Specifications 72 3 Co ' -t)
•
it
i i t t # 7373 SE Milwaukie, OR 97268
Y mac' PO Box 68348 - Portland, OR 97268
Brian Ferrick Sales Representative
Cell: 503 - 519 -3043
OF OREGON, INC. FAX: 503 - 653 -2536
City of Tigard
13125 SW Hall Blvd
Tigard OR 97223
RECEWED
I an Nelson JUN ? 0
In. regards to St Jude at 7236 SW Durham Rd Suite 500
(WY OF TIGARD
The product to be stored is wire on plastic spools below 6' high above 6' will @IG DIVISION
electronics and paper archive storage.Above 6' will be class I - IV
The product is not encapsulated on racks with open wire decking and no solid decking
The total square footage of racking storage with product storage over 12' high is 4700 SQFT and
nonpublic accessible
The aisles between the racks areal' I
The total storage height will be 19' the sprinklers are at approximately 21'
The sprinkler system is .495PM / 2000 SQFT
The heads are at 286 degrees
1 There will be 1 fire extinguisher for every 3000SQFT of warehouse space or 1 every 75' of
1 ?� travel.
There are fire department access on all exterior walls.
Commodity class IV
NFPA 13
12.3.2.1.2 (D) no in rack sprinklers curve E with 286 degree heads requires .
.50GPM over 2000 Square feet
Apply figure 12.3.2.1.5.1
with 19' storage height .95 X .50 = .475 GPM over 2000 SQFT is required to meet the codes
for commodity class IV
With the existing system at .495 the existing sprinkler system should meet all the codes
Thank you
Brian Ferric& Cell phone 503- 519 -3043
n •
PERMANENT PLAQUE NOT LESS THAN E UP2� a ` 12 ° RECEIVED
50 SQ. INCHES IN AREA TO BE PLACED ', �
IN CONSPICUOUS LOCATION STATING I 7 Z 3 (pw �rc�3( A) • 4100# CAPACITY @ 60', 120', 180' a JUN 3 0 2009
3' -8' 7' -10' CITY OFTIGARD
•
I ; . BUILDING DIVISION
_ •I C
LOAD BEAM I 0,, PRO f � 1 •
\--CONNECTOR I I ° 1949 4
El
5' - 0' r ":?/
0../4 1"
LOAD BEAM —
o 4.. 3 , A� ~ � Z
g / •
nu nn
o \-CONNECTOR J
16' - 0' CV PAT 12/ 20/0 ! ~
• O
• LOAD BEAM • CL
z nn IIII
o
I- CONNECTOR I I
BRACE - E ' 5' -0' O
�
> S. '\ Li
UPRIGHT LOAD BEAM ELEVATION in F--
V/)
a + w 4-
°� _J
1
O_ W a z � U Q
¢ A ° A p p �/
� f 3' U ce 11 In $ I - W H
14 GA THK � ' � J COLUMN a +-; ¢ A
3 , 3 /8x 4x 7 BASEPLATE o U o w U W p L i
V 2) 1/2'0 ANCHORS I W If) Q
3/8'x 4'x 7' C 1.5 x 1.25 1.5 M Ce w W
14 GA THK II 1/8 1 -1/2' N w p c W U
BASEPLATE 2' OF 1/8' EA SI ; X A N -CD- I
k (2) 1/2'0 ANCHORS FILLET WELD BRACE % FF w x ¢ W W LIJ
3. EA END TO COLUMN T--- .25 N h. N, A D ' Q Q BRACE 5' w w ¢
- J
1/8 �1 1/2 EA FACE v) F - a Z C'
1/8' �1' ! 5' CONCRETE S ON GRA ¢ Y g W p X W w W
