Loading...
Specifications 15',2 5 5 v/ 72 v� 4 oL •4�e� ./ C2 D l o -- o 0 • • •.. •.. ••• . • • • • • ••. •••••••.. ••• .. .... •. .• • .. ... . . .. . . . . . . . • . . . . . . . . . . . . . . .. • • ,• .•• .•. •• ••• CORBIN .. .. : :: • • • • .• • • • • ••• • •• ••• • ••. •.•• • • •• •• • • • • MAR -HY Distributor • • •• • ••• • • • • HVAC Unit Hold Down Clips Updated Seismic and Wind Calculations For .. Oregon and Washington : � o �ti it ' •. 4 414 09 54 j. 4 0"" Prepared by: John H. Poland, P.E. Ato o F e. 4 �o Project number; CC09051 • For: MAR -HY Distributors " "U g, Date: July 10, 2009 H• EXPIRES: !'L ® of o CORBIN CONSULTIIVG ENGINRER3, INC. 1905 NW 169th Place Suite 121, Beaverton, OR 97006 Tel: 503/645 -0176 Fax: 503/645 -0415 • • • •• • S. • • • •.• • • • • • • • • • • • • • • • • • • • Seismic and Wind Restraint Design : • :: • •. :: /10/2009 Analysis for Oregon and Washington • • • • • • • • • ..('., • • • • i Seismic • Design Loads - Components • • • . • • • • • • • • • t Per 2007 OSSC and 61.60 WAC, based on the 2006 IBC and ASCE 7.0 • • • • • • • ••• ••• • •• • • • Location: Oregon and Washington worst case analysis Seismic catulations from USGS NEHRP map data ••• ••• • • •• •• Design Parameters • • • • - IBC Ground Wrtion • • Spectral Response acceleration • Short period S 2.000 Figure 221, 0.2 sec maximum for OR, WA 1 sac period S 0.750 Figure 22-2, 1.0 sec maximum for OR, WA Soil Profile Class: D Section 20.1, Table 20.3 -1. Unknown soil (no E or F) Fe 1.000 Table 11.4-1 interpolated F,r 1.500 Table 11.4-2 Interpolated S„ 2.000 Equ. 11.4-1 Sms=Fa•Ss S, 1.125 Equ. 11.4-2 Sm1 =WS1 Design Specbal Response S 1.3333 Equ. 11.4-3 Sds=2l3 • ins • • S 0.7500 Equ. 11.4-4 Sd1 =2/3 • Sm1 Occupancy Category II • Per ASCE 7-05, table 1 -1 • Seismic Design Category 0 Per ASCE 7 -05 Table 11.6- 1,11.6 -2 Importance Factor 1„ = 1.0 Per ASCE 7 -05 Section 13.1.3 - Ordinary Structure z, height of component h, = 60 Equipment height (maximum) \ h, building roof height h, = 60 Top of building (maximum) • l j Component Amplification s = 2.5 Per ASCE 7 -05 Section 13.3.1 - Air side HVAC equipment, Component Response . R 6.0 table 13.6 -1 Per ACSE 7.05. Section 13.3 • Eq. 13.3 -2 F = 2.133 Wp Fp<=1.6•Sds•Ip•Wp upperlimit • Eq. 13.3 -1. F = .0.667 Wp Fp =0.41ip•Sdsl(Rplip)•(1 +2•z/h)Wp Eq. 13.32 Fr = . 0.400 Wp . Fp>=0.3•Sda•Ip•Wp lower limit Use Eq. 13.3 -1 F = 0.667 W Design load for overturning p p and load bearing Per ACSE 745, Section 13.3.1 Concurrent Vertical Force Fp d = 0.267 Wp Fp.v = 10.2•Sda•Wp • • • • Corbin Consulting Engineers, Inc. Page 1 of 12 CC09051 • • • • • Si`etsmic and Wlnd Restraint Desig • ' • • • :' • • • •' • • •' :' • 7/10/2009 Analysis for Oregon and Washington • • • • • • • • • • • • • • • • • • • • • • . • • • • • • •• Rooftop Unit Seismic / Wind Anchor Clips Analysts of Seismic Forces for 1.6 - 8 Ton (Small and Large Footprint) HVAC Units • • • 'r 1 Tool/Unit Geometry • • ,•. • • • • • • • • • Overall Support • • • • ' • • Dimensions Dimensions • • "' • •• • • • Height (h) 41.00 20.50 CoG Height (z) Above Base (est) Length (y) 50.88 49.50 Distance Biffien.cips . • • • .. Critical Depth (x) 47.63 45.00 Distance Betren Qlipa• • • • • • • • • Weight Moment Arm (b) 22.50 Horizontal Distance frorr►CeOle tlipt.' Anchor Separation (d) 45.00 Horizontal Di tenoaet h 'n CnpS : : :.' Anchor Moment Arm (e) 45.00 Moment Distance Between Clips Weight 600 lbs Max weight of HVAC, units 2 Number of Anchors Resisting Tension 2 Number of Anchors Resisting Shear 2 Number of Anchors Resisting Compression 4 Number of Anchors Total Seismic Loads For Restraint Design Design Lateral Load 400 tire From Basic Seismic Cale sheet • • ASD Load Factor 0.7 lbs Per ASCE 7 -05, Section 2.4.1 Reduced Shear Load for Moment 280 lbs OTM 5740 In-lbs ASD Load Factor 0.6 Per ASCE 7 -05, Section 2.4.1 Reduced Dead Load for Moment 380 lbs ' Resisting Moment -8100 in-lbs Need • -2360 In-!bs to resist OTM Net Tension (per side) -52 lbs No OTM (Clips not loaded) • Net Tension (per restraint) -26 lbs Concurrent Vertical Force 160 lbs Per ASCE 7 -05, Section 13.3.1 Concurrent Vertical (per restraint) 40 lbs . Total Vertical Force (per restraint) 14 lbs ` Resisting Shear (per restraint) 200 lbs l ) Max Compression (per restraint) 214 lbs Overturning + weight Comp + Cone Vertical 254 lbs Compression Loads OK --01 b h— Lateral Load T Overturning 0 . height CoG CoG • --.—.3 1 ___t_._ INF Dead Load Anchor Support Resisting • Support Point Bolt 1 a — •1 Point Overturning of Unit Loads on Anchor Botts • • Corbin Consulting Engineers, Inc. Page 2 of 12 CC09051 • Seismic end Wind Restraint Design • • • • • • • • • • • • • • 7/10/2009 Analysis for Oregon • •• • • • • • • • • • • • • ly ro9 and Washington n9 ••• • • •• • • • • • •.