Loading...
Specifications 72 3 Co ' -t) • it i i t t # 7373 SE Milwaukie, OR 97268 Y mac' PO Box 68348 - Portland, OR 97268 Brian Ferrick Sales Representative Cell: 503 - 519 -3043 OF OREGON, INC. FAX: 503 - 653 -2536 City of Tigard 13125 SW Hall Blvd Tigard OR 97223 RECEWED I an Nelson JUN ? 0 In. regards to St Jude at 7236 SW Durham Rd Suite 500 (WY OF TIGARD The product to be stored is wire on plastic spools below 6' high above 6' will @IG DIVISION electronics and paper archive storage.Above 6' will be class I - IV The product is not encapsulated on racks with open wire decking and no solid decking The total square footage of racking storage with product storage over 12' high is 4700 SQFT and nonpublic accessible The aisles between the racks areal' I The total storage height will be 19' the sprinklers are at approximately 21' The sprinkler system is .495PM / 2000 SQFT The heads are at 286 degrees 1 There will be 1 fire extinguisher for every 3000SQFT of warehouse space or 1 every 75' of 1 ?� travel. There are fire department access on all exterior walls. Commodity class IV NFPA 13 12.3.2.1.2 (D) no in rack sprinklers curve E with 286 degree heads requires . .50GPM over 2000 Square feet Apply figure 12.3.2.1.5.1 with 19' storage height .95 X .50 = .475 GPM over 2000 SQFT is required to meet the codes for commodity class IV With the existing system at .495 the existing sprinkler system should meet all the codes Thank you Brian Ferric& Cell phone 503- 519 -3043 n • PERMANENT PLAQUE NOT LESS THAN E UP2� a ` 12 ° RECEIVED 50 SQ. INCHES IN AREA TO BE PLACED ', � IN CONSPICUOUS LOCATION STATING I 7 Z 3 (pw �rc�3( A) • 4100# CAPACITY @ 60', 120', 180' a JUN 3 0 2009 3' -8' 7' -10' CITY OFTIGARD • I ; . BUILDING DIVISION _ •I C LOAD BEAM I 0,, PRO f � 1 • \--CONNECTOR I I ° 1949 4 El 5' - 0' r ":?/ 0../4 1" LOAD BEAM — o 4.. 3 , A� ~ � Z g / • nu nn o \-CONNECTOR J 16' - 0' CV PAT 12/ 20/0 ! ~ • O • LOAD BEAM • CL z nn IIII o I- CONNECTOR I I BRACE - E ' 5' -0' O � > S. '\ Li UPRIGHT LOAD BEAM ELEVATION in F-- V/) a + w 4- °� _J 1 O_ W a z � U Q ¢ A ° A p p �/ � f 3' U ce 11 In $ I - W H 14 GA THK � ' � J COLUMN a +-; ¢ A 3 , 3 /8x 4x 7 BASEPLATE o U o w U W p L i V 2) 1/2'0 ANCHORS I W If) Q 3/8'x 4'x 7' C 1.5 x 1.25 1.5 M Ce w W 14 GA THK II 1/8 1 -1/2' N w p c W U BASEPLATE 2' OF 1/8' EA SI ; X A N -CD- I k (2) 1/2'0 ANCHORS FILLET WELD BRACE % FF w x ¢ W W LIJ 3. EA END TO COLUMN T--- .25 N h. N, A D ' Q Q BRACE 5' w w ¢ - J 1/8 �1 1/2 EA FACE v) F - a Z C' 1/8' �1' ! 5' CONCRETE S ON GRA ¢ Y g W p X W w W iri COLUMN & BASE PL ��� • COLUMN BASE X- SECTION °5 i w Z (/) M ° N A N , F — V 3 3 ,� i_ w (A N BRACE CONN �' II C J U ° v ww i 1.-_-, W p z J 0 rs, I O L¢If)Q - (� 3 I o -- o w u� U - (U ° 1 -5/8'H x 1'. W (3) PIN CONN 41 ' a_ L7 - J p w STEP C N Q , ' • c9 4.5 0 (3) AISI A502 - 2 RIVETS 0. 