Loading...
Plans V ' PERMANENT PLAQUE NOT LESS THAN p,� r��l � • 50 SQ INCHES IN AREA TO BE PLACED � �� , � �� ©3 1 : CEY ED IN C❑NSPICU ❑US LOCATION STATING � S OS S � 72�d Z_ 4000# CAPACITY @ 58', 116' i • FEB 16 2012 3' -8' 12' -0' - 1 CITZ' OF TIGARD C7 UILDING DIVISION , , I S� �� E� pN�F�� 4s F O ■ °� • � 194 A o c•N ec. 10 N J. oE f LOAD BEAM IIII IIII ! ' 1 EXP. DATE: 12/ V /y J 16' -0' CONNECTOR Il E , 4'-10' ti Z LOAD BEAM x IIII IIII - 1 Q -J 1- \CONNECTOR = CC BRACE I o 6 , Q UPRIGHT LOAD BEAM ELEVATION In J r, I f '1 .. J LIJ I- V) In N J >\ Q 0_ LLI q aq z / C W 3' a Q 14 GA THK � -P z COLUMN , I CY ' 6 in c I N (__) I t" 3/8x 4x 7 BASEPLATE 1-- C1-4 +' ; 3' 0 (2) 1/2'0 ANCHORS o Uo d v v 14 GA THK I I '1/8 F1 -1/2' I W P W U W it C 1.5 x 1.25 1.5 EA SIDE w w N v. t BASEPLATE 7' _ J N N Ce -CD w N 3 <2) 1/2'0 ANCHORS . 2' OF 1/8' i� : ?� L FF - W X Q 0 w Q FILLET WELD BRACE o J W W N EA END TO COLUMN , 5 � I 111 3.25 N N q V) o, 1/8 F1 -1/2' EA FACE BRACE I U w W J Q Z rO:i 3 5 CONCRETE SLAB ON GRADE V) -- 0 1- m Z 0 0 n 1/8' Pr1' < q W, 0> W w W LL ry COLUMN & BASE PL P C B' COLUMN BASE I X- SECTION di u J Li N ° l ~ a ' U In N � Q- In J O Z BRACE C ❑NN y a' > ; � U oo Nw ~ WO O LD § o 1�<In< 01 __I Z rI c, � o o �J = a 6 41 CU (4 oW CU 5 1 0 CONNECT Or2 W Cl- II � J O W I t f 1 -5/8'H x 1' W <2) PIN CO NN E 0 0 r j °-- Q� ~ _ --I 0 - J J 4 5' STEP o (2) AISI A502 -2 RIVETS 3 0' j W Q . U 0_ ce Q CU • LOAD - BEAM - - - -- 7-f16!0 - -4' 0 V) n Z a U 1 g 14 GA THICK HOOK THRU SLOTS • p kktlIl w II w N q= Z w W 4 0 1 -5/8x 3x� o IN COLUMN 0 !, F- H 00 F- ¢ U I-4 Q. I 0 2.75' 3/16' THK 0 O II w Q W 0 Z (n m 1/8 V VERT EDGES 0 , SAFETY PIN TO RESIST Z II q Z (n J < N Q vi CONNECTOR a 1000# UPLIFT LOAD ., ^ ■ LOAD BEAM ' ni ri Ni Ui COLUMN - CONN v 0 - 1 r . 1 , PERMANENT PLAQUE NOT LESS THAN , 50 SQ INCHES IN AREA TO BE PLACED IN CONSPICUOUS LOCATION STATING 4000# CAPACITY @ 58', 116' 3' -8' 8' -0' ' C • 1� �E� P NOF - - '4 11949 �/ LOAD BEAM p e• n q O '► O � 'v B fc 3, CONNECTOR i FN �. RA 4' -10' ■ f 12' -0' ) F.XP DATE 12/ ,i0 /Z Z LOAD BEAM — ; f un nu BRACE v = \-CONNECTOR = , CK 0 ii i ii i 5 4' -10' 1 0 n_ a • D = 1 UPRIGHT LOAD BEAM ELEVATION Q Q 1-I U) J W __J W I- (/) VI N -J > a_ W a� z W 3' Q g pAC7 Q 14 GA THK �'py COLUMN - i I in 1- N Zi■ 73 U i c F 3/8x 4x 7 BASEPLATE 1- a' ~ +' ; 3' v 5 U7 U o d o tii v (2) 1/2'0 ANCHORS 1/8 F1 -1/2' { I w lf) w U w ce W ai 3/8'x 4'x 7' C 1.5 x 1.25 1 . 5 EA SIDE w (U w v BASEPLATE 14 GA THK I-I (n 0) W o (2) 1/2 ANCHORS 2 OF 1/8' r ° -'��:� FF W x Q' W 1 w Q D 3 • FILLET WELD BRACE L J ry EA END TO COLUMN , 5� 1E325' w w A 2 (,) 1/8 r1 -1/2' EA FACE BRACE w Q (4 J I- Z 3 1 5 CONCRETE SLAB ON GRADE ( -- 0 I- CO Z C'S Q 1/8'F1' Q U1 gwp'w wW LL COLUMN & BASE PL (4. I O t-- CY U N P � C OLUMN BASE X- SECTION � � in J W - co o -n ry �Q �W Z I J O 303 L `0 Z BR CONN 1 IC J $ ' _INw�W 0 0 in O L�QIf)< (n � � E Z 4- V"...1 o -I U 0W N W 0 (U 4 - I ce p w -. � W ' p W gc � V) CONNECTOR W (4 VI J 0 L. Z . 