Loading...
Specifications .13UP2o u( 002(o`f 9 1691 2 14/60.41. o p 6-6 f SCHNEIDER eV Job Name: Claire's Tigard Oregon STRUCTURAL ENGINEERS Job Number. 312003 Sheet: 1 of 24 By: Lane Date: 1/16/12 CLIENT: Four 3 Design Associates 237 W 35th Street Suite 301 New York, NY 10001 PROJECT DESCRIPTION AND LOCATION: 0 ED PR OF � _ ��2 1 • Claire's Washington Square Mall = Space #G2 NGlNEF 9585 SW Washington Square Mall Rd 69359PE 9< Tigard, OR 97223 9 OREGON c - 1'D 2,9 ° GgRY � �\Q � N. SCN DESIGN CRITERIA: EXPIRATION DATE: p BUILDING CODE: 2010 Oregon Structural Specialty Code I . SOIL CRITERIA: Site Class D - No Geotechnical Report Provided SNOW CRITERIA: N/A SEISMIC CRITERIA: Zip: 97223, Ss= 0.948, 51= 0.341, SDC =D WIND CRITERIA: Interior (5 psf) NOTES: l l 116 W. McDowell Rd., Suite 140 1 Phoenix, AZ 850031 480.991.8183 1 www.sastructural.com FIRM DEDICATION TO STRUCTURAL INNOVATION • SCHNEIDER Job Nome G(�{ /,�E 3/a vn 3 Sheet 02 STRUCTURAL ENGINEERS By /07. Date /�- Rev Date L 4-MF S - 14/45h///72, S 17/, - - oc 4 a evaT t'!/14 ogle. X'P 774 , 1 9702023 GoY�G ; 2P /0 aietz 51X'u 4c:c /IL 77 cEI 14/4/p = AerTMlc- 5 1�� 5. /5/Ne- - 2 7 7aA3 5 03% SDc = D 5i7z cG.- s Z Sos 0x0 �/ = 0. 390 y Gg' elm/11 , 7 - = TAW- '/ ao/ - 1) cox - ,ear - eoo.) Rafe we r it d,75 . brae S E // Piff 79"l/ac p ye. a v7 ;) c,z c .t <s (1-6 fox fir/ pus Sys c /66, . G 7 c /7x. ter- "Awmfeew.gg �: t77 US, (o /6/3) • ,I� ,GeocodeMe with a Google Map Page 1 of 1 •• � • Oenny Farm Whitford SW Garden Nome Rd Cr Pa; 210 Ind :{►t Park Garden Home-Whitford Greenway 6 Progress � Park 'Brockman Rd S ; 217,�l �*' _ Conestoga w ito Guth • Recreation and verton Aquatic Center itp Me er T 9 ® 'PI ` 2 N s d C G Sumrnerwake aa+rb %, City Park . data 092011 Goalie - 9585 Southwest Washington Square Road ,tigard,0R,97223,95.950111, - 122.781591 http:// www .geocodeme.com/geocodeme.php? address = 9585 +Southwest +Washington +Squ... 1/13/2012 Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.45011100000001 Longitude = - 122.781591 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.948 (Ss, Site Class B) 1.0 0.341 (S1, Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude .= 45.45011100000001 - Longitude = - 122.781591 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 =FvxS1 Site Class D - Fa = 1.121 ,Fv = 1.719 Period Sa (sec) (g) 0.2 1.062 (SMs, Site Class D) 1.0 0.586 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.45011100000001 Longitude = - 122.781591 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site - Fa = 1.121 ,Fv = 1.719 Period Sa (sec) (g) 0.2 0.708 (SDs, Site Class D) � /P5 1.0 0.390 (SD1, Site Class D) ve • 1. Claire's Tigard Oregon S C H N E I D E R \V V Job No. 312003 Sheet STRUCTURAL ENGINEERS By Date 1/12 Rev Date 7 c. - ,ms's / f g7AW ,0 3 a - 0 ( -moo `> 7 3 % x .5724405 -300-3 p b5e - /b Wig - f x w Ic Q � fp = O r Sys EQ _ o. yC° jog)( •=7.)0&' /9' a S 3 /z, y es /6 : G2. c . X/ v 3 = � _ 7 /4 fm„), - 0. /87 e - 7. a y A 3 6 k, ev< • orAr. = 0P-6a'' % z %ya •" 7? SR___rie±2:r-,D Gi�.,I.lC l.« �T6 G i - - -. r,7 a (5, �i 3- a°'' L = t2.2 &M A' u4410r✓ +s P MT - L37* > 3.==r2p'ef' www.clarkwestern.com ICAV 2001 North American Specification w12004 Supplement ASD DATE: 111612012 J SECTION DESIGNATION: 362S125-33 Single INPUT PROPERTIES: Web Height = 3.625 in Steel Thickness = 0.0346 in Top Flange = 1.250 in Inside Corner Radius = 0.0765 in Bottom Flange = 1.250 in Yield Stress, Fy = 33.0 ksi Stiffening Lip = 0.188 in Fy With Cold -Work, Fya = 33.0 ksi Punchout Width = 1.500 in Punchout Length = 4.000 in Wall Solver Design Data - Simple Span Wall Height 15.00 ft Deflection Limit L/240 Lateral Pressure 5.00 psf Axial Load 0 lb Stud Spacing 16.0 in Check Flexure • Load Multiplier for Flexural Strength = 1.00 Input Flexural Bracing: Optimized at 66.4 in Cb= 1.00 Me = 344 Ft -Lb My = 638 Ft -Lb Me <= 0.56 My Mc = 344 Ft -Lb Sc/Sf = 0.91 Mmax = 188 Ft -Lb <= Ma = 187 Ft -Lb . Check Deflection Deflection Limit: L/240 Load Multiplier for Deflection = 1.00 L Maximum Deflection = 0.620 in Deflection Ratio = L/290 Check Shear Vmax = 50 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 1024 lb >= Vmax Check Web Crippling Rmax = 50 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 165 lb >= Rmax, stiffeners not required .1 www.clarkwestern.com 7 Cw- 2001 North American Specification Supplement ASD DATE: 111612012 . SECTION DESIGNATION: 362S125 -33 Single INPUT PROPERTIES: Web Height = 3.625 in Steel Thickness = 0.0346 in Top Flange = 1.250 in Inside Corner Radius = 0.0765 in Bottom Flange = 1.250 in Yield Stress, Fy = 33.0 ksi Stiffening Lip = 0.188 in Fy With Cold -Work, Fya = 33.0 ksi Punchout Width = 1.500 in Punchout Length = 4.000 in 0. ALLOWABLE AXIAL LOADS INPUT PARAMETERS • Overall Stud Length = 22 ft Load has not been modified for load type or duration TOTAL ALLOWABLE AXIAL LOADS. (IN WEAK AXIS MAXIMUM CONCENTRIC LOADED BRACING KUr LOADING THROUGH WEB —.7:. NONE 639 MID Pt 319 THIRD Pt 213 420 308 • • -. TABLE 1- S- MEMBER (C-SHAPE) SECTION PROP TIES''''''' (Continued) CO MEMBER FULL PROPERTIES TORSIONAL PROPERTIES W 33 KSI EFFECTIVE PROPERTIES 60 KSI EFFECTIVE PROPERTIES q o ID Area Wt. Ix rx Sx ly ry Sy(r) J ' Cw r X. Maxo left Ixe Sxelt) Vay Ae Maxo MR lxe Sxelt) Vay Ae A DESIGNATION (in) (16 /R) , (In') (In) (In') (In') (In) (In) J10 (In') lin) (In) (k-in) (In') (In') (In') (kips) (In') (k-in) (in') (In') (In (kips) (In') _ 3625125 -018 0.1182 0.4020 0.2349 1.4096 0.1296 0.0213 0.4242 0.0226 0.0139 0.0510 1.6699 - 0.7886 1.573 0.2236 0.1763 0.0796_0.163 0.0467 - - -r - - - - 3625125 -024 0.1575 0.5354 0.3128 1.4095 0.1726 0.0296 0.4337 0.0320 0.0321 0.0726 1.6863 -0.8179 2.515 0.3094 0.2629 0.1273 0.283 0.0762 3.345 0.3038 0.2428 0.1117 0.283 0.0660 0 362S125 -027 0.1769 0.6015 0.3490 1.4047 0.1926 0.0312 0.4198 0.0332 0.0472 0.0742 1.6598 -0.7783 2.838 0.3438 0.2947 0.1436 0.370 0.0870 - 362S125 -030 0.1947 0.6619 0.3833 1.4032 0.2115 0.0341 0.4184 0.0363 0.0632 0.0809 1.6568 -0.7752 4 .3777 0.3330 0.1658 0.449 0.1015 ' 3625125 -033 0.2154 0.7324 0.4231 1.4014 0.2334 0.0374 0.4168 0.0398 0.0860 0.0887 1.6532 -0.77 3.816 0. 