Loading...
Plans 13UPol - 0 7 ( 5) /L c' Ind 2c 7373 SE Milwaukee, OR 97268 all NORM' PO Box 68348 - Portland, OR 97268 Brian Ferrick, Sales Representative OF OREGON, INC. Cell: 503 - 519 -3043 FAX: 503-653-2536 City of Tigard 06) �,� 13125 SW Hall Blvd 1 Tigard OR 97223 1 AO Dan Nelson G O In regards to Thermal Supply at 6713 SW Bonita suite 210 ��0�� They will be storing refrigeration t: condensers , evaporators, compresses, fan motors and air filters. There will possibly be 1- 2-pallets of cleaners and a very small amount of plastic pipe less than 100 SQFT. I would consider this class I — III I will base the sprinkler system on class IV !J 0 l U 69C SS N PRecnv The sprinkler system is .715GPM / 2225 SQFT Hydraulic system r 9 l'Ot OD ( 0 G - The heads are at 286 degrees 'k There are single rows and no multiple rows The maximum storage height on the racks will be 20' The distance between the top of the commodity and the sprinkler deflector is approximately 24" or greater Total area of rack high pile storage is 5000 SQ FT and non public accessible The aisles between the racks are 8' or greater Transverse flues are provided at rack uprights and between pallet loads. Currently no curtain boards not required There high pile storage racks will have open decking and no solid decking Required sprinkler density per NFPA 13 2010 required for class IV with storage to 20' Non encapsulated with aisles 8' or greater Table 16.2.1.3.2 D curve E with 286 degree heads Requires .49 GPM / 2000 SQFT Apply 16.2.1.3.4.1 at 208' .49 X 100 = .49 Required sprinkler density is .49 GPM / 2000 SQFT The building has .715 GPM / 2225 SQFT Thanks my cell number is 503 -519 -3043 Brian Ferrick , _ t epo j C <6 ■'• s v/• . 1 7 PERMANENT PLAQUE NOT LESS THAN PERMANENT PLAQUE N ❑T LESS THAN � u�zo l - �dd0 50 SQ INCHES IN AREA TO BE PLACED 50 SQ INCHES IN AREA TO BE PLACED IN CONSPICUOUS LOCATION STATING IN CONSPICUOUS LOCATION STATING ' . 46', 92', 138', 184' �� ��� PR� 4000# CAPACITY @ 60', 120', 180' 4000# CAPACITY @ f • 3'-8' 8' -O' 8�_0•'I ��1 tl � t4- G I N F r . j !, JAN1 ° 1949 i _ - - - , , - � ARD ;CITY OF TIG 0. • BUILDING DIVISION O C - 3, 1Q � ~ LOAD BEAM W LOAD BE • 5' -0' :A°1-,E.: J, p 4l m W 7 `CONNECTOR CONNECTOR 3' -1o. R 12 Z 6 /2 LOAD BEAM E LLI CZ J w LOAD BEAM W • �C❑NNECTOR a 0 3' -10' - c� 18' -0' CONNECTOR Q - _ . 5'-0' - - W LOAD BEAM W i Q \ z . V CONNECTOR 3' -10' LD W - LOAD BEAM _ W._. . i . . I--I • LOAD BEAM ° 1 BRACE o = CONNECT OR = W N L 7 o 5'-0' i: coNTO a - UPRIGHT LOAD BEAM ELEVATION LOAD BEAM ELEVATION W v) W iii . (=I AA 0 CL o Q V) N CL U CE 171 In F- In u o +; 0, o � ' P 9 COLUMN 3 o W ° W U W V N 14 GA THK 0 � a 3/8x 4 x 7 BASEPLATE • .� W (U j CIA N F---1 . vi • u <2) 1/2'0 ANCHORS N W 1/8 FI -1/2' - ' -' X - tom z N 3 � EA SIDE N x J W N•> C Q 0 Q 3/8'x 4'x 7' C 1.5 x 1.5 1.5 :� ' I :� FF \ ° U A p 0 pq BAS EPLATE 14 GA THK El ii - - - W 1,J CL ac 3 2 OF 1/8 BRACE / I i■ U W J Q C (2) 1/2 ANCH FI LLET WELD ~� W 0 3' EA END T❑ COLUMN J1111" 5' 3.25' Q A O I— _ BRACE 1 5 CONCRETE SLAB ON GRADE 06 I!7 W U CO 0 N A LL_ C/ ) cc 1/8 F1 -1/2' EA FACE 1/8' V1' U u' ) ZZ 3 I Z I W 01 I—I ' - LA �, COLUMN BASE X- SECTI ❑N as 11 U p 73 W . � J Cr) Z COLUMN & BASE PL � �, J J `" N J W p CZ L o 3 �OLLQUnQ O BRACE CONN o N J= N F (4- N a N N L.) , W 11 W N A (2) PIN CONN ' r ! a_ N N J p o ' 0. 1 5/8 CONNECT STEP 0 (2) AISI A502 -2 RIVETS 0 0 4 I A J w V) J 3.19 LOAD BEAM 7/16'0 4'oc z 0 W U p --g c HOOK THRU SLOTS 0 ,` . N I Z CK y 0 z U '-' r-1 ce 14 GA THICK 1 W II L7 W A 2 W o E 1-5/8x 3x ••• o IN COLUMN N Z N c, r I- II H -.QU Li j 0 2.75j 3/16' THK 1/8 V 0 , ' p Z II W N O Z Z N CO 1 CONNECTOR 0� I A 1 ZLij SAFETY PIN TO RESIST .-. /N.-. '-' Q LOAD BEAM 0 100011 UPLIFT LOAD <L CO - to OL' COLUMN -BEAM CONN : u - • I ' . •, SHELVING NOTES: i . . 1.) DESIGNED PER 2006 IBC & ASCE /SEI 7 -05 CHAP 15 • CT - • . . SIGN NOT LESS THAN 50 SQ INCHES SEISMIC Sds =71 %g Sd1 =39Xg Design Cat 'D" j `EQ PROT IN AREA TO BE PLACED IN C❑NSPICU❑US 360# PER SHELF LOADING 4' I N e /0 � PLACE STATING: 360 # /SHELF LOAD C CI T Y 2.) 5' -2500 i`PSI CONCRETE SLAB 4, y ❑N 1500psf SOIL_ _ } °` / 119 8' - O' 4' - 0' 3.) ANCHORS' TO BE 3/8'0x 2° EMBEDDED CARBON STEEL �� / 9 / HILTI KB TZ PER ESR# 1917 � • EGON 12' - 0' 4.) ALL STEEL TO BE Fy = 40 ksi UNO �� c, 3 11q� v RIVET.TESTED • CAPACITY .,OF 600# SHEAR. j I1/ J, R� Ss - SS N { `EXP DATE: 12/ 012 -[-- o I a . . o ti I N W Q 6' -0' y . F 0' 2 Z W ri CC :. i H SS 12'- SS- N I— Li N 1 OW O N a n ' 4' -9' 1-- F CO W " l V N N N F a a a a N a W SS SS Z C FRONT /REAR SIDES : Q N SHELVING ELEVATION •� '- - . o J z rs, Q m LURH POST TUR POST 14ga BASE CLIP @ BOTTOM OF o EACH POST. #12 TEK TO EACH POST NI — AND 3/8'0 WEDGE ANCHOR TO CONCRETE 14 n MAT'L 1.03' 1---1 M R TAN N 9 N TIE ADJACENT POSTS SLAB. WHERE O E H O E Z TOGETHER @ 48' & 96' POST IS BOLTED TOGETHER, ONLY ONE J /. ANCHOR IS REQUIRED AT BASE 1 I L r - I a - - - POST DOUBLE RIVET B D 0 0 1 -1/2' 14ga MAT'L 14gn MAT'L #12 TEK or 1/4'0 GRD 5 BOLT ' z 6 A ANGLE POST 1 -1/4' TEE POST TO EA POST �I a LLLJJI (2 RIVE Q �� � 12ga ANGLE HOOK THRU;j o FF �! FOOTPLATE 269' 15 �SLOTS IN POSTS o �I I I I FSCI I�� II 