• • • • • • • • • • • • • • • •• Rooftop Unit Seismic ! Wind Anchor Clips Analysis of Seismic Forces for 7.8 - 28 Ton (Large Footprint) HVAC Units } Tool/Unit Geometry • • • • • • • • • • • • • • Overall Support • • • • • • • • • • • pport • • • • • • • Dimensions Dimensions "' • •• • • • ••• • Height (h) 57.00 28.50 CoG Height (z) Above Base (est) Length (y) 152.25 140.25 Distance Beer Clips. • • • .. Critical Depth (x) 60.50 54.50 Distance Betwaen•iips • • • • • • • Weight Moment Arm (b) 27.25 Horizontal b&stenca from 4W Anchor Separation (d) 54.50 Horizontal r3IsteivioetiAllril s; : :. • Anchor Moment Arm (e) 54.50 Moment Distance Between Clips Weight 2,600 !be Max weight of HVAC units 4 Number of Anchors Resisting Tension 2 Number of Anchors Resisting Shear 2 Number of Anchors Resisting Compression 8 Number of Anchors Total Seismic Loads For Restraint Design Design Lateral Load 1733 lbs From Basic Seismic Cala sheet ASD Load Factor 0.7 lbs Per ASCE 7=05, Section 2.4.1 • Reduced Shear Load for Moment 1213 lbs OTM 34580 in-lbs ASD Load Factor 0.6 • Per ASCE 7-05, Section 2.4.1 Reduced Dead Load for Moment 1660 lbs Resisting Moment -42510 in-lbs Need -7930 in-lbs to resist OTM Net Tension (per side) -148 lbs No OTM (Clips not loaded) Net Tension (per restraint) -36 lbs • Concurrent Vertical Force 693 lbs Per ASCE 7 -05, Section 13.3.1 Concurrent Vertical (per restraint) 87 lbs Total Vertical Force (per restraint) 50 lbs Resisting Shear (per restraint) 867 lbs Max Compression (per restraint) 642 lbs Overturning + weight Comp + Conc Vertical 729 lbs Compression Loads OK —01 b . 14— Lateral Load Overturning 0 . height CoG CoG Dead Load da Anchor Support Resisting Support Point Soft 1 e — PI Point Overturning of Unit Loads on Anchor Bolts • Corbin Consulting Engineers, inc. Page 3 of 12 CC09051 • • S •• •• •• • • • • • • • . • • • • • • • • • • • • • • • . • • •• •• • • • • • • Seismic and Wind Restraint Design . ••• • • • • • • • • 7/10/2009 • Analysis for Oregon and Washington • • • • • • • .' • •' Wind Design Loads - Components • • / Per 2007 OSSC and 61.60 WAC, based on the 2006 IBC and ASCE f �6 • • • • • • • • • • ■ Location: Oregon and Washington • • • • • • • Objective: Evaluation of structure for rooftop unit supports and anciwrs .. 6 . 6 • . • : • ' .' Located on roofs of buildings Occupancy Category Class II Per ASCE 7 -05, Table ¶ I Oh ttan4 SVuq ; • : • Endosure Class open Section 6.2 • • • • • ••• ••• •• • • • Applications In Areas of 95 mph Wind Speed or Less and 60 ft Hetghtor Less • Method 2 - Analytical Procedure Per ASCE7 -05, Section 8.5 Design Wind Speed V = 95 mph Section 6.5.4, Figure 6-1- worst case for OR, WA importance Factor Ip = 1.00 Section 6.5.5, Table 6 -1 Surface Roughness Class C Section 6.5.6.2 Exposure Category Class C Section 6.5.6, Table 6-2 Exposure Coefficient K, ,K„ m Section 6.5.6.6, Table 6-3 60 ft 1.13 Exp. C, Cases 1 & 2, Table 63, components Topographic Effects = Section 6.5.7, Figure 6-4 K2 K3 = K = 1.00 No ridge or escarpment Directionality Factor K = 0.90 Section 6.5.4.4, Table 6-4 Velocity Pressure . Design pressure for up to 60 ft. Equ. 6-15, sec. 6.5.11. ' q m 23.5 paf q: = 0.00256'Kz•Kzt•Kd'V • Applications in Areas of 110 mph Wind Speed or Less and 60 ft Height or Less Method 2 - Analytical Procedure Per ASCE7 -05, Section 8.5 Design Wind Speed . V = 110 mph Section 6.5.4, Figure 6-1- worst case for OR, WA Importance Factor 1p = 1.00 Section 8.5.5, Table 6-1 Surface Roughness Class C Section 6.5.6.2 ) Exposure Category Class C Section 6.5.6, Table 6-2 Exposure Coefficient K= ,K„ = Section 6.5.6.6, Table 83 60 ft 1.13 Exp. C, Cases 1 & 2, Table 6-3, components Topographic Effects K = Section 6.5.7, Figure 6-4 • K9 Ku = 1.00 No ridge or escarpment Directionality Factor Kd = 0.90 Section 8.5.4.4, Table 8.4 Velocity Pressure . Design pressure for up to 60 fl. • Equ. 6-15, sec. 6.5.11 q = 31.6 psf q = 0.00256'Kz'Kzt'Kd'V • • • i Corbin Consulting Engineers, Inc. Page 4 of 12 CC08051 • • • .. •• •• •• • • • • • • • • • • • . • • • • • • • • • •• •. . • • . • • • • • • • •• • • • • Seismic and Wind Restraint Design • • • • • • • • • • 911012 ' • Analysis for Oregon and Washington • • • • • • • • • HVAC Unit (Small Footprint) Seismic l Wind Anchor Clips • • • Application In Areas of 110 mph Wind Speed or Less and 80 ft Hdl4ht **el • • • • • • • • • • Wind Design Loads - Non-structural components. Per 2006 IBC and AGE � -06 • • • • ••• . • Oregon and Washington Wind Load Analysis Method 2 - Analytical Procedure ••• ••• • • •• •• HVAC unit analyzed as a square tank • • • • • • • ••• ••. .