77 0.3789 0.1931 0.521 0.1197 - c�D 3625125 -043 0.2789 0.9482 0.5435 1.3960 0.2998,0.0473 0.4119 0.0504 0.1891 0.1112 1.6421 -0.76 3 535 0.5174 0.2780 0.676 0.1799 - - - - - 362S125 -054_ 0.3455 1.1747 0.6650 1.3873 0.3669 0.0565 0.4044 0.0601 0.3689 0.1310 1.6255 - 0.7444 7.592 0.6650 0.6408 0.3498 0.705'0.2355 10.195 0.6623 0.6327 0.3405 1.016 0.2202 0 3625125 -068 0.4275 1.4533 0.8086 1.3754 0.4461 0.0684 0.3940 0.0705 0.7243 0.1510 1.6030 - 0.7230 10.221 0.8086 0.7858 0.4322 0.662 0.3124 14.936 0.8086 0.7845 0.4310 1.004 0.2971 c 362S137-024 0.1666 0.5665 0.3398 1.4282 0.1875 0.0405 0.4927 0.0409 0.0340 0.1022 1.7923 - 0.9644 2.761 0.3398 0.2877 0.1397 0.283 0.0835 3.656 0.3277 0.2650 0.1221 0.283 0.0721 a Fri 362S137 -027 0.1902 0.6467 0.3870 1.4265 0.2135 0.0459 0.4912 0.0464 0.0508 0.1156 1.7885 - 0.9605 3.299 0.3970 0.3368 0.1670 0.370 0.1008 - - - - - Q. 3625137 -030 0.2093 0.7117 0.4251 1.4251 0.2345 0.0502 0.4898 0.0508 0.0679 0.1263 1.7853 - 0.9573 3.777 0.4251 0.3786 0.1912 0.449 0.1165 0' co 362S137-033 0.2317 0.7877 0.4694 1.4234 0.2590 0.0552 0.4883 0.0559 0.0925 0.1385 1.7816 - 0.9536 4.414 0.4694 0.4315 0.2234 0.521 0.1376 0_ 362S137-043 0.3046 1.0356 0.6135 1.4192 0.3385 0.0743 0.4940 0.0764 0.2065 0.1910 1.7927 -0.9774 6.411 0.6135 0.5955 0.3244 0.676 0.2101 - - - - - 0 362S137 -054 0.3834 1.3036 0.7641 1.4117 0.4216 0.0947 0.4970 0.0986 0.4094 0.2493 1.7983 - 0.9970 8.960 0.7641 0.7482 0.4128, 0.705 0.2791 12.162 0.7641 0.7433 0.4062 1.016 0.2647 cn 362S137-068 0.4809 1.6351 0.9440 1.4010 0.5208 0.1181 0.4955 0.1242 0.8150 0.3154 1.7938_- 1.0046 11.885 0.9440 0.9239 0.5098 0.662 0.3659 17.629 0.9440 0.9239 0.5098 1.004 0.3536 Q 362S150 -024 0.1743 0.5926 0.3632 1.4435 0.2004 0.0517 0.5446 0.0489 0.0356 0.1327 1.8906 - 1.0926 2.918 0.3623 0.3055 0.1477 0.283 0.0882 3.847 0.3472 0.2805 0.1285 0.283 0.0758 362S162-024 0.1805 0.6136 0.3832 1.4572 0.2114 0.0628 0.5900 0.0553 0.0368 0.1606 1.9783 - 1.2009 2.948 0.3747 0.3139 0.1492 0.283 0.0888 3.8710.3596 02872 0.1293 0.283 0.0760 3625162 -027 0.2061 0.7006 0.4365 1.4556 0.2408 0.0714 0.5885 0.0628 0.0550 0.1818 1.9742 - 1.1970 3.524 0.4324 0.3679 0.1784 0.370 0.1071 - - - 3625162 -030 0.2268 0.7711 0.4796 1.4542 0.2646 0.0782 0.5871 0.0689 0.0736 0.1987 1.9709 - 1.1937 4.014 0.4765 0.4126 0.2031 0.449 0.1230 3625162 -033 0.2511 0.8536 0.5298 1.4526 0.2923 0.0861 0.5856 0.0758 0.1002 0.2182 1.9670 - 1.1899 4.606 0.5286 0.4656 0.2331 0.521_0.1425 - - 3625162 -043 0.3398 1.1552 0.7099 1.4455 0.3917 0.1269 0.6111 0.1167 0.2304 0.3598 2.0346 - 1.2948 7.503 0.7099 0.6940 0.3797, 0.676 0.2478 - - - - 4 - - 362S162-054 0.4219 1.4345 0.8730 1.4385 0.4817 0.1543 0.6048 0.1418 0.4505 0.4326 2.0182 - 1.2798 10.268 0.8730 0.8571 0.4729 0.705 0.3176 13.597 0.8730 0.8411 0.4541 1.016 0.2922 3625162 -068 0.5251 1.7854 1.0718 1.4286 0.5913 0.1878 0.5981 0.1728 0.8899 0.5224 2.0010 - 1.2671 13.228 1.0718 1.0517 0.5803 0.662 0.4101 19.675_1.0718 1.0517 0.5803 1.004 0.3979 362S162-097 0.7403 2.5170 1.4631 1.4059 0.8072 0.2595 0.5921 0.2425 2.5522 0.7406 1.9882 - 1.2752 18.992 1.4631 1.4345 0.7915 0.577 0.5877 28.075 1.4631 1.4345 0.7915 0.875 0.5877 3625200 -030 0.2515 0.8549 0.5578 1.4895 0.3078 0.1325 0.7260 0.0978 0.0816 0.3388 2.2628 -1.5410 0.5313 0.4508 0.2129 0.449 0.1278 - - - - - - 362S200-033 0.2784 0.9465 0.6163 1.4880 0.3400 0.1461 0.7244 0.1078 0.1111 0.3724 2.2586 - 1.5371 4.847 0.6021 0.5105 0.2453 0.521 0.1486 - - 3625200 -043 0.3736 1.2702 0.8183 1.4800 0.4515 0.2087 0.7473 0.1593 0.2533 0.5859 2.3283 - 1.6347 7.759 0.8183 0.7553 0.3927 0.676 0.2466 - 3625200 -054 0.4644 1.5788 1.0082 1.4735 0.5562 0.2549 0.7409 0.1944 0.4959 0.7077 2.3114 - 1.6194 11.320 1.0082 0.9683 0.5214 0.705 0.3409 13.912 1.0082 0.9087 0.4647 1.016 0.2909 362S200-068 0.5857 1.9915 1.2523 1.4622 0.6909 0.3231 0.7428 0.2497 0.9926 0.9297 2.3230 - 1.6452 15.128 1.2523 1.2322 0.6798 0.662 0.4707 21.337 1.2523 1.1982 0.6428 1.004 0.4287 362S200-097 0.8349 2.8385 1.7257 1.4377 0.9521 0.4608 0.7429 0.3845 2.8783 1.4187 2.3373 - 1.6864 21.771 1.7257 1.8971 0.9363 0.577 0.6823 32.303 1.7257 1.6971 0.9363 0.875 0.6823 ' 362S200 -118 1.0187 3.4634 2.0495 1.4184 1.1308 0.5606 0.7419 0.4510 5.2378 1.8195 2.3454 - 1.7142 26.638 2.0495 • 2.0145 1.1115 0.516 0.8324 39.383 2.0495 2.0145 1.1115 0.784 0.8324 3625250 -043 0.4187 1.4236 0.9626 1.51640.5312 0.3578 0.9244_0.2240 0.2839 0.9973 2.7479 - 2.0968 8.110 0.9529 0.8303 0.4104 0.676 0.2540 - - - - - - 3625250 -054 0.5244 1.7828 1.1941 1.5090 0.6588 0.4471 0.9234 0.2815 0.5599 1.2629 2.7505 - 2.1060 11.027 1.1941 1.0846 0.5581 0.705 0.3524 14.813 1.1709 1.0119 0.4948 1.016 0.3064 3625250 -068 0.6642 2.2582 1.4881 1.4969 0.8210 0.5731 0.9289 0.3665 1.1255 1.7083 2.7804 - 2.1511 16.799 1.4881 1.4339 0.7716 0.662 0.5174 20.797 1.4881 1.3513'0.6946 1.004 0.4460 362S250-097 0.9528 3.2396 2.0612 1.4708 1.1372 0.8305 0.9336 0.5456 3.2850 2.7364 2.6227 - 2.2210 25.331 2.0612 2.0326 1.1214 0.577 0.8003 36.815 2.0612 2.0105 1.0946 0.875 0.7806 362S250-118 1.1429 3.8857 2.4301'1.4582 1.3407 0.9687 0.9207 0.6355 5.8764 3.1199 2.7871 - 2.1896 30.627 2.4301 2.3952 1.3215 0.518 0.9566 45.460'2.4301 2.3952 1.3215 0.784 0.9566 3625300 -054 0.5655 1.9906 1.3815 1.5361 0.7622 0.7135 1.1039 0.3849 0.6252 _2.0730 3.2244 - 2.6112 11.724 1.3641 1.1956 0.5933 0.705 0.3706 15.541 1.2818 1.1040 0.5191 1.016 0.3188 362S300 -068 0.7426 2.5248 1.7232 1.5233 0.9507 0.9166 1.1110 0.5025 1.2584 2.8381 3.2667 2.6676 16.460 1.7232 1.5986 0.8330 0.662 0.5397 22.168 1.6978 1.4922 0.7404 1.004 0.47071 3625300 -097 1.0545 3.5854 2.3770 1.5013 1.3114 1.2940 1.1078 0.7202 3.6356 4.2311 3.2828 - 2.7011 27.961 2.3769'2.3217 1.2632 0.577 0.8661 36.742 2.3769 2.2879 1.2262 0.875 0.8200 362S300 -118 1.2671 4.3080 2.8110 1.4894 1.5509 1.5180 1.0945 0.8435 6.5151 4.8553 3.2467 - 2.6692 34.667 2.8108 2.7759 1.5315 0.518 1.0808 49.287 2.8108 2.7167 1.4627 0.784 1.0050 3625350 -054 0.6881 2.2716 1.5949 1.5450 0.8799 1.1515 1.3128 0.5630 0.7135 4.0732 3.6830 - 3.2882 14.129 1.5851 1.4145 0.7150 0.705 0.4560 18.636 1.5153 1.3042 0.6224 1.016 0.3856 362S350-068 0.8339 2.8351'1.9720 1.5377 1.0880 1.4180 1.3042 0.6930 1.4130 4.9584 3.8406 - 3.2688 18.235 1.9717 1.7972 - 0.9228 0.662 0.5971_24.520 1.9174 1.6748 0.6190 1.004 0.5192 '1J 3625350 -097 1.1664 3.9658 2.7040 1.5225 1.4919 1.9300 1.2863 0.9413 4.0213 6.5679 3.7933 - 3.2275 30.703 2.7036 2.6176 1.4078 0.577 0.9384 37.672 2.6926 2.4648 1.2649 0.875 0.8350 10 3625350 -118 1.4037 4.7725_3.20500.5110_1.7683 1.5110 2.2740 1.2727_1.1076 7.2175 7.5818 3.7572 -3.1958_37.687 3.2049_3.1252 1.6944 0.518 1.1523_50.477_3.2049 3.0931 1.6593 0.784 1.1112 m ui 0 w 0 \� • S C H N E I D E R `N- Job Name CLA 'S - e,Q Job No. 3 / '3 Sheet • STRUCTURAL ENGINEERS By /t/./A Date Rev Date • A/29 G i7zzli[r7 /' SLRGv /N P D ; 5 (/A ( // /75 ¢ 5-/se 7•2- Db/97/57 G'oNteL , 02/1" 5A ,¢.,i t 4?/ 7 - IPPP la 1.4. got M i :Pa! � V I i Wd /') c 57w.� , 6,' • 't• a' j /6'0. c, a? pAc-- O- a 5 x /. 33 ' = 33 a5 „ fl = 33. 5 X2. s = /7 66 - (tee .// 7C !r S�GS1 `v? CSPGF x f )0 .9oa' R - �c�,�r� /5s�s r�ic f� 4 r Dy(a7o5)0.0)6°2 ,� o, 3z. = O s�' 0 3'� 7`x- ,q o- /77 Sex -3<9 " "/Place ems, //0 f 7 A X p5 aa' o. c. 7 Ante- / ? xa = ayam *56 8/1 /477:4-6 ,��� � - w/ 13�° y o �. pee a /x.1.1 L __ • g t^`;` Job Name G6f 7AJ 1 5 — S C H N E I D E R Job No. 3h2 3 Sheet io STRUCTURAL ENGINEERS By /..//j/] Date Rev Date Gf G'L Yx- Pam= U = /0•E!› �P 4, 'L 1 M kV- 5,10.c F X /.33 =6.-6541/47 /y , Pie c? = p /5 9 k _ /- g4/s I »i fr1j 0, iy -14- -- = o• /‘c; „?, ( s s ge.4 -r d. /fig = o?. o/9 Ormx9 3 IX, 3 : 360 ,S h25 - 33 /6"o_c ' 'T e 4 ' -- Oc.c. • 0 c . 0- 0233q! P y237 p, ' �� r$,�6 A 03 .-) a. c ,// mot. `' " 1141 C — = A/ /,--,16C. /( t" 5'4 r _ 5 /6 c.. r� • (FF,, ALI Ix5•01 uLI 4rr0. YOS: I .LL 100(C1P ma (WM.. a H .S de :I :.lS w MO ) sir • L 1 00 •CC (01 -AY )]T 3 7 Gna wN.0 yYUt .M1C0.0. AH WKpr.O•fgp 10 I * K4L SlU05 .t ,r 0 C 1.6601!1 $101[ 30 t* Al Dr GC L'Y [Si .1cpy.• IoG (OJ•I 9frS01"K. R V 0C 11 SHAME, 1 MISS oaten oa.Y.3Y .0004(0 *50* of OLa.,w: 11..5:4*] L.0 I 4100L1LL VIK00 KGn1 •S de 0.dr 0100 ) ALL GV fNl DarJm N R )/e" On - rM0 5*4il 1 11.1.61 .r4 , MC s etn81l 461.5 1Y OC LRK811• ,!Sill ]OT )In x.S erelLaIldra i .r SUDS aK C OC MOM) KRY[4e IMMOMOMB I I wr.mU - O133.3 .6. 1 I I )S/e•e II C. Il " -r �� _ � : e4 13333 l nn I I C 1 2e. Ir -C • _ ® -- -k 11*01 r 1110 S� , 601]&0 1GK1r0 ren 1 Ld4 (.404613snan re 44.04 dad Insloodos "plc . 0514% 1lRLlCl Or et ION. 3 ]/e" • ID E. / ( 4.3.3.3 0)r Meet 1; _ ��: _:/-•� Odd 54 - - Q 1/05' • 0.1 Al Mx 1404 10 10 CO DO r 0 - -'---' -' nu. -- - •••• - ^ , •.0 .P1 1' -tl _ a1p.g1 I >s P I 1 1.] .1111[], a and •/ Dt1 K• uf0.am • Kp„ I . _ti11LL I - � f-•„u ... _]] e4R l i] 1. ri,II - I W n - ..,R V e V ] 4 rR I - I) 4 - _ . I BE= - 9a.ML I .11 Ended OW fl0 K44ry ! i l -�,] 4 R 1-Iii III(54 r..1 Ii OC 41 05'1 _ -.__•_ -Is -V 1 151.53 - _ III p.1 C.44 3 5X i e ] s To T .'T s 4,0 ,.3 ' I4 .a 4 eI n� 4 se .. _ ~ _ IO ,Y • V" 60 I : j r.l 1 I .1 I ) 3 13 . L31 ] . " >: . • L1 - IJ: ,_ re -O • N 4 .R n 4 soin b ����, _- 336 . on R pa I I �� t ,) i i t N , r�l l j, nth ' }t ,i1 11] ' ! r •, Yf i% AC4 ...T.103141 ,�.. ]. - w7 u.s (I) 1 7 . I - ° ' -O I _ 4e - .T m,.l,n t:". _r.._. '_ - � u ...7 rd. inn _ _rt .r _ _ L . ,t1 ]r y .. ;i . L .. i. st> uln ;,_IIi • - �� ar P u.a+w1 I$ [65051 micros � -_ 6•1:-31.DMn de CC 033 I WALL ANCHORAGE TABLES 016 I 4 I cu.. O/.0 50 • 002 502.! YIS Mt -� (0ap0Y1Y..3 - I , / / ' ' de re . res t, _ - ---------- -- .--- - -. -- -- " - -- - VW p.W R I ]NO (105 l . ' i ii - - -' "' e -- H I] Lam OOOL Al r rtd ]m I R1 Y.3r4C111[0S / .] C - _ _ -_- - 4.101 6L 811.1. RCD•a1.O.10+ 1- . CI.L teed ICI ti SOD) el.C2 .I y l � . I �� PARALLEL TO STRUCTURE I _ • 1 34 4 K• dun 330 51(015 I I tit c:,..0,10 SRC.. . 115 N10 U10 3Sr 3214 10 I ® TYP. STOCKROOM SHELVING CETAILS I s:rK•. . -11005 s•Al I WI MaSnore.•.3c ', L! W LOOS 111. .w `/ SI 1T.:.0• .ndo )0 nap[ Y/ p - - - y �, I 0..K rd OIL 44.12. . . - I - 21[11' .1 }i O[ I O •7aV OO.n. L •O tU1t.LL •4(I i I ir.3l p 40]05 r. 4t n - I_ f Y1°t • 6411x0 m, I eDSrl•o 11x05!]1, £ : ]1.3•6.3•1..3.3 I /c---1..” C e A, 0D �)L 1 '.Ml Gero • / Sapa 0555 (rw) 33 1+• -� I .{.. I .3xOPMO+L K1.1 �+ OA S lO Tn. l440/en Y.1 ���••i-- I ]A `} YICS]IORD I I q I 443.4.33 rwwwJS •D w oar r". • I 000* V: - rd 0 1 051 211 1T atK IG 0l'. 14 SA -.... / ■1f[Y 4.1333 •O0 Yu X CP311 We O 33 I • �I aI b ^ L LAO :End. L.1w1 Qs ) )T 4t Seed . � � l 05_11 4nD Iln le NO 1-1- e- Mu 111 10.1417 '.N 3 01 MT :Ll as Of II 1051 11.1 • N 1 l0 S LAI I I 1 'I 1 - _ / __ � . ( r Jf0 4Y I 1 05 1 31110 4 * L (Otlr L• 0 I I 1 nppl'ry�' - 1 - ••+i \ I I { L T Cu I - KIW1 x • ) 1L50 � •i 30 11(011.40 P ERPENDICULAR TO STRUCTURE )/I `Y1mYt " Al t: • D r - r Y.1nd nm1l D Y -O 9 .TOM 05 I OC CC 11405 ILU Y, SLATWALL PL . I. DETAILS WALL BRACE SECTION / CONNECTION DETAILS I j / � \� •2811 455 I ' S[4I' 3/. I `J YLL1' f.,'.0' O FLOOR TRACK DETAIL 233[ . • , SCHNEIDER AD G' Job Name Claire's Tigard Oregon Job No. 312003 Sheet /a STRUCTURAL ENGINEERS By Date Rev Date • • lj�fG! ,QaQs�- it. 0 /AL / �i¢re 51 ? W 3 5h25 -33 - - - -=! $ e r7 r /441/207■91 aye .. o? . 