Plans �c� 20 )....-000 9 3
'73 � � s a T��� P (
SETZM1 C
MATERIAL HANDLING ENGINEERING
EST. 19R5
STORAGE RACKS STEEI. SHELVING SEISMIC ANALYSIS ALASKA KENTUCKY NORTI I CAROLINA
DRIVE -IN RACKS MOVABLE SI•IEI.VING STRUCTURAL. DESIGN ARIZONA MARYLAND OHIO
> > CALIFORNIA MASSACI -TUBE li'S OKI.AIOMA
• ' CANTILEVER RACKS STORAGE RACKS CITY APPROVALS ROVALS
MEZZANINES MODULAR OFFICES STATE APPROVALS COLORADO MICHIGAN OREGON
CONVEYORS GONDOLAS PROM ICTTESTING CONNECTICUT MINNESOTA PENNSYLVANIA
CAROUSELS ROOK STACKS FIELD INSPECTION FLORIDA MISSOURI TENNESSEE
l'USI•II3ACK RACKS FLOW RACKS SPE'CIAI.. FABRICATION GEORGIA MONTANA TEXAS
RACKBIIILDINGS FOOTINGS PERMUTING SERVICES IDAHO NEBRASKA UTAH
ILLINOIS NEVADA VIRGINIA
INDIANA NEW JERSEY WA :3 "N",,
KANSAS NEW MEXICO •WI. \''� I NFO
MAY s g 7
CI TY OFTIGA�D
BMW DIVISION
SEISMIC ANALYSIS
•
OF STORAGE RACKS
•
FOR °4 =
SHAW SPECTRA
ti i
7379 S.W. TECH CENTER DRIVE ?,
TIGARD, OR, • Job No. 12 -0650
•
APPROVED BY
•
SAL E. FATEEN, P.E. = -
5/4/2012
REO PROF(
•
{NF SSiO
fr
� 4∎ �` 1 303 -g-
/ •
OREGON
• 15 ,90
! e �
h AEL Vt •
Ri afioN D 3 1 1011
161 ATLANTIC STREET POMONA .F CA 91768 * TI L: (909) 869 -0989 FAX: (9;19)
•
Y
S
PROJECT SHAW SPECTRA
• FOR ENGINEERED PRODUCTS
' MATERIAL HANDLING ENGINEERING SHEET NO. . 2
TEL.: (909)869 - 0989 FAX : (909)869 - 0981 CALCULA'T'ED BY RF
• 161 ATLANTIC S'T'REET, POMONA. CA 91768 DATE 5/4/2012.
TABLE OF CONTENTS
TABLE OF CONTENTS & SCOPE 2
PARAME TERS 3
COMPONENTS & SPECIFICATIONS 4
LOADS & DISTRIBUTION 5
LONGITUDINAL ANALYSIS 6
.
COLUMN 7 _s
BEAM • 9
BEAM. TO COLUMN 1 I
BRACING 12
OVERTURNING 13
BASE PLATE 14
SLAB & SOIL ' 15
•
SCOPE:
TI -IIS ANALYSIS OF THE S'T'ORAGE SYSTEM. IS TO DETERMINE ITS
COMPLIANCE WITH THE APPROPRIATE BUILDING CODES WITH RESPECT TO..
STATIC AND SEISMIC FORCES.
r.�
THE STORAGE RACKS ARE PREFABRICATED AND ARE TO BE FIELD
ASSEMBLED ONLY, WITHOUT ANY FIELD WELDING.
•
•
• J F^
SEIZbV1
PROJECT . SI -IAW SPECTRA
' FOR ENGINEERED PRODUCTS
MATERIAL HANDLING ENGINEERING SHEET NO. 3
TEL : (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED BY RF
161 ATLANTIC SIREI f, POMONA. CA 91768 DATE 5/4/2012
THE STORAGE RACKS CONSIST OF SEVERAL BAYS, INTERCONNECTED IN ONE OR BOTH DIRECTIONS, WITH 'THE ;�
COLUMNS OF THE VERTICAL, FRAMES BEING COMMON BETWEEN AND ADJACENT BAYS. 4
- THE ANALYSIS, WILL FOCUS ON A TRIBUTARY BAY TO BE ANALYSED IN 130TH THE LONGITUDINAL AND . i
TRANSVERSE DIRECTION. -
STABILITY IN THE LONGITUDINAL DIRECTION IS MAINTAINED BY THE BEAM TO COLUMN MOMENT RESISTING
CONNECTIONS, WHILE BRACING ACTS IN THE TRANSVERSE DIRECTION. "
CI • i1$'
.._
,„.