• • . • • • Basic Wind Pressure q = 31.5 psf From Basic Wpd CAN, 18D mpD, tp $ • Gust Effect Factor G = 0.85 Section 6.5.8, Rigid structures • WD ratio 1.00 Secton 6.6.15, Figure 6.21 Force Coefficient, Fiat Cr = 1.30 Section 6.5.15, Figure 6-21 Force Coefficient, Diagonal C = 1.00 Section 8.5.15, Figure 6-21 RTU Multiplier M n 1.90 Section 6.5.15.1 V Design Pressure, Flat pf = 66.1 psf p = q Design Pressure, Diagonal pd = 50.9 psf p = g Total Load for Front Wind, Single Unit Projected Area, Flat Af = 14.52 sq ft Broad side of unit, 61" x 41" Total Force, Flat Ff = 960 lbs F = p•A ASD load factor for wind overturning 1.00 Per ASCE 7 -05, Section 2.4.1 Design wind force flat 960 lbs Total force • ASD multiplier • Total Overturning Moment Load Height of Unit Hf = 3.4 ft Height above base surface Overturning moment Mf = 1,641 ft-Ibs design wind force • H/2 (CoP) Total resisting moment load Unit weight W = 380 lbs Miminum weight of Small Units ASD load factor for overturning 0.60 Per ASCE 7 -05, Section 2.4.1 j \ Reduced Dead Load for Moment 228 lbs Shortest Side Lf = 45.0 in for Overturning Resisting moment 428 ft-lbs W'LfP2 (effective moment arm) • Net resisting moment required 1,213 ft-Ibs Net resisting tension required 324 lbs Resist OTM Number of brackets resisting tension 2 V Number of corners resisting shear 2 Number of corners resisting compression 2 Number of corners total 4 Number of brackets total 4 Tension force per restraint 182 lbs based on flat aide force Shear force per restraint 480 lbs based on max lateral force Max Compressston load per restraint 314 lbs based on flat side force b Lateral Load Overturning 0 height CoG (z) C0G Dead Load • Andwr Support ResLS g Support Point Boi base -" Point Overturning of Unit Loads on Anchor Bolts Corbin Consulting Engineers. Inc. Page 5 of 12 CC09051 • •• •• •• • • • • •• • • • • • • • • • • • • • • • • • • • • • ••• • • •• 7/ • • • • • : Seismic and Wind Restraint Design • • • • • • • • • • • • • • Analysis for Oregon and Washington • • • • • • • • • HVAC Unit 3 -8 Ton (Large Footprint) Seismic I Wind Anchor digs • , Application in Areas of 110 mph Wind Speed or Less and 80 ft Slight of Lys* • • • •• • • • • • • . • • • • •• • • • Wind Design Loads . - Nonstructural components, Per 2006 iBC and ASCL7.05 ' • • • .' .: • 2.2 Oregon and Washington Wind Load Analysis Method 2 - Analytical Procedure ••• ••• • • •• •• • • • HVAC unit analyzed as a square tank • • • Basic Wind Pressure cT, = 31.5 psf From Basic � • Ving is • • • • • • • • • • • • • ,•9bm�h, 60R • Gust Effect Factor G = 0.85 Section 6.5.8, Rigid structures • • • h/D ratio 1.00 Section 6.5.15, Figure 6-21 Force Coefficient, Flat C = 1.30 Section 6.8.15, Figure 6-21 Force Coefficient, Diagonal C, = 1.00 Section 6.5.15, Figure 8 -21 RTU Multiplier M = 1.90 Section 6.5.15.1 Design Pressure, Flat pf = 66.1 psf p = q,'G'C Design Pressure, Diagonal pd = 50.9 pat p = q Total Load for Front Wind, Single Unit Projected Area, Flat Af = 19.99 sq ft Broad side of unit, 82 -114" x 35" Total Force, Flat Ff = 1,322 lbs F = p•A ASD load factor for wind overturning 1.00 Per ASCE 7-05, Section 2.4.1 Design wind force fiat 1,322 lbs Total force • ASD multiplier Total Overturning Moment Load Height of Unit Hf = 3.42 ft * Height above base surface Overturning moment Mf = 2,259 ft -Ibs design wind force' H/2 (CoP) Total resisting moment load Unit weight W = 620 On Miminum weight of 8 ton units ASD load factor for overturning 0.80 Per ASCE 7-05, Section 2.4.1 l l Reduced Dead Load for Moment 372 lbs J Shortest Side Lf = 46.00 In for Overturning Resisting moment 713 ft-lbs W'Lf/2 (effective moment arm) Net resisting moment required 1,648 ft-lbs Net resisting tension required 403 lbs Resist OTM Number of brackets resisting tension 4 Number of corners resisting shear 2 Number of corners resisting compression 2 Number of corners total 4 Number of brackets total 8 Tension force per restraint 101 lbs based on flat side force Shear force per restraint 661 lbs based on max lateral force Max compressslon toad per restraint 450 lbs based on flat side force • - -.� Lateral Load Overturning O height CoG CoG A • Dead Load Anchor , Resisting Support Point Bolt - base -+I Point • Overturning of Unit Loads on Anchor Bolts Corbin Consulting Engineers, Inc. Page 6 of 12 CC09051 • • • • • • • • •• • .. • • • • • • • • • • • Seismic and Wind Restraint Design . • •. • • • • • • • . . . 7/10/2009 • • • • • • • • • . • Analysis for Oregon and Washington • • • • • . • • HVAC Unit 7.6 -10 Ton (Large Footprint) Seismic I Wind Anchor Clips , • • • 1 1 / Application In Areas of 110 mph Wind Speed or Less and 80 ft HbtghtOr .qs • • • • • • • • • . •• . • • Wind Design Loads - Non - structural components, Per 2006 IBC andr4SCb'=•05 ' • • • • • • . • . Oregon and Washington Wind Load Analysis Method 2 - Analytical Procedure ••• ••• • • •• •• • • HVAC unit analyzed as a square tank • • • . ..• ..• • • • Basic Wind Pressure q: = 31.5 psf From Basic Il�lind �Omeh, 60� t • Gust Effect Factor G = 0.85 Section 6.5.8, Rigid structures h/D ratio 1.00 Section 6.5.15, Figure 6-21 Force Coefficient, Flat G = 1.30 Section 6.5.15, Figure 6-21 Force Coefficient, Diagonal C = 1.00 Section 6.5.15, Figure 6-21 RTU Multiplier M = 1.90 Section 6.8.15.1 Design Pressure, Fiat pf = 66.1 pat p = q= G'C Design Pressure. Diagonal pd = 50.9 psf p = q= GC,'M Total Load for Front Wind, Single Unft Projected Area, Flat Af = 34.28 eq ft Broad side of unit, 95.6/8" x 51-6/8 Total Force, Fiat. . Ff = 2,287 lbs F = p'A ASD road factor for wind overturning . 