Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report (2)
23 VLMK Consulting Engineers 3933 S.W. KELLY AVENUE, PORTLAND, OREGON 97201393 ,/ /�L /���� (503) 222-44531 FAX (503) 248 -9263 k f�3 ' � ' �% " STORMWATER REPORT for SCHOLLS FERRY AUTO REPAIR SHOP CITY OF TIGARD, OREGON for Joseph Hughes Construction 7035 S.W. Hampton Street Tigard, Oregon 97223 a sp PROFf 14,9 OREGON • •S• v0 ' 2 5. \ S c Qc r;t ��... I EXPIRES DEC. 31,4696 , VLMK Job Number 20006 Prepared by: HUYNH TRAN February 29, 2000 STORM WATER REPORT SCHOLLS FERRY AUTO REPAIR VLMK No. 200006 CITY OF TIGARD, OREGON February 29, 2000 by: Huynh Trcm NARRATIVE This is an addition for Scholl's Ferry Auto Repair located behind the existing auto repair facility. The parcel is described as Tract 3, in the northwest 'A of Section 34, T1S, R1W, W.M., City of Tigard, Washington County, Oregon. The site contains 21,527 square feet of undeveloped property currently with gravel and barely grass cover. The development will include construction of a new 5,517 SF auto repair building, 13,126 SF of paved area, and 2,883 SF of landscaping. DESIGN DATA On -site runoff flows are calculated in accordance with Unified Sewerage Agency (USA) standards. The runoff from the impervious areas is collected in catch basins and conveyed into two, underground 30" concrete detention pipes. The detention pipes connect to a stormwater control manhole with orifice control to limit the discharge to pre - developed rates for a 25 -year storm. Stormwater is then treated with a water quality Stormfilter catch basin prior to discharging into the existing storm drainage system. The Stormfilter catch basin serves as a filter only. The wastewater from car washing in the auto repair building is passed through and treated with an oil/water separator, and then discharged into the sanitary sewer line. • Narrative Page 1 02/28/00 A B C D C: %.36.1. \r4,v C c,lIrlc_ r 'a tact si RNESS LN L $ ' A 9I c. A �H117oo _tEF��.. � 4 . .w _ P 9•c \ f, RCB8tN tit `, y ‘ e ) u a Y vl ci pimuco ....... a rsr _wr Kt Y R. ` - i . 443 _ �` C g i ti, rx. U • " w _ , 10RLac ETC 4 * no r n 7 , <- Si BIOOfI TER t'Qi() � 71 I- GINGIVA l!r 511 • _....(810 G yE1R1 :. ;17 t'_n Q ( Fe ti o a RO ., � ES A N � r � Sil ! .4 R ° ". =t• .. P' � � t s cr l e •N11A CT 1-•1 A Spilt o OR ,� . ymws s w4 a R 1�i?_ RD • t N • io t 4,1,r % �` SW CONE -1 aE cr , . r 4 i O 6 CIR H 1F t ilt w iafaz _ , —al, G 9 - 1,- "' s �Y lanracx I' 1 � 9 ir ' .. lJ I ci A ai g la 91,!141.1Ca u SII CO►sINE ; al d .� i ,., i MID ►- 5 Enp : . '::'''.:='. \ : , s l sr � rlrbl 08 m1A r. • - `` ;' ,. g O •` _ MI " iw ` S t it PII,, : .p��q �s ' . ;; , ... F ' i al 1 9r TT Q 91,0Mstia— , � SCHO �� 21 _;,,,,,,,,,,v , c ATE % i, .,.. 