2 , 3/8'0 ANC 1 -1/2' I I 2.25' I 4' L o CU Ic. °I r °'I I I � 1 P OST T P OST 1 4' CONCRETEISLAB w /STS BET SS ( I W o BEAMS @MID -PT r) Ur 9 @ ADJACENT UNITS CAN USE - 1 W EITHER DBL POST ❑R T -POST POST B DETA Q S S BEAM Q_ N . V , • :'CANTILEVER RACK ►, IN ❑TES I - . . . PERMANENT PLAQUE N ❑T LESS THAN 1 . ) DESIGNED PER 2006 IBC l- 2.) MATERIAL SPECS1 Fy = 50 ksi EXCEPT AS NOTED w 50 SQ INCHES IN AREA TO BE PLACED ALL WELDS ' E7Oxx ELECTRODES 4 J (r) IN CONSPICU ❑US L❑CATI ❑N STATING w W 5' CONCRETE SLAB 2500 psi v o 2000# CAPACITY PER ARM A • - ALLOW SOIL PRESSURE 1500 psf . w /(4) ARMS /COLUMN EA SIDE �" W j 3,) SEISMIC Sds= 0.711. Sd1= 0.39 I T 96' 96' ;r. 4.) LOAD PE LEVE SEE NOTE ABOVE ELEVATION - 5. ) ANCHORS T❑ - BE F HILTI TZ - cv MINIMUM ❑F .25 ' EMBEDMENT PER ICC w ? 9 7 36' ARM � I r w it 2 1 oa a o [ 36' ARM 1 i , N } 1 PLAN VIEW - , 7ga BRACKET ! W/ (1) 7/8'0 PIN THRU COLUMN 0 I C 36' ARMS HORZ STRUT HORZ STRUT � 0 3/16 3') ° 1 2' TILT FROM HORZ • BRACE DETAIL I TOGA MAT'L 12'-0° r C 48' ARM - ' II I z • z iz I ELEVATION VIEW D D. _l • CD • o • , • o �° (1)PIN CONN i CU r 48' ARM I • • • ; , :ARM DETAIL 0 • HORZ STRUT HORZ STRUT I Y V) CT u} ' Q COLUMN -BASE • i < _J H C 48' ARM 1 i CONNECTION D ETAIL CEO PROFF Z BASE SECTION 4,1 G I N F 42 W CZ D D P4 COLUMN SECTI ❑N BASE % .p �, ' BASE I .- r /- ac 119 , L > J 3 IX 61' 0.. . •N c, ., _ .F - R❑NT ELEVATI ❑N . • . e - 3; - � q�`` � - zW 03 SIDE ELEVATION . I • - A/i Ft% Q =� ' ' COLUMN SECTION I U I— I-- o ! EXP. DATE: •12/36/2.. .1 .4 z al o P M STRUT IS C3x 3.5 w o W/ (2)3/4'0 GRD 5 BOLT EA END vn CL tri lOga COLUMN Q z M THK m I 9 11' 3/4'0 GRD 5 I lOga FORMED � o HORZ STRUT BOLT l7 COLUMN SECTI ❑N 1 END PLATE CZ 0 1.5' 1.5' z 1 /2'0 A NCHOR BOLT @ 0 T I 3' I , I , EA END OF BASE ' J a 3/,16 O 1 o Z toga MAT'L BRACE DETAIL co I I I I I CI N Z BASE SECTION COLUMN-BASE CONNECTION_ L.) i . t . 'i /, B),(40 f — oz Calculations for : THERMAL SUPPLY TIGARD, OR 01/03/2011 Loading: 4000 # load levels 3 pallet levels @ 60,120,180 Seismic per IBC 2006 100% Utilization Sds = 0.707 Sdl = 0.387 I = 1.00 96 " Load Beams Uprights: 44 " wide C 3.000x 3.000x 0.075 Columns C 1.500x 1.500x 0.075 Braces 4.00x 7.00x 0.375 Base Plates with 2- 0.500in x 3.25in Embed Anchor /Column 3.19x 2.750x 0.075 Load beams w/ 2 -Pin Connector by : Ben Riehl Registered Engineer OR# 11949 • T .. ‘..c(-p PROf c G P I N F� 94/ / ORE r• J OFD, 3, 1041' 4 4, J. FO EXP. DATE: 1 Lo /y j 309 Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.416 Longitude = - 122.7451 . Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05000000074505806 deg grid spacing Period Sa (sec) (g) 0.2 0.943 (Ss, Site Class B) 1.0 0.338 (S1, Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.416 Longitude = - 122.7451 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 =FvxS1 Site Class D - Fa = 1.123 ,Fv = 1.724 Period Sa (sec) (g) 0.2 1.059 (SMs, Site Class D) 1.0 0.582 (SM1, Site Class D) IBC 2006 LOADING SEISMIC: Ss= 94 3 % g S1= 338 %g Soil Class D Modified Design spectral response parameters Sms= 105.9 % g Sds= 70.6 % g Sm1= 58.2 % g Sd1= 38.8 % g Seismic Use Group 2 Seismic Design Category D or D D2vl le = 1 0'1 � R= 4 R= 6 (,� Cs = 0.1765 W Cs = 0.1177 W p "3 ,L(� � o, Using Worki Stress Design ' , 0 Y V= Cs *W/1.4 O V = 0.1261 W V = 0.0840 W Cold Formed Channel Depth 3.000 in Fy = 55 ksi Flange 3.000 in Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R 0.1000 in Blank = 9.96 in wt = 2.5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2.6500 x bar 1.2423 b bar 2.9250 m 1.6690 c 0.5750 x0 - 2.9114 c bar 0.7125 J 0.0014 u 0.2160 x web 1.2798 gamma 1.0000 x lip 1.7202 R' 0.1375 h/t 38.0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0.152 in2 A' = 0.595 in2 x bar = 1.478 in I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in Cold Formed Channel Depth 1.500 in Fy = 55 ksi Flange 1.500 in • Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 4.23 in wt = 1.1 plf A = 0.317 in2 Ix = 0.125 in4 Sx = 0.166 in3 Rx = 0.627 in Iy = 0.075 in4 Sy = 0.079 in3 Ry = 0.487 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 17.6667 b 1.3250 x bar 0.5060 b bar 1.4625 m 0.6531 c 0.0000 x0 - 1.1592 c bar 0.0000 J 0.0006 u 0.2160 x web 0.5435 gamma 0.0000 x lip 0.9565 R' 0.1375 h/t 18.0000 • S Cold Formed Section HEIGHT OF BEAM 3.190 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 2.8400 1.5950 4.5298 7.2250 1.9089 0.0375 0.1065 TOP 2.4000 3.1525 7.5660 23.8518 0.0000 1.3750 3.3000 STEP SIDE 1.3500 2.3400 3.1590 7.3921 0.2050 1.7125 2.3119 STEP BOTT 0.7250 1.5275 1.1074 1.6916 0.0000 2.2125 1.6041 SHORT SID 1.2150 0.7825 0.9507 0.7440 0.1495 2.7125 3.2957 BOTTOM 3.4000 0.0375 0.1275 0.0048 0.0000 1.3750 4.6750 CORNERS 0.2160 3.1025 0.6701 2.0790 0.0004 0.0875 0.0189 2 0.2160 3.1025 0.6701 2.0790 0.0004 1.6625 0.3591 3 0.2160 1.5775 0.3407 0.5375 0.0004 1.8000 0.3888 4 0.2160 1.4775 0.3191 0.4715 0.0004 2.6625 0.5751 5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 13.2259 18.8700 19.4783 46.0795 2.2657 18.3875 17.2289 AREA = 0.992 IN2 CENTER GRAVITY = 1.473 INCHES TO BASE 1.303 INCHES TO LONG SIDE Ix = 1.474 IN4 Iy = 1.035 IN4 Sx = 0.859 IN3 Sy = 0.715 IN3 