Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
1 7005 sw q2vtd CMS 20H I - OOOO • • CEIVED APR - 7 2011 • Blazer Industries. Inc. pFTIGA Engineering Design Calculations CITY for BUILDING DIVI Cook Park - Job # 17417 02/24/11 Width = 22.67 ft 2 modules Length = 14 ft • Type: Restroom Location: Tigard, OR Dealer: TPRC DESIGN LOADING - 2009 IBC /OSSC 2010 Roof 25 psf Floor • 50 psf or 2000 # Occupancy Category H Wind Basic Wind Speed 95 mph (3 sec gusts) Exposure C Seismic Site Class D SDS 0.694 .3 -2--11 SD1 0.385 ,` PR OFes �i Seismic Force- Special reinforced masonry shear walls AG O Resisting System 9300 2 � Analysis Procedure Equivalent Lateral OREGON 4S 1' 15,14V M. SHE 'EXPIRES: E INDEX OF CALCULATIONS Item Page GENERAL LOADS LOAD /1 - LOAD /5 ROOF FRAMING ROOF /1 - ROOF /4 CMU WALLS WALU1 SLAB SLAB /1 LATERAL LAT /1 - LAT /2 FOUNDATION FND /1 FOUNDATION ANCHORS ANC /1 - ANC /18 • • • r) t. LOAN( Cook Park Dead loads Date: 2/4/2011 Roof Comments Weathering layer Steel standing seam - 24 ga. 1.30 psf Underlayment 30#t felt _ _ . 0.30 psf__. _ _ . . Structural sheathing 7/16" sheathing 1.44 psf Nailers none 0.00 psf Framing 2x6 decking 4.16 psf Insulation None 0.00 psf Structural sheathing none 0.00 psf Misc. minor overhead components 0.50 psf Ceiling None 0.00 psf Use Total I 7.7 psf 8 psf I Roof Beam and ledger 3 1/8 x 9 glulam 8.00 plf 'incl. braces Rim 6x4x1/8 tube steel 9.00 plf Vent Blocks 0.00 0.00 plf Parapet/special fascia 0.00 plf Total Rim' 9.0 plf • Wall - Exterior Weathering layer Hardipanel - 5/16" 2.30 psf Structural sheathing 7/16" sheathing 1.44 psf Fire layer Misc. components 0.50 psf Studs 2x4 @ 16" 1.52 psf Insulation None 0.00 psf Inner sheathing 7/16" sheathing 1.44 psf Lining Hardipanel - 5/16" 2.30 psf Misc. Misc. components 0.50 psf Use Total I 10.0 psf I 10 psf Wall - Interior Structural sheathing 7/16" sheathing 1.44 psf Studs 2x4 @ 16" 1.52 psf Insulation R -13 fiberglass batts 0.40 psf Lining 3/8" plywood paneling 1.25 psf Use Total I 4.6 psf 5 psf Wall - Masonry portion Main 4" CMU - fully grouted 38 psf Insulation None 0.00 psf Inner sheathing none 0.00 psf Lining None 0.00 psf Total I 38.0 psf I 38 psf Floor Surfacing None 0.00 psf Concrete 8" thick - normal weight 100 psf Use Total I 100.0 psf I 100.0 psf I Blazer Industries, Inc. 2 17417 dead loads - wts- dkg.XLS • r) LOAD /2 Cook Park Wind Loads - IBC Date: 2/4 /2011 Wind Load Information ASCE 7 -05 Basic wind speed V = 95 mph (3 sec gusts) Method 2 (Analytical) Max height of roof Zmax = 13.39 ft Directionality general for buildings Kc = - 0:85 - Other assumptions: -. - . • . • . . -- Importance Category II I = 1.00 Building is Enclosed Exposure C Kzmax = 0.85 Building is Rigid (T< 1 Os) Topographic - no hill effect assumed Kzi = 1.0 qz = 0.00256 Kz Kzr Kd V I I gzmax = 16.7 psf I Building Dimensional Information Width = 22.67 ft h /Lw = 0.48 Edge strip: lesser of (0 lx W) or (0.4 x eave ht.), but at Length 11 to ridge = 14 ft h /L.L = 0.78 least greater of 3 ft or (0.04 x W). Skirt/pony wall = 0 ft Edge Strip a = 3.0 ft Floor depth = 0.67 ft End Zone 2a = 6.0 ft Wall ht = 7.33 ft Rim /roof depth = 0.67 ft Elev. = 8.67 ft Roof Pitch = 5 in 12 0 = 22.6 deg Overhang = 7 in Eave ht = 8.43 ft - h is eave ht for 'flat' roots; otherwise mean ht Ridge.ht = 13.39 ft h = 10.91 ft (Mean roof height) Kh = 0.85 qh = 16.7 psf Pressure Coefficients Internal for Enclosed Building: GCi = 0.18 or -0.18 qh Gcpi = 3 psf from Figure 6 - 5, ASCE 7 - 05 External for Enclosed or Partially Enclosed Buildings: Cp varies; see table below Pressure For Total Shear to MWFRS: p = gGC5 - qi(GC5,) where G = 0.85 for building structures L/B Cp p(horiz) [psf] p(horiz) Surface (Fig 6 +q(GCpi) - q(GCpi) Totals psf Windward Wall and Gable 0.8 14.4 8.3 Leeward Wall, wind p to ridge 0.62 -0.5 -4.1 -10.1 Walls 1 to ridge 18.4 Leeward Wall, wind 1 to ridge 1.62 -0.38 -2.4 -8.4 Walls II to ridge 16.7 Side Wall -0.7 -6.9 -12.9 • Windward Roof -0.34 -1.8 -7.8 0.2 5.8 -0.2 Leeward Roof -0.6 -5.5 -11.5 Sloped.Roof 11.4 Pressure For Uplift on MWFRS: Wind J. to ridge Windward Leeward Distance from windward edge Distance from windward edge % of h 0 to 50 50 to 100 100 to 200 > 200% 0 to 50 50 to 100 100 to 200 > 200% distance, ft • 0 to 5 5 to 11 11 to 22 > 22 0 to 5 5 to 11 11 to 22 > 22 Cp -0.34 -0.34 -0.34 -0.34 -0.60 -0.60 -0.60 -0.60 Ip(vert), psf -7.8 -7.8 -7.8 -7.8 -11.5 -11.5 -11.5 -11.5 Wind II to ridge Distance from windward edge % of h 0 to 50 50 to 100 100 to 200 > 200% distance, ft 0 to 5 5 to 11 11 to 22 > 22 Cp -1.12 -0.79 -0.61 -0.52 Ip(vert), psf -18.9 -14.2 -11.7 -10.4 Blazer Industries, Inc. 1 17417 Gatos - IBC2009 xis LOAD /3 Cook Park Seismic Loads - IBC Date: 2/24/2011 Seismic Loads - IBC Importance factor = 1.0 Assume - "D" For Tigard, OR Ss = 0.92 Fa = 1.132 Sms = Ss * Fa = 1.041 Fa interpolated from Table 1613.5.3(1) S1 = 0.333 Fv = 1.734 Sm 1 = S1 * Fv = 0.577 Fv interpolated from Table 1613.5.3(2) Sds = 2/3 * Sms = 0.694 , therefore Design Category D from Table 1613.5.6(1) Sd1 = 2/3 * Sm1 = 0.385 , therefore Design Category D from Table 1613.5.6(2) R = 5 (special reinforced masonry shear walls - Table 12.2 -1) Cs = Sds . I / R = 0.139 [Eq. 12.8 - ASCE 7] V = Cs W = 0.139 W [Eq. 12.8 - 1 ASCE 7] For basic load combinations, 0.7E = 0.097 W For diaphragms, Fp = 0.2 le Sds Wp (not less than) [Section 12.10.1.1] Fp = 0.139 Wp*.7 = 0.097 Wp Fp = 0.4 le Sds Wp (need not exceed) [Section 