2 DEER LLa ..,, fr.;,... . i � r - c. U . as 2 • i . 511 SP' 040 . . -• : ; . > ., + � � 4. G� t oo l e . 9. cy _ 2 is " �.. 4 BEM -t c,, a 4 , ~ " ° • W 1: 6 X IIt1 640 - -. c� g al • 6 • SIG hirmN 1W 11000 ^1 M!tl" 4 �^ $ al �� s 1 VWAMTA ST # e sl Jr g 'f' i C \ , . 1 Q % 04AC -- • Ui.i 31 — 1 1 r A cr g sE TDPP at D AKO TA 5 : - (; . • t W TM sW �1 a , p rr� ' : ,rr sr df _ N O R 1111 9r 1 a?. ' si H I f f 1 ElE '� ` 10900 '+ 1 1 I `P = � 23 r a y n € B ufl. r Ill a ,e '� 91 Lf) iD ----- a 6 "` ; : 4_1 '. 44 4 :1 5.. >• f , S a w . i - t g A/ , li :'r e - : ° "+'A1 RCREST J , 12 ,ST 3 L><t R 91 MERESTDIIE SW ` c 11300 O LN V _ X3 r% � 9t maw RISE OR 3 c? '• ; •b 91E „09 �c! E �. Y cr C7 9w MAST d , t1 N • w < teals e ` . ' , s ijv al rrJRij HILL F t ' a, �a1 , d cr ti SW _ BI - .,..5.L % MEApoY S T ��/ �' �,� ° s* 4 , � l KATHERINE $ — sr ° * 9, KATHERINE . ;. L __ .._. Cf . . ...... 1 . ��,_ �•t �T,g RTOGE $ T �� 1 `3 v um sr a ' r � ' . si r - ', , _ a >� 1 • r C"- i. 1 �+ `MN Sr \ i M1D a so tF .- �. 1 , . . �l JACK. r - -- - '?► �' ~ A B C _ D 8 12394 SW Scholls Ferry Rd, Tigard, 97223, Page & Grid 655 B2 S J-O(L . F62-12. . M1ZO �6Y�R• • co 0 eg • • • BUILDING AREA k imPkiWiOJS — ; 517 s� t vL PAVED AREA 13126 S.F. SGIMLI.b FEKRY MIiO ILEPm R � NEW arivN li 1ITEW QVt =utiU LI l7 IYDUVID ©1. IANJILLMO I i Project No. 20006 Project Name: SCHOLLS FERRY AUTO REPAIR Project Engineer: Huynh Tran SUMMARY POST DEVELOPMENT DATA Jurisdiction: CITY OF TIGARD Impervious Area: 18643 square feet, or 0.54 acres Pervious Area: 2883 square feet, or 0.08 acres Total Area: 21526 square feet, or 0.62 acres DESIGN CRITERIA: Design per Unified Sewerage Agency Standards (U.S.A) Extend dry detention pond is based on 0.36 inch in a 4-hour storm event CALCULATIONS: DETENTION VOLUME Required Volume = (0.36 in) x (Impervious Area s.f.) x (1ft/12in) = (0.36 in) x ( 18643 s.f.) x (1ft/12in _ ( 559 cu.ft. j Design Volume Pipe size length Cross Area Volume Tank 30 inches 102 ft 4.909 s.f. 500 cu.ft. STS MH 60 inches 5 ft 19.635 s.f. 98 cu.ft. TOTAL DESIGN VOLUME: ( 598 cu.ft • MANHOLE MAX. OUTFLOW Max Outflow Q = Required Pond Volume / 4hrs = 559 cu.ft. / ((4hrs)(3600s/hr)) I Qmax = 0.039 cfs WATER QUALITY RELEASE RATE Release rate Q = Required Pond Volume / 48hrs = 559 cu.ft. / ( I 48hrs)(3600s/hr)) Qrelease = 0.0032 cfs ORIFICE SIZE Formula Q = CA(2gh) "0.5 Where C = 0.61 g = 32.2 h = 30 inches (Tank pipe height) or D = 4Q /((pi)(0.61)((2)(32.2)(2.5)) D = 4(0. 