__
. . ,. .
. .
. , • .. .„
' - 4. - -- 1 ..,
.,..:.
,..
0 \ • , „...„...„..
Ili ... \ ,-L, ,.,,,,.,,_.,„ 0
•
iw i 01 ' --------- -
..
.,.
. -.)"..„
II ..
...!
. 03,1 -
• , 10 ' \ , n l
•
S ,,,,,,,,
I N 1111 11, .
.. , . .
ii
♦ • CI . ,
CONCEPTUAL. DRAWING
Some components may not
be used or may vary.
TRIBUTARY AREA.
LEGEND /
' I. COLUMN d € :: .... .: ... I ............. Is::::::::: .:.:. I€
2. BEAM ii
i ,s
3. BEAM 'I'O COLUMN i i
4. BASE PLATE? • 5. HORIZONTAL BRACING I i
6. DIAGONAL BRACING I _
7. BACK TO BACK CONNECTOR TRANSVERSE '
LONGITUDINAL
: _i
NOTE: ACTUAL CONFIGURATION SHOWN ON COMPONENTS & SPECIFICATIONS SHEET
ICSEIZMIC11 PROJECT SHAW SPECTRA
. FOR ENGINEERED PRODUCTS -
•
• MATERIAL HANDLING ENGINEERING SHEET NO. 4
TEL : (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED BY RE .
- " 161 ATLANTIC STREET, POMONA, CA 91768 DATE 5/4/2012
COMPONENTS & SPECIFICATIONS
SITE CLASS = D
LEVELS = 4 tl I = 12 i WI =6000 lbs.
1•12 = 66 in. W2 =6000 lbs. 1
Y2 =72 in
PANELS = 4 1.13 = 66 in. H4 W3 =6000 lbs. Y4
Y3 72 in. ,.:.A
Y-t'=
1-14 66 in. W4 =6000 lbs.
18 in. .1
=
LIVE LOAD = 6000 lbs. W 3
FRAME HEIGHT = 240 in. H3 Y-1
- •• H W2 H -
'FRAME DEPTH = 54 in. . ` —
• BEAM LENGTH= 132 in.
H2 Y2
__ W I
SEISMIC CATEGORY = D - —'-
(Fa= 1.12, Ss= (1.94) • Y1
H1
. - •/ '
\ \ - I —�
I L I D - A'
COLUMN BEAM @ Level I CONNECTOR @ Level I
OK OK OK
StrucC4x4.5 Struc C5x6.7 THREE BOLT CONNECTOR
Steel = 50000 psi Steel = 50000 psi - Stress = 61%
Stress =92% Max Static Capacity = 10553 lb.
Stress = 57%
COLUMN BACKER - BEAM @ Level 2+ • CONNECTOR @ Level 2+
OK - 01< (bp<
Backer Up To Level = 2 Struc C5x6.7 • THREE BOLT CONNEC'T'OR
Struc C4x4.5/C4x4.5 Max Static' Capacity = 10553 lb. Stress = 78 %.
Stress = 31% Stress = 57%
BRACING SLAB & SOIL
HORIZONTAL OK DIAGONAL, 01< Slab = 6" X 4000 psi OK
Soil Bearing Pressure =- 1501) nsf
Struc L2 x L2 x 1/8 1 1/2 x 10 ga FLAT PL Slab Puncture Stress = 59%
Stress = 27% Stress =63% Slab Bendinv, Stress = 43%
BASE PLATE ANCHORS
OK Hilt.i KEPI Z (ESR -1917) 0.5 Dia. X 2.5 Min. Emhd. OK
z
8 in X 8 in X 0.5 in Pullout Capacity = 830 lbs.
Steel = 36000 psi Shear Capacity = Q00 lbs.