12.10.1.1] Fp = 0.278 W p *.7 = 0.194 Bearing walls and shear walls - out of plane force [Section 12.11.1] Fp = 0.40 le Sds Ww Fp = 0.278 Ww Use greater of Fp or 0.10Ww • Anchorage of concrete or masonry walls Fp = 0.8 Sds le Ww [Eq. 12.11 -1 ASCE 7] Fp = 0.555 Ww design force in the individual anchors Not less than 280 plf (strength level) [Section 12.11.1.2] Blazer Industries, Inc. 17417 Calcs - IBC2009.xls • • LOAD/ /1 Cook Park Building weight Mod 01 module width = 11.33 ft roof DL = 8 psf length parallel to ridge = 14 ft beam DL = 8 plf CMU ht = 7.33 ft Cap beam DL = 9 plf — save OH - 1 = 7 i gable wall DL = — - - 1 - 0 psf eave OH 2 = 7 in wall above CMU DL = 5 psf gable OH 1 = 8 in interior wall DL(nonCMU) = 5 psf gable OH 2 = 36 in exterior wall DL = 38 psf roof pitch = 5 /12 floor DL = 100 psf gable height = 2.36 ft floor the DL = 6 psf LF of exterior wall = 36.67 ft wall tile DL = 4 psf LF of interior walls (CMU) wainscot DL = 110 pcf across width = 0 ft wainscot ht = 0 inches other direction = 14 ft wainscot thickness = 2.5 inches LF of int walls (nonCMU)= 0 ft floor tile area = 0 sf wall tile area = 0 sf Building weight Upper half Roof = ( length +Gohl +Goh2)(width +Eohl +Eoh2) = 221 sf 1767 lb 1767 beams = 53 ft 424 424 exterior walls = 36.67 ft * ht = 269 sf 10213 5106.6 interior walls (CMU) = 14 ft ' ht = 102.62 sf 3899.6 1949.8 interior walls (nonCMU) = 0 ft * ht = 0 sf 0 0 cap beams = 50.67 ft 456 456 gable walls = 26.75 sf 267 267 int. walls above CMU = 0 ft * ht = 0 sf 0 0 floor = length *width = 159 sf 15867 total 9970 floor tile = 0 wall tile = 0 weight above plumbing = 3 fixtures 150 lb per fixture = 450 capbeams toilet partitions (CMU) = 1 at 950 lb each = 950 2914 urinal partitions (CMU) = 1 at 380 lb each = 380 area of CMU to subtract for openings = 0 sf 0 door weights to add to openings = 0 concrete parts shipped = 650 wainscot = 0 misc weight = 0 misc weight = 0 total module weight = 35323 lb 2/4/2011 LOAD /5 Cook Park Building weight Mod 02 module width = 11.33 ft roof DL = 8 psf length parallel to ridge = 14 ft beam DL = 8 plf CMU ht = 7.33 ft Cap beam DL = 9 plf eave OH 1 = 7 gable wall = 1 psf -- -- eave OH 2 = 7 in wall above CMU DL = 5 psf gable OH 1 = 8 in interior wall DL(nonCMU) = 5 psf gable OH 2 = 36 in exterior wall DL = 38 psf roof pitch = 5 /12 floor DL = 100 psf gable height = 2.36 ft floor tile DL = 6 psf LF of exterior wall = 36.67 ft wall tile DL = 4 psf LF of interior walls (CMU) wainscot DL = 110 pcf across width = 0 ft wainscot ht = 0 inches other direction = 14 ft wainscot thickness = 2.5 inches LF of int walls (nonCMU)= 0 ft floor tile area = 0 sf wall tile area = 0 sf Building weight Upper half Roof = ( length +Gohl +Goh2)(width +Eohl +Eoh2) = 221 sf 1767 lb 1767 beams = 53 ft 424 424 exterior walls = 36.67 ft * ht = 269 sf 10213 5106.6 interior walls (CMU) = 14 ft * ht = 102.62 sf 3899.6 1949.8 interior walls (nonCMU) = 0 ft * ht = 0 sf 0 0 cap beams = 50.67 ft 456 456 gable walls = 26.75 sf 267 267 int. walls above CMU = 0 ft * ht = 0 sf 0 0 floor = length *width = 159 sf 15867 total 9970 floor tile = 0 wall tile = 0 weight above plumbing = 5 fixtures 150 lb per fixture = 750 capbeams toilet partitions (CMU) = 2 at 950 lb each = 1900 2914 urinal partitions (CMU) = 0 at 380 lb each = 0 area of CMU to subtract for openings = 0 sf 0 door weights to add to openings = 0 concrete parts shipped = 650 wainscot = 0 misc weight = 0 misc weight = 0 total module weight = 36193 lb 2/4/2011 • goon/ Cook Park 25 PSF Roof LL Roof Decking Plank size = 2 x 6 Plank span = 7.00 ft rafter spacing= 6 inches o.c. Roof ---- - — 25 psf dead 'bad= — 7.5 psf Cd - = — 1.15 — — _— -- rafter length= 6.69 ft rafter load= 16 lb /ft Check SPF Selected Fb= 1350 E= 1,400,000 Sr= 1.5wLA2 / (Fb Cd 1.1) = 0.63 <1= 2.06 ,O.K. Ir= 450wLA3 / E = 1.54 <1= 1.55 ,O.K. (Use min. 2 x 6 SPF Selected 3 l^ ; » 0 to= 3pf.r M r„ 1 .. i(.•) -(I, 4 (roov(0.6 f y 9 A v - r - / = 1/0 . � c .,1� - Z � 3 — (n� _. 61 ( 10 ! �EZ Q/Zgr_I0 )045) • ( -4 1Kfst` Uk- I G (Am -ftv‘S / 'r Q,J1 w= qS ?If .12-5 .f4 S M(0) r. 7qi 1^^.• l'itC4 15 ) r 1 7 - ,Uk(, A ��.i Blazer Industries, Inc. • Pe.F /2_ Cook Park Beam - midspan Date: 02/04/11 Calculation for simple -span glulam beam, top laterally supported Dimensions Species, Grade Beam width 3.125 in (Western species, 24F -V4 Beam depth 9 in Beam span 14 ft Tributary width 4.665 ft Trib. overhang 0 ft Unbraced length 168 in Unit Loads Beam Loads DL 8 psf Beam self -wt 7.88 plf Overhang DL 0 psf Total DL 45.2 plf DL for uplift 8 psf Total LL 116.6 plf LL 25 psf Total load 161.8 plf Other DL 0 plf W +.6D -39.1 plf Other LL 0 plf Beam unit wt 0.280 psi /ft Wind uplift -14.2 psf Section Properties Material Properties Mod. factors A = 28.13 inA2 E = 1800 ksi Cd = 1.15 I = 189.84 inA4 FbBTM = 2400 psi Cd(W) = 1.6 S = 42.19 in ^3 FbTOP = 1850 psi KL = 1.00 Fv = 240 psi Cv = 1.00 Allowable Stresses: F'b = 2760 psi F'v = 276 psi For unbraced: lu /d = 18.6667 » le= 178.2 (wind uplift) RB= 12.8 FbE= 6828 KbE= 0.623 FbE/Fb* = 2.307 1 +(FbE /Fb *)/1.9 = 1.740 CL = 0.965 » Fb(Lu)' = 2857 psi Beam Capacity M„ = F'b x S = 116.4 k -in, = 9703 lb -ft V„ = F'v x A/1.5 5175 lb Analysis Bending Moment = 47.6 k -in fb = 1128 < 2760 OK Bending upward = -11.5 k -in fb = 273 < 2857 OK Shear = 1133 lb fv = 60 < 276 OK Deflection: ADL inst. = 0.11 in ADL long term. = 0.17 in (150 %) Specified Precamber = 0.00 in minimum ALL = 0.29 in., = L/ 569 Atotai = 