0 i I A --I w U Q Z LOAD BEAM 7/ 16'0 2'oc f 0 . w U D 14 GA THICK to II Z ' D v H ❑ ❑K THR SL ❑TS 0 k4 W II W A =~ W 0\ 0 1 -5/8x 3x� o 8 0 i ' 4 1 l it II N U ¢ U � 0 ' 3/16 THK IN COLUMN 0 2 1/8 V VERT EDGES 0 0 � P p z II A: U o Z X V) N LLJ Q CONNECTOR LOAD BEAM 0 ,� �. I 0 0 SAFETY PIN TO RESIST 1000# UPLIFT LOAD r; R M . If) ,• Q x COLUMN -BEAM C ❑ U Calculations for : ST JUDE MEDICAL PORTLAND, OR 06/25/2009 Loading: 4100 # load levels 3 pallet levels @ 60,120,180 Seismic per IBC 2006 100% Utilization Sds = 0.700 Sdl = 0.387 I = 1.00 94 " Load Beams Uprights: 44 " wide C 3.000x 3.000x 0.075 Columns C 1.500x 1.250x 0.075 Braces 4.00x 7.00x 0.375 Base Plates with 2- 0.500in x 3.25in Embed Anchor /Column 4.50x 2.750x 0.075 Load beams w/ 3 -Pin Connector by : Ben Riehl Registered Engineer OR# 11949 PR r p # o 1949 � k Yr 0 - .... + F O 3, e J. a ��, �� F..XP. DATE: 12/ Z0'Q, I • "gig Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.3997 Longitude = - 122.7512 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.932 (Ss, Site Class B) 1.0 0.335 (S1, Site Class B) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.3997 Longitude = - 122.7512 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 =FvxS1 Site Class D - Fa = 1.127 ,Fv = 1.729 Period Sa (sec) (g) 0.2 1.051 (SMs, Site Class D) 1.0 0.580 (SM1, Site Class D) IBC 2006 LOADING SEISMIC: Ss= 93.2 % g S1= 33.5 %g Soil Class D Modified Design spectral response parameters Sms= 105.1 % g Sds= 70.1 % g Sm1= 58.0 % g Sd1= 38.7 % g Seismic Use Group 2 Seismic Design Category D or D le = 1 R= 4 R= 6 Cs = 0.1752 W Cs = 0.1168 W Using Working Stress Design 3 v= Cs`W /1.4 V = 0.1251 W V = 0.0834 W Cold Formed Channel Depth 3.000 in Fy = 55 ksi Flange 3.000 in Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R 0.1000 in Blank = 9.96 in wt = 2.5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2.6500 x bar 1.2423 'b bar 2.9250 m 1.6690 c 0.5750 x0 - 2.9114 c bar 0.7125 J 0.0014 u 0.2160 x web 1.2798 gamma 1.0000 x lip 1.7202 R' 0.1375 h/t 38.0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0.152 in2 A' = 0.595 in2 x bar = 1.478 in I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in Cold Formed Channel Depth 1.500 in Fy = 55 ksi Flange 1.250 in Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 3.73 in wt = 1.0 plf A = 0.280 in2 Ix = 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 14.3333 b 1.0750 x bar 0.3946 b bar 1.2125 m 0.5298 c 0.0000 x0 - 0.9244 c bar 0.0000 J 0.0005 u 0.2160 x web 0.4321 gamma 0.0000 x lip 0.8179 R' 0.1375 h/t 18.0000 y Cold Formed Section • HEIGHT OF BEAM 4.500 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 4.1500 2.2500 9.3375 21.0094 5.9561 0.0375 0.1556 TOP 1.4000 4.4625 6.2475 27.8795 0.0000 0.8750 1.2250 STEP SIDE 1.3500 3.6500 