MBase = 0 in. lb. No. Of Anchors _. 2 per Base Plate
Stress = 25% Anchor Stress = 86%
NOTES: ANALYZED PER TIME 2010 OSSC;
ii
is
. .
. .
. .
. ' • . .
. , .
. .
• . .
. • .
. . .
• I S IC .
PROJECT SHAW SPECTRA
• ' FOR . ENGINEERED PRODUCTS
, . MATERIAL HANDLING ENGINEERING SHEET NO. 5
, TEL : (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED BY RP' •
161 ATLANTIC STREET, POMONA, CA 91768 DATE . 5/4/2012
... F-1 .
LOADS AND DISTRIBUTION: ---.....,--- - Fn
:4
V . :•• 4
• Fa: 1.12 .,
•
.::-..
• . F.I. 3 ----"" F3
Number Of Levels: 4 Ss: 0.94
a2 - F 2
wLL (Sum of live loads) : 24000 lbs le: 1.00
EL I F 1
wDL (Sum of dead loads): 400 lbs Rw (Longitudinal): 6.00
TOTAL FRAME LOAD: 24400 lbs . Rw (Transverse):, 4.00 . . .
. _
. .
• LONGTUDINAL DIRECTION • . ' TRANSVERSE DIRECTION
•
2/3. /- • S , • 4 - W2 1 3). W u. )+ f /V ,;,..) ' . '2/3.F • S • 1 .•(((213)•W )+W , )
v
— . _ a s A _ • LL L L _ _
V 1,
Trans
- R,„ • 1.4 R • 1 .4
(2/3) X 1.12 X 0.94 X I X (((2/3)24000) + 400) / (6 X 1.4) . (2/3) X 1.12 X 0.94 X 1 X (((2/3)24000) + 400) / (4 X 1.4)
V : V '
mg 1370 lbs Tr ' 2055 lbs
F = V (- Will i )
•.i
E w
..„
. 4
. ...4 .
LONGITUp .
INAL . TRANSVERSE
....
Levels i 2 x - .
. w • wi.h. • ' I; Y v, . - - w h • f
_
_ _ .. 56 _
1 12 . 6,100 73,200 - 37 6,100 73,200 56
2 7- 475,800 241 6,100 475,800 361
3 - 144 - 6,100 878,400 444 6,100 878,400 667
4 210 _ 6, _ — 100 1,281,000 . 648 6,100 1,281,000 972
_
2,708,400 1370 lbs 2,708,400 2055 lbs
•
. „
. ..
Y
.•,•:.;
. .
' .
1 '
. .—J
•
.',
J
SEEZMIC ,,,
. PROJL(:'I' SHAW SPECTRA
FOR ENGINEERED PRODUCTS
• MATERIAL HANDLING ENGINEERING - SIIEET NO. • 6
TEL : (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED BY RF
161 ATLANTIC STREET. I'OMONA. CA 91768 DATE 5/4/2012 .
i - - - 1
LONGITUDINAL ANALYSIS: -
•I'I -IE ANALYSIS IS BASED ON THE POR'T'AL ME'T'HOD, WITH THE POINT OF CONTRA FLEXURE OF THE COLUMNS
ASSUMED AT MID - HEIGHT BETWEEN BEAMS, EXCEPT FOR THE LOWEST PORTION, WHERE THE BASE PLATE
PROVIDES ONLY PARTIAL FIXITY, THE CONTRA FLEXURE IS ASSUMED TO OCCUR CLOSER TO THE BASE. (OR
. AT THE BASE FOR PINNED CONDITION, WHERE THE BASE PLATE CANNOT CARRY MOMENT).