0.47 in., = L/ 360 10K Required Bearing Area: Fcperp = 650 psi bearing length >= 0.56 in Reactions = 1133 # for simple span 1416 # for continuous spans using these caics - 274 # D + W Blazer Industries, Inc. Beam - glulam - 1.XLS Cook Park Beam - Ridge Date: 02/04/11 Calculation for simple -span glulam beam, top laterally supported Dimensions Species, Grade Beam width 3.125 in 'Western species, 24F -V4 Beam depth 9 in Beam span 14 ft Tributary width 4 ft Trib. overhang 0 ft Unbraced length 168 in Unit Loads Beam Loads DL 8 psf Beam self -wt 7.88 plf Overhang DL 0 psf Total DL 39.9 plf DL for uplift 8 psf Total LL 100.0 plf LL 25 psf Total load 139.9 plf Other DL 0 plf W +.6D -32.9 plf Other LL 0 plf Beam unit wt 0.280 psi /ft Wind uplift -14.2 psf Section Properties Material Properties Mod. factors A = 28.13 inA2 E = 1800 ksi Cd = 1.15 I = 189.84 in^4 FbBTM = 2400 psi Cd(W) = 1.6 S = 42.19 inA3 FbroP = 1850 psi KL = 1.00 Fv = 240 psi Cv = 1.00 Allowable Stresses: F'b = 2760 psi F'v = 276 psi For unbraced: lu /d = 18.6667 » le= 178.2 • (wind uplift) RB= 12.8 FbE= 6828 KbE= 0.623 FbE/Fb* = 2.307 1 +(FbE /Fb *)/1.9 = 1.740 CL = 0.965 » Fb(Lu)' = 2857 psi Beam Capacity M„= F'bxS= 116.4 k -in,= 9703 lb-ft V„ = F'v x A/1.5 5175 lb An alysis Bending Moment = 41.1 k -in fb = 975 < 2760 OK Bending upward = -9.7 k -in fb = 229 < 2857 OK Shear = 979 lb fv = 52 < 276 OK Deflection: ADL inst. = 0.10 in ADL long term. = 0.15 in (150 %) Specified Precamber = 0.00 in minimum ALL = 0.25 in., = U 664 Atotal = 0.40 in., = L/ 416 IOK I Required Bearing Area: Fcperp = 650 psi bearing length >= 0.48 in Reactions = 979 # for simple span 1224 # for continuous spans using these calcs -230 # D + W Blazer Industries, Inc. Beam - glulam - 1.XLS . • I Cat FILAVA' i N1 14_0r.714. I , -- 1 1K - 2- 1 SlaltJfr p ror 75 l'5? 114-or DL s(77,1.1 .75 td (z 51- 8) 1. 7 = z,75 4\441-1:0,14 1 1 .0 754-0(2,75'A 06 14- 5 pIC et- 01131i. 3vrIPII4 6-4) 4141114,5ff 62-(0.67)(1.15) 63 1.5 G3( — 1•24 ' Z3 Zt-b sfr A- for.- sen'd -61 14styr4-14.1 a E-, 4L.30 bows e 640' s o ODIL = /6 fe71.471• V160-I try Oh e swfs q lybio,15) 0- fic-ti - tg-ferv. rer. RAO Vie.i WALU1 Cook Park Masonry walls 4" x 8" Masonry Block Walls Special reinforced masonry shear walls - - -- min. reinforcement sect -1 17.3:2 - 3. - 1 - - #4 - bar - - - -- 0. - 196 - - 0.0007 min. either direction #3 bar = 0.110 sq in total h & v >= 0.002 (2) 8 ga wire = 0.0412 sq in 0.162" dia (2) 9 ga wire = 0.0345 sq in 0.148" dia b min. steel principal width length Area x 0.0007 x0.0013 Horizontal 3.625 12 43.5 0.030 < 0.052, (2) 9 ga @ 8 "oc Vertical 3.625 12 43.5 0.030 < 0.083 sq in, #3 @ 16 "oc OK (total) 3.625 12 43.5 0.057 < 0.083 sq in, #3 @ 16 "oc OK (total) Total x 0.002 3 625 _ 12 43.5 0.087 Ap = 0.083 + 0.052 = 0.135 sq in > 0.087 sq in, OK Provide min. #3 rebar verticals @ 16 "oc and two 9 ga wire horizontals @ 8 "oc. Also provide #4 rebar verticals at corners, within 16° each side of openings, within 8" each side of movement joints and ends of walls and at max. 120" oc. Horizontal reinforcement is required at bottom and top of wall openings and must extend 24" or >= 40 bar diameters past openings. Allowable Shear Stress sect. 2.3.5.2.3 ACI 530 - 05 F'm = 1500 psi For M/vd < 1, Fv =(1/3) (4 - M /vd) sqrt(F'm), (80 -45 M /vd) maximum (equation 2 -25) For M/vd >= 1, Fv = 1.0 sqrt(F'm), 35 psi maximum (equation 2 -26) V = 1934 /2 = 967 # for masonry taking all shear M = ht *1.5V = 127586 in -lb d= 36 in M /vd = 4 > 1.0, therefore Fv = 1.0 sqrt(F'm) = 39, use 35 psi Fv'b = 127 pli = 1523 plf min. wall length = 1.5V /(Fv'b) = 1.0 ft INo additional reinforcing required. I Check Flexural reinforcement required for wind load (lateral) 4 x 8 Masonry Block Walls (7.33' tall wall) height = 7.33 ft w = wind = 18.4 psf fully grouted n = 25.78 Seismic out -of -plane force, Fp = 0.278 W d (centered) = 1.81 in W = 38 psf Fp = 10.564 psf #3 veil @ 16 "oc, As = 0.083 sq in max = 18.4 psf p = As /bd = 0.00382 pn = 0.098 k = sgrt(2pn +(pn)A2) -pn = 0.356 j= 1 -k/3= 0.881 M = whA2 /8 = 124 ft-lb fs = M /Asjd = 11184 psi < 1.33Fs = 32,000 psi, OK fb = 2M/jkbdA2 = 240 psi < Fb = 1/3(1500)'1/2'4 /3 = 333 psi, OK no special inspections, 1/2 stresses V = wh /2 = 67 lb fv= V /bjd= 3.52 psi <Fv= 1.Osgrt f'm =39 psi, OK - Provide min. #3 rebar verticals @ 16 "oc and two 9 ga wire horizontals @ 8 "oc. Blazer Industries, Inc. • • • • SLAB /1 Cook Park Slab - Minimum Requirements Date: 2/4/2011 This sheet provides steel requirements for general conditions. The precast fabricator may install additional reinforcement or detailing for lifting and transport. f'c = 2500 psi Where higher f'c increases requirements, use 2500 psi fy = 60000 psi we = 150 pcf (ACI references) Shrinkage and Temperature Reinforcement (7.12) Slab thk. "h" (in) = 3.5 4 6 8 10 0.0018 Ag (in ^2/ft) = 0.076 0.086 0.130 0.173 0.216 Reinf. 