Loading...
Specifications • • Calculations for : COCHRAN TECHNOLOGIES TIGARD, OR 05/11/2010 Loading: 3000 # load levels 3 pallet levels @ 60,120,180 Seismic per IBC 2006 100% Utilization Sds = 0.707 Sdl = 0.387 I = 1.00 144 " Load Beams 'Uprights: 44 " wide C 3.000x 3.000x 0.075 Columns • C 1.500x 1.250x 0.075 Braces . 5.00x 8.00x 0.375 Base Plates with'2- 0.500in x 3.25in•Embed.Anchor /Column 5 2.750x 0.075 Load beams w /'3 -Pin Connector • • by : Ben Riehl Registered Engineer OR# 11949 • . • • T .inct PROfEf3,' N = . cc 11949 �.. • ti O C 3, V. V EXP. DATE: • 12/ 26.0 Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.42 Longitude = - 122.7558 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 • Data are based on a 0.05000000074505806 deg grid spacing Period Sa (sec) (g) • 0.2 0.942 (Ss, Site Class B) • 1.0 0.338 (Si Site Class B) Conterminous 48 States 2005 ASCE 7.Standard Latitude = 45.42 Longitude = - 122.7558 Spectral Response Accelerations SMs and SM1 SMs =Fax Ss and SM1 =FvxS1 Site Class D - Fa = 1.123 ,Fv = 1.724 Period Sa (sec) (g) 0.2 1.057 (SMs, Site Class D) 1.0 0.583 (SM1, Site Class D) IBC 2006 LOADING SEISMIC: Ss= 94.2 % g 51= 33.8 %g • Soil Class . D Modified Design spectral response.parameters Sms= 105.7 %. g Sds= 70.5 % g Sm1= 58.3 % g Sd1= 38.9 % g Seismic Use Group - 2 Seismic Design Category D or D le = 1 R= 4, . R= 6 Cs = 0.1762 W Cs = 0.1174 W Using Working Stress Design V = Cs *W/1.4 • = 0.1258 W V = 0.0839 W 3 • Cold Formed Channel Depth 3.000 in Fy = 55 ksi Flange' 3.000 in - Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R• 0.1000 in Blank = 9.96 in wt = 2.5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in - a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2.6500 x bar 1.2423 b bar 2.9250 m 1.6690 c 0.5750 x0 - 2.9114 c bar 0.7125 J 0.0014 • • u 0.2160 x web 1.2798 gamma 1.0000 x lip 1.7202 • ' R'' 0.1375- h/t 38.0000 Section Removing: - - 0 .640 inch slot` 0.75-inches each side of center On web 0.375 inch hole 0.87 inches from web in each flange • - - A- = 0.152 in2 A' = . 0.595 in2 ' x bar = 1.478 in ' _ I'x = ' 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y-= 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in ' Cold Formed Channel ' - • 'Depth 1.500 in Fy = 55 ksi Flange 1.250 in . Lip 0.000 in Thickness 0.0750 in BRACE SECTION' , R 0.1000 in - Blank = 3.73 in wt'= 1.0 plf A = 0.280 in2 Ix .= 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in - Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in , a 1.1500 Web w /t' 15.3333 " a bar 1.4250 Flg w/t 14.3333 '' k b 1.0750 x bar 0.3946 b bar 1.2125 m 0.5298 c. 0.0000 x0 - 0.9244 c bar 0.0000 J 0.0005 u 0.2160 x web 0.4321 • gamma 0.0000 x lip 0.8179 R' 0.1375 h/t 18.0000 • • • I ' Cold Formed Section HEIGHT OF BEAM 5.000 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE, HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 4.6500 2.5000 11.6250 29.0625 8.3787 0.'0375 0.1744 TOP 1.4000 4.9625 6.9475 34.4770 . 