1.00 Per ASCE 7-05, Section 2.4.1 Design wind force flat 2,287 lbs • Total force' ASD multiplier • Total Overturning Moment Load Height of Unit Hf = 4.17 ft Height above. base surface • Overturning moment Mf = 4,724 R -Ibs design wind force • H/2 (CoP) Total resisting moment load Unit weight W = 1,097 lbs Miminum weight of 7.5 ton units ASD toad factor for overturning 0.60 Per ASCE 7-05, Section 2.4.1 • Reduced Dead Load for Moment 658 lbs J Shortest Side Lf = 58.00 in for Overturning Resisting moment 1,591 ft-lbs W'Lf/2 (effective moment arm) Net resisting moment required 3,133 ft-lbs Net resisting tension required 648 !be Resist OTM Number of bradcets resisting tension 5 Number of corners resisting shear • 2 Number of corners resisting compression 2 Number of corners total . 4 Number of brackets total , 10 Tension force per restraint 130 lbs based on flat side force Shear force per restraint 1,134 lbs based on max lateral force Max ccmpresssion load per restraint 763 lbs based on flat side force -♦ b h Lateral Load • T Overturning 0 height CoG CoG Dead Load Anchor , — Resisting Support Point Bolt base Point Overturning of Unit Loads on Anchor Bolts Corbin Consulting Engineers, Inc. . Page 7 of 12 CC09051 • • •• • • • • • • • • • .. • • • • • • • • • • • •• •• • • • • • • Seismic and Wind Restraint Design • • • • • • • • • • 7/10/2009 • ' Analysis for Oregon and Washington • • • • • • • • • • • • • � • HVAC Unit 16 - 26 Ton (Large Footprint) Seismic / Wind Anchor gips • • • • 1 / Application In Areas of 110 mph Wind Speed or Less and 60 ft H ght br s • • • • • • • •. •• • • • Wind Design Loads - Non-structural components, Per 2008 IBC and,ASCC 7.05 ". • . • :. • • • Oregon and Washington Wind Load Analysis Method 2 - Analytical Procedure ••• ••• • •• •• •• • • • • • • • • . • HVAC unit ana as a square tank • • • • tyzea sq • • • ••• ••• •• • • Basic Wind Pressure q: = 31.5 psf From Wind 0 • Gust Effect Factor G = 0.85 Section 6.5.8, Rigid structures h/D ratio 1.00 Section 6.5.15, Figure 6-21 Force Coefficient, Flat C = 1.30 Section 6.5.15, Figure 6-21 Force Coefficient, Diagonal C = 1.00 Section 6.5.15, Figure 6-21 RTU Multiplier M = 1.90 Section 6.5.15.1 Design Pressure, Flat pf = 86.1 pet p = q Design Pressure, Diagonal pd = 50.9 pat p = q Total Load for Front Wind, Single Unit Projected Area, Flat Af = 54.97 sq ft Broad side area, sloped 152 - 1/4'5657" Total Force, Flat Ff = 3,636 !be F = p•A ASD load factor for wind overturning 1.00 Per ASCE 7-05, Section 2.4.1 Design wind force flat 3,636 lbs Total force • ASD multiplier Total Overturning Moment Load Height of Unit Hf = '4.75 ft Height above base surface Overturning moment Mf = 8,635 ft-lbs design wind force • H/2 (CoP) • Total resisting moment load Unit weight W = 1,958 lbs Miminum weight of large units • ASD load factor for overturning 0.80 Per ASCE 7-05, Section 2.4.1 Reduced Dead Load for Moment 1,175 lbs Shortest Side Lf = 83.00 in for Overturning Resisting moment 4,063 ft-Ibs •Lf/2 (effective moment arm) • Net resisting moment required 4,572 ft -Ibs Net resisting tension required . 681 Ibs. Resist OTM Number of brackets resisting tension 5 Number of corners resisting shear 2 Number of corners resisting compression 2 Number of corners total 4 Number of brackets total 10 Tension force per restraint 132 lbs based on flat side force Shear force per restraint 1,818 ibs based on max lateral force . Max compressalon load per restraint 1,114 lbs based on flat side force • Lateral Load T Overturning 0 height CoG CoG , • Dead Load Anchor Support Resisting Support Point Bolt base -f Point • • Overturning of Unit Loads on Anchor Bolts Corbin Consulting Engineers, Inc. Page 8 of 12 CC09051 • • • •• . • • • • • • • • • • • • • • • • • • . • • •: • :. • • • • • Se • and dl/Ind • Restraint Design 7 /10/2009 . • • • • • • • • • • • Analysis for Oregon and Washington • • • • • • .. Stresses on Anchor Clips for 1.6.6 Ton (Small Footprint) HV4C Units • • • 1 / Application In Areas of 110 mph Wind Speed and 60 ft Helght•gr Less • • • • • • • • • • 4 • Brackets per Unit • • • • .. • : . • • • • • • • • • ••• ••• • •• ••• • Simplify Stresses on Bracket by Assuming: • Point of bending is about comer due to tension load • Point of application of tension toad Is top of bracket • • • • • • • • • • • • • • • Load on screws based on distance between screws • • • • • • •.• ••. .• • • • • •, Tension • • • • • • Load Shear Load height > t I _ BOVIN spacing base Attachment to HVAC unit consists of four #10 screws Into base rail All four screws resist shear, two screws resist bending from tension Shear load on bracket not applicable, as HVAC unit is continuous around curb and provides . lateral stability In all directions. • Max tension load on bracket (maximum of seismic and wind) 162 lbs Number of attachment screws 4 1.25 In Base of bracket 2.13 in Height of bracket 4.75 in • Width of bracket 4.00 In / Thickness of bracket 0.188 in Distance between screws (vertical) 0.75 in Bending moment at corner 344 in•Ibs • (tension toad per restraint • base dimension) Cross section area of bracket (width • thickness) 0.75 Section modulus of bracket . 