4x4 - 4x4 - #3 © 10 #4 @ 16 #3 © 12 W4.0 W4.0 T &B T &B As (in ^2/ft) = 0.120 0.120 0.132 0.294 0.220 Reinforcement Spacing (if two -way slab action is anticipated) (13.3) h (in) = 3 4 6 8 10 Max. Spacing (s) = 6 8 12 16 18 Flexural Reinforcement for slab portions not bearing on soil (10.5) D = self- weight of slab L = 50 psf Simple -span sections h (in) = 3 4 6 8 10 D (psf) = 37.5 50.0 75.0 100.0 125.0 1.4 D + 1.7 L (psf) = 137.5 155.0 190.0 225.0 260.0 Span (ft) = 5.5 6.5 8 10 10 #3 @8 #3 @8 #3 @10 #4 @ #4 @12 Reinf. T &B T &B As(bot.) (in^2/ft) = 0.165 0.165 0.132 0.147 0.200 As(top) if appl. = 0.147 0.200 d (in) = 1.25 1.75 2.75 6 8 Check As(min) = 0.000 0.000 0.083 0.000 0.000 (Eq (10-3) n/a if As is 1/3 > than req'd) pmax = 0.75pb = 0.0134 0.0134 0.0134 0.0134 0.0134 Check As(max) = 0.200 0.281 0.441 1.109 1.483 (10.3.3) a (in) = 0.388 0.388 0.311 0.346 0.471 4Mn (k -in /ft) = 9.4 13.9 18.5 46.3 83.9 Mu (k -in /ft) = 6.2 9.8 18.2 33.8 39.0 For 8" slabs, provide #4 bars ©16" oc E.W. T &B f'c = 2500 psi min. fy = 60 ksi Blazer Industries, Inc. FND slab minimum req.xls • LAT/ Cook Park Lateral design Date: 2/24/2011 Building Dimensional Information Width = 22.67 ft h /Lw = 0.59 Discontinuity: lesser of (0.1x W) or 10 ft. Length to ridge = 14.00 ft h /LL = 0.96 (' Discontinuity = 1.4 ft -- - Skirt/pony wall =- - - 0:00 Floor depth = 0.67 ft Wall ht = 7.33 ft Rim/roof depth = 0.67 ft Elev. = 8.67 ft Roof Pitch = 5 in 12 6 = 22.62 deg Overhang = 8 in Eave ht = 8.39 ft Ridge ht = 13.39 ft Cap beam to support top of wall A out - of - plane Load (seismic) = F(38 psf) (wall ht/2) = 38.72 plf I = 11.4 inA4 Load (wind) = (P psf) (wall ht/2) = 61.21 plf S = 3.81 inA3 max = 61.21 plf P(wind) = 16.7 psf I = wall length between supports = 9.33 ft F= seismic factor = 0.278 Sr = 1.5 w I ^2/(46000'.6) = 0.29 inA3 < 3.81 , OK delta max = 1/240 = 0.47 in delta = 5 w 1M 1728/(384'29E6'1) = 0.03 in delta <= 1/240, OK I6x4x1 /8 TS steel cap beam adequate to support top of CMU walls. • Blazer Industries, Inc. 17417 IBC w -s load TPRC -LVR spcl.xls • LAT/ 2- Cook Park Lateral design Wind P p to ridge = 18.4 psf Parallel To ridge = P[(length)(wall ht).5 +length(gable).5)] = 1674 # Seismic controls P L to ridge = 16.7 psf _ _ _ _ _ _ _ Perp. to ridge = P[(width)(wall ht).5 + (width +2oh)gable]= 3519 # Wind controls Seismic weight from LOAD /4 & 5 weight above top of walls W = 19940 lb V = 0.097 W 1934 lb W = 5828 lb 1/4 snow = 0 V = 0.097 W 565 lb total = 19940 lb V = 0.097 W 1934 lb (diaphragms) V = 0.097 W 565 lb (diaphra Roof diaphragm using interior walls Assumption is wall loads are resisted by cap beams Case I V = 283 # unit shear = V /width = 12 plf, < 165 6/12/6 blocked Case Ill V = 283 # unit shear = V /length = 20 plf, < 165 6/12/6 blocked Sheathe roof with 7/16" APA Rated sheathing (24/16). Fasten to 2x6 T &G decking with 16 ga x 1 1/2" staples @ 6 "oc edge, 12 "oc field, 6 "oc perimeter. Wall connections 1/2° diameter rebar: T = 1410 # V = 850 # 40d = 20 in #12 screw, shear = 280 # mod width = 22.67 ft mod length = 14.00 ft CMU V/850 upper v = screw wall trib ratio V length V /length anchors wall L V/L v/2 = v allow in o.c. spcg 1 4 0.18 100 14.00 7 0.1 n/a 2M1 7.33 0.32 183 14.00 13 0.2 14.00 13 7 170 6 21.45 2M2 6.67 0.29 166 14.00 12 0.2 14.00 12 6 170 6 23.59 3 4.67 0.21 116 14.00 8 0.1 n/a A 7.00 0.50 283 22.67 12 0.3 8.67 33 16 170 6 8.59 B 7.00 0.50 283 6.67 42 0.3 8.67 33 16 170 6 8.59 Fasten min. 6x4x0.120 steel tube wall cap to CMU wall with 1/2" diameter rebar anchors per wall as shown in chart. Provide min. 3 1/4" x 3 1/4° x 3/16" thick steel plate welded to 1/2° x 20" long rebar with 3/16" fillet weld. Min. anchors per chart for each wall. Fasten cap tube to each plate with min. 1 1/2" fillet weld each. Spacing not to exceed 48" oc. Fasten min. 3/8" APA Rated sheathing, one side of all walls, with min. 16 ga staples at 6 "oc edge,12 "oc field. Fasten wall bottom plate to wall cap (steel tube) with #12 screws at 16 "oc. Decking uplift connections uplift = 23.7 psf • 2.50 ft = 59.3 plf '6" oc= 30 lb per decking piece #12 screw, w /d, 18 ga = 124 # Fasten decking to wall below with #12 screw. Blazer Industries, Inc. 17417 IBC w -s load TPRC -LVR spcl.xls • FND /1 Cook Park Foundation Foundation Roof LL = 25 psf allowable soil bearing pressure = 1500 psf Roof DL = 8 psf Roof trf 5.34 ft footing depth = 12 in wall DL = 38 psf wall ht = 7.33 ft Floor LL = 50 psf Floor DL = 100 psf Roof = (LL +DL)'trib = 176 plf wall = ht DL = 279 floor = (LL +DL) *2 = 300 footing wt = (depth /12)'150= 150 total = 905 plf Ar = total / brg = 0.60 ft Provide min. 18" wide x 12" deep concrete footing with 3 #4 rebar at min. 3" clear of bottom, continuous. I Lateral - Anchor calculations Anchor Orientation fear of ("game i c fss,ct a • il Lam. Lecv DIM-c210)4 +r I. _ .. - -- -- MAK k. env I''' 16600 w it e.v_ _ -- -.- 15 5- Aim ciet..2 Cevc., ) • `1 12250 l tSE kTi71LH C/nLGS ) I Lefty DIpC- utzb.; 3 t nom L.orc• 4ioo 14 Bee MOW* c*Lcs) 16500 from LAT, seismic controls from LOAD /4 -5, total weight = 71516 lb V = 0.097 W = 6937 lb Load direction #1 (L #1) = 16600 lb Load direction #2 (L #2) = 12250 lb Load direction #3 (L #3) = 6725 lb Load perpend. to grids 1 &3 = 2 (L #1) + 2 (L #2) + 2 (L #3) = 71150 > 6937 Ib, OK Load parallel to grids 1&3 = 1 (L #1) + 1 (L #2) + 4 (L #3) = 55750 > 6937 Ib, OK Provide 6 anchor plates total, 2 on grid 1, 2 on grid 3, 1 on grid A, and 1 on grid B. I Blazer Industries, Inc. foundation xls Anchor Calculations Anchor Designer for ACI 318 (Version 4.0) Job Name : Cook Park - D1 Date/Time : 2/24/2011 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Calculation Type . Analysis a) Layout Anchor . 3/4" Strong -Bolt Number of Anchors : 2 Embedment Depth . 5.5 in Built -up Grout Pads : No Cxi Sy, C Vijay Cy-) M uy, • ° + t,a o M e Vuax a tax /- " y,.. b:x2 co 1 2 ANCHORS 'Nur: Pl�,`.+iTIVE FOR TE:kStCN AND I E ATiVE FOR COMPRESSION. INDICATES C=PJT R OF TWO ANCHORS Anchor Layout Dimensions : c,I:IOOm c�z : 34 in co : 11.5 in Cy2•6.5in b,1 :2in be. :2in b : 3.5 to b . 