0.0000 0.8750 1.2250 . STEP SIDE 1.3500 4.1500 5.6025 23.2504 0.2050 1.7125 2.3119 STEP'BOTT 0.7250 3.3375 2.4197 8.0757 0.0000 2.2125 1.6041 SHORT SID 3.0250 1.6875 5.1047 8.6142 2.3067 2.7125 8.2053 BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 4.9125 1.0610 5.2124 0.0004 0.0875 0.0189 2 0.2160 4.9125 1.0610 5.2124 0.0004 1.6625 0.3591 3 0.2160 3.3875 0.7316 2.4784 0.0004 1.8000 0.3888 4 0.2160 3.2875 0.7101 2.3343 0.0004 2.6625 0.5751 5 0.2160 0.08.75 0.0189 0.0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 14.8459 33.3500 35.3909 118.7238 10.8928 17.8875 18.7564 AREA = 1.113 IN2 , • CENTER GRAVITY = 2.384 INCHES TO BASE 1.263 INCHES TO LONG 'SIDE Ix = 3.394 IN4 Iy = 1.310 IN4 . Sx = 1.297 IN3 Sy = 0.881 IN3 Rx = 1.746 IN Ry = 1.085 IN BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 5 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD @ BTM OF BEAM = 0.000 IN LOAD = 3000 LBS PER PAIR CONNECTOR VERTICAL LOAD = 750 LBS EACH RIVETS 3 RIVETS @ 2 " oc 0.4375 " DIA A502 -2 • 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 12% CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131'IN3, - Mcap = 3.924 K -IN W/ 1/3 INCREASE =- 5.232 K -IN ' RIVET MOMENT RESULTANT @ 0.25 IN FROM BTM OF CONN • M = PL L = 0.75 IN Pmax = Mcap /L = ' 6.975 KIPS RIVET LOAD DIST MOMENT 'P1 2.844 4.750 13.508 RIVET OK P2' 1.646 2.750 4.528 P3 0.449 0.750 0.337 P4 0.000 0.000 0.000 TOTAL 4.939 18.372 CONNECTOR OK- WELDS 0:125 " x 5.000 " FILLET WELD UP OUTSIDE 0.125 " x 3.375." FILLET WELD UP INSIDE ' 0.125 "' x 1.'625 " FILLET WELD UP STEP SIDE 0 " x 1.000 " FILLET WELD STEP BOTTOM 0 " x '2.750 " FILLET -WELD ACROSS BOTTOM ' 0 " x 1.750 "'FILLET -WELD ACROSS TOP- • USE EFFECTIVE 0.075 " THICK WELD L = 10.00 IN A = 0.750 IN2 S = 0.625 IN3 Flt = 26.0 KSI Mcap = 16.25 K -IN W /1/3 INCR= 21.67 K -IN • In Upright Plane Seismic Load Distribution per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I) /(R *LF) *P1 *.67 LF = 1.4 Weight 60 # per level frame weight Columns Q 44 " • Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 180 3060 551 388 70 120 3060 367 259 31 60 3060 184 129 8 KLx = 60 in O ,0 0 0 0 KLy = 40 in O 0 0 0 0 A= 0.595 in O 0 0 0 0 Pcap = 20506 lbs 9180 1102 776 109 Column 34% Stress Max column load = 7060 # Min column load = 606 #• Overturning OTM = 108.7 K -IN X 1.15 = 125:0 K -IN RM = 134.6 -K -IN • REQUIRED HOLD DOWN = 0.00 