�/ M hn
Ilpper + lV, Lower M ( urm'If' + � �(' u rm'l•'
A ,� = A ,� M5 -5 ,
EV
Al ( ',nail' lVf ('unn'l.' . 5
M('rmn • 2 = Mo + M /.,,u,r• n4 -r1 h5
. F4 M f 1ppm. ± M i wcr• Irl '
M = — — + Al M3 3 ,
43 A
M2 -2 3
•
Vl.n rr } _ • MI -I Pr h2
Vod = = 685 lbs
7 F GI I•I
M base A ,
11/1 Busy - 0 in /lb M/:m1,- - 5023 in /lb
FRONT IMEVA rI(lN
LEVELS h, /• AXIAL LOAD MOMENT Mconn -
I 10 18 12,200 6,850 19.454
2 66 120 • 9,150 22,01 I 25,054
3 66 222 6,100 18,051 19,4II
4 66 - 324 3,050 - 10,725 10,386 -
•'F
Z.
ii•
SAMPLE CAL.C.
MI -.I = (V(•,l ' h,)- " llrrse
•
(685 lbs X 10 in) - 0 in/lb = 6,850 in/lb 1
_J
•
•
• ESEIZMIC
PROJECT SHAW SPECTRA
• FOR ENGINEERED PRODUCTS •
• MATERIAL HANDLING ENGINEERING SHEET NO. 7
TEL : (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED BY RF
161 ATLANTIC STREET, POMONA, CA 91768 DATE 5/4/2012.
COLUMN ANALYSIS: •
P = 6100 Ibs •.• - .- :v.
M = 18051 in/lb
K .r ' L = 1 X 64in / 1.656in • - .
= 46.4 KL • . . •,
R R Max = 155
K Y I_ Y = I X 72in / 0.464in
= 155.2 •
R, ..
•
• Axial •
= 107
Since : R Max > C.
2 .112. B = (12 X 3.14159'2 X 29500) / (23 X 155.1724 A2)
F = • 1000
23(Kl /r SECTION PROPERTIE
= 6202 PSI
.. A : 4 in ''?
• .. 13 : 1.58 in
C. gU
.fa — PMaxI AWI = 6100/1.102 = 511.7 PSI
. t :0.125 in 111;
AefI': 1.192 inA2 fi
.4, = MMO.r/SX. • = 18051 / 1.635 = 11040 PSI - Ix : 3.27 inA4
Sx : 1.635 inA3
f Rx : 1.656 in
F - 0.83 ly : 0.256 in^4
Sy : 0.237 in ^3
Ry : 0.464 in
. • Flexure Kx : 1.2
Since:- - >0.1$ ,, , Lx :64in
f Check + — � — �' ' _ < 1 .33 Ky :1
F F, Fh(I - -F /F) Ly :72 in
F Y : 50 KSI
• /. = 0 F _ = 30000 KSI • • - - • E : 29500 KSI
C2c : 0.00
1 .67
I2•Tl' C2f: i ..
F = = 69430 PSI . Om : 0.85
• 23(KI /r)' Cb : 1
Column Stress = ( 5 1 1 7 / 6202) + ( 1 X 11040)/ (30000 X ( 1 - (51 17 / 69430))) =1.22 < 1.33 (92%) ` L,
--_ ___J <=
•
LL SEIZMllc PROJECT SHAW SPECTRA
• FOR ENGINEERED PRODUCTS
MATERIAL HANDLING ENGINEERING SHEET NO. 5 ;
TEL : (909)869 0989 FAX : (909)869 - 0981 CALCULATED BY RF
' 161 ATLANTIC STREET, POMONA, CA 91768 DATE 5/4/2012
COLUMN BACKER ANALYSIS :
P = 9150 Ibs
M = 22011 in /lb •
Kx • L.t =
1.2 X 64in / I.656in
R = 46.4 - -Ma
Y = 61.3
R
K • I = I X 72in / I.175in
— - 61.3
•
Y
Axial •
•
•
= 107 -
• .
Since: R K L Max <= C�, e ;++
i
- r
(KL /R) F,, = (I - ((61.3 A2) / (2 X 106.9987 A2))) * 50000) / ((5 / 3) + ((3 X 61.3) /
- - -. . -- -. -._ (8 X 106.9987)) - ((61.3 A3) / (8 X I06.9987 ^3)))
2• 1000
5 3 • KL /R)„,„" — ( KL/R)May
SECTION PROPERTIES
3 8• 8•6 = 22498 PSI
fa = P MurI A qj = 9150 /2.384 = 3838 PS1 1 .