iri COLUMN & BASE PL ��� • COLUMN BASE X- SECTION °5 i w Z (/) M ° N A N , F — V
3 3 ,� i_ w (A
N BRACE CONN �' II C J U ° v ww i 1.-_-, W p z J 0
rs, I O L¢If)Q - (�
3 I o -- o w u� U - (U
° 1 -5/8'H x 1'. W (3) PIN CONN 41 ' a_ L7 - J p w
STEP C N Q , ' •
c9 4.5 0 (3) AISI A502 - 2 RIVETS 0. 0 i I A --I w U Q
Z LOAD BEAM 7/ 16'0 2'oc f 0 . w U D
14 GA THICK to II Z ' D v
H ❑ ❑K THR SL ❑TS 0 k4 W II W A =~ W 0\
0 1 -5/8x 3x� o 8 0 i ' 4 1 l it II N U ¢ U � 0 ' 3/16 THK IN COLUMN
0 2 1/8 V VERT EDGES 0 0 � P p z II A: U o Z X V) N LLJ
Q CONNECTOR
LOAD BEAM 0 ,� �. I
0 0 SAFETY PIN TO RESIST
1000# UPLIFT LOAD r; R M . If) ,• Q
x COLUMN -BEAM C ❑
U
Calculations for :
ST JUDE MEDICAL
PORTLAND, OR
06/25/2009
Loading: 4100 # load levels
3 pallet levels @ 60,120,180
Seismic per IBC 2006 100% Utilization
Sds = 0.700 Sdl = 0.387
I = 1.00
94 " Load Beams
Uprights: 44 " wide
C 3.000x 3.000x 0.075 Columns
C 1.500x 1.250x 0.075 Braces
4.00x 7.00x 0.375 Base Plates
with 2- 0.500in x 3.25in Embed Anchor /Column
4.50x 2.750x 0.075 Load beams w/ 3 -Pin Connector
by : Ben Riehl
Registered Engineer OR# 11949
PR r
p
#
o 1949 � k Yr
0 - .... +
F
O 3,
e
J. a ��, ��
F..XP. DATE: 12/ Z0'Q, I
•
"gig
Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Latitude = 45.3997
Longitude = - 122.7512
Spectral Response Accelerations Ss and S1
Ss and S1 = Mapped Spectral Acceleration Values
Site Class B - Fa = 1.0 ,Fv = 1.0
Data are based on a 0.05 deg grid spacing
Period Sa
(sec) (g)
0.2 0.932 (Ss, Site Class B)
1.0 0.335 (S1, Site Class B)
Conterminous 48 States
2003 NEHRP Seismic Design Provisions
Latitude = 45.3997
Longitude = - 122.7512
Spectral Response Accelerations SMs and SM1
SMs = Fa x Ss and SM1 =FvxS1
Site Class D - Fa = 1.127 ,Fv = 1.729
Period Sa
(sec) (g)
0.2 1.051 (SMs, Site Class D)
1.0 0.580 (SM1, Site Class D)
IBC 2006 LOADING
SEISMIC: Ss= 93.2 % g
S1= 33.5 %g
Soil Class D
Modified Design spectral response parameters
Sms= 105.1 % g Sds= 70.1 % g
Sm1= 58.0 % g Sd1= 38.7 % g
Seismic Use Group 2
Seismic Design Category D
or D
le = 1
R= 4 R= 6
Cs = 0.1752 W Cs = 0.1168 W
Using Working Stress Design 3
v= Cs`W /1.4
V = 0.1251 W V = 0.0834 W
Cold Formed Channel
Depth 3.000 in Fy = 55 ksi
Flange 3.000 in
Lip 0.750 in
Thickness 0.0750 in COLUMN SECTION
R 0.1000 in
Blank = 9.96 in wt = 2.5 plf
A = 0.747 in2
Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in
Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in
a 2.6500 Web w/t 35.3333
a bar 2.9250 Flg w/t 35.3333
b 2.6500 x bar 1.2423
'b bar 2.9250 m 1.6690
c 0.5750 x0 - 2.9114
c bar 0.7125 J 0.0014
u 0.2160 x web 1.2798
gamma 1.0000 x lip 1.7202