2.5 in s, b) Base Material Concrete : Normal weight f : 2500.0 psi Cracked Concrete : Yes 'P 1.40 Condition : B tension and shear OF, 1381 3 psi Thickness, h . 12 in Supplementary edge reinforcement • No Ac /Z c) Factored Loads Load factor source : AC1318 Appendix C N.: 0 lb V m , : 0 Ib V, : -16600 lb M,,, : 0 lb*ft --- M0 - - - - - - - - e,.0in e : 0 in Moderate/high seismic risk or intermediate/high design category . No Apply entire shear load at front row for breakout : No d) Anchor Parameters From C- SAS -2009: Anchor Model = STB75 d„ = 0 75 in Category = 2 hJ = 4.75 in h... 8.44 in c,, = 12.02 in cmm =6 in s =6.25 in Ductile = No 2) Tension Force on Each Individual Anchor Anchor #1 N. = 0.00 lb Anchor #2 N,,,: = 0 00 lb Sum of Anchor Tension £N.= 0.00 lb a =0.00 in a 0.00 in e' =000in e'N = 0.00 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor #1 V., = 8300 00 lb (V,,,,, = 0.00 lb , V, - 8300.00 lb ) Anchor #2 V.2= 8300.00 lb (V.2„= 0.00 lb , V,,,, - 8300.00 lb ) Sum of Anchor Shear £V„„, = 0.00 lb, £V„,,. = -16600 00 lb e'v, =000in e'v = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] N. = nA [Eq. D -3] Number of anchors acting in tension, n = 0 N.= 34125 lb (for each individual anchor) [C- SAS -2009] It= 0.70 [D.4.5] = 23887.50 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] N = ANJAN .,`l'e .N`l'e4N`YcN`P,p.NNb [Eq D -5] Number of influencing edges = 1 hu= 4.75 in ANw = 203.06 in [Eq D -6] AN = 357.66 m T = 1.0000 [Eq. D - 9] y = 1 0000 [Eq. D -9] ` l ' ccN = 1.0000 (Combination of x -axis & y -axis eccentncity factors.) Smallest edge distance, c, = 6.50 in ` l ' eAN = 0.9737 [Eq D -10 or D-11] Note: Cracking shall be controlled per D.5 2.6 `Y N = 1 0000 [Sec. D.5.2.6] • • &I C/3 `P = 1 0000 [Eq. D -12 or D -13] N = lc, f ' c hJ' 5 = 8799.53 lb [Eq. D -7] k = 17 [Sec. D.5.2.6] N ees = 15090.84 lb [Eq. D -5] = 0.65 [D.4.5] ON = 9809.05 lb (for the anchor group) 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] = `I'caNn N = 8853Ib (f psi) °5 = 8853.00 lb 4) = 0.65 ON,„ = 5754.45 lb 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side - face blowout strength is only calculated for headed anchors close to an edge, c < 0.4h Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] V. = 19305.00 lb (for each individual anchor) [C- SAS -2009] = 0.65 [D.4.5] • V„ = 12548.25 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1. Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x- direction... Vebx = A,. /A.mx4'ed.v4avVbx [Eq. D -21] c,, = 8.00 in (adjusted for edges per D.6.2.4) A = 21600m A„ = 288.00 in2 [Eq. D-23] `Peat/ = 0.8625 [Eq. D -27 or D -28] = 1.4000 [Sec. D.6.2.7] Vb, = 7(Ie/da) d f c(Cal) ' 5 [Eq. D-24] I, = 4.75 in Vox = 9921 11 lb V = 8984 80 lb [Eq D -22] =0.75 �Vcb, = 6738.60 lb (for a single anchor) In y- direction... Vcosy = AV,,/A,co [Eq. D-22] c = 11.50 in = 558.00 in A, = 595.13 in [Eq. D -23] `P = 1.0000 [Eq. D -26] `Pm.v = 1.0000 [Eq. D -27 or D -28] `Pc v = 1 4000 [Sec. D.6.2.7] Vby = 7(1e/do) do fc(ca1)' 5 [Eq D -24] I = 4.75 in Voy = 17099.05 lb V cbay = 22445 33 lb [Eq D -22] = 0.75 V = 16834.00 lb (for the anchor group) M c At 4Vcb. = 8417 00 lb (for a single anchor - divided y Vcb gy by 2) Case 2: Anchor(s) furthest from edge checked against total shear load In x- direction... Vcb, = Ave. /A.00,'1'ca.v'I'c,vVba [Eq. D -21] - -c = -8.00 in (adjusted-for -edges per D.62.4) • - - A,. = 216.00 in A.au = 288.00 in [Eq. D-23] 4'cn v = 0.8625 [Eq. D -27 or D -28] 4' = 1.4000 [Sec. D.6.2.7] v„,.= 7(1,/d d. • fc(cal)' [Eq. D -24] l 4.75 in V = 9921.11 lb V = 8984.80 lb [Eq. D -22] 4 = 0.75 Oct. = 6738.60 lb (for a single anchor) In y- direction .. Vcngy = A,•�/A.c0 [Eq D c = 11 50 in A, = 558.00 in A.co = 595.13 in [Eq. D -23] 4' = 1.0000 [Eq. D -26] 'I' «d.v = 1.0000 [Eq. D -27 or D -28] 4 = 1.4000 [Sec. D.6.2.7] Vby = W do fc(cal)'s [Eq• D - 24) l = 4.75 in Vb 17099.05 lb V = 22445 33 lb [Eq. D-22] =0.75 yNcb = 16834.00 lb (for the entire anchor group) Case 3. Anchor(s) closest to edge checked for parallel to edge condition Check anchors at c edge Vcb, = A,c. /A.au`l'm,v'PcyVb. [Eq. D -21] cal = 8.00 in (adjusted for edges per D.6.2.4) = 216.00 in A. = 288 00 in [Eq. D -23] 4'ca,v = 1.0000 [Sec D.6.2.1(c)] T = 1.4000 [Sec. D.6.2.7] Vb, = 7(lddo)02 4 do 4 fc(ea1) 5 [Eq. D-24] L=4.75 in V 9921.11lb V = 10417.16 lb [Eq. D -22] V cby = 2 • V [Sec. D.6.2.1(c)] V = 20834 32 lb 41i= 0.75 ¢V = 15625.74 lb (for a single anchor) Check anchors at c edge • Vthsy = A.c .,.v4 [Eq. D -22] cal = 11.50 in A = 558.00 in Avcoy = 595 13 in [Eq. D -23] • 4 `1'ccv = 1.0000 [Eq. D-26] '1'eu v = 1.0000 [Sec. 0.6.2.1(c)] `P ‘v = 1 4000 [Sec 0.6.2.7] — - Vby = .- 7(l ° ' 2 d [Eq 0-2 - I =475in Vby = 17099 05 lb Ni = 22445.33 lb [Eq. D -22] Vcba, = 2 * V [Sec. O.6.2.1(c)] V = 44890.65 lb =075 orl:Vcb = 33667.99 lb (for the anchor group) Check anchors at co edge V = Avo. /A.m.