Acff : 2.384 inA2
.f = MMnr/S,. = 0/3.27 =- 6731 I'Sl, lx : 6.54 inA4
h Sx : 3 27 in ^3
f, Rx : 1.656 in
= 0.17 ly : 3.294 inA4
Po Sy : 2.079 inA3
Ry : 1.175 in
Flexure Kx : 1.2
Lx : 64 in
Since: >0.15 Check: " C „ '' / � ' — 5._ 1 . 3 3 Ky : I ;
Fa .
F F —I „ /F) Ly : 72 in
Fy : 50 KSI 4.
E : 29500 1(51
F = 0.6 F�, = 30000 KSI >i
ch. : 0.00
1 2n ' E off.: 1.67
F = , • 1 000 = 69430 PSI Cmx : 0.85
23 R)Mnx
Ch I
Backer Stress = (3838 / 22498) + I X 673 I / (30000 * (I - (3838 / 69430
( ) ( ( 69430))) = 0.41 <1.33
(110,.) .. ______J
•
•
•
•
i
r.
• .s
SEIZfVI
PROJECT SHAW SPECTRA •
• • • FOR • ENGINEERED PRODUCTS
MATERIAL HANDLING ENGINEERING SHEET NO. 9
TEL : (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED 13Y RF
• 161 ATLANTIC STREET. POMONA. CA 91768. DATE 5/4/2012
BEAM ANALYSIS :
BEAM TO COLUMN CONNECTIONS PROVIDE ADEQUATE MOMENT CAPACITY TO STABLIZE THE SYSTEM,
ALTHOUGH IT DOES .NOT PROVIDE FULL FIXITY. THUS, THE BEAMS WILL BE ANALYSED ASSUMING PARTIAL END
FIXITY. FOR THE COMPUTATION OF BEAM TO COLUMN MOMENT CAPACITY, THE PARTIAL. END FIXITY MOMENT OF
THE BEAM WILL BE ADDED TO THE LONGITUDINAL FRAME MOMENT FOR THE ANALYSIS OF THE CONNECTION.
EFFECTIVE MOMENT FOR PARTIALLY FIXED BEAM
For a simply supported beans, the max moment at the center is given by 0'!. ' /s . An assumption of partial fixity will decrease
this maximum moment by the following method.
Percentage of End Fixity = 15% 0 = 0.15 Mcerder(simge)
MCenter = MCenter(Simple ends) - 0 *MCenter(Fixed ends) Mends
tf Marger
Wl 2 /8 — ( � Wl 2 /12)= 0.112-W/ W/2 (fix)d)
•
Reduction Coefficient-13 = 0.112/0.125 = 0.9
M ('rmar = N •Wl /8 =0.9 • W /
'max
M o,,A = q • M;,,,,.,.(Eixec/Ends) = W1 0.15
0.0125 • IV 2 TYPICAL BEAM FRONT VIEW
EFFECTIVE DEFLECTION FOR PARTIALLY FIXED BEAM
•For a simply supported beam, the Max deflection at the center is given by5n'/ 7354 E!
An assumption of partial fixity will decrease this maximum deflection by the following
method.
5W/4 •
• �,�1,,., _ � j •
3 8 4 . E • 1 ,
1.iveLoad 111 = 6000 lbs
DecrdLoad llv! =41b /fl X 2 X (132/12 88 lbs
A4 0.1 1 2* W/2 =45203 in /lb
(w ler
= 0.0125* 14// = 5023 in/lb
F h = 0.6 • F , = 30000 PSI •
• /'B = 30000 PSI
4
•
- SEIZi 14IC .
• PROJECT SHAW SPECTRA
- • FOR ENGINEERED PRODUCTS
MATERIAL HANDLING ENGINEERING SHEET NO. 10 ...
TEL : (909)869 - 0989 FAX : (909)869 -0981 CALCULATED BY RF
161 ATLANTIC STREET. POMONA. CA 91768 DATE 5/4/2012 •
BEAM ANALYSIS : '
MAXIMUM STATIC LOAD PER LEVEL DEPENDS ON:
I. MAXIMUM MOMENT CAPACITY
D
1;',, = MSS,. 1
•
FB,11 _
/3.(W1 .