0.023 in"3 Bending stress on one-half of bracket - 14,666 psi (bending moment / section modulus) • • Max allowable stress of steel (2/3 Fy, Fy=30 kW) 20,000 psi Allowable stress / bending stress 1.38 > 1.0 OK Axial force in screws from tension load • 275 lbs (tension load' base / prying distance) • Shear force on screws from tension load 162 lbs Allowable tension load on 810 -16 Hilti Kwlk Pro screws 181 Ibs (725 ibs ultimate, SF = 4 per Hilt guidelines, per screw) Allowable shear load on #10-16 Hiiti Kwik Pro screws 366 be (1465 lbs ultimate, SF = 4 per HINT guidelines, per screw) Allowable tension load l (total tension toad / (# of screws / 2) 1.32 > 1.0 OK Allowable shear load / shear per screw 9.08 Individual allowable loads > Individual applied loads Sufficient margin exists for slight differences in loading. • Proposed angle brackets am therefore acceptable for the stated use with #10 Hill Kwik Pro self drilling screws, when installed per manufacturer guidelines, according to attached installation drawings. • Limltations'are indicated on the installation drawing. Corbin Consulting Engineers, Inc. Page 9 of,12 CC09051 • .. .- • Selgmic and Wind Restraint Design o' • • • • •' • • • • • • . • • • • • • • • • • • • 7/10/2009 • Analysis for Oregon and Washington • • . • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • Stresses on Anchor Clips for 3.6 Ton (Large Footprint) HVAC Units • • • • • • Application in Areas of 110 mph Wind Speed and 60 ft Height or Use • (-- . 8 " Brackets per Unit • • • • • • • •• • • • • • • . • • • • • P by As suming: Simplify Stresses on Bracket b Assumin : .' • • • • • • • • • • • • • • • • • • • Point of bending is about corner due to tension load ••• • • • • • • ••• • . Point of application of tension load Is top of bracket . • Load on screws based on distance between screws • ' • •••• ••• • • •• •• . • • Tension , • • . • • • • ••• ••• •• • • Load ,• • • • • • • •• • • • Shear Load • ��• • • T _ E- height 1 lt • I ___/-- T screw . • el spacing base Attachment to HVAC unit consists of four #10 screws into base rail All four screws resist shear, two screws resist bending from tension Shear load on bracket not applicable, as HVAC unit Is continuous , around curb and provides lateral stability in all directions. . Max tension load on bracket (maximum of seismic and wind) 101 lbs • Number of attachment screws - 4 •Prying distance (screws to edge of bracket) 2.00 In Base of bracket 2:88 in Height of bracket 4.75 In Width of bracket 4.00 In Thickness of bracket 0.188 in ( Distance between screws (vertical) 1.50 in > Bending moment at corner 290 in-lbs • (tension load per restraint' base dimension) Cross section area of bracket (width • thickness) • 0.75 Seaton modulus of bracket 0.023 InA3 . Bending stress on one -half of bracket 12,388 psi • • (bending moment / section modulus) Max allowable stress of steel (2/3 Fy, Fy=30 ksi) 20,000 psi ' Allowable stress / bending stress . • 1.62 > 1.0 OK Areal force in screws from tension load • • • 145 Ibs • (tension load' base / distance between screws) - Shear force on screws from tension load • 101 lbs Allowable tension load on #10-16 Milli Kwik Pro screws 181 lbs ' • (725 lbs ultimate, SF =4 per Hilo guidelines, per. screw) . • Allowable shear load on #10-16 Hiltl Kwik Pro screws 366 lbs (1465 lbs ultimate. SF =4 per Hill guidelines, per screw) Allowable tension load / (total tension load /.(# of screws / 2) 2.50 > 1.0 OK - Allowable shear load / tension per screw 14.53 • , • Individual allowable loads > Individual applied loads Sufficient margin exists for slight differences in loading. • ' • Proposed angle brackets are therefore acceptable for the stated use with #10 HIh Kwik Pro self dulling screws, when installed per manufacturer . guidelines, according to attached installation drawings: • • :. Limitations are indicated on the installation drawing. . Corbin Consulting Engineers, Inc. . Page 10 of 12 • CC09051- • • SeiAfnic and Wind Restraint Design • • • • • • • • • • • • 7/10/2009 Analysis for Oregon and Washington • • • • • • • • • • • • • • • •• •• • • • • • ••• • • • • • • • • • • • • • • • • Stresses on Anchor Clips for 7.6 -10 Ton (Large Footprint) r41/1C'Unfts• • • •' _ Application in Areas of 110 mph Wind Speed and 60 ft Height or Less ;' 10 Brackets per Unit •. • • ••• ••• •• • • • • • • Simplify Stresses on Bracket by Assuming: • • • • • • • • • • • • • • • • • • corner of bending is about coer due to tension toad ••• • • • • • • ••• • Point of application of tension load is top of bracket Load on screws based on distance between screws • • ••• • • •• •• Tension i • • Load • ••• ••• •• • • • Shear Load •• • • • T ._ a height ' f SCISW __ spacing base Attachment to HVAC unit consists of four #10 screws into base rail All four screws resist shear, two screws resist bending from tension Shear toad on bracket not applicable, as HVAC unit is continuous around curb and provides lateral stability in all directions. Max tension load on bracket (maximum of seismic and wind) 130 lbs Number of attachment screws 4 Prying distance (screws to edge of bracket) 2.00 in Base of bracket 2.88 in Height of bracket 4.75 in Width of bracket 4.00 In Thickness of