Rx = 1.219 IN Ry = 1.021 IN BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 3.19 IN TOP OF BEAM TO TOP OF CONN= 0.500 IN WELD @ BTM OF BEAM = 0.125 IN LOAD = 4000 LBS PER PAIR CONNECTOR VERTICAL LOAD = 1000 LBS EACH RIVETS 2 RIVETS @ 4 " oc 0.4375 " DIA A502 -2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 4.266 KIPS 23% CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K -IN W/ 1/3 INCREASE = 5.232 K -IN RIVET MOMENT RESULTANT @ 0.5 IN FROM BTM OF CONN M = PL L = 1.685 IN Pmax = Mcap /L = 3.105 KIPS RIVET LOAD DIST MOMENT P1 2.844 4.500 12.797 RIVET OK P2 0.316 0.500 0.158 P3 0.000 0.000 0.000 P4 0.000 0.000 0.000 TOTAL 3.160 12.955 CONNECTOR OK WELDS 0.125 " x 3.190 " FILLET WELD UP OUTSIDE 0.125 " x 1.565 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE 0.125 " x 1.000 " FILLET WELD STEP BOTTOM 0.125 " x 2.750 " FILLET WELD ACROSS BOTTOM 0 " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 " THICK WELD L = 10.13 IN A = 0.760 IN2 S = 0.387 IN3 Fv = 26.0 KSI Mcap = 10.06 K -IN W /1/3 INCR= 13.42 K -IN In Upright Plane Seismic Load Distribution per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *Pl *.67 LF = 1.4 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 180 4060 731 515 93 120 4060 487 343 41 60 4060 244 172 10 KLx = 60 in 0 0 0 0 0 KLy = 4 9 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 20506 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 12180 1462 1030 144 Column 46% Stress Max column load = 9367 # Min column load = 804 # Overturning OTM = 144.2 K -IN X 1.15 = 165.8 K -IN RM = 178.6 K -IN REQUIRED HOLD DOWN = 0.00 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 0 No uplift anchors req'd 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 0% Stressed V = 515 # per leg Vcap = 2181 # = 24% Stressed COMBINED = 9% Stressed OK Braces: Brace height = 49 " Brace width = 44 " Length = 66 " P = 1541 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 135 Pcap = 3508 # 44% In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 LF = 1.4 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 180 4060 731 520 94 120 60 7 5 1 60 60 4 3 0 KLx = 60 in 0 0 0 0 0 KLy = 49 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 20506 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 4180 742 527 94 Column 21% Stress Max column load = 4234 # Min column load = -54 # Uplift Overturning OTM = 94.3 K -IN X 1.15 = 108.5 K -IN RM = 92.0 K -IN REQUIRED HOLD DOWN = 0.38 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 375 # 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 13% Stressed V = 264 # per leg Vcap = 2181 # = 12% Stressed COMBINED = 6% Stressed OK Braces: Brace height = 49 " Brace width = 44 " Length = 66 " P = 789 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 135 Pcap = 3508 # 23% 9 PAGE 1 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF DAY: 17:09:09 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 3 Levels Type Plane Frame Number of Joints 14 Number of Supports 8 Number of Members 15 Number of Loadings 1 Joint Coordinates 1 0.0 60.0 S 3 7 11 14 2 0.0 120.0 S 3 0.0 180.0 S 4 49.5 0.0 S 2 6 10 13 5 49.5 60.0 6 49.5 120.0 7 49.5 180.0 1 5 9 12 8 148.5 0.0 S 9 148.5 60.0 10 148.5 120.0 4 8 11 148.5 180.0 12 198.0 60.0 S 13 198.0 120.0 S 14 198.0 180.0 S Joint Releases 4 Moment Z 8 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 12 Force X Moment Z 13 Force X Moment Z 14 Force X Moment Z Member Incidences 1 1 5 2 2 6 3 3 7 4 4 5 5 5 6 6 6 7 7 8 9 8 9 10 9 10 11 10 5 9 11 9 12 12 6 10 13 10 13 14 7 11 15 11 14 Member Properties 1 Thru 3 Prismatic Ax 0.812 Ay 0.568 Iz 1.021 I 0 PAGE 2 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF DAY: 17:09:09 4 Thru 9 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 10 Thru 15 Prismatic Ax 0.812 Ay 0.568 Iz 1.021 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 5 Force Y -2.03 6 Force Y -2.03 7 Force Y -2.03 9 Force Y -2.03 10 Force Y -2.03 11 Force Y -2.03 5 Force X 0.048 6 Force X 0.096 7 Force X 0.144 9 Force X 0.048 10 Force X 0.096 11 Force X 0.144 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2006 IBC wi di widi2 fi fidi # in # 4060 1.0962 4879 96 105.2 48 96 4060 1.5418 9651 192 296.0 96 192 4060 1.7782 12838 288 512.1 144 288 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 12180 27368 576 913.4 577 g = 32.2 ft /sec2 T = 1.7497 sec I = 1.00 Cs = 0.0532 or 0.2827 Cv = 0.386666 Cs min = .14 *Sds= 0.0989 or 1.5% R = 6 Cs = 0.0989 LF = 1.4 V = (Cs *I) /(LF) *W *.67 V = 0.070666 W *.67 = 577 # 100% • l ' PAGE 3 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF DAY: 17:09:09 • Structure Storage Rack in Load Beam Plane 3 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.221 0.00 1 5 0.000 0.221 -10.93 2 2 0.000 -0.102 0.00 2 6 0.000 0.102 -5.02 3 3 0.000 -0.034 0.00 3 7 0.000 0.034 -1.69 4 4 6.039 0.285 0.00 4 5 -6.039 -0.285 17.12 5 5 4.021 0.228 5.36 5 6 -4.021 -0.228 8.33 6 6 2.011 0.122 2.82 6 7 -2.011 -0.122 4.51 7 8 6.039 0.291 0.00 7 9 -6.039 -0.291 17.44 8 9 4.021 0.252 6.04 8 10 -4.021 -0.252 9.06 9 10 2.011 0.166 3.95 9 11 -2.011 -0.166 6.00 10 5 -0.009 -0.232 -11.56 10 9 0.009 0.232 -11.43 11 9 0.000 -0.244 -12.05 L9iJ/J� r e,COV(/, 11 12 0.000 0.244 1 . 