R' 0.1375 h/t 38.0000
Section Removing:
0.640 inch slot 0.75 inches each side of center on web
0.375 inch hole 0.87 inches from web in each flange
A- = 0.152 in2 A' = 0.595 in2
x bar = 1.478 in
I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in
I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in
Cold Formed Channel
Depth 1.500 in Fy = 55 ksi
Flange 1.250 in
Lip 0.000 in
Thickness 0.0750 in BRACE SECTION
R 0.1000 in
Blank = 3.73 in wt = 1.0 plf
A = 0.280 in2
Ix = 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in
Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in
a 1.1500 Web w/t 15.3333
a bar 1.4250 Flg w/t 14.3333
b 1.0750 x bar 0.3946
b bar 1.2125 m 0.5298
c 0.0000 x0 - 0.9244
c bar 0.0000 J 0.0005
u 0.2160 x web 0.4321
gamma 0.0000 x lip 0.8179
R' 0.1375 h/t 18.0000
y
Cold Formed Section
• HEIGHT OF BEAM 4.500 INCHES
MAT'L THICKNESS 0.075 INCHES
INSIDE RADIUS 0.100 INCHES LOAD BEAM
WIDTH 2.750 INCHES
STEEL YIELD 55.0 KSI
STEP 1.625 INCHES HIGH 1.000 INCHES WIDE
ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC
L Y LY LY2 Ii X LX
LONG SIDE 4.1500 2.2500 9.3375 21.0094 5.9561 0.0375 0.1556
TOP 1.4000 4.4625 6.2475 27.8795 0.0000 0.8750 1.2250
STEP SIDE 1.3500 3.6500 4.9275 17.9854 0.2050 1.7125 2.3119
STEP BOTT 0.7250 2.8375 2.0572 5.8373 0.0000 2.2125 1.6041
SHORT SID 2.5250 1.4375 3.6297 5.2177 1.3415 2.7125 6.8491
BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000
CORNERS 0.2160 4.4125 0.9530 4.2053 0.0004 0.0875 0.0189
2 0.2160 4.4125 0.9530 4.2053 0.0004 1.6625 0.3591
3 0.2160 2.8875 0.6236 1.8008 0.0004 1.8000 0.3888
4 0.2160 2.7875 0.6021 1.6783 0.0004 2.6625 0.5751
5 0.2160 0.0875 0.0189 0:0017 0.0004 2.6625 0.5751
6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189
TOTALS 13.8459 29.3500 29.4589 89.8255 7.5050 17.8875 17.3814
AREA = 1.038 IN2
CENTER GRAVITY = 2.128 INCHES TO BASE 1.255 INCHES TO LONG SIDE
Ix = 2.599 IN4 Iy = 1.174 IN4
Sx = 1.096 IN3 Sy = 0.786 IN3
Rx = 1.582 IN Ry = 1.063 IN
1
5
•
BEAM END CONNECTOR .-
COLUMN MATERIAL THICKNESS = 0.075 IN
• LOAD BEAM DEPTH = 4.5 IN
TOP OF BEAM TO TOP OF CONN= 0.000 IN
WELD @ BTM OF BEAM = 0.000 IN
LOAD = 4100 LBS PER PAIR
. CONNECTOR VERTICAL LOAD = 1025 LBS EACH
RIVETS
3 RIVETS @ 2 " oc 0.4375 " DIA A502 -2
1st @ 1 "BELOW TOP OF CONNECTOR
AREA = 0.150 IN2 EACH Fv = 22.0 KSI
Vcap = 3.307 KIPS EACH RIVET
BEARING Fb = 65.0 KSI
BRG CAP= 2.133 KIPS EACH RIVET
TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 16%
CONNECTOR
6 " LONG CONNECTOR ANGLE Fy = 50 KSI
1.625 " x 3 " x 0.1875 " THICK
S = 0.131 IN3 Mcap = 3.924 K -IN .