3 4/ _ 11.21 6 X/. 33.= 83 f Aeh i' / 707-> 774' • G .2 p/4 '' $ •li-'3 ay" Q c. ',b„2 x a' = iaV %s 7 335 IP V, = 3 > /a y'. (20 #/rZ) a " ai( g %''o. (r. 4/ AfAlze , o, c , • ' ESR -2196 I Mos•Widely Accepted and Trusted Page 6 of 8 1� TABLE 2— ALLOWABLE TENSILE PULL -OUT LOADS (P.m/0), pounds - force'' Steel F. = 45 ksi Applied Factor of Safety, 0 = 3.0 Nominal Design thickness of member not in contact with the screw head (in.) Screw Diameter - Designation (in) 0.036 0.048 0.060 0.075 0.090 0.105 0.135 #6 -20 0.138 63 84 106 132 158 185 238 ---, #8-18 0.164 G`I�`--' 100 125 157 188 220 282 #10- 12, #10 -16, #10-18 0.190 87 116 145 182 218 254 327 #12- 14, #12 -24 0.216 99 132 165 207 248 289 373 1 / 4 -14 _ 0.250 115 153 191 _ 239 _ 287 333 430 For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 MPa. 'For tension connections, the lower of the allowable pull -out, pullover, and tension fastener strength of screw found in Tables 2, 3, and 5, respectively must be used for design. 2 ANSI /ASME standard screw diameters were used in the calculations and are listed in the tables. 'The allowable pull -out capacity for other member thicknesses can be determined by interpolating within the table. 'To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD CD factor of 0.5. 'For F. a 65 ksi steel, multiply values by 1.44. TABLE 3— ALLOWABLE TENSILE PULL -OVER LOADS (PNovit)), pounds- force' Steel F„ = 45 ksi Applied Factor of Safety, 0 = 3.0 Washer or Design thickness of member In contact with the screw head (in.) Screw Head Designation Diameter 0.030 0.036 0.048 0.060 I 0.075 0.090 0.105 0.135 (in.) Hex Washer Head (HWH) or High Hex Washer Head (HHWH) #8 -18 0.335 225 271 363 453 567 680 790 1020 . #10-16 0.399 268 323 430 540 673 807 943 1210 #12- 14, #12 -24 0.415 279 337 447 560 700 840 980 1260 1 / 4 -14 0.500 336 I 407 540 677 843 1010 1180 1520 Phillips Pan Head (PPH) x.53 #8 -18 0.311 210 252 336 420 525 630 735 945 #10-16 0.364 246 295 393 491 614 737 860 1106 Phillips Truss Head (PTH) #10 -18 I 0.433 292 I 351 I 468 I 585 I 731 I 877 I 1023 1 1315 Phillips Pan Framing Head (PPFH) #7 -18 I 0.303 205 I 245 L 327 I 409 I 511 I 614 I 716 I 920 Phillips Pancake Head (PPCH) #10-16 I 0.409 I 276 I 331 I 442 I 552 I 690 I 828 I 966 1 1242 Phillips Flat Truss Head (PFTH) #10-12 I 0.364 I 246 I 295 I 393 I 491 I 614 I 737 I 860 I 1106 For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 MPa. 'For tension connections, the lower of the allowable pull -out, pullover, and tension fastener strength of screw found in Tables 2, 3, and 5, respectively must be used for design. 'ANSI /ASME standard screw head diameters were used in the calculations and are listed in the tables. 'The allowable pull -over capacity for other member thicknesses can be determined by interpolating within the table. 'To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD m factor of 0.5. 'For F. 2 65 ksi steel, multiply values by 1.44. J, ESR -2196 I Most Widely Accepted and Trusted Page 7 of 111 ,.... / ._ TABLE 4- ALLOWABLE SHEAR (BEARING) CAPACITY OF SCREW CONNECTIONS OF COLD - FORMED STEEL, Ib'• Steel F„ = 45 ksi Applied Factor of Safety, CI = 3.0 Design Nominal thickness of Design thickness of member not In contact with the screw head (In.) Screw Diameter member In' Designation (In.) contact with screw head, 0.036 0.048 0.060 0.075 0.090 0.105 0.135 (in.) 0.036 74 _ 239 239 239 239 239 239 0.048 174 268 319 319 319 319 319 0.060 174 268 373 400 400 400 400 #8-18 0.164 0.075 174 268 373 497 497 497 497 0.090 174 268 373 497 597 597 597 0.105 174 268 373 497 597 697 697 . 0.135 174 268 373 497 597 697 897 0.036 188 277 277 277 277 277 277 0.048 188 289 370 370 370 370 370 #10 -12 0.060 188 289 403 463 463 463 463 #10-16 0.190 0.075 188 . 289 403 563 577 577 577 #10 -18 0.090 188 289 403 563 693. 693 693 0.105 188 289 403 ' 563 693 .807 . 807 0.135 188 289 403 563 693 807 1040 • 0:036 - 200 . 309 315 - 315 315 315 315 0.048 200 308 420 420 420 420 420 #12 -14 0.060 200 308 430 523 523 523 523 0.216 0.075 200 308 430 600 657 657 657 #12 -24 0.090 200 308 430 . 600 787 787 787 0.105 200 308 430 600 787 920 920 0.135 200 308 430 600 787 920 1180 0.036 215 340 363 363 363 363 363 0.048 215 331 467 487 487 487 487 0.060 215 331 463 607 607 607 607 1 / 4 -14 0.250 0.075 215 331. 463 647 760 760 760 0.090 215 331 463 647 850 910 910 0.105 215 331 463 647 850 1060 1060 . 0.135 215 _ 331 • 463 647 850 1060 1370 For SI: 1 inch = 25.4 mm. 1 Ibf = 4.4 N, 1 ksi = 6.89 MPa. 'The lower of the allowable shear (bearing) and the allowable fastener shear strength found In Tables 4 and 5, respectively must be used for design. 'ANSI /ASME standard screw diameters were used In the calculations and are listed in the tables 'The allowable bearing capacity for other member thicknesses can be determined by interpolating within the table. `To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD 0 factor of 0.5. 'For F„ 2 65 ksi steel, multiply values by 1.44. • r 0. ESR - 2196 I Most Widely Accepted and Trusted Page 8 of 8 . TABLE 5— FASTENER STRENGTH OF SCREW NOMINAL FASTENER STRENGTH ALLOWABLE FASTENER STRENGTH' SCREW DIAMETER DETERMINED BY TESTING • DESIGNATION (in.) Tension, P. Shear, P„ Tension (P„/t1)' Shear (Par1) (Ib) (Ib) (Ib) (Ib) #6-20 0.138 1000 890 335 295 #7 -18 0.151 1000 890 335 295 ----- #8-18 0.164 1000 1170 '�35 ("190 #10 -12 0.190 2170 1645 720 550 #10 -16 0.190 1370 1215 455 405 #10 -18 0.190 1390 1845 465 615 #12 -14 0.216 2325 1880 .775 625 #12 -24 0.216 3900 2285 1300 760 '/4 -14 0.250 4580 2440 1525 815 For SI: 1 inch = 25.4 mm, 1 Ibf = 4.4 N, 1 ksi = 6.89 MPa. 