10 ��(�'►'/" 12 6 -0.010 -0.122 -6.12 /'t,T 12 10 0.010 0.122 -5.96 13 10 0.000 -0.143 -7.06 13 13 0.000 0.143 0.00 14 7 0.022 -0.053 -2.82 14 11 -0.022 0.053 -2.44 15 11 0.000 -0.072 -3.57 15 14 0.000 0.072 0.00 APPLIED JOINT LOADS, FREE JOINTS • PAGE 4 MSU STRESS -11 V:-:RSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF DAY: 17:09:09 JOINT FORCE X FORCE Y MOMENT Z 5 0.048 -2.030 0.00 . 6 0.096 -2.030 0.00 7 0.144 -2.030 0.00 9 0.048 -2.030 0.00 10 0.096 -2.030 0.00 11 0.144 -2.030 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.221 0.00 2 0.000 -0.102 0.00 3 0.000 -0.034 0.00 4 -0.285 6.039 0.00 8 -0.291 6.039 0.00 12 0.000 0.244 0.00 13 0.000 0.143 0.00 14 0.000 0.072 0.00 FREE JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 5 1.0962 - 0.0210 - 0.0065 6 1.5418 - 0.0350 - 0.0035 7 1.7782 - 0.0420 - 0.0018 9 1.0963 - 0.0210 - 0.0063 10 1.5419 - 0.0350 - 0.0032 11 1.7781 - 0.0420 - 0.0012 SUPPORT JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 1 1.0962 0.0000 0.0026 2 1.5418 0.0000 0.0007 3 1.7782 0.0000 - 0.0004 4 0.0000 0.0000 - 0.0240 8 0.0000 0.0000 - 0.0241 12 1.0963 0.0000 0.0037 13 1.5419 0.0000 0.0027 14 1.7781 0.0000 0.0018 13 Beam - Column Check C 3.000x 3.000x 0.075 Fy = 55 ksi • A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.333 Point P M Lx Ly Pcap Mcap Ratio 9 6.1 17.4 60.0 49.0 20.51 29.73 88% 10 4.1 9.1 60.0 49.0 20.51 29.73 51% 11 2.1 6.0 60.0 49.0 20.51 29.73 30% 0 0.0 0.0 60.0 49.0 20.51 29.73 0% 0 0.0 0.0 60.0 49.0 20.51 29.73 0% 0 0.0 0.0 60.0 49.0 20.51 29.73 0% Load Beam Check 3.19x 2.750x 0.075 Fy = 55 ksi A = 0.812 in2 E = 29,500 E3 ksi Sx = 0.570 in3 Ix = 1.021 in4 Length = 96 inches Pallet Load 4000 lbs Assume 0.5 pallet load on each beam M = PL /8= 24.00 k -in fb = 42.08 ksi Fb = 33 ksi 128% Mcap = 18.82 k -in 25.09 k -in with 1/3 increase Defl = 0.76 in = L/ 126 w/ 25% added to one pallet load M = .232 PL = 22.27 k -in 118% IL) Base Plate Design Column Load 7.0 kips Allowable Soil 1500 psf basic Assume Footing 26.0 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = wl "2/3 Use 4 "square base plate w = 10.4 psi 1 = 8.48 in Load factor = 1.67 M = 417 # -in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 100 psi Fb = 5(phi)(f'c ".5) = 163 psi OK !! Shear : Beam fv = 30 psi Fv = 85 psi OK !! Punching fv = 57 psi Fv = 170 psi OK !! Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 439 psi fb = 21075 psi Fb = 37500 psi OK !! Calculations for : • THERMAL SUPPLY TIGARD, OR 01/03/2011 Loading: 4000 # load levels 4 pallet levels @ 46,92,138,184 Seismic per IBC 2006 100% Utilization Sds = 0.707 Sdl = 0.387 I = 1.00 96 " Load Beams Uprights: 44 " wide C 3.000x 3.000x 0.075 Columns C 1.500x 1.500x 0.075 Braces 4.00x 7.00x 0.375 Base Plates with 2- 0.500in x 3.25in Embed Anchor /Column 3.19x 2.750x 0.075 Load beams w/ 2 -Pin Connector by : Ben Riehl Registered Engineer OR# 11949 In Upright Plane Seismic Load Distribution per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 *.67 LF = 1.4 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 184 4060 747 549 101 138 4060 560 412 57 92 4060 374 275 25 KLx = 46 in 46 4060 187 137 6 KLy = 49 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 20715 lbs 16240 1868 1373 189 Column 60% Stress Max column load = 12426 # Min column load = 1134 # Overturning OTM = 189.5 K -IN X 1.15 = 217.9 K -IN RM = 238.2 K -IN REQUIRED HOLD DOWN = 0.00 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 0 No uplift anchors req'd 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 0% Stressed V = 687 # per leg Vcap = 2181 # = 31% Stressed COMBINED = 15% Stressed OK Braces: Brace height = 49 " Brace width = 44 " Length = 66 " P = 2055 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 135 Pcap = 3508 # 59% In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 LF = 1.4 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 184 4060 747 523 96 138 60 8 6 1 92 60 6 4 0 KLx = 46 in 46 60 3 2 0 KLy = 49 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 20715 lbs 4240 764 535 98 Column 21% Stress Max column load = 4337 # Min column load = -97 # Uplift Overturning OTM = 97.6 K -IN X 1.15 = 112.2 K -IN RM = 93.3 K -IN REQUIRED HOLD DOWN = 0.43 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 430 # 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 15% Stressed V = 268 # per leg Vcap = 2181 # = 12% Stressed COMBINED = 7% Stressed OK Braces: Brace height = 49 " Brace width = 44 " Length = 66 " P = 801 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 135 Pcap = 3508 # 23% 1 L PAGE 1 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF DAY: 16:48:04 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 4 Levels Type Plane Frame Number of Joints 18 Number of Supports 10 Number of Members 20 Number of Loadings 1 Joint Coordinates 1 0.0 46.0 S 4 9 14 18 2 0.0 92.0 S 3 0.0 138.0 S 4 0.0 184.0 S 3 8 13 17 5 49.5 0.0 S 6 49.5 46.0 7 49.5 92.0 2 7 12 16 8 49.5 138.0 9 49.5 184.0 1 6 11 15 10 148.5 0.0 S 11 148.5 46.0 5 10 12 148.5 92.0 13 148.5 138.0 14 148.5 184.0 15 198.0 46.0 S 16 198.0 92.0 S 17 198.0 138.0 S 18 198.0 184.0 S Joint Releases 5 Moment