`1'ca,v`Yo,vVb. [Eq. D -21 c = 8.00 in (adjusted for edges per D.6.2.4) A, = 216.00 in A. = 288.00 in [Eq. D -23] `l = 1.0000 [Eq. D -27 or D -28] [Sec D.6.2.1(c)] ` o,v = 1.4000 [Sec 0:6.2.7] Vb. = 7(4/do) °- • do Al • fc(eai) [Eq D -24] l 4.75 in Vb, = 9921.11 lb Vd,, = 10417.16 lb [Eq D -22] Vi = 2 * V [Sec. D.6.2.1(c)] V = 20834.32 lb =0.75 (Mb, = 15625 74 lb (for a single anchor) Check anchors at c edge Vcbsr = Avo [Eq. D-22] c„ = 6.50 in A„ = 307.13 in A.co = 190.13 in [Eq. D-23] ` oo.v = 1.0000 [Eq. D -26] 'Pay = 1.0000 [Sec. 0.6.2.1(c)] 'Yc.v = 1.4000 [Sec. D.6.2.7] Vby = 7(l ,/do) do 4 fc(Cai)1 3 [Eq. D-24] 4 =4.75 in V = 7266.00 lb Vobsy = 16432.33 lb [Eq. D -22] Vim, = 2 * Vofty [Sec. D.6.2.1(c)] V = 32864.66 lb = 0.75 (13■V, = 24648.50 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vms = km [Eq. D -30] k = 2 [Sec. D 6.3.1 ] eN, = 0 00 in (Applied shear load eccentricity relative to anchor croup c.g.) e = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) 4' ecN, = 1.0000 [Eq. 0 -9] (Calulated using applied shear load eccentncity) `Y� N = 1 0000 [Eq. 0 -9] (Calulated using applied shear load eccentricity) AriC `l = 1 0000 (Combination of x -axis & y -axis eccentricity factors) N = (ANce/ANc)(Pcc,NITec.N)Nchg Nehs = 15090.84 lb (from Section (5) of calculations) ANC = 357.66 in' (from Section (5) of calculations) - - AN = 357:66 in= (considerinb all anchors)- - - - -- - -- ` Pec.N = 1.0000 (from Section(5) of calculations) N ehg = 15090.84 lb (considering all anchors) V� = 30181.69 lb 0= 075[D.45] tpV� = 22636 27 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] Tension - Steel : 0.0000 - Breakout : 0.0000 - Pullout : 0 0000 - Sideface Blowout . N/A Shear - Steel : 0.6614 - Breakout (case 1) • 0.9861 - Breakout (case 2) : 0.9861 - Breakout (case 3) . 0.5312 - Pryout : 0.7333 T.Max(0) <= 0.2 and V.Max(0.99) <= 1.0 [Sec D.7.2] Interaction check: PASS Use 3/4" diameter Strong -Bolt anchor(s) with 5.5 in embedment Anchor Calculations Anchor Designer for ACI 318 (Version 4.0) Job Name : Cook Park - D2 Date/Time : 2/24/2011 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Calculation Type : Analysis a) Layout Anchor • 3/4" Strong -Bolt Number of Anchors : 2 Embedment Depth : 5.5 in Built -up Grout Pads : No Cxl 'xr Gx2 4 Vuay. • C y 2 PJI Vuax by I i px bx2 2 ANCHORS 4121 1C_ Pcs;Tivz F )h T[: I E _;aivE' oR COMPRE2S1CN, - t tvDICfiTF r C =NT, =R OF TWO ?t. CHQR'S Anchor Layout Dimensions . c cu : 34 in c,,, .11.5 in c : 6.5 in b : 2 in b,2. b :3.5in b : 2.5 in s 12 in b) Base Material Concrete : Normal weight - f : 2500.0 psi Cracked Concrete : Yes ` e .v : 1.40 Condition : B tension and shear 6F . 1381.3 psi Thickness, h : 12 in te Supplementary edge reinforcement • No c) Factored Loads Load factor source • ACI 318 Appendix C N„,:0lb V„„•0lb V„ : 12250 lb M. 0 lb*ft M „ . 0 lb*ft e O in e r :0in Moderate/high seismic risk or intermediate/high design category . No Apply entire shear load at front row for breakout : No d) Anchor Parameters From C- SAS -2009. Anchor Model = STB75 d„ = 0.75 in Category = 2 h = 4.75 in h„„ = 8.44 in c = 12.02 in emm = 6 in Smm = 6.25 in Ductile = No 2) Tension Force on Each Individual Anchor Anchor #1 N„,, = 0.00 lb Anchor #2 N.2 = 0 00 lb Sum of Anchor Tension EN. = 0.00 lb a 0.00 in a 0.00 in e'N ,. = 0.00in e' .= 0.00in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor #1 V = 6125.00 lb (V„ 0.00 lb , V„ 6125.00 Ib ) Anchor #2 V„,z = 6125.00 lb (V,.,,. = 0.00 lb , V,,,, 6125.00 lb ) Sum of Anchor Shear EV„ = 0.00 lb, EV = 12250.00 lb e'v. =000in e'v, = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.I] • Nsa = nA [Eq. D - 3] Number of anchors acting in tension, n = 0 N. = 34125 lb (for each individual anchor) [C -SAS -2009] = 0.70 [D.4.5] QN� = 23887.50 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] Nag = ANJANco eN [Eq. D -5] Number of Influencing edges = 1 h. = 4 75 In AN = 203.06 III' [Eq. D -6] AN = 357.66 in ` Ycc.N. = 1.0000 [Eq. D -9] `YccN = 1.0000 [Eq D -9] = 1.0000 (Combination of x -axis & y -axis eccentricity factors.) Smallest edge distance, camm = 6 50 in `Yca,N = 0.9737 [Eq. D -l0 or D-11] • AN C /9 Note. Cracking shall be controlled per D.5.2.6 Te,N = 1.0000 [Sec. D.5.2.6] T. = 1.0000 [Eq D -12 or D -13] Nb =-k ‘,1 f-' c h ` = 8799:53 lb -[Eq. D -7] — = 17 [Sec. D.5.2.6] No = 15090.84 lb [Eq. D -5] 4)= 065[D.4.5] WNobg = 9809.05 lb (for the anchor group) • 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] N = q'„Nc N = 8853Ib (f psi) °S = 8853.00 lb = 0.65 ONpn = 5754.45 lb 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side -face blowout strength is only calculated for headed anchors close to an edge, c < 0.4hd. Not applicable in this case. • 8) Steel Strength of Anchor in Shear [Sec D.6.1] V. = 19305.00 lb (for each individual anchor) [C- SAS -2009] = 0.65 [D.4.5] 4) V = 12548.25 lb (for each Individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x- direction... Vcb. = A.•a /Avm. [Eq. D -21] c = 8.00 in (adjusted for edges per D 6.2.4) A 216.00in A. . = 288.00 in [Eq. D -23] `P = 0 8625 [Eq. D -27 or D -28] `Po,v = 1.4000 [Sec. D.6.2.7] Vb. = 7 (4/d0) 02 do fo(co1)' s [Eq. D-24] l =.4.75 in Vb. = 9921 11 lb Vcb, = 8984 80 lb [Eq. D -22] 0 =0.75 oVcb. = 6738.60 lb (for a single anchor) In y- direction... V dy = A coy9'x.v`Pm.v`Yc•VVby [Eq D -22 c., = 6.50 in A vey = 307.13 in Avcoy = 190.13 in [Eq. D -23] 4'xv = 1.0000 [Eq. D -26] 4'eav = 1.0000 [Eq. D -27 or D -28] `Pc v = 1 4000 [Sec D.6.2.7] V by = 7 (le✓d0 07 do v fe(cx,)' [Eq. D -24] 1. =475 in V = 7266.00 lb Vi = 16432.33 lb [Eq. D -22] • • C //D 0 =0.75 tpV = 12324 25 lb (for the anchor group) OV = 6162.12 lb (for a single anchor - divided t}V by 2) _ Case 2: Anchor(s) furthest from edge checked against total shear load _ _ _ _ _ _ _ _ _ _ _ _ - - - In x- direction... Vchx = Av« /Avm. [Eq D-21] c = 8.00 in (adjusted for edges per D.6.2.4) A„ = 216 00 tn A, = 288.00 in [Eq. D -23] `1'od,v = 0 8625 [Eq D -27 or D -28] P = 1 4000 [Sec D 6.2.7] V = 7(IiJdo)°2 Y do . • fc(cal) 5 [Eq D -24] = 4.75 in Vb. = 9921.11 lb VCb. = 8984 80 lb [Eq D -22] = 0.75 4V ob. = 6738.60 lb (for a single anchor) In y- dircction.. \'c+sy = AV c,/AVco [Eq. D -22 c = 6.50 in A,. = 307.13 in • A, = 190 13 In' [Eq. D -23] T = 1 0000 [Eq. D -26] `Ycd,v = 1.0000 [Eq D -27 or D -28] 4'c,v = 1.4000 [Sec D.6.2.7] Vby= 7(10/dor Y do `4 fc(CaI)1 [Eq.D-24] 1, = 4.75 in Vh,• = 7266.00 lb V0nsy = 16432.33 lb [Eq. D -22] = 0.75 ( 1 )V cbsy = 12324 25 lb (for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at c., edge Vd,. = A,•Q /A.