'For tension connections, the lower of the allowable pull -out, pullover, and tension fastener strength of screw found in Tables 2, 3, and 5, respectively must be used for design. 2 For shear connections, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Tables 4 and 5, respectively must be used for design. .. • . . 'See Sections 4.1.3 and 8.4.1.3,.as applicable, for fastener spacing and end distance requirements. 'To calculate LRFD values, multiply the nominal fastener strengths by the LRFD m factor of 0.5. YO‘ I „,1 ' ,1,1 i1/4 �. �11n } It.�l;l �1 � mni FIGURE 1—HEX WASHER HEAD (HWH) AND HIGH FIGURE 2— PHILLIPS PAN HEAD (PPH) SCREW HEX WASHER HEAD (HHWH) SCREW '14 oH l l'ANatri4 i 011111061ffi FIGURE 3— PHILLIPS PAN FRAMING HEAD (PPFH) SCREW FIGURE 4— PHILLIPS BUGLE HEAD (PBH) SCREW H � � 00.1\ 11 . H*- 1 likAAAi \' FIGURE 5— PHILLIPS WAFER HEAD (PWH) SCREW FIGURE 6— PHILLIPS TRUSS HEAD (PTH) SCREW , : IUhIIIIIIII,IIII � v ' a11 1 \ \1 11 1�� ' 1M . FIGURE 7— PHILLIPS PANCAKE HEAD (PPCH) SCREW FIGURE 8— PHILLIPS FLAT TRUSS HEAD (PFTH) SCREW • SCHNEIDER AV V Job Name Claire's Tigard Oregon Job No. 7001 Sheet /6 STRUCTURAL ENGINEERS By Date . Rev Date , /ey/ f ,44/ Ail- y,— '7 a2/ a 7 7 -5 0 4 - 7 — E �/A 7y4' /h n2 /43/414 F 4€?'" r u S mare +o iwAes 5P,4/.‘-z. = yo." � olc By /,‘>- G 77. fpm 0,92e- G.%Ke- pa S . "'/7 P)4 J2 Afti 9 (2) /ate S /6.2 - f7 w/ / ' 5 Pars 4_ /0` • V wk a /D- 0 « � g - ( -�� s 72 7 >X 9i7T 12 R x (5,73e y $i,/? a /otr x /a Rc ` . acvrP : Opy axax4 1t e-a e. ,a,-3? 14 . • Steel Column - -~ - — r i ENERCALC, INC . 1983-2011, Build :6.11:10.09 ; 10.09 11ic._#:KW- 060060421 F _ Ltc ensee-:.- chneidef'8- assocfates;s;e..Lrrtc Description : -None- - -- General Information Calculations per AISC 360.05, IBC 2009, CBC 2010, ASCE 7 -05 Steel Section Name : HSS2X2X1 /8 Overall Column Height 14.0 ft Analysis Method : Allowable Stress Top & Bottom Fixity Top & Bottom Pinned Steel Stress Grade Fy : Steel Yield 36.0 ksi Brace condition for deflection (buckling) along columns : E : Elastic Bending Modulus 29,000.0 ksi X -X (width) axis : Unbraced Length for X -X Axis buckling =10 ft, K = 1.0 Load Combination : 2006 IBC & ASCE 7 - Y - (depth) axis :Unbraced Length for Y -Y Axis buckling = 10 ft, K = 1.0 . Applied Loads Service loads entered. Load Factors will be applied for calculations. Column self weight included : 42.628 lbs • Dead Load Factor AXIAL LOADS_— — A Load at 14.0 ft, Xecc= 1.500in,D =2.Ok DESIGN SUMMARY Bending & Shear Check Results PASS Max. Axial*Bending Stress Ratio = 0.8593 Maximum SERVICE Load Reactions .. Load Combination + Top along X -X 0.005952 k Location of max.above base 13.906 ft Bottom along X - 0.005952 k At maximum location values are ... Top along Y -Y 0.0 k Pa : Axial ' 2.043 k Bottom along Y -Y 0.0 k Pn I Omega : Allowable 2.588 k Ma-x :Applied 0.0 k-ft Maximum SERVICE Load Deflections ... Mn -x l Omega : Allowable 1.049 k-ft Along Y -Y 0.0 in at O.Oft above base for load combination : Mal : Applied -0.08277 k -ft Mn-y I Omega : Allowable 1.049 k -ft Along X -X - 0.1296 in at 8.175f1 above base for load combination : D Only PASS Maximum Shear Stress Ratio = 0.001201 : Load Combination +D Location of max.above base 0.0 ft At maximum location values are ... Va :Applied 0.005952 k Vn / Omega : Allowable 4.957 k Load Combination Results _ _ • Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location _ Stress Ratio Status Location +0 - • ' 0.859 PASS 13.91 ft 0.001 PASS 0.00 ft Maximum Reactions,- Unfactored • . Note: Only non -zero reactions are listed. X -X Axis Reaction Y -Y Axis Reaction Axial Reaction Load Combination @ Base @ Top @ Base @ Top @ Base D Only 0.006 0.006 k k 2.043 k Maximum Deflections for Load Combinations = Unfactored Loads _ _ Load Combination Max. X -X Deflection Distance Max. Y -Y Deflection Distance D Only -0.1296 in 8.174 ft 0.000 in 0.000 ft Steel Section Properties : HSS2X2X118 • • • • • • le / - _ ,1 Steel Column _ ENERCALC, INC. 6fi Build:6.11.10.09, Ver.6.11.10.09 : K =060_0604 I _ _ _ - - 'Licensed :"Schrielder_ti!associatesN.e. inc Description: – None– Steel Section Properties : HSS2X2X1/8 Depth 2.000 in I xx 0.49 in"4 - 0 - .79 - 6 - (04 — Web Thick = 0.000 in S xx = 0.49 in"3 Flange Width = 2.000 in Rxx = 0.761 in Flange Thick 0.125 In Area 0.840 in"2 I yy 0.486 in"4 Weight 3.045 plf S yy = 0.486 in"3 R yy = 0.761 in Ycg = 0.000 in • I 1 =_. I • L d 1 X I o (.4 • 2.00in Loads are total entered value. Arrows do not reflect absolute dllsaJon. • • • I • • •5- '4.610. a•W102MKIl ,.] Or r14 MO 5/0501 ' . • !' 01 /r O' - 51/• •1' - 5 1 / 1 7.51/• 1 I 7 - 51 r 74 r r 7_ r`'4 - .' 6 • . 1 / / 5 /r •7 -01 0 1 r1 71 ; .Y[ {� 0.1(L 644 ON6011 r VAICL I 7,14 .N[S 1.1901011 • 9 IINII 70 1)11 1kl i t ST. _Jr _ L /- //i 1.1 Or KM • 5 �, • • tot 0 ■.0.5701001 . -_ .� - .- .__ -_ -__ It - ' i 1 , � I I ' 101 A,K r14 wo 1� .1asd J E • • I I I ' ,. s l ®5u� r:,a 5 D.A _ _ p-,-..-0 ® I • - II J o A. . - - - -- - i OKKR • - - - ..._.. .. - -" -- .'- - - - - - -% �r IV 0-5/1". C 15 CA KC -vv.''' . 5995 (m HOM SOL'•) [• - - - .W0. 0,,. .s • -� __ 4 - .. I CO ^ y' 7D G ®IW 4 Yw• I -_ - _- 0•1 0 - a I C .. -007000 R1IJMi Pa D. I r APKN iIAR![S L I - -._ _�' 11.RSCD 01 MIPCW • amt 10 Sm ./ . a I I I 770 1110 3/J5) A aaMR • ,mi�ll/1 it /r VD ,-1/2 G•7 IS. �d • SILOS (I HO M Win IA, -lf- m ® - r / M -0-' m , ' . I ]/r KILL WK. a X7[.51 LJ �) 455041 R7 OGmt - h 11000, 01 AMSDS ® j - I n _ I .. .v. d0 1.e (M ) ^ . .. . \ t 100119. Yr6' KM • KILL 6004. UK] h � � ji. / + . _�......:••••••••:." / . • 1/!'r1.56I0 WSS(M) - \` r lams MOM. 1/J•MIK. sit(M1 .AU= STOREFRONT ELEVATION ('-.1. - • -� • TYP. DETAIL ®NCUTRAL PIER • 1140 I/Yn a ` 3 } we 1 -vr•r-0 I - "v P r v - 114010900 - . 