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 0 No uplift anchors req'd 2 2 0.5 " diameter Hilti TZ 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 0W Stressed V = 388 # per leg Vcap = 2181 # = 18% Stressed COMBINED = 6% Stressed . OK ' Braces: - Brace height = 40 " Brace width = 44 " Length = 59 " - P = 1049 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 147 Pcap = 2608 # 40% 7 In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2006 IBC Ca = 0.283 1.33 Allowable Stress Increase I = 1.00 R = 4.0 V = (2.5 *Ca *I)- /(R *LF) *P1 LF = 1.4 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 180 3060 551 394 71 120 60 7 5 1 60 60 4 _3 . 0 KLx = 60 in 0 0 0 0 • - 0 KLy = 40•in 0 0 0 "0 0 •• A = 0.595 in ' 0 0 0 • 0- 0 Pcap = 20506 lbs - 3180 562 401 72 Column 16% Stress Max column load = 3218 # Min column load = -38 # Uplift Overturning OTM = 71.6 K -IN X 1.15 = 82.4 -IN RM = 70.0 K -IN REQUIRED HOLD DOWN = 0.28 KIPS Anchors: Special Inspection(Y or N)? YES 2 T = 282 # • - 2 2 0.5 " diameter Hilti TZ - 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 10 %'Stressed V = 201 # per leg Vcap = 2181 # = 9% Stressed COMBINED = 4% Stressed OK • • Braces: Brace height = 40 " Brace width = 44 " Length = 59 " P = 542 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 147 • Pcap = 2608 # 21% • PAGE 1 MSU STRESS -11 VERSION 9/89 - -- DATE: 05/11/;0 - -- TIME OF DAY: 13:30:14 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 3 Levels Type Plane Frame Number of Joints 14 Number of Supports 8 Number of Members 15 Number of Loadings 1 3 7 11 14 Joint Coordinates • 1 0.0 60.0 S 2 0.0 120.0 S 2 6 10 11 3 -0.0 180.0 'S 4 73.5 0.0 S • 5 73:5 60.0 1 5 9 12 6 73.5 120.0 7 73.5 180.0 8 220.5 0.0 S 4 8 9 220.5 60.0 10 220.5 120.0 11 220.5 180.0 12 294.0 60.0. S 13 294.0 120.0 S • 14 294.0 180.0 S Joint Releases 4 Moment Z 8 Moment Z 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 12 Force X Moment Z 13 Force X Moment Z 14 Force X Moment Z Member Incidences 1 1 5 2 2 6 3 3 7 4 4 5 5 5 6 6 6 7 7 8 9 8 9 10 • 9 10 11 10 5 9 11 9 12 _ 12 6 10 13 10 13 14 7 11 - 15 11 14 Member Properties 1 Thru 3 Prismatic Ax 1.113 Ay 0.779 Iz 3.394 • 91/ PAGE 2 • ,MSU.STRESS -11 VERSION 9/89 - -- DATE: 05/11/;0 - -- TIME OF DAY: 13:30:14 '4:.Thru 9 Prismatic -Ax 0.595 Ay 0.298 Iz 1.014 10•Thru 15 Prismatic Ax 1.113 Ay 0.779 Iz 3.394 •'Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads ' Force Y -1.53 . 6 -Force Y -1.53 7 Force Y -1.53 - 9 Force Y -1.53 10 Force Y -1.53 11 Force Y -1.53 5 Force X 0.037 6 Force X 0.072 7 Force X 0.109 9 Force X 0.037 10 Force X 0.072 • 11 Force X 0.109 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED. - Seismic Analysis per'2006 IBC • wi di ' widi2 fi fidi # in. 3060 0.6723 1383 74 49.8 37 74 3060 0.8871 2408 144 127.7 72 144 3060 1 .0027 3077 218 218.6 109 217 • 0 0.0000 0 0 0.0 0 0 0 '0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 . • 9180 6868 436 396.1 435 g = . 