bracket 0.188 in Distance between screws (vertical) 1.50 in Bending moment at corner 373 in-lbs (tension load per restraint • base dimension) Cross section area of bracket (width • thickness) 0.75 Section modulus of bracket 0.023 iM3 Bending stress on one-half of bracket 15,903 psi (bending moment / section modulus) Max allowable stress of steel (2/3 Fy, Fy=30 ksl) 20,000 psi Allowable eltress / bending stress 1.28 > 1.0 OK Axial force in screws from tension load 188 lbs (tension load • base ! distance between screws) Shear force on screws from tension load 130 lbs Allowable tension load on #10-16 Hilti Kwik Pro screws 181 lbs (725 lbs ultimate, SF =4 per Hilti guidelines, per screw) Allowable shear load on #10-16 Hilti Kwtic Pro screws 368 lbs (1465 lbs ultimate, SF =4 per HIM guidelines, per screw) Allowable tension load ! (total tension load ! (# of screws / 2) 1.95 > 1.0 OK Allowable shear load / tension per screw 11.30 Individual allowable loads > Individual applied loads Sufficient margin exists for slight differences In loading. Proposed angle brackets are therefore acceptable for the stated use with #10 Hilti Kwik Pro self drilling screws, when installed per manufacturer guidelines, according to attached installation drawings. Limitations are indicated on the Installation drawing. Corbin Consulting Engineers. Inc. Page 11 of 12 CC09051 • •• •• •• • • • • • • • • • • • • • • • • • • • • • • • Seismic and Wind Restraint Design • • •• •• • • • • • •7/1012009 , •.. • • • • • • • • • Analysis for Oregon and Washington • • • • • • • • • • • • • • • • • •• - Stresses on Anchor Clips for 7.6 -10 Ton (Large Footprint) HVAC Units . I Application In Areas of 110 mph Wind Speed and 60 ft Height & LOS* • • • • •. • • •. • /// 10 Brackets per Unit • • • • • • • . • • • • • ••• ••• • •• ••• • Simplify Stresses on Bracket by Assuming: Point of bending Is about corner due to tension load . Point of application of tension toad is top of bracket • . • • . • • • • • • • • Load on screws based on distance between screws • • • , • • •.• ••• S. • • • • • Tension i • ... • • . Load Shear Load height I t spacing 1 Attachment to HVAC unit consists of four #10 screws into base rail All four screws resist shear, two screws resist bending from tension Shear load on bracket not applicable, as HVAC unit is continuous around curb and provides lateral stability in all directions. Max tension load on bracket (maximum of seismic and wind) 132 lbs Number of attachment screws 4 Prying distance (screws to edge of bracket) 2.00 In Base of bracket 2.88 in Height of bracket 4.75 In Width of bracket 4.00 in ) Thickness of bracket 0.188 In Distance between screws (vertical) 1.60 in Bending moment at corner 380 In lbs (tension toad per restraint • base dimension) Cross section area of bracket (width • thickness) 0.75 . Section modulus of bracket 0.023103 Bending stress on one -half of bracket *217 psi (bending moment / section modulus) . . Max allowable stress of steel (2/3 Fy, Fy ksi) 20,000 psi Allowable stress / bending stress - 1.23 > 1.0 OK Axial force in screws from tension load 190 lbs (tension load • base ! distance between screws) Shear force on screws from tension load 132 lbs' Allowable tension load on #10-16 Huh Kwik Pro screws 181 lbs (725 lbs ultimate, SF =4 per Him guidelines, per screw) Allowable shear load on #10-18 HBO Kwik Pro screws 366 lbs (1465 lbs ultimate, SF =4 per Hiltl guidelines, per screw) Allowable . tension load ! (total tension load ! (# of screws / 2) 1.91 > 1.0 OK Allowable shear load ! shear per screw 11.08 Individual allowable loads > Individual applied toads Sufficient margin exists for slight differences in loading. Proposed angle brackets are therefore acceptable for the stated use with #10 Hifti Kwik Pro self drilling screws, when installed per manufacturer • guidelines, according to attached Installation drawings. Limitations are indicated on the installation drawing. Corbin Consulting Engineers, Inc. Page 12 of 12 CC09051 • • • - • • GENERAL NOTES . • W 6IOSOImO IOmeOCCOM •ttnr rr•IONtCMIA A•nr&AOSSHMTaL OOI1Eapq OM" TOM IEOnY 00/4 1.1 - ACCTICMS mraa EOY0114MAr•aCIMINem•mrAt IL M00• O N c0A1eSSSS• SSA•nOE KWIC U p O rE0 ON ma IIG.Wlra.Al I I I I _ • /14I roM mA =MOW M OMO Jg■ r D MOM, AMMO! MO AIInO YOM■OOSSATtfl_a II, f1 1 MOM00101NrWnom•EMROECIEDTO MO IRMO i • ' • - � - j I - I `A] WW1 AT••AIn1NYaMOM NOESC.O.WD /GOMIDYi.9 MOO /.3 : I T M MOM ,ODOMrn Pa OI• W IO a AM I* 1'9 OM*on000• MOM COtM/ Y/irl OM M= A/ ill n- r 1 - U iMAE VO.10E EAitW NNR lIN • r 6 IJ L S V SOMA MM NaO SS MRNOTID AM. YDm0 /AMOIGA NIA i NO{OOAI0p.y0 O MtCNROmRIALLp TMIW01N0 I ! $ p 1 � OO M 0210000 MO SA• OTAAM R ma Como* Fl ~ • 1.0m0 t•01 llimwilgaNLM 10010 gAO,.NOY N /O SCOW/ MC/Mr 1....J ^°°1 u 1 ° IrI• m pp n �I l pp a O0 / �e11E l I a EE�I% oM AIA n1 � e . T N i A C Orin As we son • Na 1. l . alara fl f IEl 11 N.OIT•a M ncdll , - O 1M ImL Or. Co MANn 00111.0.60. - MimaAOOOMMWaIEM1101M0EYArabIM MOAT O - . • V•1001RNMm NAOMI WM• NAY MS 100 MOM mNn f (-� f- f I 1001010101 R Ah1C1WO , •000m0 1 6 . ` U ri