W/ 1/3 INCREASE = 5.232 K -IN
RIVET MOMENT RESULTANT @ 0.5 IN FROM BTM OF CONN
M = PL L = 1 IN
Pmax = Mcap /L = 5.232 KIPS
RIVET LOAD DIST MOMENT
P1 2.844 4.500 12.797 RIVET OK
P2 1.580 2.500 3.950
P3 • 0.316 0.500 0.158
P4 0.000 0.000 0.000
TOTAL. 4.740 16.905 CONNECTOR OK
WELDS
0.125 " x 4.500 " FILLET WELD UP OUTSIDE
0.125 " x 2.875 " FILLET WELD UP INSIDE
0.125 " x 1.625 " FILLET WELD UP STEP SIDE
0 " x 1.000 " FILLET WELD STEP BOTTOM
0 " x 2.750 " FILLET WELD ACROSS BOTTOM
0 " x 1.750 " FILLET WELD ACROSS TOP
USE EFFECTIVE 0.075 " THICK WELD
L = 9.00 IN A = 0.675 IN2
S = 0.506 IN3 Fv = 26.0 KSI
Mcap = 13.16 K -IN W /1/3 INCR= 17.55 K -IN
•
In Upright Plane
Seismic Load Distribution
per 2006 IBC Ca = 0.280
1.33 Allowable Stress Increase
I = 1.00 R = 4.0
V = (2.5 *Ca *I) /(R *LF) *P1 *.67
LF = 1.4
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075
180 4160 749 523 94
120 4160 499 348 42
60 4160 250 174 10 KLx = 60 in
0 0 0 0 0 KLy = 43 in
0 0 0 0 0 A= 0.595 in
0 0 0 0 0 Pcap = 20506 lbs
12480 1498 1045 146 Column
47% Stress
Max column load = 9566 #
Min column load = 855 #
Overturning
OTM = 146.3 K -IN X 1.15 = 168.3 K -IN
RM = 183.0 K -IN
REQUIRED HOLD DOWN = 0.00 KIPS
Anchors: Special Inspection(Y or N)? YES 2
T = 0 No uplift anchors req'd 2
2 0.5 " diameter Hilti TZ
3.25 "embedment in 2500 psi concrete
Tcap = 4356 # 0% Stressed
V = 523 # per leg Vcap = 5678 # = 9% Stressed
COMBINED = 9% Stressed
OK
Braces:
Brace height = 43 "
Brace width = 44 "
Length = 62 "
P = 1461 #
Use : C 1.500x 1.250x 0.075
A = 0.280 in
L/r = 153
Pcap = 2437 # 60%
7
In Upright Plane
Seismic Load Distribution TOP LOAD ONLY
per 2006 IBC Ca = 0.280
1.33 Allowable Stress Increase
I = 1.00 R = 4.0
V = (2.5 *Ca *I) /(R *LF) *P1
LF = 1.4
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075
180 4160 749 527 95
120 60 7 5 1
60 60 4 3 0 KLx = 60 in
0 0 0 0 0 KLy = 43 in
0 0 0 0 0 A= 0.595 in
0 0 0 0 0 Pcap = 20506 lbs
4280 760 535 96 Column
21% Stress
Max column load = 4315 #
I Min column load = -35 # Uplift
Overturning
OTM = 95.7 K -IN X 1.15 = 110.0 K -IN
RM = 94.2 K -IN
REQUIRED HOLD DOWN = 0.36 KIPS
Anchors: Special Inspection(Y or N)? YES 2
T = 361 # 2
2 0.5 " diameter Hilti TZ
3.25 "embedment in 2500 psi concrete
Tcap = 4356 # 8% Stressed
V = 268 # per leg Vcap = 5678 # = 5% Stressed
COMBINED = 13% Stressed
OK
Braces:
Brace height = 43 "
Brace width = 44 "
Length = 62 "
P = 748 #
Use : C 1.500x 1.250x 0.075
A = 0.280 in .
