Specifications •
•
Calculations for :
COCHRAN TECHNOLOGIES
TIGARD, OR
05/11/2010
Loading: 3000 # load levels
3 pallet levels @ 60,120,180
Seismic per IBC 2006 100% Utilization
Sds = 0.707 Sdl = 0.387
I = 1.00
144 " Load Beams
'Uprights: 44 " wide
C 3.000x 3.000x 0.075 Columns •
C 1.500x 1.250x 0.075 Braces .
5.00x 8.00x 0.375 Base Plates
with'2- 0.500in x 3.25in•Embed.Anchor /Column
5 2.750x 0.075 Load beams w /'3 -Pin Connector
•
•
by : Ben Riehl
Registered Engineer OR# 11949
• . • • T
.inct PROfEf3,'
N = .
cc 11949 �..
•
ti
O C 3, V. V
EXP. DATE: • 12/ 26.0
Conterminous 48 States
2005 ASCE 7 Standard
Latitude = 45.42
Longitude = - 122.7558
Spectral Response Accelerations Ss and S1
Ss and S1 = Mapped Spectral Acceleration Values
Site Class B - Fa = 1.0 ,Fv = 1.0 •
Data are based on a 0.05000000074505806 deg grid spacing
Period Sa
(sec) (g) •
0.2 0.942 (Ss, Site Class B) •
1.0 0.338 (Si Site Class B)
Conterminous 48 States
2005 ASCE 7.Standard
Latitude = 45.42
Longitude = - 122.7558
Spectral Response Accelerations SMs and SM1
SMs =Fax Ss and SM1 =FvxS1
Site Class D - Fa = 1.123 ,Fv = 1.724
Period Sa
(sec) (g)
0.2 1.057 (SMs, Site Class D)
1.0 0.583 (SM1, Site Class D)
IBC 2006 LOADING
SEISMIC: Ss= 94.2 % g
51= 33.8 %g
• Soil Class . D
Modified Design spectral response.parameters
Sms= 105.7 %. g Sds= 70.5 % g
Sm1= 58.3 % g Sd1= 38.9 % g
Seismic Use Group - 2
Seismic Design Category D
or D
le = 1
R= 4, . R= 6
Cs = 0.1762 W Cs = 0.1174 W
Using Working Stress Design
V = Cs *W/1.4
•
= 0.1258 W V = 0.0839 W
3
•
Cold Formed Channel
Depth 3.000 in Fy = 55 ksi
Flange' 3.000 in
- Lip 0.750 in
Thickness 0.0750 in COLUMN SECTION
R• 0.1000 in
Blank = 9.96 in wt = 2.5 plf
A = 0.747 in2
Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in
Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in -
a 2.6500 Web w/t 35.3333
a bar 2.9250 Flg w/t 35.3333
b 2.6500 x bar 1.2423
b bar 2.9250 m 1.6690
c 0.5750 x0 - 2.9114
c bar 0.7125 J 0.0014 • •
u 0.2160 x web 1.2798
gamma 1.0000 x lip 1.7202 • '
R'' 0.1375- h/t 38.0000
Section Removing: - -
0 .640 inch slot` 0.75-inches each side of center On web
0.375 inch hole 0.87 inches from web in each flange • - -
A- = 0.152 in2 A' = . 0.595 in2 '
x bar = 1.478 in ' _
I'x = ' 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in
I'y-= 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in '
Cold Formed Channel ' - •
'Depth 1.500 in Fy = 55 ksi
Flange 1.250 in .