32.2 ft /sec2 T '1.3310 sec • I = 1.00 Cs -= 0.063'9 - or' 0.2827 - Cv = 0.386666 Cs min = .14 *Sds= 0.0989 or 1.5% . R = 6 Cs = 0.0989 LF = 1.4 V = (Cs *I) /(LF) *W *.67 • V = 0.070666 W *.67. = 435 # 100% • • • • PAGE 3 MSU STRESS -11 VERSION 9/89 - -- DATE: 05/11/;0 - -- TIME OF DAY: 13:30:14 Structure Storage Rack in Load Beam Plane 3 Levels Loading Dead + Live + Seismic MEMBER FORCES • MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.115 0.00 1 5 0.000 0.115 -8.46 2 2 0.000 -0.048 0.00 2 6 0.000 0.048 -3.53 3 3 0.000 -0.013 0.00 3 7 0.000 0.013 -0.96 4 4 4.559 0.216 0.00 4 5 -4.559 -0.216 12.96 5 5 3.036 0.171 4.59 5 6 -3.036 -0.171 5.66 6 6 1.519 0.093 2.50 6 7 -1.519 -0.093 3.06 7 8 4.559 0.220 0.00 7 9 -4.559 -0.220 13.20 8 9 3.036 0.191 • 5.16 8 10 -3.036 -0.191 6.30 9 • 10 1.519 0.125 3.39 ' 9 11 -1.519 -0.125 4.14 r w 10 5 -0.008 -0.122 -9.09 /" 4.1o1 . , 10 9 0.008 0.122 -8.86 11 9 0.000 -0.129 -9.50 11 12 0.000 0.129 0.00 12 6 -0.006 -0.061 -4.63 12 10 0.006 0.061 -4.30 13 10 0.000 -0.073 -5.40 13 13 0.000 0.073 0.00 . 14 7 0.016 -0.024 -2.10 14 11 -0.016 0.024 -1.50 15 11 0.000 -0.036 -2.64 15 14 0.000 0.036 0.00 APPLIED JOINT LOADS, FREE JOINTS 1 1 • PAGE 4 MSU STRESS -11 VERSION 9/89 - -- DATE: 05/11/;0 - -- TIME OF DAY: 13:30:14 JOINT FORCE X FORCE Y MOMENT Z 5 0.037 -1.530 0.00 6 0.072 -1.530 0.00 7 0.109 -1.530 0.00 9 0.037 -1.530 0.00 10 0.072 -1.530 0.00 11 0.109 -1.530 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.115 0.00 2 0.000 -0.048 0.00 3 0.000 -0.013 0.00 4 -0.216 4.559 0.00 8 -0.220 4.559 0.00 12 0.000 0.129 0.00 13 0.000 0.073 0.00 14 0.000 0.036 0.00 FREE JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 5 0.6723 - 0.0159 - 0.0023 6 0.8871 - 0.0264 - 0.0012 7 1.0027 - 0.0317 - 0.0007 . 9 0.6723 - 0.0159 - 0.0022 10 0.8871 - 0.0264 - 0.0010 11 1.0026 - 0.0317 - 0.0002 SUPPORT JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 1 0.6723 0.0000 0.0008 2 0.8871 0.0000 0.0001 3 1.0027 0.0000 - 0.0003 4" 0.0000 0.0000 - 0.0155 8 0.0000 0.0000 - 0.0156 12 0.6723 0.0000 0.0014 13 0.8871 0.0000 0.0010 14 1.0026 0.0000 0.0008 1:4". Beam - Column Check C 3.000x 3.000x 0.075 Fy = 55 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.333 Point P M Lx Ly Pcap Mcap Ratio 9 4.6 13.2 60.0 40.0 20.51 29.73 67% 10 3.1 6.3 60.0 40.0 20.51 29.73 36% 11 1.6 4.1 60.0 40.0 20.51 29.73 22% 0 0.0 0.0 60.0 40.0 20.51 29.73 0% 0 0.0 0.0 60.0 40.0 20.51 29.73 0% 0 0.0 0.0 60.0 40.0 20.51 29.73 0% Load Beam Check • 5.00x 2.750x 0.075 Fy = 55 ksi A = 1.113 in2 E = 29,500 E3 ksi Sx = 1.297 in3 Ix = 3.394 in4 Length = 144 inches Pallet Load 3000 lbs Assume 0.5 pallet load on each beam M = PL /8= 27.00 k -in fb = 20.81 ksi Fb = 33, ksi 63% Mcap = 42.81 k -in 57.08 k -in with 1/3 increase Defl = 0.58 in = L/ . 