1 ---- �e - - -� - - - - I � 194.1 0,1. ,11 1 1 5/17 CA ID 50000 1 • 010- - _ -- _ -.-. 1 1 r Y I I n 11' cowul4. aAx 091 A ,; 4 . 1 -G wctix I.0. • \I `.- -. - - - � I J � ,' / { � I..... 1 -------- !1]017- I./RYO KILL Soc. AT 1T 04 RAYS r 0/. 4 CLASS 9000 Gm (w.31 111191 I0• /t4 - / ^ y \r 1 Ill UPC 00!7• .L54 PAKIS YUSI K 00•1103106 ISS 9¢ 3LYru7 IV 1/T 4 ILK/ l]) Mu r[CLS � jA �-/ T - (n 101. 0.[W 1(01.01 CLI O • .11 CL S 0 P6ACRl A000551.0 M S Of GO If 07. 1 451 10%.• OA /ILL 64015 1( MI Of .015509 TO ' -I [• D 1/r 2/ IX via WS 11-5 1/1 5/ 1/r Da GP! 1'•19 1/•• J p r 107071 0661 d WY VC1 ./ K .9141.: 7004 I4K.z A /.• W 5 01 , ,.(�.C� / 6.01-0 SODS KIDLL OR 9001 01;1 R 51�[O • DEIN= r - 0' )/r OA Ow IQ 'MOM. I KrR WILL 0031 { 10'-1 - 14Z OY( 006 ' S 1.1 G S(1....ELS at KOam On 0161 0 CC41.10 C41.10 011 CM III RAK Ka 079064 001 05 7 0• 147010 410110 4 101 1 DKV OR -15570 R••030 SIDSOA4 II LL0•aDD 6 KW II 04119 out Si R,.S . • • ' STOREFRONT PLAN I\ p � '.- -- - 50.1 1/0.1 e BRAKE METAL SEAM DETAIL • -. -- - - _. scAU 1.1/01.1/!.! -c IT CA m K SO41I 0'16 K 391111 1S 0Y KALE 011.( 5• . 17 -r Ar7 I I. r -C A,, I MM K coss 055 510(5 I GO l Dal 1.04.1 1:040 I 17,009105[1 C•H [ 0 SmR1001 1 1 1 7 /•' MAIM I.- I M / - 901 ' 2 'ff. II SR11: STOREFRONT ��Q�j; IA 10 ./5' ��� Sv.91 NO 1 • : a p - H01A.0P4 Ill 10 1 731 Wu. R N. .7149{9 ASO ;ALA\ :. MIL -" a b 1'.T CAW!5 W1C 010 iSV1f - - - --- / in- .11,. 0A:ir] 7 511 C4CRiA 1:00.01377 S 10 051.106.. ID •.R 5501 719[ 6[0.40/00 6 II / - 105: [4. SRC 7 0. VASSAL m 1010.060 5040:1 9 TIE COX/CC Ki.0114tt m 011.1. AT . I 3 .I YI -1 I �1/T 4W U.1) M) 0,145/1:0 11912 • I - - 1 ,. . • CC C 11110 751D AAL.0AG.G 115 1 10.151 I%:: -Si -: A]!) . - - 7.155 IT .0,679 r0. 1 12..K.021 CS 500 4 °0519[ °0519[ I. 00050.07 0[1016, 0 5/051 01 1100, 1 - 4_ , 1 - I0• 1 1- - 5.000 4 501 Si 5 591 WSI A. O. • 0 - 00 . 74 SAL I.CC' SU V 4,IID 517515 YV.1 51MS Ill - ` 2. y L # 01 1/5 7 07046! (m) 0. .,4: 01.LN.: .1905 J 1 1 10tCn:c. 11 r0A t•m. 1.3001 pal s 'I (l1µ 4 009 +C O9l f SIl 1 \ ‘444: n, Y rRO.C] 7 06 10•17610 ➢'YW 101 517715 S?50. •'..:102.5 OM 019 AL :full 81106 070. I LL• •.• ,.,,,1 IY 9010 11 07 • 6 140 2 004 Eft 50•4 5.' 0 106 019119 Al 9171.0004 99 115. I :wµ ,: 1701 G r , 9I Il I 1•.1 TO 111401 :A 57;61.9 µT 041'0[.15/ Cbi/Yt 10 10, I C•C 1.10.] R .5555:1 1 m m 101 112 1. 1 µr L•5S. CC 0105 1.301! 4 XAA6 60011 4000, TM 510715711 TO 517/.2517/.219 19 .10 T 11. 00M. •1C• C1n6G 9.0. row 10 111.01.5 7 1 111. __ -. __...� ...._... - _._.- ._._ . . _ 0 •11 0110005 • 100.01 v 311.:1 a 6[01 /V IIUS 1.•6.1 L.Wi1:•1 -__ O TYP. . P. DETAIL ©METAL • - POST , TYP. DETAIL GRILLE GUIDE • SCYi 1 -1T•1 .0' ■ `) sG1E 1 1/'!'•Y -0• • • • . SRO ) Sir 0 MCA OM 1 A Y Jam% tlO Wlp(r➢ /, ® • • �• �L_ ' : • • }0 SWBiROIl I i `r , -} -� �]"3TiUF61 -0- SAC t 7➢G 4 B\6m 11214 PACS OCT - • _ • L 1 TM I . ' ] A0 B IQd DAWN) / . ( _.„..............-•-•." w� i i I . B]C BOB MO TO O 9. OC CM) I (1) 17..1104 WTI SOD 000416 O AB' QC (rw) ix (7) 1] YR sax, (2) 1.4•51:0 • r'^ • ®r Saw V. 17 1 BR SEp i �' •� HMr t] MI SIW� 1111 KM I .` I - !!� _ ( M90 \R4L P4.Q1 1,0 __ 90 Y_lu Puns T �;•.� ••� liar (MR •' �� 010 7. :001100(1 ;4� aa.t• -- I -... I - ' -- � I •' • _ = -_ ... _ . • _ I :: _+ 1 ....-• �' - __ 1 : :i ' " - - - � ' `, ; _ �lrr4 , 4 i c„rc LL T- RAM It l4; 19H]5 \t 11]t : • ..._ 915[0 Arai IAYLI OILP ,0LSl4pC 1421(21 Loll I s I BEM wcu 7 0 u l o lCi i� En � , w I r 0•i u:UFal ! �n o >T� oc) - -• I • s10FOBa1 r.;0. • • 1 -'1'. 7 e 7.1.1106 .BBH I ,l' I _ LLY W,itD � ► y , ...2, T SWORN. nil I . L m4 .aLlc Gaul POOL - -- I . - � Jr . �-- _ I -, : ' j1 I I I + 1 • I r • �nT� Y 7./B 0•114 01) sir - -. Send Y - - - } 0 • 20 6A iglu. 1 14.116 II Y . 10441Z KM • .. 106 �" • SAE c el OT 3 Mr 70 u 1104 0154401 ,01.10 .1 I 114.01104. 0YB M 11011 Wm( MM. (Yl -I) HUM DO M LOTT 01111 WU MOWS I 0111 .00 II [140942 ]• . ]• =Kt II ]• . 7 0014(2 POST ns • li 7 n•ne 01..1.4 L> YI MNAC4u• t/1* 11OSA10 \ ... 045100 10 BrP en II MASS SALES AREA (2.402 RUN • 1/7 HARM ' MAO SALES AREA vluvtao H11a $AI FS AREA • I' QOM i BM A I IL I r [LAM 1•x rli BASE I I _ 41,40 ® ! I rm3.0) I B ASE rn •111 nap ...................a........1 • / 1 nmt .101(2 AS HW> ,_ 0.0001 r i Y s 0.0.1. m 011411.• 1 x01 norm-4 P ,u5 ) 0M1 104 � , 'B B • 11431 1 01 4N1•.I r 1- 1000M6 MO WALL 11.0:00 ] 11006 4.110 1.4L 010010 (02.9144 *1 /1 M 800014 01 AS .10010 0 191 PATEN AS • .41,51 PATCH PATCH AS .LBU.TC 091 PAIOI S H0A60. ( \ STOREFRONT SE STOREFRONT SECTION (:.D STOREFRONT SECTION l l tcMC urt• __c O Lc. c ]/.., _ >• s i ]; • -t•_T • -- --- --- -10001111 %Ca moTTS 1110.111 1414 C•144:(01 TO 3114. 4.5 mST,,. 04)00 .10Y4.414 0020121 1111011 101 CO.;O.c104 10 0(U (1,0404 4141: 40BY010 IC) 0,01 Mime 10 101 001 9014104 10 W M, (0) SETS 0 W 0[901 110 SEW 21,000 Ia MAIOVA. 11 ••). SO iCM3AC1OA TO 11®11 (•) Sirs Cr fir 1101• CRAWS TO 1401010. WI 060 Mtn M•lOv4 IT M4m1. . 510( 00(3.107* 91,11 OMAN I SO1 N4.1 n L: 40C4 401190.6 A0.001, PRIOR TO 07.01.400X. 9W COMAEla WIT Tait PIA*NZ a rat 02 vat 1[411*' 000%• •I 154 21 04401 -11 cI (T) 1 BB.4C TO f31i I W. . ] 1/10 AL[ Seta] ./ . -- - -- - ----- y - -- - -• • rtN) _/e• • le w. .114 'AMOK I P b SiM Mt SM AI EACH 4.A] I O STOREFRONT SIGN -121 •1 440. 00,00T (1m AM 1101.40() x41: I 1 / 7 . 1 '-0 • I Pa m[ mu. 11m 4w BO 1 t/] _ e rH 1401101 SOT 0•m • 1 M \ `` A • O 1 C SCAT W N ra 44 9381 50 11.1141 t- MCA 0.01.1.1 IA¢ SMR.4 101116 I NM 0111 inners TO .210. SCAMI Ili \ 111 - \ • \ \ 11 ` I 1 101 [(2.1401(2 10 93001 SETS 0 9041 019(2 410 sHV Ono. r* .r4llpv4 0,10/110 C -851 KAr61 - SEC Kw 901 C0W.4C(* 10 984111 (.) 