�.9odv [Eq. D-21) c = 8.00 in (adjusted for edges per D 6.2.4) A = 21600in A, = 288 00 in' [Eq D -23] 4' = 1.0000 [Sec D.6 2 1(c)] 9 = 1.4000 [Sec. D.6. 2.7] Vb. = 7(1,/do)°2 V .2 do e f0(cal) 5 [Eq. 0 - 24] = 4.75 in V 9921IIlb V = 10417 16 lb [Eq. D-22] V0by = 2 r. Vcb. [Sec D.6.2 1(c)] VCby = 20834.32 lb =0.75 QV = 15625 74 lb (for a single anchor) Check anchors at c edge V0b2y = A.c./A.co [ Eq 0-22] c =11.50 in A.,, = 558.00 in A. = 595.13 in [Eq D -23] Y'ec.v = 1.0000 [Eq. D -26] `Pad.v = 1.0000 [Sec. D.62.1(c)] - `Yc,v = 1 4000 [Sec D.6.2.7] VM = 7(1,/do) ° d o fe(ca1)1 s [Eq. D-24] 1� = 4.75 in V = 17099 05 lb Vasr = 22445.33 lb [Eq. D -22] V ahan = 2 * V d RY [Sec. D.6.2.1(c)] Va = 44890.65 lb =0.75 OV = 33667.99 lb (for the anchor group) Check anchors at c edge Va, = A.a /A.m, [Eq. D -21 c = 8.00 in (adjusted for edges per D.6.2.4) A„ 216.00in A.,. = 288.00 in [Eq. D -23] Taro/ = 1.0000 [Eq. D -27 or D -28] [Sec D.6.2.1(c)] T = 1.4000 [Sec. D.6.2.7] Vm = 7 (4✓d 0 )°2 d a Ca(cal)lc [Eq. D -24] 1 = 4.75 in Vb, = 9921.11 lb V = 10417.16 lb [Eq. D -22] V = 2 * Va, [Sec D.6.2 1(c)] Var = 20834.32 lb =0.75 OV = 15625 74 lb (for a single anchor) Check anchors at cy, edge Vaer = A.a [Eq. D-22] c = 6.50 in A. = 307.13 in A. y = 190.13 in' [Eq D -23] `Yecv = 1 0000 [Eq. D -26] `Yed.v = 1.0000 [Sec. D.6.2.1(c)] 4' = 1.4000 [Sec. D.6.2.7] Vbr = 7(le/do)° 2 1J do fa(cai) [Eq. D-24] l� = 4.75 in V = 7266.00 lb Vaey = 16432.33 lb [Eq. D -22] Vag, = 2 * Vtbgr [Sec. D.6.2.1 Vag, = 32864.66 lb = 0.75 OVabg, = 24648.50 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcps = 1<na [Eq. D - 30] k = 2 [Sec D.6.3.1] eN, = 0.00 in (Applied shear load eccentricity relative to anchor group e.g.) • 41 Cif 2. eNy = 0.00 in (Applied shear load eccentricity relative to anchor group c g.) = 1.0000 [Eq. D -9] (Calulated using applied shear load eccentricity) 4'« N = 1.0000 [Eq. D -9] (Calulated using applied shear load eccentricity) `P�.; = 1.0000 (Combination of x -axis & y -axis eccentricity factors) Nth, = (AN�ANc)(4'«•n/4' «.N)Nms N = 15090.84 lb (front Section (5) of calculations) ANA = 357.66 in (from Section (5) of calculations) ANth = 357.66 in (considering all anchors) Tec.N = 1.0000 (from Section(5) of calculations) N = 15090 84 lb (considering all anchors) V = 30181.69 lb = 0.75 [D.4.5) OV = 22636.27 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] Tension - Steel : 0.0000 - Breakout : 0.0000 - Pullout : 0.0000 - Sideface Blowout : N/A Shear - Steel : 0.4881 - Breakout (case 1) • 0.9940 - Breakout (case 2) . 0.9940 - Breakout (case 3) . 0.3920 - Pryout • 0.5412 T.Max(0) <= 0.2 and V.Max(0.99) <= 1.0 [Sec D.7.2] Interaction check. PASS Use 3/4" diameter Strong -Bolt anchor(s) with 5.5 in. embedment • Anchor Calculations Anchor._ Designer_ for _ACI.31.8- (Version - 4.0) - - - - -. - -- - -. - -- Job Name : Cook Park - D3 Date/Time : 2/24/2011 1) Input Calculation Method : ACI 318 Appendix I) For Cracked Concrete Calculation Type • Analysis a) Layout Anchor : 3/4" Strong-Bolt Number of Anchors : 2 Embedment Depth : 5.5 in Built -up Grout Pads : No CA , Xi cc2 • • Vuay, y2 MI Lty C T N1J Mu . h • t - P -I• • oa ti � uax�b 1 bx1 E'X. bx2 2 ANCHORS. :la IS P(: ;ITIVE FOR TENS :0 d i _1'D i4EGATIVE C3MPR5°SICN, • INDICAi _` C=rJTER OF TWO 4WCHORE. Anchor Layout Dimensions • : 100 in c,2 :34 in c cy`:6.5in b,, . 2 in b,2 b : 3.5 in by1:2.5in s b) Base Material - Concrete . Normal weight f, : 2500.0 psi Cracked Concrete : Yes 4' : 1 40 Condition : B tension and shear O F , : 1381.3 psi • Thickness. h : 12 in Supplementary edge reinforcement . No c) Factored Loads Load factor source : ACI 318 Appendix C N. : 0 lb ' V : 6725 lb V , : O lb M,,, . 0 Ib *ft M„ : 0 Ib *fi e,:0in e • 0 in Moderate/high seismic risk or intermediate/high design category . No Apply entire shear load at front row for breakout . No d) Anchor Parameters From C- SAS -2009: Anchor Model = STB75 d = 0.75 in Category = 2 hd = 4.75 in hmm =8.44 in c 12.02 in cmm =61n • s =6.25 in Ductile = No 2) Tension Force on Each Individual Anchor Anchor #1 Nuai = 0.00 lb Anchor #2 N = 0.00 lb Sum of Anchor Tension EN. = 0.00 lb a, = 0.00 in a 0.00 in eNa = 000in cN 0.00 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor. Anchor #1 V = 3362.50 lb (V. 3362.50 lb , V =000 lb ) Anchor #2 V.2 = 3362.50 lb (V.1, = 3362.50 lb , V. 2 = 0.00 lb ) Sum of Anchor Shear EV„ = 6725.00 Ib, EV. = 0.00 lb Cv 0.00in e'v 0.00in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] N. = nA [Eq. D - 3] Number of anchors acting in tension. n = 0 N = 34125 lb (for each individual anchor) [C- SAS -2009] = 0.70 [D.4.5] = 23887.50 lb (fur each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] Nebs = ANe/ANm1 [Eq• D - 5 ] Number of influencing edges = 1 h� = 4.75 in AN = 203 06 in' [Eq. D -6] AN = 357.66 in 4' ecN. = 1 0000 [Eq D -9] " = 1.0000 [Eq. D - 9] wec.N = 1 0000 (Combination of x -axis & y -axis eccentncity factors.) IQrdCA Smallest edge distance. c „„ = 6.50 in 4'� N = 0.9737 [Eq. D -10 or D-11] Note: Cracking shall be controlled per D.5.2.6 `P = 1.00 [Sec. D.5.2.6] '1',0,1= 1.0000 [Eq. D -12 or D -13] Nh =k f' 879953lb[Eq.D -7] k, = 17 [Sec. D.5.2.6] Ncbg = 15090 84 lb [Eq. D -5] = 0.65[D45] ON„b = 9809.05 lb (for the anchor group) 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] = 4 'c.pNp N� = 88531b (fd2,500 psi)° s = 8853.00 lb =0.65 4N = 5754.45 lb 7) Side Face Blowout of Anchor in Tension [Sec. 0.5.4] Concrete side - face blowout strength is only calculated for headed anchors close to an edge, cal < 0.4h Not applicable in this case. 8) Steel Strength of Anchor in Shear, [Sec 0.6.1] V. = 19305 00 lb (for each individual anchor) [C -SAS -2009] = 0.65 [D 4.5] V. = 12548.25 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec 0.6.2] Case I Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x- direction... V`b' = A „,. /A „,,,,4'w.v4',,vVb, [Eq. D-21] ca, = 8.00 in (adjusted for edges per D.6.2.4) A„ = 216.00 in A „„,,, = 288.00 in [Eq. D -23] 4'„,, = 0.8625 [Eq D -27 or D -28] `P„,v = 1.4000 [Sec. D.6.2.7] Vb. = 7(tjda) d„ f [Eq. D-24] 4 = 4.75 in V = 9921.11 lb = 8984.80 lb [Eq. D -22] Q = 0.75 OVah, = 6738.60 lb (for a single anchor) In y- direction... Vebsy = A „ �„4' « VVn [Eq D -22] cal =650 in A „ = 307.13 in` A„.„.= 190.13 in [Eq. D -23] `P„, = 1.0000 [Eq. D -26] 4'„,v = 1.0000 [Eq D -27 or D -28] 4'c v = 1.4000 c .2J [Sec. D.6. 2.7] Vb,• = 7 (lddo) ° ' 2 ` d ` fc(cal)' S [Eq D-24] • AtIC /06 1 4.75 in Vb = 7266.00 lb V = 16432.33 lb [Eq. D -22] -4)-=0:75 - - ov = 12324.25 lb (for the anchor group) 4)Vcb, = 6162.12 lb (for a single anchor - divided y)Vebsy by 2) Case 2 Anchor(s) furthest from edge checked against total shear load In x- direction .. V .b. = Avc. /Avan'I'cav4'c.vVb, [Eq. D-21] c„ = 8.00 in (adjusted for edges per D 6 2 4) A = 216.00 in A = 288.00 in [Eq. D -23] Tay = 0.8625 [Eq. D -27 or D -28] 4 = 1 4000 [Sec. D 6.2.7] Vb. = 7 ( 1 1d0) °2 do fr(ea1) [Eq. D -24) I =475 in Vb, = 9921.11 lb ' Vt. = 8984.80 lb [Eq. D -22] = 0.75 QV, = 6738 60 lb (for a single anchor) In y- direction .. Vcbay = Av. /Avco [Eq. D-22] c = 6.50 in A vcy = 307.13 in` A = 190.13 in [Eq. D -23] 4'cc v = 1.0000 [Eq. D -26] 4' v = 1.0000 [Eq D -27 or D -28] 4'c v = 1 4000 [Sec. D.6.2.7] Vby = 7(4/do)°2 V do f(c1) I ` [&1 D -24] = 4.75 in Vb = 7266.00 lb V = 16432.33 lb [Eq. D -22] =0.75 4)Vcbgy. = 12324.25 lb (for the entire anchor group) Case 3. Anchor(s) closest to edge checked for parallel to edge condition Check anchors at c., edge Vcb. = Ava /A,�.4'ea [Eq D-21] c = 8.00 in (adjusted for edges per D.6.2.4) A = 216.00 in = 288.00 in [Eq. D -23] 4 = 1 0000 [Sec. D.6.2.1(c)] 4', = 1.4000 [Sec D.6.2.7] Vb. = 7(Ie/do) °' " do .v fe(ca,) [Eq D -24] l 4.75in V b,= 9921.11 lb V = 10417.16 lb [Eq. D -22] V cby = 2 * Vt, [Sec. D.6.2 1(c)] V�,. = 20834.32 lb Af = 0.75 )V = 15625.74 lb (for a single anchor) Check anchors at c edge Vcbsy = A 9 cc , v 4' cd .v4' a vVh y [Eq. D - 22] c = 11.50 in A„ = 558.00 in A„ = 595.13 in [Eq. D -23] 4'cc v = 1.0000 [Eq. D -26] ` e d,v = 1 0000 [Sec. D.6.2 1(c)] `Yav = 1.4000 [Sec. D.6.2.7] Vby = 7(11do) ° do .N1 fc(c31) s [Eq. D -24] I = 4.75 in V = 17099.05 lb V = 22445.33 lb [Eq. D -22] V = 2 * V cbsy [Sec. D.6.2.1(c)] V = 44890.65 lb =0.75 Vcbs, = 33667.99 lb (for the anchor group) Check anchors at co edge V = [Eq D-21] = 8.00 in (adjusted for edges per D.6.2.4) A „ = 216.00 in Aye. = 288.00 in [Eq. D -23] 4'ety = 1.0000 [Eq. D -27 or D -28] [Sec. D.6 2.1(c)] 4' = 1.4000 [Sec. D.6.2.7] Vbi = 7(11d0) °1 do f c(cat)1 s [E D-24] 1 4.75 in Vb, = 9921.11 lb V = 10417.16 lb [Eq. D -22] V,.b = 2 * Vd,. [Sec. D.6.2. I (c)] V = 20834.32 lb = 0.75 tpV = 15625.74 lb (for a single anchor) Check anchors at c edge V cbsy = A„ A,iO [Eq. D -22] c =650in A,. = 307.13 in A KO5 = 190.13 in [Eq. D -23] 4' v = 1.0000 [Eq. D -26] 4'ed.v = 1.0000 [Sec. D.6.2.1(c)] `Yc,v = 1.4000 [Sec. D.6.2.7] V by = 7(le/do) °Z do fe(ca ) [Eq. D -24] l 4.75 in V = 7266.00 lb V = 16432.33 lb [Eq D -22] Va = 2 * Vcb„ [Sec. D.6.2.I (c)] V. = 32864.66 lb =0.75 • • C /IB ON/a,. 24648.50 lb (for the anchor group) • 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] V = k [Eq -D -30] — — — — k = 2 [Sec. D.6.3.1] eN. = 0.00 in (Applied shear load eccentricity relative to anchor group c g.) e = 0.00 in (Applied shear load eccentricity relative to anchor group c g.) = 1.0000 [Eq. D -9] (Calulated using applied shear load eccentricity) `P, = 1.0000 [Eq. D -9] (Calulated using applied shear load eccentricity) 4'N. = 1.0000 (Combination of x -axis & y -axis eccentricity factors) Nd, = (ANr,✓ANc)(Tez,hrP .N)N,{,r Nd, = 15090 84 lb (from Section (5) of calculations) AN = 357.66 in' (from Section (5) of calculations) Arica = 357.66 in' (considering all anchors) 4' = 1.0000 (from Secuon(5) of calculations) N = 15090.84 lb (considering all anchors) V = 30181.69 lb = 0.75 [D 4.5] . lV = 22636.27 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] Tension - Steel : 0.0000 - Breakout : 0.0000 - Pullout : 0 0000 - Sideface Blowout • N/A Shear - Steel : 0.2680 - Breakout (case 1) : 0 4990 - Breakout (case 2) : 0.9980 - Breakout (case 3) : 0.2728 - Pryout 0.2971 T.Max(0) <= 0.2 and V.Max(1) <= 1.0 [Sec D.7.2] interaction check: PASS Use 3/4" diameter Strong -Bolt anchor(s) with 5.5 in. embedment