4.9275 17.9854 0.2050 1.7125 2.3119 STEP BOTT 0.7250 2.8375 2.0572 5.8373 0.0000 2.2125 1.6041 SHORT SID 2.5250 1.4375 3.6297 5.2177 1.3415 2.7125 6.8491 BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 4.4125 0.9530 4.2053 0.0004 0.0875 0.0189 2 0.2160 4.4125 0.9530 4.2053 0.0004 1.6625 0.3591 3 0.2160 2.8875 0.6236 1.8008 0.0004 1.8000 0.3888 4 0.2160 2.7875 0.6021 1.6783 0.0004 2.6625 0.5751 5 0.2160 0.0875 0.0189 0:0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 13.8459 29.3500 29.4589 89.8255 7.5050 17.8875 17.3814 AREA = 1.038 IN2 CENTER GRAVITY = 2.128 INCHES TO BASE 1.255 INCHES TO LONG SIDE Ix = 2.599 IN4 Iy = 1.174 IN4 Sx = 1.096 IN3 Sy = 0.786 IN3 Rx = 1.582 IN Ry = 1.063 IN 1 5 • BEAM END CONNECTOR .- COLUMN MATERIAL THICKNESS = 0.075 IN • LOAD BEAM DEPTH = 4.5 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD @ BTM OF BEAM = 0.000 IN LOAD = 4100 LBS PER PAIR . CONNECTOR VERTICAL LOAD = 1025 LBS EACH RIVETS 3 RIVETS @ 2 " oc 0.4375 " DIA A502 -2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 16% CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K -IN . W/ 1/3 INCREASE = 5.232 K -IN RIVET MOMENT RESULTANT @ 0.5 IN FROM BTM OF CONN M = PL L = 1 IN Pmax = Mcap /L = 5.232 KIPS RIVET LOAD DIST MOMENT P1 2.844 4.500 12.797 RIVET OK P2 1.580 2.500 3.950 P3 • 0.316 0.500 0.158 P4 0.000 0.000 0.000 TOTAL. 4.740 16.905 CONNECTOR OK WELDS 0.125 " x 4.500 " FILLET WELD UP OUTSIDE 0.125 " x 2.875 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE 0 " x 1.000 " FILLET WELD STEP BOTTOM 0 " x 2.750 " FILLET WELD ACROSS BOTTOM 0 " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 " THICK WELD L = 9.00 IN A = 0.675 IN2 S = 0.506 IN3 Fv = 26.0 KSI Mcap = 13.16 K -IN W /1/3 INCR= 17.55 K -IN • In Upright Plane Seismic Load Distribution per 2006 IBC Ca = 0.280 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 *.67 LF = 1.4 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 180 4160 749 523 94 120 4160 499 348 42 60 4160 250 174 10 KLx = 60 in 0 0 0 0 0 KLy = 43 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 20506 lbs 12480 1498 1045 146 Column 47% Stress Max column load = 9566 # Min column load = 855 # Overturning OTM = 146.3 K -IN X 1.15 = 168.3 K -IN RM = 183.0 K -IN REQUIRED HOLD DOWN = 0.00 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 0 No uplift anchors req'd 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 4356 # 0% Stressed V = 523 # per leg Vcap = 5678 # = 9% Stressed COMBINED = 9% Stressed OK Braces: Brace height = 43 " Brace width = 44 " Length = 62 " P = 1461 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 153 Pcap = 2437 # 60% 7 In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2006 IBC Ca = 0.280 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 LF = 1.4 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 