247 w/ 25% added to one pallet load M = .282 PL = 30.46 k -in 71% • Base Plate Design Column Load 5.3 kips Allowable Soil 1500 psf basic Assume Footing 22.5 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1 /3 • Use 5 "square base plate w = 10.4 psi 1 = 6.27 in Load factor =. • 1.67 M = 228 # -in ,5 in thick slab f'c = 2500 psi s = 4.17'in3 fb = 55 psi Fb = ; 5(phi) (f'c = 163 psi OK !! Shear : Beam fv = 22 psi Fv = 85 psi OK !! Punching fv = 36 psi Fv = 170 psi OK !! Base Plate Bending Use '0.375 " thick 1 = 1.5 in w = 212 psi fb = 10166 psi Fb = 37500 psi OK !! • • • • • • 1 PERMANENT PLAQUE �l1 p z4 o - co co 50 SQ INCHES IN AREA N ❑T T❑ LESS BE PLACED THAN / , C+ IN C❑NSPICU ❑US L❑CATI ❑N STATING 3000# CAPACITY 2 60', 120', 180' 755,o sv✓ Iec- -L Ce - 2.'° M �� 3' -8' 12 '_ 0 ' AY 1 3 ?O,O 0 !. ' '/ LOAD BEAM 1�� l iv e /O VISION z W v� y Q \-CONNECTOR % 19 R J 5' -0' �( 1 ' O:. rr•N ti 0 C 3 1 V 0 z \ tiJ LOAD BEAM ��� _ FN J. Rti `� 0_ J x / � ❑NNECT ❑R I EXP. DATE: 12/ 20 /0 I 0 U 1S ,_ 0 , O 5' -0' CU i CU \ E LOAD BEAM ill Ix — W D F- -J I \--CONNECTOR 1-- V) a BRACE Ci LD 0 5' -0' V) a_ W 1 -4 LD UPRIGHT LOAD BEAM ELEVATI ❑N in N 0 CZ EN' J 1– 0 Ln (/) I– a w a z a Z I _° = z a A o ACJ � -p f U C� ! I W CL 14 GA THK 9 �� a COLUMN 3' o W o d U C� W U 3' (2) 1/2'0 ANCHORS 3/8x 5x 8 BASEPLATE I J N CC U J W V w W U 3/8'x 5'x 8' C 1.5 x 1.25 1.5 1/8 E1 -1/2' 6'oc W x Q N v Z 0 EA SIDE 0o BASEPLATE 14 GA THK n r' I X J W • BRACE .. ; � ,; lij (2) 1 /2'W ANCHORS 2 OF 1/8 FF \ r. 00 A E] FILLET WELD w a1 I a 3 EA END TO COLUMN ■ 6' �■ 3,25' - N CA¢ z I N BRACE 6' Q �Aw ww (3 1/8 �1 -1/2' EA F ACE 1/8 F1' I I Y J W N Q\ I- x CY F— M ` 4. + 6' CONCRETE SLAB ON GRADE o 6 In w U CO 0 Q U7 W LL COLUMN & BASE PL �� COLUMN BASE X– SECTION U II 3 o Z , _, U GO ep BRACE CONN > -J -J J W a Li, � oLLQ�OQ Cn- 2 ' 0 n Nv) � , �U UN U Z N N 1 -5 /8'H x 1' W (3) PIN CONN ') Ii w M v) ° STEP p (3) AISI A502 -2 RIVETS o 0 CONNECTOR a_ J Ce 7 J F_ ED J j • LOAD BEAM 7/16'0 2'oc z 1 14 GA THICK ` ° HOOK THRU SLOTS E 0 • A w U Q C� L1 ce 0 Q 1 -5 /8x 3x� o ` IN COLUMN 0 01 II Z II O X U - 2S 3/16' THK o�0 W II 13 W 01 AIZW p 7 0 CONNECTOR 1 /8V VERT EDGES 0 P I- II ( 7 ) I- . Q U n.. '1 p o 0 11 LA <:t WC]ZZ(n . W • g LOAD BEAM 0 0 SAFETY PIN TO RESIST Z II A X (n J Q 7 1 -D �R 1 000# .UPLIFT L OAD pr P'S. '` ' '- ' Ln Q 2 .-4 (U M � in CONN II 1