1 -5 /8'H x 1' W (3) PIN CONN 0 0 �� g J 0 w N J (kJ 0 3 5 STEP o (3) AISI A502 -2 RIVETS 0 W¢ U CI_ ce D Q CU • LOAD BEAM 7/16'0) 2'oc O 8 ' ' I' V) II Z CE o c--) I - o - 16 GA THICK HOOK THRU SLOTS " 0 � w II w ( g'I w d W 0 1 -5/8x 3x o IN COL 0 0 ' �j H n N F- ¢ Z x CI_ j •Z O II 2.75 3/16 THK 0 w Q W 0 Z N N , Y Z II g V) J Q 1/8V VERT• EDGES 0 SAFET PIN TO RESIST Q CONNECTOR 10 00# UPLIFT LOAD I ,� Cl. LOAD BEAM � - OJ ei 4 in COLUMN -,BEAM CONN , I • ' i • Calculations for : (A) CONSUMER CELLULAR TIGARD, OR 02/14/2012 Loading: 4000 # load levels 2 pallet levels @ 58,116 Seismic•per IBC 2009 100 Utilization Sds = 0.700 Sdl = 0.387 I = 1.00 144 " Load Beams Uprights: 44 " wide C 3.000x 3.000x 0.075 Columns • C 1.500x 1.250x 0.075 Braces . 4.00x 7.00x 0.375 Base Plates with 2- 0.500in x 3.25in Embed Anchor /Column 4.50x 2.750x 0.075 Load beams w/ 2 -Pin Connector • by : Ben Riehl Registered Engineer OR# 11949 ..,Cg — PROF GiN 11949 rj. •- ON C. 3 1Q � ry e FW J. ' Re % �`'P. DATE 12/ Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.407 Longitude = - 122.74899999999998 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa= 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.937 (Ss, Site Class B) 1.0 0.336 (S1, Site Class B) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.407 Longitude = - 122.74899999999998 Spectral Response Accelerations' SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 Site Class D - Fa = 1.125 ,Fv = 1.727 Period Sa (sec) (g) 0.2 1.054 (SMs, Site Class D) 1.0 0.581 (SM1, Site Class D) IBC 2009 LOADING SEISMIC: Ss= 93.7 % g S1= 33.6 %g Soil Class D Modified Design spectral response parameters Sms= 105.4 % g Sds= 70.3 % g Sm1= 58.1 % g Sd1= 38.7 % g Seismic Use Group 2 Seismic Design Category D or D le = 1 R= 4 R= 6 Cs = 0.1757 W Cs = 0.1171 W Using Working Stress Design V= Cs*W /1.4 V = 0.1255 W V = 0.0837 W • Cold Formed Channel • Depth 3.000 in Fy = 55 ksi Flange 3:000 in Lip- 0.750 in -Thickness 0.0750 in COLUMN SECTION - R 0.1000 in Blank = 9.96 in wt = 2.5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in • Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in a 2.6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2.6500 x bar 1.2423 b bar 2.9250 m 1.6690 C 0.5750 x0 - 2.9114 c bar 0.7125 J 0.0014 u 0.2160 x web 1.2798 - ' gamma 1.0000 x lip 1.7202 . R' 0.1375 h /t' 38.0000 • Section Removing:• ' 0.640 inch slot - 0.7 each side of center on web '0.375 inch•hole • 0.87 inches from web in each flange A- = -0.152 in2 A' = 0.595 in2 x bar = 1.478 in I'x = 1'.