L/r = 153
Pcap = 2437 # 31%
le
PAGE 1
MSU STRESS -11 VERSION 9/89 - -- DATE: 06/25/:9 - -- TIME OF DAY: 09:35:48
INPUT DATA LISTING TO FOLLOW:
Structure Storage Rack in Load Beam Plane 3 Levels
Type Plane Frame
Number of Joints 14
Number of Supports 8
Number of Members 15
Number of Loadings 1
Joint Coordinates
1 0.0 60.0 S 3 7 11 14
2 0.0 120.0 S
3 0.0 180.0 S
4 48.5 0.0 S 2 6 10 13
5 48.5 60.0
6 48.5 120.0
7 48.5 180.0 1 5 9 12
8 145.5 0.0 S
9 145.5 60.0
10 145.5 120.0 4 8
11 145.5 180.0
12 194.0 60.0 S
13 194.0 120.0 S
14 194.0 180.0 S
Joint Releases
4 Moment Z
8 Moment Z
1 Force X Moment Z
2 Force X Moment Z
3 Force X Moment Z
12 Force X Moment Z
13 Force X Moment Z
14 Force X Moment Z
Member Incidences
1 1 5
2 2 6
3 3 7
4 4 5
5 5 6
6 6 7
7 8 9
8 9 10
9 10 11
10 5 9
11 9 12
12 6 10
13 10 13
14 7 11
15 11 14
Member Properties
1 Thru 3 Prismatic Ax 1.038 Ay 0.727 Iz 2.599
1
9
PAGE 2
MSU STRESS -11 VERSION 9/89 - -- DATE: 06/251:9 - -- TIME OF DAY: 09:35:48
4 Thru 9 Prismatic Ax 0.595 Ay 0.298 Iz 1.014
10 Thru 15 Prismatic Ax 1.038 Ay 0.727 Iz 2.599
Constants E 29000. All G 12000. All
Tabulate All
Loading Dead + Live + Seismic
Joint Loads
5 Force Y -2.08
6 Force Y -2.08
7 Force Y -2.08 •
9 Force Y -2.08
10 Force Y -2.08
. 11 Force Y -2.08
5 Force X 0.049
6 Force X 0.098
7 Force X 0.146
9 Force X 0.049
10 Force X 0.098
11 Force X 0.146
Solve
PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED
Seismic Analysis per 2006 IBC
wi di widi2 fi fidi
in
�� 4160 0.8800 3222 98 86.2 49 98
4160 1.1513 5514 196 225.7 98 196
4160 1.2976 7004 292 378.9 146 292
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 • 0 0
12480 15740 586 690.8 585
g = 32.2 ft /sec2 T = 1.5258 sec
I = 1.00 Cs = 0.0583 or 0.2800
Cv = 0.386666 Cs min = .14 *Sds= 0.0980 or 1.5%
R = 6 Cs = 0.0980
LF = 1.4 V = (Cs *I) /(LF) *W *.67 •
V = 0.07 W *.67
585 # 100W
PAGE 3
MSU STRESS -11 VERSION 9/89 - -- DATE: 06/25/:9 - -- TIME OF DAY: 09:35:48 .
Structure Storage Rack in Load Beam Plane 3 Levels
•
Loading Dead + Live + Seismic
MEMBER FORCES
MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT
1 1 0.000 -0.226 0.00
1 5 0.000 0.226 -10.95
2 2 0.000 -0.080 0.00
2 6 0.000 0.080 -3.88
3 3 0.000 -0.010 0.00
3 7 0.000 0.010 -0.49
4 4 6.134 0.288 0.00
4 5 -6.134 -0.288 17.31
5 5 4.078 0.222 6.05
5 6 -4.078 -0.222 7.27
6 6 2.041 0.111 3.03
6 7 -2.041 -0.111 3.61
7 8 6.134 0.298 0.00
7 9 -6.134 -0.298 17.85
8 9 4.078 0.266 7.28 p
8 10 -4.078 -0.266 8.68
9 10 2.041 0.181 4.97
9 11 -2.041 -0.181 5.92
10 5 -0.017 -0.250 -12.41
10 9 0.017 0.250 -11.84
11 9 0.000 -0.274 C-13.30-
11 12 0.000 0.274 0.00 it ��uI T