r . • TM t1gCnR•1419 . =1yE�11WO A so100 ODIC . LI L 41 OMr1 6 // ww lnOOmATEAOW101rON rom •w•0.OlOONEE /CNmO Y R fi Nm0001YNW /MAIL SQ AID• ITIO INCOAE• G `� MD mW � A•/.Oq vv O••••• C;17 NW 011010 m.MOO O 01A CO IWEIIT RM1M1O NS IPM0 a JQ p MOM MOOT CO S 00t/ d K11.1 OKRfOOWN 116 MLIOR• Z m 4 MOO /IEATO• • NMI M MOO Co AU. Co • ' .OWE n: W 1OAClop11Y2Ar10MMMAgr 121$ n ESSOOO• 1FAMAq ■OI I: OR 101000(0010 ON CN ICm=E ESCAMoWI.MCC11GAAq I, • O nr WO COMM a MOIOUY I.O4CIIOOIORNLItOf n010•I MS NO MOOMA010101601 MOON /: 40OUrm• yl.ruYq��AAO1E `�' r COMMA MOWI to MOROUSO ENONW •NO/OYrW1000A O nr1OMIVONNCNOOYO OL+•Vm0 ¢ a • AOII L C A Q A Al COMM WW1. AT lIMI MRt100.01OY /Al 0•R• CI WI. AT OMIT WTI MOWN COI Al MOM CO WI. loll O SOOLIOIOMV•O,I•/RO , F Z 1 y • 1mD•sOMA•A111M 10910SONOIIO M010 OSMO Im MASS NT1YO OICOMOAMIMI011'IOIX VF mum= IO010rE /OWL PI MAIO IV On = CA ' 010110010 000210 Ma Mx. OOMA01• 01 M O000000MM 0CAM ML Mln M OCE1000 OlOTMR roll O K¢ 1 LOOMS C Q•11Tpmw 11•1.1 OMMOIa1O0.8 = O W O 08010•0 MMW m6mATa• 010msMl•OAAIMEt = 1.5 TO 5 TON SMALL FOO (2 -... UNIT TO 8 TON LARGE FOOTPRINT 7.5 TO 25 TON LARGE FOOTPRINT WOOAO.0I0• ° 1MCI MNa•AAE11wr S y g 0 _ • 1 UNIT CLIP LOCATIONS -PLAN r ` 1 UNIT CUP LOCATIONS -PLAN UNIT CUP LOCATIONS •PLAN ` o r t SOC OLO CA M M n i .e RM W YO 0 110R1 m I MM an,Mu TWOS UI scut 01006 M•m00. OMCR• AMMO. O OmJNMMO pQ 5-001 euit:lm 5-001 alauNn S Or LOMM MOINOMMOl�i A O Mi11OC$ 13 • `J i �� MllO.. •a•IO• A•OIIaNAO• /m . IWOt • • • I ROollOOKIIWINM m• • O_N_N$n • I 1 , EMp r CO∎4000 M0DM1 • O AT OAP , 110E S 121•2I.W� IN W 0001N INCIACt 00121 Cot C1,0 ��jj •NOOK O.00IOA MO MOM. TNr /o1a0I OMA II r- AMLTO$VTNTI0 OTWO fESS M as•I+m • e.I'AA•mta CO ljpMuM O I TOE '4,I s a . oLrlun yMryy � COMM. Mi1mCOME.AOWMa•O 1. C . MOO ,NAC10•NED01®L10AMTIOMN00 N OMIOM O W12I MAfln I 1 0110•_11 O•SSIOMO W PVC. AM M WOi1CC COM • • I -' • I _- D TM ne0 .20141 1 1SSIaEOm ne M A NMM]M 1MOIt• I •� f " d �lw nacDO[/uei n n+olM � Ai ° • •T K O • • w • •• • I . •• • 3'1 =vow •• • ?,q • • m °1 m N•r` I�Ea � 10 im1 • MAC .r, O` / A f / � +' • • PO • • • • u . • aas� • 1 I I S • � '' ,, ' pi ••• • .RA01q f / maa f / • 1 ®NA•EA WWI sane ra OM �: SW ' Mo011100 /06110 •m{•mV MOM Mr /^ ••• 11 1 IKO.ACVI +I I OEIa10m•M16 /fOlM 1WOMIYD@1O.WT190 012001000 MYC1MMF010NrO Na0110Jf10m04M0 • �t v. .� •. • ••. • . OM DMA 1N.'IOn wart .410. ro/I OM. OIlrOflq MO McOt AOIOnmdtrMAA.001 •M6p ®a0el•RRi0 �.N��+r- AyMfr. \.w.nrN.l •.l, gy�p�.N r4A sal • aY• + •• • •• • MN CAM ptL A1L 10R Nit "-" 11iIGIWIAK . ." A•m•N • �„ I I.\ 00 npnpe•w ` A 0a Nfa u .1a 01101'. o1e.Q al In 1VLIALIUL SOW nvr..Iil►.d W ^ L! wwow ' . 'IG• Ylr..l Yr.rx W.p. r. Y �.a vMr•R w ` 1 • • r a • 1 I .usoo •� MOO AIM _ IA .M of r..m.o .m•r _ Lla .EO 0101 roM ' / a �0 401 �.r.ro..rw + M�.NId..10 .e • ems �1w.rw.mlr 00 z 0�� -' 00.1.4••••• N•so. •Enr •e.••A , • •I rm • eOO10 PE � • 0 •_ I 4nrNiw NSMl�Nem MOArmom mIO0 r4wm. *M3/:PE I .. . �, - ` SMWLL FOOTPRINT UNIT LARGE FOOTPRINT. UNIT • r... . OREGON • • • • HOLD -DOWN CLIP INSTALLATION DETAIL Q HOLD DOWN CUP - ISO DETAIL n HOLD DOWN CUP - ISO DETAIL a ,s• • • soot 12*1Nre • � m."•. S sGNCNn N IsTrn•n: `J 1 - I EXPIRES: t ./7sJ4o/o I I 8431 I ' - rim (X03051 I - . i ' 44 20 I,o - ooC 0 . RUUD • GENERAL DATAjRKIi &- SERIES ••.. ...•• •. •• • • • • • . •• •• • NOM. SIZES 3 -5 TONS [10.6 -17.6 kW] Model RKNA- Series A042JK0BE A042JKO8X • AO4QJK1Ze • .: • 4042JK12X Cooling Performance •• • : • ; ; •••. • • • • T.ON INUEI =- Gross Cooling Capacity Btu [kW] 43,000 [12.6] 43,000 [12.6] • • • 431(012.6e • • • • '33,000 [12.6] • ••• ••• r' EER /SEER 11.45/13 11.45/13 11.45/13 11.45/13 Nominal CFM /ARI Rated CFM [Us] 1400/1450 [661/684] 1400/1450 [661/684] . 1400/1450 [661/6841. . [661/684] ARI Net Cooling Capacity Btu [kW] 41,000 [12.01] 41,000 [12.01] •;• ':41,900 :: : i 41,000 [12.01] Net Sensible Capacity Btu [kW] 30,000 [8.79] 30,000 [8.79] • • 30�101j [8n; • : • • • • • • 30,000 [8.79] • Net Latent Capacity Btu [kW] 11,000 [3.22] 11,000 [3.22] • • • 11,0(10 [3 22] 11,000 [3.22] Net System Power kW 3.59 3.59 3.59 3.59 Heating Performance (Package Gas/Electric) Heating Input Btu [kW] 80,000 [23.44] 80,000 [23.44] 120,000 [35.16] 120,000 [35.16] Heating Output Btu [kW] 62,500 [18.31] 62,500 [18.31] 94,500 [27.69] 94,500 [27.69] Temperature Rise Range °F [°C] 30 -60 [16.7/33.3] 30 -60 [16.7/33.3] 50 -80 [27.8/44.4] 50 -80 [27.8/44.4] AFUE % 80 80 80 80 Steady State Efficiency ( %) 81 81 81 81 No. Burners 4 .4 6 6 No. Stages 1 1 1 1 Gas Connection Pipe Size in. [mm] 0.5 [12.7] 0.5 [12.7] 0.5 [12.7] 0.5 [12.7] - Compressor No./Type 1 /Scroll 1 /Scroll 1 /Scroll 1 /Scroll Outdoor Sound Rating (dB) 78 78 78 78 Outdoor Coil -Fin Type Louvered Louvered Louvered Louvered Tube Type Rifled Rifled Rifled Rifled Tube Size in. [mm] OD . 