0031 )/((pi)(0.61)((2)(32.2)(2.5))° ) D = 0.000533 ft D =0.023 ft. D = 0.28 inch (Use 1/4" diameter orifice WATER QUALITY STORMFILTER CARTRIDGE No. of Cartridge = (Max.Outflow cfs * 499 gpm /cis) /(15gpm /cart) = (0.039cfs) • (449 gpm /cfs) / (15 gpm/cart) No. Cart = 1.17 cart. (USE 2 CARTRIDGES USA - DETENTION.xls 1 2/28/00 B 1 -PIECE STEEL 8' OUTLET OR CAST IRON GRATE RADIAL FLOW ' PIPE STUB (2' THICK - RATED ( TYP ) II. CARTRIDGE 12.000 LBS.) i A _...∎ HINGE - 12 GA STAINLESS ■C: � F� I<�I G , STEEL, 2 1/2' OPEN W/1/2' ' I ' g % / , P r ,: i . KNUCKLE, 22 LONG WITH FASTEN WITH 12 O 1 i 4' /4' =, �/ , � / , � � PIN ��II 1 %�I� n ►% I i STN. STL. BOLTS) 7 1 trAfi,tl CL OF HINGE il uilili _ ►' � .. A BOLT -DOWN. 2^ �aMMI IT, g "'s�aca o]'e+�sy, DIAMOND STIFFENED COVER. TRAFFIC STIFFENED 9 1/2' 1' -10' B GRATE FRAME 2 1/2' x2 1 /2' PULL /LIFT x3/16" ANGLE ANCHOR (TYP) INLET PIPE FROM WO MH CATCH BASIN STORMFILTER - TOP PLAN CLEANOUT . SCALE: N.T.S SCALE: N.T.S \ g 4' -Y 2' -S SEE CLEANOUT 1 FILTER - CHAMBER .. RFLW Fr� ,%, INLET OVE O 2 -2 3/4' � � ZA El 10 GA. STL. *L BAFFLE INLET PIPE (TYP) SIDES f� \VVxxv// FROM W0 NH 4 \ ii/./4 I - iiiiii iiiii i •• I iiii� At BOTTOM / OM • V t OUTLET PIPE M ■C =C `.I r ' 1. 1 - 1/4' ANGLE (TYP) • • CLEANOUT FILTER INLET CHAMBER FILTER CHAMBER 1 1' -6 - OUTLET • 7a R CORROSION RESISTANT 3 /1G (TYP) 2 -5' COATING, SECTION B -B EXTERIOR .L____ cl CATCH BASIN STORMFILTER - SIDE SECTION SCALE: N.T.S SCALE: N.T.S VLMK PLOT DATES: • CBSF2CA.dwg 2/25/2000 12:12.11 HAT VLMK Consulting Engineers 3933 SW KELLY AVENUE, PORTLAND, OREGON 97201 -4393 i a39 • (503) 222 -4453 / FAX (503) 248-9263 / vlmk ®vlmk.com s akc t V 0- o c 7 CJ PRINCIPALS ALFRED H. VAN DOMELEN, P.E. JAMES E KNAUF P.E. GREGORY J. BLEFGEN, P.E. JOHN T. BROOKS STRUCTURAL CALCULATIONS HAVLIN G. KEMP PE. SCHOENFELDER for Scholls Fer ry Auto Repair Shop Tigard, Oregon for Joseph Hughes Construction 7035 S.W. Hampton Street Tigard, Oregon 97223 • , p PROF� 4u�� G`NEF 602 + affelt OREGON A 9 ti ea 1`1 Vans VLMK Job Number 200006 J , ` *G ty MEMBER SCHOLLS FERRY AUTO REPAIR SHOP VLMK JOB NO. 200006 STRUCTURAL CALCULATIONS FOR BUILDING PERMIT MARCH 3, 2000 TABLE OF CONTENTS 1. Roof Framing Design R -1 — R -2 2. Lateral Design L -1 — L -3 3. Mezzanine Design M -1 4. Mezzanine Lateral Ml -1 5. Wall Analysis W -1 — W -10 V , VLMK Consulting Engineers Job \-- — 3933 SW KELLY AVE. / PORTLAND, OR 97201-4393 Client N :"- _- 7 ' _ ' (503) 222-4453 / FAX 248-9263 Job No. By Date Sheet No R 1-014 rC 4R4.cill NA - i • , 5f7fri- .1 I = 2pt Cia_i : 1Z7;: I58 - z 1.--1 ---7- 1 1 F_- _ _:_. _ 14 61-1 v.ii-ixF ici4 rccp raiz_ 40 F Vt/F- OM . ' :(■:---- 1 R. - 1 21 -: = izir- . . ITY-15.