Z 10 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 4 Force X Moment Z 15 Force X Moment Z 16 Force X Moment Z 17 Force X Moment Z 18 Force X Moment Z Member Incidences 1 1 6 2 2 7 3 3 8 4 4 9 5 5 6 6 6 7 7 7 8 8 8 9 9 10 11 10 11 12 11 12 13 1► PAGE 2 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF DAY: 16:48:04 12 13 14 13 6 11 14 11 15 15 7 12 16 12 16 17 8 13 18 13 17 19 9 14 20 14 18 Member Properties 1 Thru 4 Prismatic Ax 0.992 Ay 0.694 Iz 1.308 5 Thru 12 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 13 Thru 2C Prismatic Ax 0.992 Ay 0.694 Iz 1.308 Constants E 29000. All G 12000. All Tabulate 1\11 Loading Dead + Live + Seismic Joint Loads 6 Force Y -2.030 7 Force Y -2.030 8 Force Y -2.030 9 Force Y -2.030 11 Force `:' -2.030 12 Force Y -2.030 13 Force Y -2.030 14 Force Y -2.030 6 Force X 0.039 7 Force X 0.077 8 Force X 0.115 9 Force X 0.154 11 Force ) 0.039 12 Force X 0.077 13 Force Y. 0.115 14 Force X 0.154 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2006 IBC wi di widi2 fi fidi # in # 4060 0.6745 1847 78 52.6 39 78 4060 0.9711 3829 154 149.5 77 154 4060 1.1718 5575 230 269.5 115 230 4060 1.2867 6722 308 396.3 154 308 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 16240 17972 770 868.0 769 g = 32.2 ft /sec2 T = 1.4545 sec I = 1.00 Cs = 0.0602 or 0.2827 Cv = 0.386666 Cs min = .14 *Sds= 0.0989 or 1.5t R = 6 Cs = 0.0989 • LF = 1.4 V = (Cs *I) /(LF) *W *.67 V = 0.070666 W *.67 769 # 100% 2 a PAGE 3 • MSU STRESS -11 VERSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF•DAY: 16:48:04 ., • Structure Storage Rack in Load Beam Plane "4 Levels --- - --- - -- - --- - • • Loading Dead + Live + Seismic • MEMBER FORCES . • MEMBER JOINT , AXIAL FORCE SHEAR FORCE MOMENT 1 1 •0.000 -0.231 0.00 1 6 0.000 0.231 -11.42 2 2 0 -.000 . -0.122 0.00 2 7 0.000 0.122 -6.05 3 3 . 0.000 • -0.062 ,0.00. -. . . 3 8 0:000 0..062 -3.07 4 4 0.000 -0.912 - • 0..00 - • 4 9 _ -0 :000 0.012 ' -0.61 . 5 5 8.011 0.381 ' 0 .00 ' • 5 6 -8.011 - 0.381 '17.51 6 6 '5.996 0.324 6.16 6 7 -5.996 -0.324 8.75 7 7 3.993 0.240 4.82 7 8 - 3.993 -0.240 6.22 8 8 1.999 0.107 1.84 8 9 -1.999 -0.107 3.07 • 9 10 8.011 0.389 0.00 9 11 -8.011 -0.389 17.91 10 11 5.996 0•.'368 7.08 • 10 12 -5.996 0.368. 9.84 11 12 . 3.993 0.298 - 6.13 11 13 -3.993 -0.298 = 7.58 ` - 12 13 1.999 0.201 • - - 3.74 • ' 12 14 • . -1.999 -0.201 • 5.52 • . • 13 • 6 .- 0'.018 -0.246 • -12.25 13 11 0.018 0:246 -12.08 /� 14 11 0.000 - 0.261 -1291 i ['' ,LS, 0, 14 15 0.000 0.261 '0:"00 15 7 -0.007 -0.149 -7.52 MipT 15 12 0.007 0.149 -7.25 16 12 0.000 -0.176 -8.72 . 16 16 0.000 0.176 0.00 17 8 -0.018 -0.098 -4.99 17 13 0.018 0.098 -4.70 18 13 0.000 -0.134 -6.62 • 18 17 0.000 0.134 0.00 19 9 0.047 -0.043 -2.46 19 14 -0.047 0.043 -1.84 • 20 14 0.000 -0.074 -3.68 20 18 0.000 0.074 0.00 2 I • PAGE 4 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF DAY: 16:48:04 APPLIED JOINT LOADS, FREE JOINTS JOINT FORCE X FORCE Y MOMENT Z 6 0.039 -2.030 0.00 7 0.077 -2.030 0.00 8 0.115 -2.030 0.00 9 0.154 -2.030 0.00 11 0.039 -2.030 0.00 12 0.077 -2.030 0.00 13 0.115 -2.030 0.00 14 0.154 -2.030 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.231 0.00 2 0.000 -0.122 0.00 3 0.000 -0.062 0.00 4 0.000 -0.012 0.00 5 -0.381 8.011 0.00 10 -0.389 8.011 0.00 15 0.000 0.261 0.00 16 0.000 0.176 0.00 17 0.000 0.134 0.00 18 0.000 0.074 0.00 FREE JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 6 0.6745 - 0.0214 - 0.0054 7 0.9711 - 0.0373 - 0.0034 8 1.1718 - 0.0480 - 0.0023 9 1.2867 - 0.0533 - 0.0013 11 0.6746 - 0.0214 - 0.0052 12 0.9711 - 0.0373 - 0.0031 13 1.1718 - 0.0480 - 0.0019 14 1.2865 - 0.0533 - 0.0005 SUPPORT JOINT DISPLACEMENTS ' -2- PAGE 5 MSU STRESS -11 VERSION 9/89 - -- DATE: 01/03/;1 - -- TIME OF DAY: 16:48:04 JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 1 0.6745 0.0000 0.0020 • 2 0.9711 0.0000 0.0005 3 1.1718 0.0000 - 0.0003 4 1.2867 0.0000 - 0.0009 5 0.0000 0.0000 - 0.0191 10 0.0000 0.0000 - 0.0192 15 0.6746 0.0000 0.0032 16 0.9711 0.0000 0.0026 17 1.1718 0.0000 0.0024 18 1.2865 0.0000 0.0019 27 Beam - Column Check . C 3.000x 3.000x 0.075 Fy = 55 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in • kx = 1.00 ky = 1.00 Stress Factor 1.333 Point P M Lx Ly Pcap Mcap Ratio 11 8.1 17.9 46.0 49.0 20.71 29.73 99% 12 6.1 9.8 46.0 49.0 20.71 29.73 63% 13 4.1 7.6 46.0 49.0 20.71 29.73 45% 14 2.1 5.5 46.0 49.0 20.71 29.73 29% 0 0.0 0.0 46.0 49.0 20.71 29.73 0% 0 0.0 0.0 46.0 49.0 20.71 29.73 0% Load Beam Check 3.19x 2.750x 0.075 Fy = 55 ksi A = 0.992 in2 E = 29,500 E3 ksi Sx = 0.815 in3 Ix = 1.308 in4 Length = 96 inches Pallet Load 4000 lbs Assume 0.5 pallet load on each beam M = PL /8= 24.00 k -in fb = 29.45 ksi Fb = 33 ksi 89% Mcap = 26.89 k -in 35.85 k -in with 1/3 increase Defl = 0.60 in = L/ 161 w/ 25% added to one pallet load M = .232 PL = 22.27 k -in 83% 2 1 Base Plate Design Column Load 9.3 kips Allowable Soil 1500 psf basic Assume Footing 29.9 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = wl "2/3 Use 4 "square base plate w = 10.4 psi 1 = 10.46 in Load factor = 1.67 M = 634 # -in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 152 psi Fb = 5(phi)(f'c ".5) = 163 psi OK !! Shear : Beam fv = 36 psi Fv = 85 psi OK !! Punching fv = 79 psi Fv = 170 psi OK !! Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 582 psi fb = 27959 psi Fb = 37500 psi OK !! 7 5. 9 ‘ 0 , u G v i,oe ?G 4 5 " 1 fP x /Z' # / �, / 60; oz" z „ ‘o,4-e/- o 360 1.4-L F 7 . / 31- (4). (36064 7= 9 1 . /U,j j r 14 0,004 (9441 . ; I ' /Ave r on 8 f t88'`) L r /Z8 t'',`' 1,4 9 - 2313 -..� ,rixr- _1p L0 o f GUz 44•l Vi 3 7 O $85_ -''- /64 _ , 44o(48 /) zI 4. "',`) g .0er Uiouizr - . . • "TUR" SECTION 1 r 1 14ga THK 14 ® i �•�� 24 11 REGIONS /' • Area: 0.1819 sq in _n;1• / p (� % q 6,0* P Perimeter: 5.5993 in . 7� �i• 22 Bounding box: X: - 1.1250 -- 1.1250 in Y: 0. -0.5058 -- 0.7692 in �� Centroid: X: 0.0000 in Y: 0.0000 in me419 ti Qs o x% /, �> ✓ Moments of inertia: X: 0.0439 sq in sq in 1 / , / ” Y: 0.0365 sq in sq in / [ /G ../..-, Product of inertia: XY: 0.0000 sq in sq in / Radii of gyration: X: 0.4912 in / I� j G i Y: 0.4480 in x 7 01: 6!J51/' Principal moments (sq in sq in) and X -Y directions about centroid: I: 0.0365 along [0.0000 1.0000] � / J: 0.0439 along (- 1.0000 0.0000] n D i 9,Z( * rl /I �'� // � � '/ Iv �it,a �S f 61).i...49 • tc. AI f 7 1?� 1 L./ � 4 . RPIA 4 40, 1' 11 % 7 1 Cold Formed Angle 01/03/11 • Leg 1.500 in Fy = 40 ksi Leg 1.500 in Thickness 0.0750 in COLUMN SECTION • R 0.0625 in Blank = 2.88 in wt = 0.7 plf A = 0.216 in2 lx = 0.048 in4 Sx = 0.044 in3 Rx = 0.473 in ly = 0.048 in4 Sy = 0.044 in3 Ry = 0.473 in I min = 0.019 in4 R min = 0.293 in theta = 45.0 deg a = 1.3625 la = 0.2108 a bar = 0.7813 b = 1.3625 lb = 0.2108 b bar = 0.7813 c = 0.1571 lc = 0.0001 c bar = 0.0363 y bar = 0.3713 R' = 0.1000 x bar = 0.3713 0.5 inch hole in 1st leg 0.75 inches from end 0 inch hole in 1st leg 1.438 inches from end 0.5 inch hole in 2nd leg 0.75 inches from end 1 inches total NET AREA = 0.141 in2 y bar = 0.3793 in x bar = 0.3793 in lx = 0.043 in4 Sx = 0.040 in3 Mx cap = 0.96 k -in ly = 0.044 in4 Sy = 0.041 in3 My cap = 0.98 k -in L = 12 IN Fa = 21.04 KSI Pcap = 2.97 K L = 57 IN Fa = 3.96 KSI Pcap = 0.56 K 0 �. (c 914, y 44o(4) z �g td/ete-i-pvt-t-c- //66; -30.1 ‘ Ig 0 /"v 9:S:ZO 7 � • Cold Formed Angle 01/03/11 Leg 2.688 in Fy = 40 ksi Leg 1.000 in Thickness 0.0750 in R 0.0800 in ss Blank = 3.56 in wt = 0.9 plf • A = 0.267 in2 Ix = 0.206 in4 Sx = 0.124 in3 Rx = 0.877 in ly = 0.018 in4 Sy = 0.021 in3 Ry = 0.258 in I min = 0.012 in4 R min = 0.209 in theta = 10.0 deg a = 2.5325 la = 1 3535 a bar = 1.3838 b = 0.8450 lb = 0.0503 b bar = 0.5400 c = 0.1846 lc = 0.0002 c bar = 0.0427 y bar = 0.9860 R' = 0.1175 x bar = 0.1303 With 360 # per Shelf 96 " maximum V= 90 # M = 2160 lb -in fb = 17489 psi Fb = 24000 psi 73% Stressed ,e%407 E JD /Az' Vi z �- 60 (z) - / , Za t /nt/LI MCA?" x 0 060 r!/.5) /. 35 a / Zok -i.-1 SHELVING UNIT Curry-Riehl & Assoc , Ben Riehl 210314 Jan 03, 2011, 04:43 PM • IES VisualAnalysis 8.00.0005 N009 • N010 n o 0 0 rn BmX002-0 v NQ07 , N008 o A U BmX002 NUM . N006 o ° 0 0 N BmX001 n N 8003 p (1l'11 X 4 004 Project: SHELVING UNIT ' Ben Riehl, Curry-Riehl & Assoc. January 03, 2011 210314 • Nodes Node X Y Fix DX Fix DY Fix RZ ft ft N001 0.000 0.000 Yes Yes No N002 0.000 0.250 No No No N003 4.000 0.250 No No No N004 4.000 0.000 Yes Yes No N005 0.000 5.000 No No No N006 4.000 5.000 No No No N007 0.000 11.000 No No No N008 4.000 11.000 No No No N009 0.000 12.000 No No No NO10 4.000 12.000 No No No Member Elements Member Section (1)Node (2)Node Length Rz1 Rz2 ft BmX001 Tee 2.7 x 0.15 x 2.1 x 0.075 N002 N003 4.000 Fix Fix BmX002 Tee 2.7 x 0.15 x 2.1 x 0.075 N005 N006 4.000 Fix Fix BmX002 -0 Tee 2.7 x 0.15 x 2 1 x 0.075 N007 N008 4.000 Fix Fix C001 Tee 1.25 x 0.15 x 2.25 x 0.075 N001 N002 0.250 Fix Fix C002 Tee 1.25 x 0.15 x 2.25 x 0.075 N002 N005 4.750 Fix Fix C003 Tee 1.25 x 0.15 x 2.25 x 0.075 N003 N004 0.250 Fix Fix C004 Tee 1.25 x 0.15 x 2.25 x 0.075 N005 N007 6.000 Fix Fix C005 Tee 1.25 x 0.15 x 2.25 x 0.075 N006 N003 4.750 Fix Fix C006 Tee 1.25 x 0.15 x 2.25 x 0.075 N007 N009 1.000 Fix Fix C007 Tee 1.25 x 0.15 x 2.25 x 0.075 N008 N006 6.000 Fix Fix C009 Tee 1.25 x 0.15 x 2.25 x 0.075 NO10 N008 1.000 Fix Fix Nodal Loads Load Case Node Direction Force lb D N002 DY - 220.00 D N003 DY - 220.00 D N005 DY - 220.00 D N006 DY - 220.00 D N007 DY - 220.00 D N008 DY - 220.00 E +X N002 DX 1.00 E +X N005 DX 25.00 E +X N007 DX 55.00 Nodal Reactions Node Result Case Name FX FY lb lb N001 D 6.2 685.4 N001 D + L + SEIS -34.3 502.8 N001 D Second Order 6.2 685.4 N004 D -6.2 685.4 N004 D + L + SEIS -46.7 867.9 • N004 D Second Order -6.2 685.4 Member Internal Forces ' Member Result Case Name Offset Fx Vy Mz ft lb lb lb - in BmX001 D 0.00 - 6.0 3.8 - 22.3 Page 1 VisualAnalysis 8.00 (www.iesweb.com) 7? Project: SHELVING UNIT Ben Riehl, Curry-Riehl & Assoc. January 03, 2011 210314 BmX001 D 2.00 -6.0 0.0 22.8 BmX001 D 4.00 -6.0 -3.8 -22.3. BmX001 D + L + SEIS 0.00 -6.5 -49.4 1254.6 BmX001 D + L + SEIS 2.00 -6.5 -53.2 22.9 BmX001 D + L + SEIS 4.00 -6.5 -57.0 - 1299.0 . BmX001 D Second Order 0.00 -6.0 3.8 -22.3 BmX001 D Second Order 2.00 -6.0 0.0 22.8 BmX001 D Second Order 4.00 -6.0 -3.8 -22.3 BmX002 D 0.00 -0.0 3.8 -10.3 BmX002 D 2.00 -0.0 0.0 34.8 BmX002 D 4.00 -0.0 -3.8 -10.3 BmX002 D + L + SEIS 0.00 -12.5 -83.7 2089.4 