0.375 [9.5] 0.375 [9.5] 0.375 [9.5] 0.375 [9.5] Face Area sq. ft. [sq. m] 16.91 [1.57] 16.91 [1.57] 16.91 [1.57] 16.91 [1.57] Rows / FPI [FPcm] 1.53 / 22 [9] 1.53 / 22 [9] 1.53 / 22 [9] 1.53 / 22 [9] indoor Coil -Fin Type Corrugated Corrugated Corrugated Corrugated Tube Type Rifled Rifled Rifled Rifled • Tube Size in. [mm] 0.375 [9.5] 0.375 [9.5] 0.375 [9.5] 0.375 [9.5] Face Area sq. ft. [sq. m] 5.17 [0.48] 5.17 [0.48] 5.17 [0.48] 5.17 [0.48] Rows / FPI [FPcm] 3 / 13 [5] 3 / 13 [5] 3 / 13 [5] 3 / 13 [5] Refrigerant Control TX Valves TX Valves TX Valves TX Valves • Drain Connection No. /Size in. [mm] 1/0.75 [19.05] 1/0.75 [19.05] 1/0.75 [19.05] 1/0.75 [19.05] Outdoor Fan -Type Propeller Propeller Propeller Propeller No. Used /Diameter in. [mm] 1/24 [609.6] 1/24 [609.6] 1/24 [609.6] 1/24 [609.6] Drive Type /No. Speeds Direct/1 Direct/1 Direct/1 Direct/1 CFM [Us] 3680 [1737] 3680 [1737] 3680 [1737] 3680 [1737] No. Motors /HP 1 at 1/3 HP 1 at 1/3 HP 1 at 1/3 HP 1 at 1/3 HP Motor RPM 1075 1075 1075 1075 Indoor Fan -Type FC Centrifugal FC Centrifugal FC Centrifugal FC Centrifugal . No. Used /Diameter in. [mm] 1/10x10 [254x2541 1/10x10 [254x254] 1 /10x10 [254x254] 1 /10x10 [254x254] Drive Type /No. Speeds Direct/3 Direct/3 Direct/3 Direct/3 No. Motors 1 1 1 1 Motor HP 1/2 1/2 1/2 1/2 Motor RPM 1075 1075 1725 1075 Motor Frame Size 48 48 48 48 Filter -Type Disposable Disposable Disposable . Disposable :Furnished Yes Yes Yes Yes • (No.) Size Recommended in. [mm] (1)1x16x25 [25x406x635] (1)1x16x25 [25x406x635] (1)1x16x25 [25x406x635] (1)1x16x25 [25x406x635] (1)1x16x25 [25x406x635] (1)1x16x25 [25x406x635] (1)1x16x25 [25x406x635] (1)1x16x25 [25x406x635] Refrigerant Charge Oz. [gl • 117 [3317]- - - - - 117 [3317]- • • - -117 [3317] -1. 17_[3317]. . Weights v f . Net Weight lbs. [kg] 570 [259] • 570 [259] 579 [263] 579 [263] - . Ship Weight lbs. [kg] 577 [262] 577 [262] 586 [266] 586 [266] • See Page "26 for Notes. [ ] Designates Metric Conversions • 15 • 1 . Ass_ ELECTRICAL DATA —RKNA- SERIES • • •• •• . • . • • : °t 'a' i`' !? • • . . . • . • • •• . • ••• • •• •. • • . • • • . • • ••. E TRICAL DATA - RKNA SERIES • • • • - A042DM12E - A042JK08E - A042JK08X - A042JK12E - A042JK1Z: - Ata48CK08E ' 1i48C K 13� - A048CL08E Unit Operating • • • • • • • 414 -506 187 -253 187 -253 187 -253 187 -253 i1;7 -253 • '187.-253 • -258 187 -253 0 Voltage Range •: • ••• • v . . E • Minimum Circuit Ampacity 10 30/30 30/30 30/30 30/30 21/21 21/21. 21/21 20/20 •• Minimum Overcurrent • •' •••• • • • • • • • • • Protection Device Size 15 35/35 35/35 35/35 35/35 : 2515 : •, 2 �. 35/ 25/25 • Maximum Overcurrent . 45/45 45/45 45/45 45/45 • 3 /(f • •• 30/30 • • 30/30 30/30 Protection Device Size No. 1 1 1 1 1 1 1 1 1 o Volts 460 208/230 208/230 208/230 208/230 208/230 208/230 208/230 208/230 2 Phase 3 1 • 1 1 1 3 3 3 3 y HP 31/2 31/2 31/2 31/2 31/3 4 4 4 4 d a RPM 3450 3450 3450 3450 3450 3450 3450 3450 3450 A mps (RLA) 5.8 19.2/19.2 19.2/19.2 19.2/19.2 19.2/19.2 12.2/12.2 12.2/12.2 12.2/12.2 12.2/12.2 Amps (LRA) 44 104/104 104/104 104/104 104/104 80.8/80.8 80.8/80.8 80.8/80.8 80.8/80.8 0 No. 1 1 1 1 1 1 1 1 1 E Volts 460 208/230 208/230 208/230 208/230 208/230. .208/230 208/230 208/230 0 Phase 1 1 1 1 1 1 1 1 1 d HP 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 = Amps (FLA) 1 1.5 1.5 1.5 1.5 . 1.5 1.5 1.5 1.5 . c . Amps.(LRA) 1.9 3 3 3 3 3 3 3 3 • No. 1 .1 1' 1 • 1 1 1 1 1 0 Volts 460 208/230 208/230 208/230 208/230 208/230 208/230 208/230 208/230 • 8 Phase 3 1 1 1 1 1 1 1 3 a HP 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 W Amps (FLA) 1.4 4 4 4 4 4 4 4 2.8 Amps (LRA) 6.2 6.7 • 6.7 6.7 6.7 6.7 6.7 6.7 11.3 1. Horsepower Per Compressor. 2. amp Draw Per Motor. Multiply Value By Number of Motors to Determine Total Amps. • • • 1 V i Y • • 38 IIIIIIIIIIIIIIIII IIIIIIII1111111IIIlllllllllllllllllllllllllllllllllllllllllll System Settings • Project: C: \Program Files \WFSize2.x 1Pittman Brooks \PittmanBrooks.wf - (App Version: 2.1.10 File- Version: WFSystem- 2.1.10 - English) Date: 12/6/2010 6:32:23 AM Gas Type: Natural Gas Supply Pressure: 7 -8 In WC Supply - .5 In WC Overall Pressure Drop [Standard] .System. Layout Gas Supply • 2 11 11 First Tee [25.0 ft - 25A (1 ") CSST - 160. kBTU] VTU -1 [20.0 ft - 20A (3/4 ") CSST - 80. kBTU] - 011- TU -2 [20 :0 ft - 20A (3/4 ") CSST - 80. kBTU] • .0000 • • • • • ••••• ••••• • ••••• • • 41 • • •• • ...... • •• ...... • • • • • • 41••• .... 4141.... •41• • • • • ..... • •• • • • 4141.. • •••41.41 • ..... • • • •• •• • • •.•41• •••••• • . • • i - 00410 ..4141 • 4141.. 0410. i . • • • .01RD LE.. : iIIIIIIIIIIIIIIIIIIh IIIIII IIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII System Settings Project: C: \Program Files1WFSize2.x \Pittman Brooks \PittmanBrooks.wf - (App Version: 2.1.10 File Version: WFSystei Date: 12/6/2010 6:32:25 AM Gas Type: Natural Gas Supply Pressure: 7-8 In WC Supply - .5 In WC Overall Pressure Drop [Standard] Material List WARDFLEX Tubing Totals: 20A CSST - 40 ft 25A CSST - 25 ft • Pipe Totals: WARDFLEX Fitting Totals: �• 20A CSST Mechanical Joint - 2 •• 20A CSST Valve - 2 • Tee - 1 . • •• . . . • ••• ••• • • • • • • S • •i ••• ••• ••• ••• ••• ••• • • • • • • i ... •• • • • ••• • , •• • • • • • • • • • • • •• • • • • • • • • • •• •• •• • • • • • • • • ••• • •i ••• •• • [Page Too Large for OCR Processing]