S . :4
FB,, • 16 • S,, v:
Max.Weighl / 11,1 = -- a • Ai
Q•L
_ ((30000 X 16 X 2.99) / (0.9 X 132)) X 0.875 = 10553 Ibs /M / ,= 7.48 inA4 S 2.99 41
2. MAXIMUM ALLOWABLE DEFLECTION P =50000 PSI a(impaclCoefjicienl) = 0.875
' 0 „u„ m,. = L/l 80 = 0.733 In Q = 0.9 0 = 0.15 —
5Wl4 . L(Len)h) = 132 in L • 31 in
_
A 384 • E 1
. Q Slep(D) = o in BeuniThicl.ness = 0.19 in
13camDeplh(A) = 5 in
A4crx.14/eighl / )ill = 384 • E • I,. • A 111 , , / i . '!'opWidlh(C) = 1.75 in BvilomWidlh(13) = 1.75 in
• 5 -48
((384 X 29000000 X 7.48 X 0.733) / (5 - (4 X 0.15))) X 132 ^3 12072 Ibs /h'l
MAXIMUM ALLOWABLE LIVE LOAD PER LEVEL. = I05531bs /M BearnSires.s = 57%
All AND ACI'UAI. BENDING MOMENT AT EACI•I L.EVEI., -
-- -- M = *
M = Wl - /8 M = S * F, ;ul,,,,,.e 1.
.Cllic dlL,u•,Anr .r R
I V hnpm = M .,,,,,;,: * 1.125 M. ,',.c,,,,,<. = M1,,,,,, -
Level M. M M M M IZ.esu lt
Slalic Impact Alln \v,Sialle Seismic Allntvticismic j i
t.L
.. I 45203 50853 ' . 89700 19454 119600 GOOD 'J
,L;
2 45203 50853 89700 25054 119600 GOOD .I
3 45203 50853 89700 19411 119600 GOOD
4 45203 50853 89700 10386 119600 GOOD
. _
.
•
i
1 '.
•
SEIZII/1IC
PROJECT SHAW SPECTRA
FOR ENGINEERED PRODUCTS
MATERIAL HANDLING ENGINEERING SHEET NO. I I -'
TEL : (909)869 - 0989 FAX : (909)869,- 0981 CALCULATED BY RF 6 Ifi
161 ATLANTIC STREET, POMONA. CA 91768 DATE 5/4/2012 ;
.:Si:';
BEAM TO COLUMN ANALYSIS : A
CONNECTION CAPACITY DEPENDS ON THE FOLLOWING PARAMETERS:
I. SHEAR CAPACITY OF BOLT
BoliDiameler = 0.5In.
F;, = 21(100P;S/ C . IF ..
A.1he.. = Diameter • Cl = 0.1963 in ^2
4
p Asheur • F• - . 0.4 X 50000 X 0.1963 in^ -- 41.23 lbs - IF
2. BEARING CAPACITY OF BOLT
ColumnThicicness = 0.125 � _ _- -.I••°
F„ = 65000PS/
52 =2.22
a =2.22 :.
/ lf, „„,,}; = a • F„ • Diu. • Col.Thickness• /S2 = 2.22 X 65000 X 0.5 X 0.125 / 2.22 4062 lbs
,,
3. MOMENT CAPACITY OF BRACKET .;u:
i
. EdgeDi,s•t. = 1.0 /n.
l3oliSpacing = 2 In ._ ..
F = 50000 PSI
C = Pi + P, +P3 = PI +.l;(2.5/4.5 +%;(.5/4.5 _= PI X 1.667 •
7;.,, 0.179./n. ' .
8, yip = 0.127 \ .
Mc. „,„„.„,,, = Scup, • Fcre,,,hu — 0.127 In ^3 X .66 X Fy _ 4191 in -lb
C * d = Mr„ J ,,„;,:• = 1.667 p .d
3
d = EdgeDisv /2 = 0.5
PUN, = Ai/Caption- • d) = 4191 1 (1.667 X 0.5) = 5028 lbs ,,
MINIMUM VALUE OF PI GOVERNS • .
.1 I 18” -4 ! !