BmX002 D + L + SEIS 2.00 -12.5 -87.5 34.8 BmX002 D + L + SEIS 4.00 -12.5 -91.2 - 2110.0 BmX002 D Second Order 0.00 0.0 3.8 -10.2 BmX002 D Second Order 2.00 0.0 0.0 34.9 BmX002 D Second Order 4.00 0.0 -3.8 -10.2 BmX002 -0 D 0.00 -0.2 3.8 -5.7 BmX002 -0 D 2.00 -0.2 0.0 39.4 BmX002 -0 D 4.00 -0.2 -3.8 -5.7 BmX002 -0 D + L + SEIS 0.00 -27.7 -38.1 999.3 BmX002 -0 D + L + SEIS 2.00 -27.7 -41.9 39.4 BmX002 -0 D + L + SEIS 4.00 -27.7 -45.6 - 1010.7 BmX002 -0 D Second Order 0.00 -0.2 3.8 -5.7 BmX002 -0 D Second Order 2.00 -0.2 0.0 39.4 BmX002 -0 D Second Order 4.00 -0.2 -3.8 -5.7 C001 D 0.00 -685.4 -6.2 -0.0 C001 D 0.13 -685.2 -6.2 -9.3 C001 D 0.25 -685.1 -6.2 -18.6 C001 D + L + SEIS 0.00 -502.8 34.3 0.0 C001 D + L + SEIS 0.13 -502.7 34.3 51.5 C001 D + L + SEIS 0.25 - 502.5 34.3 103.0 C001 D Second Order 0.00 -685.4 -6.2 -0.0 C001 D Second Order 0.13 -685.3 -6 2 -9.3 C001 D Second Order 0.25 -685.1 -6.2 -18.6 C002 D 0.00 -461.3 -0.2 3.7 C002 D 2.38 -458.5 -0.2 -0.6 . C002 D 4.75 -455.7 -0.2 -5.0 C002 D + L + SEIS 0.00 -332.0 39.8 - 1151.6 C002 D + L + SEIS 2.38 -329.2 39.8 -15.9 C002 D + L + SEIS 4.75 -326.4 39.8 1119.7 C002 D Second Order 0.00 -461.4 -0.2 3.8 C002 D Second Order 2.38 -458.6 -0.2 -0.6 C002 D Second Order 4.75 -455.8 -0.2 -5.0 C003 D 0.00 -685.1 6.2 -18.6 C003 D 0.13 -685.2 6.2 -9.3 C003 D 0.25 -685.4 6.2 -0.0 C003 D + L + SEIS 0.00 -867.6 46.7 -140.0 C003 D + L + SEIS 0.13 -867.8 46.7 -70.0 C003 D + L + SEIS 0.25 -867.9 46.7 0.0 C003 D Second Order 0.00 -685.1 6.2 -18.6 C003 D Second Order 0.13 -685.3 6.2 -9.3 C003 D Second Order 0.25 -685.4 6.2 -0.0 C004 D 0.00 -232.0 -0.2 5.3 C004 D 3.00 -228.5 -0.2 -0.2 C004 D 6.00 -224.9 -0.2 -5.7 C004 D + L + SEIS 0.00 -190.1 27.3 -969.7 C004 D + L + SEIS 3.00 -186.6 27.3 14.8 C004 D + L + SEIS 6.00 -183.1 27.3 999.3 C004 D Second Order 0.00 -232.0 -0.2 5.4 C004 D Second Order 3.00 -228.5 -0.2 -0.2 Page 2 VisualAnalysis 8 00 (www.iesweb corn) Project: SHELVING UNIT Ben Riehl, Curry-Riehl & Assoc. January 03, 2011 210314 C004 D Second Order 6.00 -224.9 -0.2 -5 7 - C005 D 0.00 -455.7 0.2 -5.0 C005 D 2.38 -458.5 0.2 -0.6 C005 D 4.75 -461.3 0.2 3.7 . C005 D + L +SEIS 0.00 -585.1 40.2 -1129 7 C005 D + L + SEIS 2.38 -587.9 40.2 14 7 C005 D + L + SEIS 4.75 -590.7 40.2 1159.0 C005 D Second Order 0.00 -455.8 0.2 -5.0 C005 D Second Order 2.38 -458.6 0.2 -0 6 C005 D Second Order 4.75 -461.4 0.2 3.8 C006 D 0.00 -1.2 -0.0 0.0 C006 D 0.50 -0.6 -0.0 -0.0 C006 D 1.00 -0.0 -0.0 -0 0 C006 D + L + SEIS 0.00 -1.2 0.0 -0.0 C006 D + L + SEIS 0.50 -0.6 0.0 -0.0 C006 D + L + SEIS 1.00 -0.0 0.0 0.0 C006 D Second Order 0.00 -1.2 0.0 -0.0 C006 D Second Order 0.50 -0.6 0.0 -0.0 C006 D Second Order 1.00 -0.0 0.0 -0.0 C007 D 0.00 -224.9 0.2 -5.7 C007 D 3.00 -228.5 0.2 -0.2 C007 D 6.00 -232.0 0.2 5.3 C007 D + L + SEIS 0.00 -266.8 27.7 - 1010.7 C007 D + L + SEIS 3.00 -270.3 27.7 -15.2 C007 D + L + SEIS 6.00 -273.9 27.7 980.3 C007 D Second Order 0.00 -224.9 0.2 -5.7 C007 D Second Order 3.00 -228.5 0.2 -0.2 C007 D Second Order 6.00 -232.0 0.2 5.4 C009 D 0.00 -0.0 -0.0 -0.0 C009 D 0.50 -0.6 0.0 -0.0 C009 D 1.00 -1.2 -0.0 -0.0 C009 D + L + SEIS 0.00 -0.0 -0.0 0.0 C009 D + L + SEIS 0.50 -0.6 -0.0 0.0 . C009 D + L + SEIS 1.00 -1.2 -0.0 0.0 C009 D Second Order 0.00 -0.0 -0.0 -0.0 C009 D Second Order 0.50 -0.6 -0.0 -0.0 . C009 D Second Order 1.00 -1.2 -0.0 -0 0 Design Group Results Design Group: BEAM (per AISC ASD (2005)) Designed As: Tee 2.7 x 0.15 x 2.1 x 0.075, Material: \Steel MESSAGES or ERRORS: BmX001: Warning: member size constraints are violated. BmX002: Warning: member size constraints are violated. BmX002 -0• Warning: member size constraints are violated. Combined Check Member Result Code Unity Name Case Ref. Check BmX002 D + L + SEIS H1 -lb 0.362 OK BmX002 -0 D + L + SEIS H1 -lb 0.177 OK Axial Check Member Result Demand Fx Capacity Fx Code Unity Name Case lb lb Ref. Check BmX001 D + L + SEIS 6.512 3196.077 E4 -2FTB 0.002 OK BmX002 D + L + SEIS 12.500 3196.077 E4 -2FTB 0.004 OK BmX002 -0 D + L + SEIS 27.653 3196.077 E4 -2FTB 0.009 OK Page 3 VisualAnalysis 8.00 (www iesweb corn) 31 Project: SHELVING UNIT Ben Riehl, Curry-Riehl & Assoc. January 03, 2011 210314 • Strong Flexure Check Member Result Demand Mz Capacity Mz Code Unity Name Case lb -in lb -in Ref. Check BmX001 D + L + SEIS - 1299.027 5863.322 F9 -4 0.222 OK • BmX002 D + L + SEIS - 2109.992 5863.322 F9 -4 0.360 OK BmX002 -0 D + L + SEIS - 1010.652 5863 322 F9 -4 0.172 OK Strong Shear Check Member Result Demand Vy Capacity Vy Code Unity Name Case lb lb Ref. Check BmX001 D + L + SEIS - 56.958 5820.359 G2 -1 0.010 OK BmX002 D + L + SEIS - 91.245 5820.359 G2 -1 0.016 OK BmX002 -0 D + L + SEIS - 45.631 5820.359 G2 -1 0.008 OK Design Group' COLUMN (per AISC ASD (2005)) Designed As: Tee 1.25 x 0.15 x 2.25 x 0.075, Material: \Steel Combined Check Member Result Code Unity Name Case Ref. Check C001 D + L + SEIS H1 -lb 00780K C002 D + L + SEIS H1 -lb 0.847 OK C003 D + L + SEIS H1 -lb 0.155 OK C004 D + L + SEIS H1 -lb 0.716 OK C005 D + L + SEIS H1 -lb 0.872 OK C007 D + L + SEIS H1 -lb 0.763 OK Axial Check Member Result Demand Fx Capacity Fx Code Unity Name Case lb lb Ref. Check _ C001 D + L + SEIS 502 819 7400.878 E4 -2FTB 