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in Cold Formed Channel Depth 1.500 in Fy = 55 ksi Flange 1.250 - in Lip 0.000 in Thickness 0.0750 in - - BRACE SECTION R 0.1000 in Blank = 3.73 in wt = 1.0 plf • • A = 0.280 in2 Ix = 0.106 in4 Sx = 0.141 in3 Rx = 0.614 in Iy = 0.046 in4 Sy = 0.056 in3 Ry = 0.403 in a 1.1500 Web w/t 15.3333 - a bar 1.4250 Flg w/t 14.3333 b 1.0750 x bar 0.3946 b. bar 1.2125 m 0.5298 , C 0.0000 x0 - 0.9244 c ba -r 0 -0-000 J 0.0005 u 0.2160 x web 0.4321 • • gamma 0.0000 • x lip 0.8179 R' 0.1375 h/t r8 -0000 • • Cold Formed Section HEIGHT OF BEAM 4.500 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX. LONG SIDE 4.1500 2.2500 • 9.3375 21.0094 5.9561, .0.0375 0.1556 TOP 1.4000 4.4625 6.2475 27.8795 0.0000 0.8750 1.2250 STEP SIDE 1.3500 3.6500 4.9275 17.9854 0.2050 1.7125 2.3119 STEP BOTT 0.7250 2.8375 2.0572 5.8373 0.0000 2.2125 1.6041 SHORT - SID 2.5250 1.4375 3.6297 5.2177 1.3415 2.7125 6.8491 BOTTOM 2.4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 4.4125 0.9530 4.2053 0.0004 0.0875 0.0189 • 2 0.2160 4.4125 0.9530 4.2053 0.0004 1.6625 0.3591 3 0.2160 2.8875 0.6236 1.8008 0.0004 1.8000 0.3888 4 0.2160 2.7875 0.6021 1.6783 0.0004 2.6625 0.5751 5 0.2160 0.08.75 0.0189 0.0,017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 13.8459 29.3500 29.4589 89.8255 7.5050 17.8875 17.3814 AREA = 1.038 IN2 CENTER GRAVITY = 2.128 INCHES TO BASE 1.255 INCHES TO LONG SIDE Ix = 2.599 IN4 Iy = 1.174 IN4 Sx = 1.096 IN3 Sy = 0.786 IN3 Rx = 1.582 IN Ry = 1.063 IN • 6 , . BEAM END CONNECTOR • COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 4.5 IN TOP'OF BEAM TO TOP OF CONN= 0.000 IN • WELD @ BTM OF BEAM = 0.000 IN LOAD = 4000 LBS PER PAIR CONNECTOR VERTICAL LOAD = 1000 LBS EACH RIVETS 2 RIVETS @ 4 " oc 0.4375 " DIA A502 -2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 4.266 KIPS '23% CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x + 3 " x 0.1875 " THICK S = O'.131'IN3 Mcap = 3.924 K -IN 3.924 K -IN RIVET MOMENT RESULTANT @ 0.4 IN FROM BTM OF CONN - M = PL L = 1.1 IN Pmax = Mcap /L = 3.567 KIPS RIVET LOAD DIST MOMENT P1 2.844 4.600 13.081 RIVET OK P2 0.371 0.600 0.223 P3 0.000 0.000 0.000 P4 0.000 0.000 0.000 TOTAL 3.215 13.304 CONNECTOR OK • WELDS 0.125 " x 4.500 " FILLET WELD UP 0.125 " x 2.875 " FILLET.WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE 0 " x 1.000 " FILLET WELD STEP BOTTOM 0 " x 2.750 " FILLET WELD ACROSS BOTTOM 0 " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 " THICK WELD L = 9.00 IN A = 0.675 IN2 S = 0.506 IN3 Fv = 26.0 KSI Mcap = 13.16 K -IN 13.16 K -IN -' • • In Upright Plane . Seismic Load Distribution per 2009 IBC Sds = 0.700 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds /R) *I *P1 *.67 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 116 4060 471 635 74 58 4060 235 317 18 O 0 0 0 0 KLx = 58 in O 0 0 0 0 KLy = 43 in O 0 0 0 0 A= 0.595 in O 0 0 0 0 Pcap = 15491 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 8120 706 952 92 Column 40% Stress Max column load = 6152 # Min column load = 231 # Overturning (. 6-. 