Lip 0.000 in
Thickness 0.0750 in BRACE SECTION' ,
R 0.1000 in -
Blank = 3.73 in wt'= 1.0 plf
A = 0.280 in2
Ix .= 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in -
Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in ,
a 1.1500 Web w /t' 15.3333
"
a bar 1.4250 Flg w/t 14.3333 '' k
b 1.0750 x bar 0.3946
b bar 1.2125 m 0.5298
c. 0.0000 x0 - 0.9244
c bar 0.0000 J 0.0005
u 0.2160 x web 0.4321
• gamma 0.0000 x lip 0.8179
R' 0.1375 h/t 18.0000
•
•
•
I '
Cold Formed Section
HEIGHT OF BEAM 5.000 INCHES
MAT'L THICKNESS 0.075 INCHES
INSIDE RADIUS 0.100 INCHES LOAD BEAM
WIDTH 2.750 INCHES
STEEL YIELD 55.0 KSI
STEP 1.625 INCHES HIGH 1.000 INCHES WIDE
ABOUT THE, HORIZONTAL AXIS ABOUT THE VERTIC
L Y LY LY2 Ii X LX
LONG SIDE 4.6500 2.5000 11.6250 29.0625 8.3787 0.'0375 0.1744
TOP 1.4000 4.9625 6.9475 34.4770 . 0.0000 0.8750 1.2250 .
STEP SIDE 1.3500 4.1500 5.6025 23.2504 0.2050 1.7125 2.3119
STEP'BOTT 0.7250 3.3375 2.4197 8.0757 0.0000 2.2125 1.6041
SHORT SID 3.0250 1.6875 5.1047 8.6142 2.3067 2.7125 8.2053
BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000
CORNERS 0.2160 4.9125 1.0610 5.2124 0.0004 0.0875 0.0189
2 0.2160 4.9125 1.0610 5.2124 0.0004 1.6625 0.3591
3 0.2160 3.3875 0.7316 2.4784 0.0004 1.8000 0.3888
4 0.2160 3.2875 0.7101 2.3343 0.0004 2.6625 0.5751
5 0.2160 0.08.75 0.0189 0.0017 0.0004 2.6625 0.5751
6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189
TOTALS 14.8459 33.3500 35.3909 118.7238 10.8928 17.8875 18.7564
AREA = 1.113 IN2 ,
• CENTER GRAVITY = 2.384 INCHES TO BASE 1.263 INCHES TO LONG 'SIDE
Ix = 3.394 IN4 Iy = 1.310 IN4 .
Sx = 1.297 IN3 Sy = 0.881 IN3
Rx = 1.746 IN Ry = 1.085 IN
BEAM END CONNECTOR
COLUMN MATERIAL THICKNESS = 0.075 IN
LOAD BEAM DEPTH = 5 IN
TOP OF BEAM TO TOP OF CONN= 0.000 IN
WELD @ BTM OF BEAM = 0.000 IN
LOAD = 3000 LBS PER PAIR
CONNECTOR VERTICAL LOAD = 750 LBS EACH
RIVETS
3 RIVETS @ 2 " oc 0.4375 " DIA A502 -2 •
1st @ 1 "BELOW TOP OF CONNECTOR
AREA = 0.150 IN2 EACH Fv = 22.0 KSI
Vcap = 3.307 KIPS EACH RIVET
BEARING Fb = 65.0 KSI
BRG CAP= 2.133 KIPS EACH RIVET
TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 12%
CONNECTOR
6 " LONG CONNECTOR ANGLE Fy = 50 KSI
1.625 " x 3 " x 0.1875 " THICK
S = 0.131'IN3, - Mcap = 3.924 K -IN
W/ 1/3 INCREASE =- 5.232 K -IN '
RIVET MOMENT RESULTANT @ 0.25 IN FROM BTM OF CONN •
M = PL L = 0.75 IN
Pmax = Mcap /L = ' 6.975 KIPS
RIVET LOAD DIST MOMENT
'P1 2.844 4.750 13.508 RIVET OK
P2' 1.646 2.750 4.528
P3 0.449 0.750 0.337
P4 0.000 0.000 0.000
TOTAL 4.939 18.372 CONNECTOR OK-