911 0 991 901 WANKS N IAIOLOm. Wl 06, 010 41140/4 BT 1140' • ma 9[1011 a M5 901 rd404C9II LW\ O0IA•Y A GOT •0010. r.0( K LOC.1 2310MS moot.. PY* 10 0014.IA104. 900 COM 4410' • C..051 .0•00 - SO *.4.MC mu 421S •Sal MK v. 4*40Ct CO 141 010 You 121400 Co09Al* 41 .014 0 DIM-41 a C 9011011 a 1102 - _ _._ __._. '- u.PC ra sits NEM . ./ 0 41941,0 ISr[ M. Olm - .- - - - --- • - --- I I\S W11 -a. YcYBTM RR SEE NO Sr.E1CHY4 ) =MIN AT 1 ] - O Y m • r SILO NOT(: ] t/7 1 ] ./]• 911111 OM Mid W Claire PM MU) .w7[B 0 08CS 1 Butt - ID Y1OORS I M 3/01 S101[iB(2rl It OGNCP 41 1]' OC WI. • O[iAt) • 4 ...___... ... -'--- --' -' - --_44 4444 44__44 -.- .-- .-- --' --.. _ _•- •444 ___. _._.. _.. _4444- BEARING HEADER BEARING HEADER - O INTERIOR SOFFIT SIGN ) G SC4LE 2 • IS 5 310. .TS J 1110 I-. /:"•I••c• • • • nV Job Name Claire's Tigard Oregon SCHNEIDER av Job No. 312003 Sheet pZ/ STRUCTURAL ENGINEERS By Date Rev Date f-a I spa i,e rxeP.e io v R ossc (7,4 Rio) /i7s-7 0 g33 Cbs /30s) 7 5y577.--Awr p /c-c_ p /3a8 sn c = a • • p • SEISMIC PERFORMANCE • W�EW This Icon identifies imp Armstrong Seismic Rt Suspension Systems Armstrong Seismic Axe Suspension ICC -ES Recognizes the Armstrong Category Installation Requirements System Saves Time and Money Seismic Rx Suspension System as Armstrong offers an ICC =E&EVa� re - d - a Code Compliant Soluti A. 8 Ceiling installation should conform to basic 9 p minimums established In ASTM C 636. proach to instal ons (ESR- 1308). The_,2 The independent and expert evaluation and C To be Installed to CISCA recommendations for Armstrong Se Ys confirmation by ICC -ES provides the code of- areas subject to light to moderate seismic activity. tern offers a labor and cost - saving method ficial with proven evidence supporting the 0, E, F Category o, E and F are to be Installed to CISCA and of meeting seismic code without risk of Armstrong Seismic Rx Suspension System seismic activity. delaying your construction schedule. as a code - compliant alternative design to See armstrong.com/seismic for more on seismic performance. IBC Category C: current IBC requirements. • Easier to square the system The performance of the Armstrong Seismic Rx by attaching to adjoining Suspension System Is based on a walls specific combination of components and . •• • lighter, more secure method of installation. Other manufacturer's Installation " components and installation methods • Eliminate:stabilizer- bats, were not tested and are not covered i 116 - Category D,F,Fc this evaluation. Substitution of other components puts the system at risk (_____Oietftramaterial costs by using and Is not allowed by this ESR report. 7/8" molding • Eliminate stabilizer bars • Eliminate Installation hassles from - ' 2" wall molding Alternative Installation Using BERC Category C IBC Requirements Armstrong BERC Solution Solution Benefits • Minimum 7/8° wall molding • Minimum 7/8" wall molding • Meets code requirements • Grid must not be attached to the wall molding • Grid may be cut tight and screw attached on • Easy to square up the system • Minimum 3/8" clearance on all sides two adjoining walls • Faster, tighter grid installation • Minimum 3/8' overlap of grid on the wall molding • Minimum 3/8° clearance on two unattached walls • Better overall visual y • Ends of main beams and cross tees must be tied • BERC2 or BERC on all main beams • Eliminates stabilizer bars C 1 together to prevent spreading N vile P P A • Lower cost solution • , • Better access to the plenum • rri • , • Perimeter wires are not needed • Meets code requirements y ' • Intermediate -duly grid • Perimeter wives are not needed _ • Intermediate -duty grid u NOTE Requirements for essential use facilities may be different. Contact TechLlne for details. • ° l 11',.[Y Z BERC2 Clip BERC Clip -I Alternative Installation Using BERC2 Category D, E, F m E. IBC Requirements Armstrong BERC2 Solution Solution Benefits cn • Minimum 2" wall molding • Minimum 718" wall molding • Narrow, sleek aesthetic with standard 7/8" wall molding • Grid must be attached to two adjacent walls • Grid must be attached on two adjacent walls— • Eliminates installation and aesthetic problems (Pop rivets acceptable) opposite walls require BERC2 with 3/4° clearance (Ellmi- associated with 2" wall molding nates the need for pop rivets through the visible part of the wall molding)' • Opposite walls must have a 3/4" clearance • BERC2 clip with 3/4" dearance on unattached ends • BERC2 eliminates visible pop rivets through the wall angle • Stabilizer bars to prevent the spread of main beams • BERC2 maintains main beam and cross tee spacing; • Eliminates stabilizer bars and cross tees no other components required' • Lower cost solution . • Perimeter support wires • Perimeter wires are required • Better access to the plenum • Heavy -duty grid • Heavy -duty systems as Identified in ICC -ESR -1 308 • Meets code requirement • (refer to Suspension Systems) c 'Pop rivets optional on attached walls _ Q ® BERC2 Clip . TechLine m 877 ARMSTRONG 'rnstrong 206 0 • ‘ , 8 SUSPENSION TRIM AND FRAMING SYSTEMS SUSPENSION, _--- System Selector armstrong.com/suspensionsystems armstrong.com/selector search keyword (example: axiom) ... Improved suspension systems that perform better, carry increased The reengineered main beams also feature Super Lock' - a .