43.0 S 3 11 14 2 0.0 85.0 S 3 0.0 127.0 S 4 61.5 0.0 S 2 6 10 13 5 61.5 43.0 6 61.5 85.0 7 61.5 127.0 1 5 9 12 8 184.5 0.0 S 9 184.5 43.0 10 184.5 85.0 4 8 11 184.5 127.0 12 246.0 43.0 S 13 246.0 85.0 S 14 246.0 127.0 S Joint Releases 4 Moment Z 8 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 12 Force X Moment Z 13 Force X Moment Z 14 Force X Moment Z Member Incidences 1 1 5 2 2 6 3 3 7 4 4 5 5 5 6 6 6 7 7 8 9 8 9 10 9 10 11 10 5 9 11 9 12 12 6 10 13 10 13 14 7 11 15 11 14 Member Properties 1 Thru 3 Prismatic Ax 0.963 Ay 0.674 Iz 1.934 • • PAGE 2 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 - -- TIME OF DAY: 16:16:32 4 Thru 9 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 • 10. Thru 15 Prismatic Ax 0.963 Ay 0.674 Iz 1.934 • Constants 13,29000. All G 12000. All . Tabulate All Loading Dead + Live + Seismic Joint Loads • 5 Force Y -1.53 6 Force Y -1.53 • 7 Force Y -1.5 • 9 Force Y -1.53 . .10 Force Y -1.53 11 Force Y -1.53 5 Force X 0:037 • 6 Force X 0.072 7 Force X 0.108 9 Force X 0.037 10 Force X 0.072 11 Force X 0.108 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED • • - - - Seismic Analysis per-2006 IBC • wi. di widi2 fi fidi in 3060 0.2957 268 74 . 21.9 37 • 74 • 3060 0.4077 509 144 58.7 .72 144 3060 0.4668 667 216 100.8 108 216 . 0 0.0000 0' 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 0 0..0000 0 0 0.0 0 0 • 9180 1443 434 181.4 4.35 g = 32.2 ft /sec2 T.= 0.9015•sec • . I 1.00 Cs = 0.0829 or 0.2827 Cv = 0.386666 Cs min = .14 *Sds= 0.0989 or 1.5% R = 6 Cs = '0.0989 LF = 1.4 V = (Cs *I) /(LF) *W *.67 V = 0.070666 W *.67 • = 435 # 100% • • • PAGE 3 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 - -- TIME OF DAY: 16:16:32 Structure Storage Rack in Load Beam Plane 3 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.094 0.00 1 5 0.000 0.094 -5.80 2 2 0.000 -0.041 0.00 2 6 0.000 0.041 -2.52 3 3 0.000 -0.012 0.00 3 7 0.000 0.012 -0.77 4 4 4.564 0.215 0.00 4 5 -4.564 -0.215 9.23 5 5 3.040 0.169 2.79 5 6 -3.040 -0.169 4.31 6 6 1.520 0.088 1.45 6 7 -1.520 -0.088 2.27 7 8 4.564 0.219 0.00 7 9 -4.564 -0.219 9.43 8 9 3.040 0.191 3.23 8 10 -3.040 -0.191 4.79 9 10 1.520 0.128 2.16 9 11 -1.520 -0.128 3.20 10 5 -0.009 -0.100 -6.22 10 9 0.009 0.100 -..12 n- 11 9 0.000 -0.106 T �n , (..POrf� 11 12 0.000 0.106 1.00 12 6 -0.009 -0.052 - 3.24 12 10 0.009 0.052 -3.12 13 10 0.000 -0.062 -3.83 13 13 0.000 0.062 0.00 14 7 0.020 -0.022 -1.50 14 11 -0.020 0.022 -1.23 15 11 0.000 -0.032 -1.97 15 14 0.000 0.032 0.00 APPLIED JOINT LOADS, FREE JOINTS i2 • PAGE . 