WELDS
0:125 " x 5.000 " FILLET WELD UP OUTSIDE
0.125 " x 3.375." FILLET WELD UP INSIDE
' 0.125 "' x 1.'625 " FILLET WELD UP STEP SIDE
0 " x 1.000 " FILLET WELD STEP BOTTOM
0 " x '2.750 " FILLET -WELD ACROSS BOTTOM
' 0 " x 1.750 "'FILLET -WELD ACROSS TOP- •
USE EFFECTIVE 0.075 " THICK WELD
L = 10.00 IN A = 0.750 IN2
S = 0.625 IN3 Flt = 26.0 KSI
Mcap = 16.25 K -IN W /1/3 INCR= 21.67 K -IN
•
In Upright Plane
Seismic Load Distribution
per 2006 IBC Ca = 0.283
1.33 Allowable Stress Increase
I = 1.00 R = 4.0
V = (2.5 *Ca *I) /(R *LF) *P1 *.67
LF = 1.4
Weight
60 # per level frame weight
Columns Q 44 "
•
Levels Load WiHi Fi FiHi Column:
(inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075
180 3060 551 388 70
120 3060 367 259 31
60 3060 184 129 8 KLx = 60 in
O ,0 0 0 0 KLy = 40 in
O 0 0 0 0 A= 0.595 in
O 0 0 0 0 Pcap = 20506 lbs
9180 1102 776 109 Column
34% Stress
Max column load = 7060 #
Min column load = 606 #•
Overturning
OTM = 108.7 K -IN X 1.15 = 125:0 K -IN
RM = 134.6 -K -IN
• REQUIRED HOLD DOWN = 0.00 KIPS
Anchors: Special Inspection(Y or N)? YES 2
T = 0 No uplift anchors req'd 2
2 0.5 " diameter Hilti TZ
3.25 "embedment in 2500 psi concrete
Tcap = 2801 # 0W Stressed
V = 388 # per leg Vcap = 2181 # = 18% Stressed
COMBINED = 6% Stressed
. OK
' Braces: -
Brace height = 40 "
Brace width = 44 "
Length = 59 " -
P = 1049 #
Use : C 1.500x 1.250x 0.075
A = 0.280 in
L/r = 147
Pcap = 2608 # 40%
7
In Upright Plane
Seismic Load Distribution TOP LOAD ONLY
per 2006 IBC Ca = 0.283
1.33 Allowable Stress Increase
I = 1.00 R = 4.0
V = (2.5 *Ca *I)- /(R *LF) *P1
LF = 1.4
Weight
60 # per level frame weight
Columns @ 44 "
Levels Load WiHi Fi FiHi Column:
(inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075
180 3060 551 394 71
120 60 7 5 1
60 60 4 _3 . 0 KLx = 60 in
0 0 0 0 • - 0 KLy = 40•in
0 0 0 "0 0 •• A = 0.595 in '
0 0 0 • 0- 0 Pcap = 20506 lbs -
3180 562 401 72 Column
16% Stress
Max column load = 3218 #
Min column load = -38 # Uplift
Overturning
OTM = 71.6 K -IN X 1.15 = 82.4 -IN
RM = 70.0 K -IN
REQUIRED HOLD DOWN = 0.28 KIPS
Anchors: Special Inspection(Y or N)? YES 2
T = 282 # • - 2
2 0.5 " diameter Hilti TZ -
3.25 "embedment in 2500 psi concrete
Tcap = 2801 # 10 %'Stressed
V = 201 # per leg Vcap = 2181 # = 9% Stressed
COMBINED = 4% Stressed
OK
•
•
Braces:
Brace height = 40 "
Brace width = 44 "
Length = 59 "
P = 542 #
Use : C 1.500x 1.250x 0.075
A = 0.280 in
L/r = 147
• Pcap = 2608 # 21%
•
PAGE 1
MSU STRESS -11 VERSION 9/89 - -- DATE: 05/11/;0 - -- TIME OF DAY: 13:30:14