11Sds )DL +(0.6- .14Sds).75PLapp- .51EL= -26 # MIN (1 +0.11Sds)DL+ (1 +0.14Sds).75PL+ .51EL = 4425 # MAX REQUIRED HOLD DOWN = -26 # Anchors: 1 T = 26 # 2 0.5 in dia HILTI TZ 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 1% Stressed V = 476 # per leg Vcap = 4858 # = 10% Stressed COMBINED = 2% Stressed OK Braces: Brace height = 43 " Brace width = 44 " Length = 62 " P = 998 # Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 153 Pcap = 1828 # 55% • ,' In Upright Plane • Seismic Load Distribution TOP LOAD ONLY • per 2009 IBC Sds = 0.700 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds /R) *I *P1 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 116' 4060 471, 716 .83 58 60 . _3 5 0 , O 0 0 0 0 KLx = 58 in , O 0 0 0 0 KLy = 43 in ' O 0 0 0 0 A= 0.595 in O - 0 0 0 0 Pcap = 15491 lbs . 4i20 474 721 83 Column 26% Stress Max column load = 3954 # - - Min column load = -36 # Uplift . Overturning • (. 6-. 11Sds )DL +(0.6- .14Sds).75PLapp- .51EL= -662•# MIN (1 +0.11Sds)DL+ (1 +0.r4Sds).75PL+ .51EL = 3958 # MAX REQUIRED HOLD DOWN = -662 # Anchors: - 1 T = 662 # 2 0.5 in dia HILTI TZ 3.25 "embedment in 2500 psi concrete Tcap = 2801 # '24% Stressed V = 361 # per leg Vcap = 4858 # = 7% Stressed, , COMBINED = 10% Stressed • OK - •, Braces: - • Brace height = 43 " Brace width = 44 " Length = 62 " P = 756 # • Use : C 1.500x 1.250x 0.075 . A = 0.280 in • L/r = 153 . Pcap = 1828 # 41% el . PAGE 1 MSU STRESS -11 VERSION 9/89 - -- DATE: 02/14/;2 - -- TIME OF DAY: 17:38:24 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 2 Levels Type Plane Frame Number of Joints 10 Number of Supports 6 Number of Members 10 Number of Loadings 1 Joint Coordinates 1 0.0 58.0 S 2 5 8 10 2 0.0 116.0 S 3 73.5 0.0 S 4 73.5 58.0 5 73.5 116.0 6 220.5 0.0 S 1 4 7 9 7 220.5 58.0 8 220.5 116.0 9 294.0 58.0 S 10 294.0 116.0 S Joint Releases 3 6 3 Moment Z 6 Moment Z 1 Force X Moment Z 2 Force X Moment Z 9 Force X Moment Z 10 Force X Moment Z Member Incidences 1 1 4 2 2 5 3 3 4 4 4 5 5 6 7 6 7 8 7 4 7 8 7 9 9 5 8 10 8 10 Member Properties 1 Thru 2 Prismatic Ax 1.038 Ay 0.727 Iz 2.599 3 Thru 6 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 7 Thru 10 Prismatic Ax 1.038 Ay 0.727 Iz 2.599 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 4 Force Y -2.03 5 Force Y -2.03 7 Force Y -2.03 8 Force Y -2.03 4 Force X 0.044 0 PAGE 2 • MSU STRESS -11 VERSION 9/89 - -- DATE: 02/14/;2 - -- TIME OF DAY: 17:38:24 5 Force X 0.086 • 7 Force X ' 0.044 8 Force X 0.086 Solve. PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2009 IBC wi di widi2 fi fidi in 4060 0.3796 585 88 33.4 44 88 4060 0.4879 966 172 83.9 86 171 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0, 0.0 0 0 O 0.0000 0 0 0.0 0 0 O 0.0000 0 0 0.0 0 0 • 8120' 1551 260 117.3 259 g = 32.2 ft /sect T = ' 1.1624 sec I = 1.00- Cs = 0.0554 or 0.1167 Shc = 0.387 Cs min = 0.07 or 1.5% R = 6 Cs = 0.0700 V = (Cs *I *.67) *W *.67 V = 0.0469 W *.67 259 # 100% • • • • . ,I l PAGE 3 MSU STRESS -11 VERSION 9/89 - -- DATE: 02/14/;2 - -- TIME OF DAY: 17:38:24 Structure Storage Rack in Load Beam Plane 2 Levels Loading Dead + Live + Seismic MEMBER FORCES ' MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.059 0.00 1 4 0.000 0.059 -4.36 2 2 0.000 -0.015 0.00 2 5 0.000 0.015 -1.07 3 3 4.049 0.128 0.00 3 4 -4.049 -0.128 7.45 4 4 2.024 0.076 1.72 4 5 -2.024 -0.076 2.72 5 6 4.049 0.132 0.00 5 7 -4.049 -0.132 7.63 6 7 2.024 0.096 2.20 6 8 -2.024 -0.096 3.34 7 4 -0.008 -0.065 -4.81 7 7 0.008 0.065 -4.69 8 7 0.000 -0.070 (5. 141 c Gy .0 lJ, 8 9 0.000 0.070 0.00 a A. 9 5 0.010 -0.021 -1.65 /"l 9 8 -0.010 0:021 -1.38 . 10 8 0.000 -0.027 -1.96 10 10 0.000 0.027 0.00 APPLIED JOINT LOADS, FREE JOINTS JOINT FORCE X _ FORCE Y MOMENT Z 4 0.044 -2.030 0.00 5 0.086 -2.030 0.00 ' 7 0.044 -2.030 0.00 • 8 0.086 -2.030 0.00 ' REACTIONS,APPLIED LOADS SUPPORT JOINTS ii PAGE 4 . MSU STRESS -11 VERSION 9/89 - -- DATE: 02/14/;2 - -- TIME OF DAY: 17:38:24 JOINT FORCE X FORCE Y MOMENT Z • 1 0.000 -0.059 0.00 2 0.000 -0.015 0.00 3 -0.128 4.049 0.00 6 -0.132 4.049 0.00 9 0.000 0.070 0.00 10 0.000 0.027 0.00 FREE JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 4 0.3796 - 0.0136 - 0.0016 5 0.4879 - 0.0204 - 0.0006 7 0.3796 - 0.0136 - 0.0015 8 0.4879 - 0.0204 - 0.0004 SUPPORT JOINT DISPLACEMENTS JOINT X- DISPLACEMENT Y- DISPLACEMENT ROTATION 1 0.3796 0.0000 0.0005 2 0.4879 0.0000 - 0.0001 3 0.0000 0.0000 - 0.0090 6 0.0000 0.0000 - 0.0090 9 0.3796 0.0000 0.0010 • 10 0.4879 0.0000 0.0006 • 11, Beam - Column Check • C 3.000x 3.000x 0.075 Fy = 55 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in - kx = 1.00 ky = 1.00 Stress Factor 1.000 Point P M Lx Ly Pcap Mcap Ratio 7 4.1 7.6 58.0 43.0 15.49 22.30 60% 8 2.1 3.3 58.0 43. 15.49 22.30 28% O 0.0 0.0 58.0 43.0 15.49 22.30 0% O 0.0 0.0 58.0 43.0 15.49 22.30 0% O 0.0 0.0" 58.0 43.0 15.49 22.30 0% O 0.0 0.0 58.0 43.0. 15.49 22.30 0W Load Beam Check 4.50x 2.750x 0.075 Fy = 55 ksi A = 1.038 in2 E = 29,500 E3 ksi Sx = 1.096 in3 Ix = 2.599 in4 Length = 144 inches Pallet Load 4000 lbs Assume 0.5 pallet load on each beam M = PL /8= 36.00 k -in fb = 32.86 ksi Fb = 33 ksi 100% Mcap = 36.15 k -in . 48.20 k -in with 1/3 increase . Defl = 1.01 in = L/ 142 w/ 25% added to one pallet load - M = .232 PL = 33.41 k -in 92% 14- • Base Plate Design • ' Column Load 4.6 kips Allowable Soil 1500 psf basic Assume Footing 21.0 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1A2 /3 Use 4 "square base plate w = '10.4 psi 1 = 6. in Load factor = 1.67 • M = 210 # -in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 50 psi Fb = 5(phi)(f'c".5) = 163-psi OK !! Shear : Beam fv = 21 psi Fv = 85' psi OK !! Punching fv = 35 psi Fv = 170 psi OK !! • Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 288 psi fb = •.13841 psi Fb = 37500 psi • OK !! 