=-1047 . i 14 I _ . - 1-1 611 1-1 Mgr" e -2 . gaci 2 7= '375 _ , Ir. FlArfet lz- 4 1, 6 bv.o . + 0. Eccri2 rri 4x Ltverr _ 1 5 X2 - 31W4 oz__16. 6111F5 il Sag 210 ‘-illssiAVA - incti% RFI.ciat (1 -;-- Lv- 11 a 1 - r-ar--TA - u,rr( . . jZ —Z SNOW DRIFT CALCULATIONS - PSF = lb PSI = lb PLF = ft • K = 1000•Ib KSI = I000•PSI GROUND SNOW LOAD PG = 25•PSF CE _ .7 ROOF SNOW LOAD PF _ PG.CE PF = 17.5 •PSF DRIFT LOADS ON LOW ROOFS AND PROJECTIONS : HIGH ROOF /LOW ROOF DIFERENCE OR PROJECTION HEIGHTHR = 6•ft DIMENSION OF ROOF NOT LESS THAN 50' WB = 50•ft • MAX HEIGHT OF THE DRIFT • HD [ f-t .0 +101 1.51.ft HD= 1.882•ft , w13)- 3 7 PG HEIGHT OF REG ROOF SNOW D = .13-PG ,- 14•PSF HB = � D ft HB = 1.014.ft WIDTH OF THE DRIFT WDI = 4•HD WD2 = 4•(HR - HD) WD = I WDI if WD1 <WD2 ; WD =8 •ft WD2 otherwise z , J'it MAXIMUM INTENSITY OF SNOW DRIFT th- PM = ft r HB) PM = 50•PSF . IF DESIGNING FOR ROOF PROJECTION AT EDGE OF ROOF REDUCE SNOW DRIFTING BY ONE HALF AND USE WB = 50 FEET SLIDING SNOW IF HIGH ROOF HAS SLOPE GREATER THAN 2/12 PFS = ft ( l.4 HD + HB) PFS =63 .PSF MAXIMUM POSSIBLE DRIFT INTENSITY BASED ON HR PMAX ft • HR PMAX =104 •PSF . Ho 1 21-11ItiG We4cLi.5 5 10 g Li,;: job 1 ft1F-T Attr rk --_,-_-___- ----_-_ - 7 VLMK Consulting Engineers 3933 SW KELLY AVE. / PORTLAND, OR 97201-4393 Client --=.; (503) 222-4453 / FAX 248-9263 Job No. ZCl27 06, By Date 1-25 'CO Sheet No. 1.-1 LAFITAL.- MA1.- t 4 I IS F.AroAt, exra-tra 5Dff. • r _ .ct _ - - -it - - • - . _ ---- .-.. . _ _ . / 441- Fa Lir/44.Fr witty 1.0,4pirILT. torn- IPT 13 _ - IA 16 r i tof 2,5rF Z Z- ilW S.OrF 61/ --'- Is 3 OVrT-Aa— - - rkt --- I ,51-fr -- 1 . 2_ th * car wick-IL mtu— --- 1 . d7 -.-_ I, ettro,A-R7 . R;0F0 - FLF:9 - : - 7c---- g?: w pri-f g„- -= 1(..Z-1 7 5F ----- 1 --= ,Z17F VLMK Consulting Engineers Job 3933 SW KELLY AVE. / PORTLAND, OR 97201 4393 client ` - (503) 222 -4453 / FAX 248 -9263 J N o. G `^�� By X44. Date I -Z5 _w Sheet No. yZ A1 X615 KT 4 Tic - ro X P'A1 G V = s rJ4 - . OZ (Z 5 - • ECG .y= •- w -- 071 Li V (2)(.) . L4-1 _ . 2— I.— _ _ a I � �. I,4 eFez E-.1=-(6.)w)(2-)t- 51'(12r' )] •I( =19 I'►- - c[ u = (rax ) (Z)t- S I c iomF -)] .16 •�7 x1`4xZ -t 2A = Z 4 •7 K = 61' X I &, Zr -) ( 116 ` = 3� , K 1-11N).' ax x12 F :16 _ 401 p 401 X.44 = 17. K PK) 31'1)(1&_,Z-1 10.; .K q C zv = - ^' VLMK Consulting Engineers Job fl ( r0 v - 3933 SW KELLY AVE. / PORTLAND, OR 97201 -4393 C lient __ _ (503) 222 -4453 / FAX 248 -9263 Job No.20 tZ By 1 Date I Z5 - e: Sheet No. L-3 VAP 1 N/& - 36,3 441 —4IZ 0 - *4 = I7 = 7 � e ��X 118 � rt /s wokt,t, . [(IQ e_ 3 V= sv l'i, - 1 41 - A, loote 4-a,� U = * 101e et; ne, V =Z '7 ?- 3.4' ,j ). rt-r-L. . .