4 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/12/:9 = -- TIME OF DAY: 16:16:32 JOINT FORCE X FORCE Y MOMENT Z 5 0.037 -1.530 0.00 6 0.072 -1.530 0.00 ' • 7 0.108 -1.530 0.00 9 ' - 0.037 -1.530 0.00 10 0.072 -1.530 0.00 11 0.108 -1.530 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE . X FORCE Y MOMENT Z 1 0.000 -0.094 0.00 2 0.000 -0.041 0.00 3 0.000 -0.012 0.00 4 -0.215 4.564 0.00 8 -0.219 4.564 0.00 12 0.000 0.106 0.00 13 0.000 0.062 0.00 14 0.000 0.032 0.00 FREE JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION , 5 0.2957 - 0.0114 - 0.0023 . 6 0.4077 - 0.0188 - 0.0012 7 0.4668 - 0.0225 - 0.0006• • • 9 . 0.2957 - 0.0114 - 0.0022 ' . 10, 0.4078 '- 0.0188 - 0.0011 , , ' 11 ' 0.4667 - 0.0225 - 0.0004 SUPPORT JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 1 0.2957 0.0000 0.0009 2 0.4077 0.0000 0.0002 3 0.4668 0.0000 - 0.0002 4 0.0000 0.0000 - 0.0091 8 0.0000 0.0000 - 0.0091 12 0.2957 0.0000 0.0014 13 0.4078 0.0000 0.0010• • 14 0.4667 0.0000 0.0007 Beam - Column Check , C 3.000x 3.000x 0.075 Fy = 50 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.70 ' ky = 1.00 Stress Factor 1.333 Point P M Lx Ly Pcap Mcap Ratio 9 4.6 9.4 43.0 41.0 17.92 27.03 60% 10 3.1 4.8 42.0 41.0 18.05 27.03 35% 11 1.6 3.2 42.0 41.0 18.05 27.03 21% O 0.0 0.0 42.0 41.0 18.05 27.03 0% O 0.0 0.0 42.0 41.0 18.05 27.03 0% O 0.0 0.0 42.0 41.0 18.05 27.03 0% Load Beam Check 4.00x 2.750x 0.075 Fy = 50 ksi A = 0.963 in2 E = 29,500 E3 ksi Sx = 0.908 in3 Ix = 1.934 in4 Length = 120 inches Pallet Load 3000 lbs Assume 0.5 pallet load on each beam M = PL /8= 22.50 k -in fb = 24.78 ksi Fb = 30 ksi 83% Mcap = 27.24 k -in 36.33 k -in with 1/3 increase Defl = 0.59 in = L/ 203 w/ 25% added to one pallet load M = .282 PL = 25.38 k -in 93% 14- • • • • Base Plate Design - • Column Load 4.6 kips • • Allowable Soil 1500 psf basic Assume Footing 21.1 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation. at the end of the base plate and is free to deflect 'at the extreme edge. of the assumed footing, but not free to rotate. • 'Mmax = ;w1 ^ 2/3 • Use 3•"square base plate w = 10.4 psi 1 = 6.55 in Load factor •= 1.67 M = 249 # -in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 60 psi' Fb = 5(phi)(f'c".5) = 163 psi OK !! Shear : • Beam fv = 23 psi Fv -= . 85 psi • ,OK!! . 'Punching fv = 41 psi •Fv = 170 :psi OK !! • • Base Plate Bending Use 0.13 " thick 1 =, 0.5 in w = 516 psi • fb = 22885 psi Fb•= 3.7500 psi OK !! • • • • • _ ao_ium_e_v_we rAtele. /ze!trxte4 Pile(hi—P 4 si'd-49*.t. 4 .4 06., /z.,./ ; -- do . rikepf-t - 5 :- ,- 4)'. • 0/4 Cis So 1. ZI2A)4/7-voi,ve.446 Ate,._Afe.45 ,es,zr-, - I% 0, /5-5_( z.zava, (I) aAeia/74-7- gi/(1)d1005. 