19 • Calculations for : 69) CONSUMER CELLULAR TIGARD, OR 02/14/2012 Loading: 4000 # load levels 2 pallet levels © 58,116 Seismic per IBC, 2009 100 Utilization Sds = 0.700 Sdl = 0.387 I = 1.00 96 " Load Beams Uprights: 44 " wide C 3.000x 3.000x 0.075 Columns C 1.500x 1.250x 0.075 Braces 4.00x 7.00x 0.375 Base Plates with 2- 0.500in x 3.25in Embed Anchor /Column 3.50x 2.750x 0.060 Load beams w/ 3 -Pin Connector by : Ben Riehl Registered Engineer OR# 11949 Cold Formed Section HEIGHT OF BEAM 3.500 INCHES MAT'L THICKNESS 0.060 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM • WIDTH 2.750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX . LONG SIDE 3.1800 1.7500 5.5650 9.7388 2.6798 0.0300 0.0954 TOP 1.4300 3.4700 4.9621 17.2185 0.0000 0.8750 1.2513 STEP SIDE 1.3650 2.6575 3.6275 9.6400 0.2119 1.7200 2.3478 STEP BOTT 0.7400 1.8450 1.3653 2.5190 0.0000 2.2200 1.6428 SHORT SID 1.5550 0.9375 1.4578 1.3667 0.3133 2.7200 4.2296 BOTTOM 2.4300 0.0300 0.0729 0.0022 0.0000 1.3750 3.3413 CORNERS •• 0.2042 3.4228 0.6989 2.3923 0.0003 0.0772 0.0158 2 0.2042 3.4228 0.6989• 2.3923 0.0003 1.6728 0.3416 3 '0.2042 1.8922 0.3864 0.7312 0.0003 1.7972 • 0.3670 • 4 •0.2042 1.7978 0.3671 0.6600 0.0003 2.6728 0.5458 5 - 0.2042 0.0772 0.0158 0.0012 0.0003 2.6728 0.5458 •. "` 6 0.2042 0.0772 0.0158 0.0012 0.0003 0.0772 0.0158 TOTALS 11.9252 21.3800 19.2335 46.6633 3.2070 17.9100 14.7398 AREA = 0.716 IN2 CENTER GRAVITY = 1.613 INCHES TO BASE 1.236 INCHES TO LONG SIDE Ix = 1.131 IN4 Iy = 0.737 IN4 Sx = 0.599 IN3 Sy = 0.487 IN3 • Rx = •1.257 IN Ry = 1.015 IN • • • ii BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 3.5 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD @ BTM OF BEAM = 0.000 IN LOAD = 4000 LBS PER PAIR CONNECTOR VERTICAL LOAD = 1000 LBS EACH RIVETS 3 RIVETS @ 2 " oc 0.4375 " DIA A502 -2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3.307 KIPS EACH RIVET ' BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH'RIVET TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 16% CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K -IN 3.924 K -IN RIVET MOMENT RESULTANT @ 1.55 IN FROM BTM OF CONN M = PL L = 0.95 IN Pmax = Mcap /L = 4.130 KIPS RIVET LOAD DIST • MOMENT P1 2.844 3.450 9.811 RIVET OK P2 1.195_ 1.450 1.733 P3 0.000 0.000 0.000 P4 0.000 0.000 0.000 TOTAL 4.039 11.544 CONNECTOR OK • WELDS 0.125 " x 3.500 " FILLET WELD UP OUTSIDE 0.125 " x 1.875 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE O " x 1.000 " FILLET WELD STEP BOTTOM O " x 2.750 " FILLET WELD ACROSS BOTTOM O " x 1.750 " FILLET. WELD ACROSS TOP USE EFFECTIVE 0.06 " THICK WELD ' • L = 7.00'IN A = 0.420 IN2 S = 0.245 IN3 Fv = 26.0 KSI Mcap = 6.37 K -IN' 6.37 K -IN l6 . •In Upright Plane Seismic Load Distribution . per 2009IBC Sds = 0.700 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds /R) *I *P1 *.67 • Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 116 4060 471 635 74 58 4060 235 317 18 O 0 0 0 0 KLx = 58' in O 0 0 0 0 KLy = 62 in O 0 0 0 0 A= 0.595 in O 0 0 0 - 0 Pcap , = 14606 lbs - - -- - - -- - - -- - - -- 8120 706 952 92 Column 42% Stress Max column load = 6152 # Min. column load = 231 # • Overturning (. 