INPUT DATA LISTING TO FOLLOW:
Structure Storage Rack in Load Beam Plane 3 Levels
Type Plane Frame
Number of Joints 14
Number of Supports 8
Number of Members 15
Number of Loadings 1 3 7 11 14
Joint Coordinates
• 1 0.0 60.0 S
2 0.0 120.0 S 2 6 10 11
3 -0.0 180.0 'S
4 73.5 0.0 S •
5 73:5 60.0 1 5 9 12
6 73.5 120.0
7 73.5 180.0
8 220.5 0.0 S 4 8
9 220.5 60.0
10 220.5 120.0
11 220.5 180.0
12 294.0 60.0. S
13 294.0 120.0 S
• 14 294.0 180.0 S
Joint Releases
4 Moment Z
8 Moment Z
1 Force X Moment Z
2 Force X Moment Z
3 Force X Moment Z
12 Force X Moment Z
13 Force X Moment Z
14 Force X Moment Z
Member Incidences
1 1 5
2 2 6
3 3 7
4 4 5
5 5 6
6 6 7
7 8 9
8 9 10 •
9 10 11
10 5 9
11 9 12
_ 12 6 10
13 10 13
14 7 11 -
15 11 14
Member Properties
1 Thru 3 Prismatic Ax 1.113 Ay 0.779 Iz 3.394
•
91/
PAGE 2
•
,MSU.STRESS -11 VERSION 9/89 - -- DATE: 05/11/;0 - -- TIME OF DAY: 13:30:14
'4:.Thru 9 Prismatic -Ax 0.595 Ay 0.298 Iz 1.014
10•Thru 15 Prismatic Ax 1.113 Ay 0.779 Iz 3.394
•'Constants E 29000. All G 12000. All
Tabulate All
Loading Dead + Live + Seismic
Joint Loads
' Force Y -1.53
. 6 -Force Y -1.53
7 Force Y -1.53
- 9 Force Y -1.53
10 Force Y -1.53
11 Force Y -1.53
5 Force X 0.037
6 Force X 0.072
7 Force X 0.109
9 Force X 0.037
10 Force X 0.072
•
11 Force X 0.109
Solve
PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED.
- Seismic Analysis per'2006 IBC
•
wi di ' widi2 fi fidi
# in.
3060 0.6723 1383 74 49.8 37 74
3060 0.8871 2408 144 127.7 72 144
3060 1 .0027 3077 218 218.6 109 217
• 0 0.0000 0 0 0.0 0 0
0 '0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0 .
•
9180 6868 436 396.1 435
g = . 32.2 ft /sec2 T '1.3310 sec •
I = 1.00 Cs -= 0.063'9 - or' 0.2827 -
Cv = 0.386666 Cs min = .14 *Sds= 0.0989 or 1.5% .
R = 6 Cs = 0.0989
LF = 1.4 V = (Cs *I) /(LF) *W *.67 •
V = 0.070666 W *.67.
= 435 # 100%
•
•
•
•
PAGE 3
MSU STRESS -11 VERSION 9/89 - -- DATE: 05/11/;0 - -- TIME OF DAY: 13:30:14
Structure Storage Rack in Load Beam Plane 3 Levels
Loading Dead + Live + Seismic
MEMBER FORCES
•
MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT
1 1 0.000 -0.115 0.00
1 5 0.000 0.115 -8.46
2 2 0.000 -0.048 0.00
2 6 0.000 0.048 -3.53
3 3 0.000 -0.013 0.00
3 7 0.000 0.013 -0.96
4 4 4.559 0.216 0.00
4 5 -4.559 -0.216 12.96
5 5 3.036 0.171 4.59
5 6 -3.036 -0.171 5.66
6 6 1.519 0.093 2.50
6 7 -1.519 -0.093 3.06
7 8 4.559 0.220 0.00
7 9 -4.559 -0.220 13.20
8 9 3.036 0.191 • 5.16
8 10 -3.036 -0.191 6.30
9 • 10 1.519 0.125 3.39
' 9 11 -1.519 -0.125 4.14 r w