0.068 OK C002 D + L + SEIS 331.968 3180.487 E4 -2FTB 0.104 OK C003 D + L + SEIS 867.944 7400.878 E4 -2FTB 0.117 OK . C004 D + L + SEIS 190.114 2026.298 E4 -2FTB 0.094 OK C005 D + L + SEIS 590.692 3180.487 E4 -2FTB 0.186 OK C006 D + L + SEIS 1.176 7158.563 E4 -2FTB 0.000 OK C007 D + L + SEIS 273.861 2026.298 E4 -2FTB 0.135 OK C009 D + L + SEIS 1.176 7158.563 E4 -2FTB 0.000 OK Strong Flexure Check Member Result Demand Mz Capacity Mz Code Unity Name Case lb -in lb -in Ref. Check C001 D + L + SEIS 103.006 2318.285 F9 -2 0.044 OK C002 D + L + SEIS - 1151.599 1448.928 F9 -3 0.795 OK C003 D + L + SEIS - 139.994 1448.928 F9 -3 0.097 OK C004 D + L + SEIS - 969.731 1448 928 F9 -3 0.669 OK C005 D + L + SEIS - 1129.660 1448.928 F9 -3 0.780 OK C007 D + L + SEIS - 1010.652 1448.928 F9 -3 0.698 OK Strong Shear Check Member Result Demand Vy Capacity Vy Code Unity Name Case lb lb Ref. Check C001 D + L + SEIS 34.335 2694.611 G2 -1 0.013 0K C002 D + L + SEIS 39.847 2694.611 G2 -1 0.015 OK C003 D + L + SEIS 46.665 2694611 G2 -1 0.0170K C004 D + L + SEIS 27.347 2694.611 G2 -1 0.010 0K C005 D + L + SEIS 40.153 2694.611 G2 -1 0.015 OK Page 4 VisualAnalysis 8 00 (www.iesweb.com) PI Project: SHELVING UNIT Ben Riehl, Curry-Riehl & Assoc January 03, 2011 210314 I C007 D + L + SEIS 27.653 2694.611 G2 -1 0.010 OK I Nodal Extreme Displacements • Node DX DY in in N001 -NA- -NA- N001 -NA- -NA- N002 0.000 (1) -0.000 (1) N002 0.003 (36) -0.000 (36) N003 -0.000 (1) -0.000 (36) N003 0.003 (36) -0.000 (1) N004 -NA- -NA- N004 -NA- -NA- N005 -0.000 (1) -0.003 (1) N005 0.459 (36) -0.002 (36) N006 -0.000 (1) -0.004 (36) N006 0.459 (36) -0.003 (1) N007 0.000 (1) -0.004 (1) N007 1.079 (36) -0.003 (36) N008 -0.000 (1) -0.006 (36) N008 1.079 (36) -0.004 (1) N009 0.001 (1) -0.004 (1) N009 1.088 (36) -0.003 (36) NO10 -0.001 (1) -0.006 (36) N010 1.087 (36) -0.004 (1) ki/M • • • Page 5 VisualAnalysis 8.00 (www.iesweb com) • CA-x7r7 L- X72 fACIC — (1 1,C. C) Pie-t6 5 `d C) Ale-6 w' Ase 6 0,(Jc / 5g7/,44 !G Aexca- /14 a z6.c14,) C 3 t 9 Ale g c,fati r ;drA- Viito 406r re,4e c al /de iez - 42 r " I /e64 41,13(19)( r / 06' g� 36 . . Cold Formed Channel 01/04/11 Depth 2.750 in Fy = 50 ksi Flange 3.000 in Lip 0.750 in Thickness 0.1350 in ARM R 0.1880 in Blank = 9.27 in wt = 4.3 plf A= 1.252 in2 lx = 1.595 in4 Sx = 1.160 in3 Rx = 1.129 in ly = 1.455 in4 Sy = 0.860 in3 Ry = 1.078 in a 2.1040 Web w/t 15.5852 a bar 2.6150 Flg w/t 17.4370 b 2.3540 x bar 1.2394 b bar 2.8650 m 1.7018 c 0.4270 x0 -2.9411 c bar 0.6825 J 0.0076 u 0.4013 x web 1.3069 gamma 1.0000 x lip 1.6931 R' 0.2555 h/t 18.3704 lamda 0.3776 p 1.1053 b 2.354 0% Flange Reduction WEB BENDING 50 ksi @ FLGS 38.25 ksi @ WEB k 4 lamda 0.2952 p 0.8630 be 2.104 0% Web Reduction o -1.052 Ii -0.013 -0.0536 LOAD CAPACITY I eff= 1.455 in4 S eff= 0.860 in3 25. k-in Cap A3-e- z 4-64siv) __ 1 ) 447o (.0u , V y 141°,57 „ /05 e t 10 l /4 % Fix ye,A 17, 37 COLUMN Cold Formed Channel 01/04/11 • . Depth 11.000 in Fy = 50 ksi COLUMN SECTION Flange 1.500 in • Lip 1.000 in Thickness 0.1350 in R 0.1500 in Blank = 15.09 in wt = 6.9 plf A = 2.037 in2 Ix = 30.037 in4 Sx = 5.461 in3 Rx = 3.840 in ly = 0.494 in4 Sy = 0.427 in3 Ry = 0.492 in x bar 0.2754 in Welded Toe -Toe A = 4.07 in Ix = 60.1 in9 ly = 7 . 1 in9 Rx = 3.840 in Ry = 1.320 in Sx = 10.923 in3 Sy = 4.731 in3 Mcap = 327.7 k -in 0.35 K on 3 48 in Arm 0.35 K on 3 36 in Arm 70 in Y -Y braces Ry = 1.320 in Ky = 1 Rx = 3.840 in Kx = 2 Ht P M Pcap P /Pcap M /Mcap Combined feet (kips) (k -in) KL/r (kips) ( %) ( %) (%) 1 2 2.10 55.7 53.0 97.2 2.2% 17.0% 19.1% 2 4 1.75 45.3 53.0 97.2 1.8% 13.8% 15.6% 3 6 1.40 35.0 53.0 97.2 1.4% 10.7% 12.1% . 4 8 1.05 24.7 53.0 97.2 1.1% 7.5% 8.6% 5 10 0.70 16.5 62.5 90.8 0.8% 5.0% 5.8% 6 12 0.35 8.2 75.0 81.4 0.4% 2.5% 2.9% 7 0 0.0 0 53.0 97.2 0.0% 0.0% 0.0% 8 0 0.0 0 53.0 97.2 0.0% 0.0% 0.0% Seismic Cs = 0.282 R = 2.5 LF = 1.4 V = Cs *W /(LF) = 0.201 W 0.423 kips Ht P M Pcap P /Pcap M /Mcap Combined (feet) (kips) (k -in) (kips) ( %) ( %) ( %) 1 2 2.10 91.2 129.3 1.6% 20.9% 22.5% 2 4 1.75 70.7 129.3 1.4% 16.2% 17.5% 3 6 1.40 51.9 129.3 1.1% 11.9% 13.0% 4 8 1.05 34.8 129.3 0.8% 8.0% 8.8% 5 10 0.70 21.5 120.7 0.6% 4.9% 5.5% 6 12 0.35 9.9 108.3 0.3% 2.3% 2.6% 7 0 0.0 0.0 129.3 0.0% 0.0% 0.0% 8 0 0.0 0.0 129.3 0.0% 0.0% 0.0% 3$ Cold Formed Channels Back -Back 01/04/11 Depth 11.000 in Fy = 50 ksi Flange 1.500 in Lip 1.000 in Thickness 0.1350 in Base Section R 0.1350 in Blank = 15.11 inx 2 wt = 13.9 plf A = 4.08 in2 lx = 60.28 in4 Sx = 10.961 in3 Rx = 3.844 in ly = 0.99 in4 Sy = 0.811 in3 Ry = 0.493 in a 10.4600 Web w/t 77.4815 a bar 10.8650 FIg w/t 7.1111 b 0.9600 x bar 0.2760 b bar 1.3650 m 0.5795 c 0.7300 x0 - 0.8555 c bar 0.9325 J 0.0124 u 0.3181 x web 0.3435 gamma 1.0000 x lip 1.1565 R' 0.2025 h/t 79.4815 lamda 0.1540 p - 2.7836 b 0.96 0% Flange Reduction WEB BENDING 50 ksi © FLGS 47.55 ksi @ WEB k 4 lamda 1.6362 p 0.5290 be 5.533 47% Web Reduction o -0.303 li 0.000 - 0.05146 LOAD CAPACITY I eff= 60.284 in4 S eff= 10.961 in3 328.82 k -in Cap 4 A 0 %,71,f 1"20 *)-e. 14-4 14 Z'�'/"d � sZ Dot ; Vi Z . , ? __ (G -4/ g ia"& /.495N ÷ Zi) _____:- fi //r_ UELl rf i exi 0,voi ,c,,,,, fr if _AwaiaZ, Mz '10 ale. ! t Veyr /01 t " N Z 3 s L-