4eace—.5 VI - *( 4/3)z 301 6(9 v Iwr r z1,310,c7)z- Affe "rcA-p i' 41- la f R: Vett tz,,ip S 130LIS Vc 4 4 P__4Lit" IPZ k s /so - % a c 4 p: /10 /ver at.,07— • Atikse- vs ,50fcsm 0 e p o z3tr-- ritgz ged-at _see Tube Section 01/13/09 Depth 2.250 in Fy = 50 ksi Width 3.800 in E = 29 E3 KSI •Thickness 0.1050 in R 0.1350 in ARM SECTION Blank = 11.36 in wt = 4.1 plf A = 1.193 in2 Ix = 1.024 in4 Sx = 0.910 in3 Rx = 0.927 in Iy = 2.300 in4 Sy = 1.211 in3 Ry = 1.389 in a 1.7700 Web w/t 16.8571 L = 48 IN a bar 2.1450 Flg w/t 31.6190 L/r = 52 b 3.3200 x bar 1.8475 Fa = 24.07 KSI b bar 3.6950 m 2.2330 Pcap = 28.70 K c 0.8850 x0 - 4.0805 Tcap = 35.78 K c bar 1.0725 J 2.2589 Mcap = 27.31 K -IN u 0.2945 x web 1.9000 gamma 1.0000 x lip 1.9000 R' 0.1875 h/t 19.4286 1/ , 0. � � s g C4L O. (9 4C4 % vj f�'J 5-5-X C%)re 173 )/1/ � el,; ) VX z l 5 L12.. tick" D,/96���� g?p • 21 • // 6iti 3'034 .. r p 77f- 1 lV ` z + Z�3.o��� /875= 2, /z iv x = [0 6 -z- 7 -I- -b3 (2, 464Cz ¢ Sx= ¢ Z i r'-' rx FAY _ /go,„..) y 3 2.� pa)z(z) ¢, /1-1 _ � Z, ►z $ 2� "B" UPRIGHT A = 2.12 in Ix = 7.1 in4 Iy = 4.4 in4 Rx = 1.840 in Ry = 1.450 in - Sx = 2.860 in3 Sy = 2.220 in3 Mcap = 85.8 k -in 0.5 Kips per 48 in Arm 80 in Y -Y braces Ry = 1.450 in Ky = 1 Rx = 1.840 in Kx = 2 Ht P M Pcap P /Pcap M /Mcap Combined (feet) (kips) (k -in) KL/r (kips) al o u o f 1 3.33 1.5 39.8 55.2 49.9 3.0% 46.3% 49.3% 2 6.67 1.0 26.5 87.0 37.3 2.7% 30.9% 33.6% 3 10.00 0.5 13.3 130.4 18.6 2.7% 15.4% 18.1% 4 0.00 0.0 0.0 55.2 49.9 0.0% 0.0% 0.0% 5 0.00 0.0 0.0 55.2 49.9 0.0% 0.0% 0.0% 6 0.00 0.0 0.0 55.2 49.9 0.0% 0.0% 0.0% 7 0.00 0.0 0.0 55.2 49.9 0.0% 0.0% 0.0% 8 0.00 0.0 0.0 55.2 49.9 0.0% 0.0% 0.0% Seismic Cs = 0.282 R = 2.5 • LF = 1.4 V = Cs*W/(R*LF) = 0.201 W Ht P M Pcap P /Pcap M /Mcap Combined (feet) (kips) (k -in) (kips) o ( %) u 1 3.33 1.5 63.9 66.3 2.3% 55.9% 58.1% 2 6.67 1.0 38.6 49.6 2.0% 33.7% 35.7% 3 10.00 0.5 17.3 24.7 2.0% 15.1% 17.1% 4 0.00 0.0 0.0 66.3 0.0% 0.0% 0.0% 5 0.00 0.0 0.0 66.3 0.0% 0.0% 0.0% 6 0.00 0.0 0.0 66.3 0.0% 0.0% 0.0% 7 0.00 0.0 0.0 66.3 0.0% 0.0% 0.0% 8 0.00 0.0 0.0 66.3 0.0% 0.0% 0.0% Cold Formed Channels Back -Back 01/13/09 Depth 5.000 in Fy = 50 ksi Flange 2.000 in Lip 1.000 in Thickness 0.1350 in Base Section R 0.1350 in Blank = 10.11 inx 2 wt = 9.3 plf A = 2.73 in2 Ix = 9.96 in4 Sx = 3.986 in3 Rx = 1.910 in Iy = 1.57 in4 Sy = 1.172 in3 Ry = 0.759 in a 4.4600 Web w/t 33.0370 a bar 4.8650 Flg w/t 10.8148 b 1.4600 x bar 0.6559 b bar 1.8650 m 1.0880 c 0.7300 x0 - 1.7439 c bar 0.9325 J 0.0083 u 0.3181 x web 0.7234 gamma 1.0000 x lip 1.2766 R' 0.2025 h/t 35.0370 lamda 0.2342 . p 0.2588 b 1.46 0% Flange Reduction WEB BENDING 50 ksi @ FLGS 44.60 ksi @ WEB k 4 lamda 0.6757 p 0.9981 be 4.452 0% Web Reduction o -2.222 Ii -0.123 - 0.20083 LOAD CAPACITY I eff= 9.964 in4 ■ S eff= 3.986 in3 119.57 k -in Cap 1c/ SE1s /i ¢o ' ' w / , c Ail, tot / o77 4 -1 - a . ',) _2Ef.2ef±L_o_ey_& D?n2r . 2a!(611itz0)' zdt',v /000 iht z yo (z¢6 =12 4."•.`� #p r a- z p.et, Z K 4 1 10�4 (0 ‘ 5Z rC.apog 'l. l6k