10 5 -0.008 -0.122 -9.09 /" 4.1o1 . ,
10 9 0.008 0.122 -8.86
11 9 0.000 -0.129 -9.50
11 12 0.000 0.129 0.00
12 6 -0.006 -0.061 -4.63
12 10 0.006 0.061 -4.30
13 10 0.000 -0.073 -5.40
13 13 0.000 0.073 0.00
. 14 7 0.016 -0.024 -2.10
14 11 -0.016 0.024 -1.50
15 11 0.000 -0.036 -2.64
15 14 0.000 0.036 0.00
APPLIED JOINT LOADS, FREE JOINTS
1 1
•
PAGE 4
MSU STRESS -11 VERSION 9/89 - -- DATE: 05/11/;0 - -- TIME OF DAY: 13:30:14
JOINT FORCE X FORCE Y MOMENT Z
5 0.037 -1.530 0.00
6 0.072 -1.530 0.00
7 0.109 -1.530 0.00
9 0.037 -1.530 0.00
10 0.072 -1.530 0.00
11 0.109 -1.530 0.00
REACTIONS,APPLIED LOADS SUPPORT JOINTS
JOINT FORCE X FORCE Y MOMENT Z
1 0.000 -0.115 0.00
2 0.000 -0.048 0.00
3 0.000 -0.013 0.00
4 -0.216 4.559 0.00
8 -0.220 4.559 0.00
12 0.000 0.129 0.00
13 0.000 0.073 0.00
14 0.000 0.036 0.00
FREE JOINT DISPLACEMENTS
JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION
5 0.6723 - 0.0159 - 0.0023
6 0.8871 - 0.0264 - 0.0012
7 1.0027 - 0.0317 - 0.0007
. 9 0.6723 - 0.0159 - 0.0022
10 0.8871 - 0.0264 - 0.0010
11 1.0026 - 0.0317 - 0.0002
SUPPORT JOINT DISPLACEMENTS
JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION
1 0.6723 0.0000 0.0008
2 0.8871 0.0000 0.0001
3 1.0027 0.0000 - 0.0003
4" 0.0000 0.0000 - 0.0155
8 0.0000 0.0000 - 0.0156
12 0.6723 0.0000 0.0014
13 0.8871 0.0000 0.0010
14 1.0026 0.0000 0.0008
1:4".
Beam - Column Check
C 3.000x 3.000x 0.075 Fy = 55 ksi
A = 0.595 in2
Sx = 0.676 in3
Rx = 1.305 in Ry = 1.117 in
kx = 1.00 ky = 1.00
Stress Factor 1.333
Point P M Lx Ly Pcap Mcap Ratio
9 4.6 13.2 60.0 40.0 20.51 29.73 67%
10 3.1 6.3 60.0 40.0 20.51 29.73 36%
11 1.6 4.1 60.0 40.0 20.51 29.73 22%
0 0.0 0.0 60.0 40.0 20.51 29.73 0%
0 0.0 0.0 60.0 40.0 20.51 29.73 0%
0 0.0 0.0 60.0 40.0 20.51 29.73 0%
Load Beam Check
•
5.00x 2.750x 0.075 Fy = 55 ksi
A = 1.113 in2 E = 29,500 E3 ksi
Sx = 1.297 in3 Ix = 3.394 in4
Length = 144 inches
Pallet Load 3000 lbs
Assume 0.5 pallet load on each beam
M = PL /8= 27.00 k -in
fb = 20.81 ksi Fb = 33, ksi 63%
Mcap = 42.81 k -in
57.08 k -in with 1/3 increase
Defl = 0.58 in = L/ . 247
w/ 25% added to one pallet load
M = .282 PL = 30.46 k -in 71%
•
Base Plate Design
Column Load 5.3 kips
Allowable Soil 1500 psf basic
Assume Footing 22.5 in square on side
Soil Pressure 1500 psf
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax = w1 /3
•
Use 5 "square base plate
w = 10.4 psi 1 = 6.27 in
Load factor =. • 1.67 M = 228 # -in
,5 in thick slab f'c = 2500 psi
s = 4.17'in3 fb = 55 psi
Fb = ; 5(phi) (f'c = 163 psi OK !!