• P = 4062 lbs
x
/ ..iu;,„ = [P *4.51+ [P *(2.5/4.5)* 2.51+ [P *(.5/4.5) *.51 *1.33
= 321I5in - lb > I9454in -Ib OK �! 1
I • .
EiZnAi
•
S C
rr.
PROJ ECT SHAW SPECTRA
FOR ENGINEERED PRODUCTS
. MA'I'ERIAI, HANDLING ENGINEERING SIIEET NO. 12
TEL : (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED BY RF
• 161 ATLANTIC S•I'REF f. POMONA. CA 91768 DATE 5/4/2012 •
•
TRANSVERSE ANALYSIS: BRACING:
IT' IS ASSUMED THAT THE LOWER PANEL RESISTS THE FRAME SHEAR IN TENSION AND COMPRESSION. •
IF HORIZONTAL, AND DIAGONAL MEMBERS ARE THE SAME, ANALYSIS WILL BE DONE ON THE
DIAGONAL MEMBER AS IT WILL GOVERN.
DIAGONAL BRACING : COMPRESSION MEMBER •
Ldiag = V(L -6) +(D —(2. BC0!)) = 82" • D
Vdiu = • LDictg
= 3121 . lbs
•
Pmax {
•
k • ! � ••
( I X 81.9816)/(0.01) = 193.7 I n
r•Min f
F r e
F , _ = 7626.9 PSI
l • /// =— -- •
r•Min
SIDE ELEVATION
25000
• • 2
Panel Height (I „) -= 72 In
r. < • Panel Depth (D) • 54 In •
2
Column .Depth (U) = 1.58 In
! ` = 7626.9 PSI Clear Depth (d) (D - 2 = 39.2
P„ = Area • l'„ = 2669 lbs
S2c = 1.x)2 ' dd
!fj
f = I ” V = 1390 lbs
S2c•
VDiag ..
Brace Stress = = 0.83
SEIZMIC •
PROJECT SHAW SPECTRA •
• FOR ENGINEERED PRODUCTS •
• MATERIAL HANDLING ENGINEERING SHEET NO. 13
TEL : (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED BY RF
161 ATLANTIC STREET. POMONA. CA 91768 • DATE 5/4/2012 '
OVERTURNING ANALYSIS : • •
FULLY LOADED
iota! Shear = 2055 lbs -
Iti i
-i4
M ,, = 2055 X 160 X 1 . 1 5 = 378120 in/lb 1F i . A
' f F6
M ,., = E (W,, +.85wDL)• d/2 II M -.. yr
M = (24000 +(.85 X 400)) X 54/2 = 657180 in /lb. • EE . , F5
i
1(M., — M ) = (378120 - 657180) / 54 •
l i. y ,, ; �, _ ' ' _ - 5168 lbs. Puplifi <= 0 No Up Lift
d M I F4
TOP SHELF LOADED I
i i `- F3
Shear = 551 lbs . I
M = V,,,,, • I • 1.15
ill r F 2
= 551 X 210 X 1.15 = 133179 in /lb ll
/
- NI W + w • cl - . . F 1
M — (0 + (.85 X 400)) X 54 /2 — 171180 in/lb
i P Uplift �� . • y •
P — l �M ,i1 - 1 �I „ ) _ (133179.- 171 180) / 54' ' CROSS AISLE ELEVATION w.iii - 704 lbs. . Puplitt <„=0 No up Lift
ANCHORS
No. of : 2 .
Pull Out Capacity : 830 Lbs.
Shear Capacity : 900 Lbs.
COMBINED STRESS
Fully Loaded = (0 / 830 X 2))+((2055 /2)/(900 X 2)) = 0.57
, Top Shelf Loaded = (0 / (830 X 2))+ ((55I /2)1(900 X 2)) = 0.15
USE 2 Hilti K13 T7_ (ESR -1917) 0.5 Dia. X 2.5 Min. Embd. Anchors per 13asePlate.
I
CV :
•
EIZNIIC .