6-. llSds )DL +(0.6- .14Sds).75PLapp- .51EL= -26 # MIN (1 +0.11Sds)DL+ (1 +0.14Sds).75PL+ .51EL = 4425 # MAX REQUIRED HOLD DOWN = -26 # Anchors: 1 T = 26 # - 2 0.5 in dia HILTI TZ 3._25 "embedment in 2500 psi concrete Tcap = 2801 # 1% Stressed V = 476 # per leg Vcap = 4858 # = 10% Stressed COMBINED = 2% Stressed OK Braces: Brace height = 62 " Brace width = 44 " • Length = 76 " P = 1234 # - Use : C 1.500x 1.250x 0.075 A = 0.280 in L/r = 151 • Pcap = 1870 # 66% • • I 9 In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2009 IBC Sds = 0.700 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds /R) *I *P1 Weight 60 # per level frame weight Columns @ 44 " Levels Load WiHi Fi FiHi Column: (inches) ( #) (k -in) ( #) (k -in) C 3.000x 3.000x 0.075 116 4060 471 716 83 58 60 3 5 0 0 0 0 0 0 KLx = 58 in 0 0 0 0 0 KLy = 62 in 0 0 0 0 0 A= 0.595 in 0 0 0 0 0 Pcap = 14606 lbs - - -- - - -- - - -- - - -- ---- - - -- - - -- - - -- 4120 474 721 83 Column 27% Stress Max column load = 3954 # Min column load = -36 # Uplift Overturning (. 6-. 11Sds )DL +(0.6- .14Sds).75PLapp- .51EL= -662 # MIN (1 +0.11Sds)DL+ (1 +0.14Sds).75PL+ .51EL = 3958 # MAX REQUIRED HOLD DOWN = -662 # Anchors: 1 T = 662 # 2 0.5 in dia HILTI TZ 3.25 "embedment in 2500 psi concrete Tcap = 2801 # 24% Stressed V = 361 # per leg Vcap = 4858 # = 7% Stressed COMBINED = 10% Stressed OK Braces: Brace height = 62 " Brace width = 44 " Length = 76 " P = 934 # Use : C 1.500x 1.250x,0.075 A = 0.280 in L/r = 151 Pcap = 1870 # 50% • Beam- Column Check C 3.000x 3.000x 0.075 Fy = 55 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 • Stress Factor 1.000 - Point P M Lx Ly Pcap Mcap, Ratio 7 4.1 7.6 58.0 62.0 14.60 22.30 62% 8 2.1 3.3 58.0 62.0 14.60 22.30 .29% O 0.0 0.0 58.0 62.0 14.60 22.30 0% O 0.0 0.0 58.0 62.0 14.60 22.30 0% 0 0.0 0.0 58.0 62.0 14.60 22.30 0% O 0.0 0.0 58.0 62.0 14.60 22.30 0% Load Beam Check 3.50x 2.750x 0.060 Fy = 55 ksi A = 0.716 in2 •E = 29,500 E3 ksi Sx = 0.599 in3 Ix = 1.131 in4 Length = 96 inches Pallet Load 4000 lbs Assume 0.5 pallet load on each beam • M= PL /10= 19.20 k -in lb = 32.04 ksi Fb = 33 ksi 97% Mcap = 19.78 k -in 26.37 k -in with 1/3 increase Defl = 0.55 in = L/ 174 • w/ 25% added to one pallet load M = .19 PL = 18.24 k -in 92% • • • • • • i. V I Base Plate Design Column Load 4.6 kips Allowable Soil 1500 psf basic Assume Footing 21.0 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1 /3 Use 4 "square base plate w = 10.4 psi 1 = 6.02 in Load factor = 1.67 M = 210 # -in 5 in thick slab f'c = 2500 psi s = 4.17 in3 fb = 50 psi Fb = 5(phi)(f'c = 163 psi OK !! Shear : Beam fv = 21 psi Fv = 85 psi OK !! . Punching fv = 35 psi Fv = 170 psi OK !! Base Plate Bending Use 0.375 " thick 1 = 1.5 in w = 288 psi fb = .13841 psi Fb = 37500 psi OK !! [Page Too Large for OCR Processing]