180 4160 749 527 95 120 60 7 5 1 60 60 4 3 0 KLx = 60 in 0 0 0 0 0 KLy = 43 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 20506 lbs 4280 760 535 96 Column 21% Stress Max column load = 4315 # I Min column load = -35 # Uplift Overturning OTM = 95.7 K -IN X 1.15 = 110.0 K -IN RM = 94.2 K -IN REQUIRED HOLD DOWN = 0.36 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 361 # 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 4356 # 8% Stressed V = 268 # per leg Vcap = 5678 # = 5% Stressed COMBINED = 13% Stressed OK Braces: Brace height = 43 " Brace width = 44 " Length = 62 " P = 748 # Use : C 1.500x 1.250x 0.075 A = 0.280 in . L/r = 153 Pcap = 2437 # 31% le PAGE 1 MSU STRESS -11 VERSION 9/89 - -- DATE: 06/25/:9 - -- TIME OF DAY: 09:35:48 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 3 Levels Type Plane Frame Number of Joints 14 Number of Supports 8 Number of Members 15 Number of Loadings 1 Joint Coordinates 1 0.0 60.0 S 3 7 11 14 2 0.0 120.0 S 3 0.0 180.0 S 4 48.5 0.0 S 2 6 10 13 5 48.5 60.0 6 48.5 120.0 7 48.5 180.0 1 5 9 12 8 145.5 0.0 S 9 145.5 60.0 10 145.5 120.0 4 8 11 145.5 180.0 12 194.0 60.0 S 13 194.0 120.0 S 14 194.0 180.0 S Joint Releases 4 Moment Z 8 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 12 Force X Moment Z 13 Force X Moment Z 14 Force X Moment Z Member Incidences 1 1 5 2 2 6 3 3 7 4 4 5 5 5 6 6 6 7 7 8 9 8 9 10 9 10 11 10 5 9 11 9 12 12 6 10 13 10 13 14 7 11 15 11 14 Member Properties 1 Thru 3 Prismatic Ax 1.038 Ay 0.727 Iz 2.599 1 9 PAGE 2 MSU STRESS -11 VERSION 9/89 - -- DATE: 06/251:9 - -- TIME OF DAY: 09:35:48 4 Thru 9 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 10 Thru 15 Prismatic Ax 1.038 Ay 0.727 Iz 2.599 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 5 Force Y -2.08 6 Force Y -2.08 7 Force Y -2.08 • 9 Force Y -2.08 10 Force Y -2.08 . 11 Force Y -2.08 5 Force X 0.049 6 Force X 0.098 7 Force X 0.146 9 Force X 0.049 10 Force X 0.098 11 Force X 0.146 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2006 IBC wi di widi2 fi fidi in �� 4160 0.8800 3222 98 86.2 49 98 4160 1.1513 5514 196 225.7 98 196 4160 1.2976 7004 292 378.9 146 292 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 • 0 0 12480 15740 586 690.8 585 g = 32.2 ft /sec2 T = 1.5258 sec I = 1.00 Cs = 0.0583 or 0.2800 Cv = 0.386666 Cs min = .14 *Sds= 0.0980 or 1.5% R = 6 Cs = 0.0980 LF = 1.4 V = (Cs *I) /(LF) *W *.67 • V = 0.07 W *.67 585 # 100W PAGE 3 MSU STRESS -11 VERSION 9/89 - -- DATE: 06/25/:9 - -- TIME OF DAY: 09:35:48 . Structure Storage Rack in Load Beam Plane 3 Levels • Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.226 0.00 1 5 0.000 0.226 -10.95 2 2 0.000 -0.080 0.00 2 6 0.000 0.080 -3.88 3 3 0.000 -0.010 0.00 3 7 0.000 0.010 -0.49 4 4 6.134 0.288 0.00 4 5 -6.134 -0.288 17.31 5 5 4.078 0.222 6.05 5 6 -4.078 -0.222 7.27 6 6 2.041 0.111 3.03 6 7 -2.041 -0.111 3.61 7 8 6.134 0.298 0.00 7 9 -6.134 -0.298 17.85 8 9 4.078 0.266 7.28 p 8 10 -4.078 -0.266 8.68 9 10 2.041 0.181 4.97 9 11 -2.041 -0.181 5.92 10 5 -0.017 -0.250 -12.41 10 9 0.017 0.250 -11.84 11 9 0.000 -0.274 C-13.30- 11 12 0.000 0.274 0.00 it ��uI T 12 6 -0.013 -0.123 -6.41 ' 12 10 0.013 0.123 -5.56 13 10 0.000 -0.167 -8.09 13 13 0.000 0.167 0.00 14 7 0.035 -0.049 -3.11 14 11 -0.035 0.049 -1.65 15 11 0.000 - 0.088. -4.27 15 14. 0.000 0.088 0.00 APPLIED JOINT LOADS, FREE JOINTS • // 1 PAGE 4 • MSU STRESS -11 VERSION 9/89 - -- DATE: 06/25/:9 - -- TIME OF DAY: 09:35:48 • JOINT FORCE X FORCE Y MOMENT Z 5 0.049 -2.080 0.00 6 0.098 -2.080 0.00 7 0.146 -2.080 0.00 9 0.049 -2.080 0.00 10 0.098 -2.080 0.00 11 0.146 -2.080 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.226 0.00 2 0.000 -0.080 0.00 3 0.000 -0.010 0.00 4 -0.288 6.134 0.00 8 -0.298 6.134 0.00 12 0.000 0.274 0.00 13 0.000 0.167 0.00 14 0.000 0.088 0.00 FREE JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 5 0.8800 - 0.0213 - 0.0028 1 6 1.1513 - 0.0355 - 0.0016 7 1.2976 - 0.0426 - 0.0010 9 0.8801 - 0.0213 - 0.0024 • 10 1.1514 - 0.0355 - 0.0010 11 1.2975 - 0.0426 0.0000 SUPPORT JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 1 0.8800 0.0000 0.0007 2 1.1513 0.0000 - 0.0003 3 1.2976 0.0000 - 0.0008 4 0.0000 0.0000 - 0.0205 8 0.0000 0.0000 - 0.0207 12 0.8801 0.0000 0.0018 13 1.1514 0.0000 0.0016 14 1.2975 0.0000 0.0013 1 /2- Beam - Column Check C 3.000x 3.000x 0.075 Fy = 55 ksi A = 0.595 in2 Sx = 0.676 in3 . Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.333 Point P M Lx Ly Pcap Mcap Ratio 9 6.2 17.9 60.0 43.0 20.51 29.73 91% 10 4.2 8.7 60.0 43.0 20.51 29.73 50% . 11 2.1 5.9 60.0 43.0 20.51 29.73 30% O 0.0 0.0 60.0 43.0 20.51 29.73 0% O 0.0 0.0 60.0 43.0 20.51 29.73 0% 0 0.0 0.0 60.0 43.0 20.51 29.73 0% Load Beam Check 4.50x 2.750x 0.075 Fy = 55 ksi A = 1.038 in2 E = 29,500 E3 ksi Sx = 1.096 in3 Ix = 2.599 in4 Length = 94 inches Pallet Load 4100 lbs Assume 0.5 pallet load on each beam M = PL /8= 24.09 k -in fb = 21.99 ksi Fb = 33 ksi 67% Mcap = 36.15 k -in 48.20 k -in with 1/3 increase e8 Defl = 0.29 in = L/ 325 w/ 25% added to one pallet load M = .282 PL = 27.17 k -in 75% /3 Base Plate Design Column Load 7.2 kips Allowable Soil 1500 psf basic Assume Footing 26.2 in square on side Soil Pressure 1500 psf Bending: Assume the'concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1"2/3 Use 4 "square base plate w = 10.4 psi 1 = 8.62 in Load factor = 1.67 M = 431 # -in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 103 psi Fb = 5(phi)(f'c = 163 psi OK !! Shear : Beam fv = 30 psi Fv = 85 psi OK !! Punching fv = 59 psi Fv = 170 psi OK !! Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 448 psi fb = 21523 psi Fb = 37500 psi OK !! PV