Shear :
Beam fv = 22 psi Fv = 85 psi OK !!
Punching fv = 36 psi Fv = 170 psi OK !!
Base Plate Bending Use '0.375 " thick
1 = 1.5 in w = 212 psi
fb = 10166 psi Fb = 37500 psi OK !!
•
•
•
•
•
•
1
PERMANENT PLAQUE �l1 p z4 o - co co 50 SQ INCHES IN AREA N ❑T T❑ LESS BE PLACED THAN / , C+
IN C❑NSPICU ❑US L❑CATI ❑N STATING
3000# CAPACITY 2 60', 120', 180' 755,o sv✓ Iec- -L Ce - 2.'° M ��
3' -8' 12 '_ 0 ' AY 1 3 ?O,O 0
!. ' '/
LOAD BEAM 1�� l iv e /O VISION z
W
v� y Q
\-CONNECTOR % 19 R J
5' -0' �( 1
' O:. rr•N
ti
0 C 3 1 V 0
z \ tiJ LOAD BEAM ��� _ FN J. Rti `� 0_
J
x /
� ❑NNECT ❑R I EXP. DATE: 12/ 20 /0 I
0
U 1S ,_ 0 , O
5' -0' CU
i CU
\ E LOAD BEAM
ill Ix — W
D F-
-J
I \--CONNECTOR 1-- V)
a
BRACE Ci LD 0 5' -0' V)
a_ W
1 -4
LD
UPRIGHT LOAD BEAM ELEVATI ❑N in N 0
CZ
EN' J
1– 0 Ln (/) I–
a w a z a Z I
_° = z
a A o ACJ
� -p f U C� ! I W CL
14 GA THK 9 �� a COLUMN
3' o W o d U C� W U
3' (2) 1/2'0 ANCHORS
3/8x 5x 8 BASEPLATE I J N CC U J W
V w W U
3/8'x 5'x 8' C 1.5 x 1.25 1.5 1/8 E1 -1/2' 6'oc W x Q N v Z 0 EA SIDE
0o BASEPLATE 14 GA THK n r' I X J W
• BRACE .. ; � ,; lij
(2) 1 /2'W ANCHORS 2 OF 1/8 FF \ r. 00 A E]
FILLET WELD w a1 I
a 3 EA END TO COLUMN ■ 6' �■ 3,25' - N CA¢ z I
N BRACE 6' Q �Aw ww (3
1/8 �1 -1/2' EA F ACE 1/8 F1' I I Y J W N Q\ I- x CY F—
M ` 4. + 6' CONCRETE SLAB ON GRADE o 6 In w U CO 0 Q
U7 W LL
COLUMN & BASE PL �� COLUMN BASE X– SECTION U II 3 o Z , _, U GO ep
BRACE CONN > -J -J J W a
Li, � oLLQ�OQ Cn- 2 ' 0 n Nv) � , �U UN U Z N
N 1 -5 /8'H x 1' W (3) PIN CONN ') Ii w M v)
° STEP p (3) AISI A502 -2 RIVETS o 0 CONNECTOR a_ J Ce
7 J F_ ED J
j • LOAD BEAM 7/16'0 2'oc
z 1 14 GA THICK ` ° HOOK THRU SLOTS E 0 • A w U Q C�
L1 ce 0 Q
1 -5 /8x 3x� o ` IN COLUMN 0 01 II Z II O X U -
2S
3/16' THK o�0 W II 13 W 01 AIZW p
7
0 CONNECTOR 1 /8V VERT EDGES 0 P I- II ( 7 ) I- . Q U n.. '1 p o 0 11 LA <:t WC]ZZ(n . W
• g LOAD BEAM 0 0
SAFETY PIN TO RESIST Z II A X (n J Q
7 1 -D
�R 1 000# .UPLIFT L OAD pr P'S. '` ' '- ' Ln Q
2 .-4 (U M � in CONN
II
1