12 6 -0.013 -0.123 -6.41 '
12 10 0.013 0.123 -5.56
13 10 0.000 -0.167 -8.09
13 13 0.000 0.167 0.00
14 7 0.035 -0.049 -3.11
14 11 -0.035 0.049 -1.65
15 11 0.000 - 0.088. -4.27
15 14. 0.000 0.088 0.00
APPLIED JOINT LOADS, FREE JOINTS
•
// 1
PAGE 4
• MSU STRESS -11 VERSION 9/89 - -- DATE: 06/25/:9 - -- TIME OF DAY: 09:35:48
• JOINT FORCE X FORCE Y MOMENT Z
5 0.049 -2.080 0.00
6 0.098 -2.080 0.00
7 0.146 -2.080 0.00
9 0.049 -2.080 0.00
10 0.098 -2.080 0.00
11 0.146 -2.080 0.00
REACTIONS,APPLIED LOADS SUPPORT JOINTS
JOINT FORCE X FORCE Y MOMENT Z
1 0.000 -0.226 0.00
2 0.000 -0.080 0.00
3 0.000 -0.010 0.00
4 -0.288 6.134 0.00
8 -0.298 6.134 0.00
12 0.000 0.274 0.00
13 0.000 0.167 0.00
14 0.000 0.088 0.00
FREE JOINT DISPLACEMENTS
JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION
5 0.8800 - 0.0213 - 0.0028
1 6 1.1513 - 0.0355 - 0.0016
7 1.2976 - 0.0426 - 0.0010
9 0.8801 - 0.0213 - 0.0024
• 10 1.1514 - 0.0355 - 0.0010
11 1.2975 - 0.0426 0.0000
SUPPORT JOINT DISPLACEMENTS
JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION
1 0.8800 0.0000 0.0007
2 1.1513 0.0000 - 0.0003
3 1.2976 0.0000 - 0.0008
4 0.0000 0.0000 - 0.0205
8 0.0000 0.0000 - 0.0207
12 0.8801 0.0000 0.0018
13 1.1514 0.0000 0.0016
14 1.2975 0.0000 0.0013
1
/2-
Beam - Column Check
C 3.000x 3.000x 0.075 Fy = 55 ksi
A = 0.595 in2
Sx = 0.676 in3 .
Rx = 1.305 in Ry = 1.117 in
kx = 1.00 ky = 1.00
Stress Factor 1.333
Point P M Lx Ly Pcap Mcap Ratio
9 6.2 17.9 60.0 43.0 20.51 29.73 91%
10 4.2 8.7 60.0 43.0 20.51 29.73 50% .
11 2.1 5.9 60.0 43.0 20.51 29.73 30%
O 0.0 0.0 60.0 43.0 20.51 29.73 0%
O 0.0 0.0 60.0 43.0 20.51 29.73 0%
0 0.0 0.0 60.0 43.0 20.51 29.73 0%
Load Beam Check
4.50x 2.750x 0.075 Fy = 55 ksi
A = 1.038 in2 E = 29,500 E3 ksi
Sx = 1.096 in3 Ix = 2.599 in4
Length = 94 inches
Pallet Load 4100 lbs
Assume 0.5 pallet load on each beam
M = PL /8= 24.09 k -in
fb = 21.99 ksi Fb = 33 ksi 67%
Mcap = 36.15 k -in
48.20 k -in with 1/3 increase e8
Defl = 0.29 in = L/ 325
w/ 25% added to one pallet load
M = .282 PL = 27.17 k -in 75%
/3
Base Plate Design
Column Load 7.2 kips
Allowable Soil 1500 psf basic
Assume Footing 26.2 in square on side
Soil Pressure 1500 psf
Bending:
Assume the'concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax = w1"2/3
Use 4 "square base plate
w = 10.4 psi 1 = 8.62 in
Load factor = 1.67 M = 431 # -in
5 in thick slab f'c = 2500 psi
s = 4.17 in3 fb = 103 psi
Fb = 5(phi)(f'c = 163 psi OK !!
Shear :
Beam fv = 30 psi Fv = 85 psi OK !!
Punching fv = 59 psi Fv = 170 psi OK !!
Base Plate Bending Use 0.375 " thick
1 = 1.5 in w = 448 psi
fb = 21523 psi Fb = 37500 psi OK !!
PV