___ _ ceiling load and reduce Installation hassles are the result of innovative staked-on clip for a tighter, more secure bulb-to-bulb connection. fk till features like Peak Form° and Supertock Peak Form =in beams Main beams with the Super Lock clip can be disconnected and ritil and cross tees are manufactured with a patented bulb shape and taller reconnected laterally in low-clearance areas or in the middle of 0 profile to create a stronger, more stable suspension system a room. that will get the job done better. Main beams have an improved load- r__„4 Wherever you see the Peak Form Icon you can get the carrying capacity that exceeds ASTM standards for intermediate and a benefits of the PeakForrn profile. ki \ t".' . heavy-d load performance. Peak Form also meets the requirements for Installation in all seismic categories, so you can specify it anywhere a 9/16" or 15/16" heavy-duty grid Is desired. Peak Form armstrong.com/peakform ria•\H-.1.-4. ',.... GENERAL APPLICATIONS . - .'" .. • iNTAILUDE° )1 9/16" (Pp. 211) ,-, 17,.... l -4 .x.".. ;... . 0 0 0 PRELUDE° Concealed (Pgs. 212) ' ' -..-- PREUDE° ML 15/16" (Pgs. 213) . " -- i PRELUDE • xi.• 15/16" (Pgs. 215) i f I Slatted Tee Systems C G Exposed Tee Systems • ---.4111. PRELUDE° X° Fre Guard' 15/16" (Pgs. 215) • SILHOUETTE, ni PRELUDE XL HRC (Pp. 216) HOUETTE, Int/ALCM PRELUDE XL, PREUJDE MI. MI/ SUPRARNE XL, SUPRAFINE ML SILHOUETTE XL' 9/18" (Pgs. 217-218) " SONATA* 9/I 6° (Pgs. 219) • . "'i - f 0 I r I‘. ssupwialvtANNEE..):L.9:16; (Pgs. 220) SUPFtAFINE• XL° Flre Guard 9/16° 4,71 • XL* HRC ti (Pgs. 2201 (Pgs. 220) (Pgs. 221) - Er -- --- TRIMLOK° 9/16" (Pgs. 222) Dimensional Tee Systems Clean Roam Grid Systems SPECIAL APPLICATIONS inTERWDE, SONATA AL PRELUDE° PLUS Xl• 15/16" (Pgs. 209) • -. Clean Room Co-Extruded Aluminum 15/16, 1-1/2" (Pgs. 210) _,,,•_. 2-- - - elli Clean Room Co-Extruded Steel 15/16" (Pgs. 210) 'A... 4. ------•-•-' ' ,, PRELUDE' PLUS XL' Are Guard 15/16 (Pp. 214) PRELUDE XL' for Exterior 15/16° (Pgs. 214) ... • _J SS PRELUDE° PLUS X° 15/16" (Pgs. 209) _ 360° Padded Grid AXIOM•Elueding Perimeter Cl AXIOM DESIGN OPTIONS System 360° Painted Grid System (Pgs. 207-208) AXIOM° Family - Building Perimeter System (Pgs. 233-235) - - Classic (Pas. 236-237) - .3 ni - Interlude° - . IL/ (Pgs. 238) '"- - Knife Edge* (Pgs. 239) ,.•;i: - Paired (Pgs. 240) . .-2 AMOM AXIOM Edge Axtom-son Edge - Profiled (Pgs. 241) - Soft Edge (Pgs. 242) r . - Transitions (Pgs. 243) , . . . ' ' 1 • -- - >,r - Vector' (Pgs. 244) 1 "; .. , , ' ,If - Vector 8 Knife Edge for Formations (Pgs. 245) . ' DRYWALL SYSTEMS -,. . . . . ., r allI ML IP I I ; - olt „-_,11-, ....: ' Drywall Grid Systems - Flat (Pgs. 248) ..... .s. " _ .. ' ----"-"- ' Drywall Grid Systems - Curved (P 249) AYJOM AVOM Drywall Grid OuikStix Ceilings (Pgs. 251-252) Ack ....--- • -- OuikStlx Soft its (Pgs. 253) rl - OuikStix' Walls (Pgs. 253) • SHOHISPAN Drywall Framing System (Pgs. 250) - 4.- _ . . ; . -:. SERPENTINA CEILING SYSTEMS . - • ., ,,...... (...] SERPENT1NA Standard (pgs. 31-32) • 4 01 gl ICA L .. :_ . :.' • ANL ' SERPENTINA Vault (Pgs. 33) SERPENTINA SERPENTINA SERPENTINA SERPENTINA Waves (Pgs. 34) 203 TechLines" 877 ARMSTRONG armstrong.corn/suSpensionsystems @mstrong . • may - Selecting the appropriate suspension system may require an evaluation of adddional factors, such as local building codes and requirements Key criteria included: affecting seismic and UL properties. Armstrong recognizes that different projects are governed by different key criteria, including visual. So we've • Visual Criteria organized the Suspension System Overview Selector to provide an outline of potential key criteria, to help you easily choose the system that's • Performance Criteria fast for your application. • Special Application Criteria VISUAL CRITERIA PERFORMANCE CRITERIA SPECIAL APPLICATION Face Profile Colors Material load Durability X. A iii .B G d 3 Ad g k igi9 liia liz110 ® e©E • •• •• • • • •• • • • • • • • • • •• • • • • • • • • • •• • •• . . • • • • • • • • • • • •t • • • • • • . • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • roc • • • • • • • • • • • • • • • • . • •t . • • • • • • • • • • an • • • • • • • ..... ..._.._..... .__............_._ .. - -• Icon Key • • • • • • • • • • • _....._.. ........._........_.... Sag Resistance • • •• • • • • • ..__.._ .. _ Identity ceiling pafamance in different • • • • • • • • • • • • • humidity and moisture- related rmrdi0m a. y • • • • • • • • • HumiGUlite PIUS C _. — Recommended laereas " y ' • • • • • • • • • subject to high hunddrly, NI . up to standing wanes. •• �- • a - • • • • • • • • . • • • HumlGuard Max 4 6 Mmrhnlm humidity resistance. . • • • • • „ z - Chemical/Coryosion Resistanc • • • •• •••• S. - • • • • ® •_ . N. K • • • • • • • co • • • ••'• • • • • '♦ Fire Resistance T . • ••" • • • • Available In 0re-reresistive optima E • • • •'•• • • • • (Re Guardf; tested in specific H UL Boor / ceeing or redkeding • • • • • •." • • • . • comtruc0on design assemb0es • • •"• • • • • Color Availability ••• • • • • r2 Available kudos. • • • • e • • • • • Seismic Rx Suspension Systems • • • • �e • • • • • •m • • • • �ro 0, E8 F to • • • • • PeakForm • • • • • pr—, Peaked roof lop brab Increases • • I • • • ® -strength for improved performance. ' . • • I • • • • I • .I • • • • • • Product infatuation listed in lhis chart Pertains io general product families, and may not apply to each Individual product -• —• — —•- •—••"• -• • — '• i f — — — _112M. Before Specifying or purchasing • preducts, consult product details an ow • • • • •"' • • • web she: www.annstrong.comfceihngs a a0 Tech Line at I an ARMSTRONG. I • • • • • I • • Not an components can be used In all seismic categories. t ir4• reseal only •• Not all systems for use in all UL designs. yt Hanger wires at 36• on center will provide load capacity of 13.470 /LF ••• 360• finish evadable as special order. fit G90 components only �1 O A TechLines' 877 ARMSTRONG �'rn�9' LJ 4