S
PROJECT SHAW SPECTRA
FOR ENGINEERED PRODUCTS
• MATERIAL HANDLING ENGINEERING. . SHEET NO. 14
TEL (909)869 - 0989 FAX : (909)869 - 0981 CALCULATED BY RF
161 ATLANTIC S'I REI:';1': POMONA, CA 91768 DATE 5/4/2012
BASE PLATE ANALYSIS :
THE BASE PLATE WILL BE ANALYZED WITH THE RECTANGULAR STRESS RESULTING FROM THE VERTICAL
• LOAD P, COMBINED WITH THE TRIANGULAR STRESSES RESULTING FROM THE MOMENT Mb (IF ANY). }:
THERE ARE 3 CRITERIA IN DETERMINING Mb. THEY ARE I. MOMENT CAPACITY OF THE BASE PLATE.
2. MOMENT CAPACITY OF TI-IE ANCHOR BOLTS, AND 3. Vcol *h /2 (FULL, FIXITY). Mb IS THAT SMALLEST
VALUE OBTAINED FROM THE 3 CRITERIA ABOVE.
= 12200 Ibs Base Plate Width (B) = 8 in h = 4 in
= 0 in /lb Base Plate Depth (D) = 8 in hl
. Base Plate Thickness (I) = 0.5 in h'h (base) = 36000 PSI
> P,
'r)/ = 190.6 PSI
A D•B f„
M b
0 PSI
fl, D•B 2 /6
L = 2 B ' . = 0 PS
•
b1 "I` b . } b1
fni = .fu .,2 = 0 PSI
wb 2 h 1
• Mn = =_ 2 ' [ . f „ +. + . 67 .f ] tS
381.25 in/lb t
Mn ;a
•
I t 2
0.04 in /cb •
• F — 75/ . I . i i = • 36000 PSI m'
• • fn = /, • 0.25 -(= 1 OK
CC
.Ft, `) Hmc N,nr •
•
•
•
rte
:J.
•
• SEIZMIC
INC. PROJECT SHAW SPECTRA
FOR • ENGINEERED PRODUCTS
•
MATERIAL HANDLING ENGINEERING SHEET NO. I S
TEL: (909) 869 - 0989,• FAX: (909) 869 -0981 CALCULAT'EI) BY I(I
161 ATLANTIC AVENUE • POMONA, CA 91768 DATE 5/4/2012 •
1
41
SLAB AND SOIL:
DI, =200 LB s:
PL = 12,000 LB •
EL = 6,088 LB ti
P = I.2DL - +' I.4PL 1.2DI, +0.85P1 F1.5EL Section 2.2 of 2002 RMI
= 17,040 LB 19,572 LB
Pmax = 19,572 LB
PUNCTURE
Concrete:
Fpunct = (2)(F'00.5) t == 6.00 IN
_ (2) *(4000 PSI)^0.5 Pc = 4,000 PSI
= -126 PSI •
Apunet = 1 +1/2) +(DeIt-I4112)J(2)(t) Base Plate:
[(8 IN + 6 IN /2) + (8 IN t 6 IN/2)I *(2) *(6 IN) W = 8.00 IN
= 264.0 IN ^2 D- 8.00 IN
Column depth = 4.00 IN
fv I I'v = Pmax /[(Apuncl)(Fpunct)J hl == 2.00 IN
= 19572 LB / (264 INA2 * 126.49 PSI) Thickness = 0.5 IN •
'4.59 J
I'y = 36,000 PSI •
LOAD BEARING CAPACITY
Pn = 1.72 [(k, R, /E,)10 +3.61P, d` < == Emperical method formula: "Load Carrying Capacity for- Concrcre .4
= 135,108 1,8 Slabs on Grades" Journal ofStructutal Engineering, ASCE, January 1997.
k, = 100 PCI modulus of subgrade reaction
12, = 4 one- halfthe width of base plate
E:, = '4,000,000 PSI modulus of elasticity of concrete
µ = 0.15 Poisson's ratio •
1', = 7.5 (I'c) ^0.5 tensile strength in Ilexture of concrete
= 474 PSI
h = I IV/(12(1-µ :eS
29.30 IN -r,=== radius of relative stiffness
1.5 *b = 43.94 IN <=== radius of relative curvature
.S. = 3 factor of safety
Pa= Pn /f.S.
= 45,036 LI)
•
Pmax / Pa -
•
•
,tr