__ _ ., , , _,,Fi ,ode3(o( ,L, ,,.. ,,,./. ,,,„ lae,qa, ,/,/,. ,. . ,. , .1 ,,, ,, . loifeit- u D,z, - i, PO, 4` r • i I V DMFA . - e 14.4 gcoF t-i 'at -c,-&"o,, 7_4 VLMK Consulting Engineers _ 3933 SW KELLY AVE. / PORTLAND, OR 97201-4393 Client (503) 222-4453 / FAX 248-9263 Job No.2179 By Date Sheet No. M . _ M Li/ - FF kte 14_7= !"F;'-5F - ---- z I -A .4 _ rinA 640X)0A = 44eo 16"a6, top = ./e& PLF 1-L L1 flLL7 16. • kiALL- LoAciz 47gli.cb.4.-4) 640) z&,0 U _ _ _:„ VLMK Consulting Engineers Job ‘ - --9 3933 SW KELLY AVE. / PORTLAND, OR 97201-4393 client r (503) 222-4453 / FAX 248-9263 Job No. By 5L4 Date 1- 7 Sheet No./14,-A_ t 1M104./ 1•4417. Wr443r&.• 25 % a 1 1----- • l*etf -= I 1,r- - TprAl_ 51:Sla - i 3) =-' .dp-,F. FArrtrint , IOFW - .r • \/-= (2 0 1.1 = • 12_ 1-4 -ize4 . -114 11P a arte R s 135b Pt la — lz = 2_318 g 14 • V 1 :"---• 1 35g/ e' = 75 FLF ow 4 tooPt_i - 0K - V2_ Z31,W/ IZ-0 1 7 /: - Tp4C6fi? e< 0.0.' rir PK_ V 3 : ----- ----- zort_roK 1 4 ' 014131a-4412 5,f ceav_ e 7 t. Ven:.=_. 16. pt_F 241fcK-- um Fr (-AA, 22 Xi- + l'Sg = 37Z_ .1"1::::1 rt-r 13,5 9 .,, y r ti __6, 6,11 l- 1-fficl-t. K 13`c li\i , . ( - 14 ) 'W - - -1 .0)-T - e 4g.'ine. VLMK Consulting Engineers Job Au 3933 SW KELLY AVE. / PORTLAND, OR 97201 4393 Client _ - _ __- _ __ __._ (503) 222 -4453 /FAX 248 -9263 Job No. PO CA ey Cate I - 2 5 - 00 Sheet No.1v - I W4-1 OA f - _ - 17413 44 Z 7 - 24 •F1zorl -111%u. ►emu. -> Iel 6'46 zz - G X IZ -- Z `c = 70 " h - Z ��5 6Fisti 12 = 6'_rbo)(J2) _ I7. Za'ic. = 227, " K v = (• `1��C�� _ 5.76, L 2-f Flo zTI xtcl, IPS • NMPER ?►K - t o,7 VL = 360 X 3,34 _ 4 ,o I� LL 6oX 13.34' e.0 k tAhd-I- Mkt . pL = X5osit2FX 12:- = 34. k g- VL = 2 47X75x toy = Z -o K TorAL ACID = L8 , 4 K e M ►D rtrtar x 13,54 = ZIP FU 1 _ ico. (0)/ = 10,8 k-, 5 = , 44 _ VLMK Consulting Engineers Job 3933 SW KELLY AVE. / PORTLAND, OR 97201 -4393 Client - = _ L. _ _ _ (503) 222 -4453 / FAX 248 -9263 Job No. By Date Sheet No. W - Z- /- - 1 co h N ar 0=C 1.aP►1i6 . • z_f\ ►e___- fp = (0(.36)(4) 5 6 1 ,, 17. 1 17F- > 1 2 ,strip_ 3(1145 a tr of- Pert- R IcrF e. - - or c ni P = X17,1. 6 = 171 P!. --- 342 erkAl rPU - 7 A15• V 1780 i*x1 = 23. 7 . kilsK tli 4X liN v = 158 *- 1,53 = 2108 s 111-1 4" A.,, - rtlf- _ -I'pef f7i - 12 , 3 e V = 417_ s-r _- ld Wf4.l z_ = 5,11 61-1‹ - Mili - - LiFLAFT - . eztazo = i 3 N),,\ k-- u),S AFuk1, = I(v, Z (c5 20,5) = 15 P✓F wT1 =lz PsF -- 1 G UP LIF1 = 3 P6 IAA, = FLP 6irtr 1-1 alp & Vct4 - W1$, a ?u.FT = 7zXz' o = i 4. (1 oil AC. = 2 17O > Z,0 o,K. 0 )' u 511 141 - rte 1 . areAF =410 0k. - 4AF _ X65 : -w , m - 4354_, = ze-zn 0 0 ►-orb Fi •.l(. volt - 41Z- ''Lr u -rlc N-I caF .41z - 24? = .17ortj ,' c A34 ii-l17: uv- SLENDER WALL SECTION PSF = ftb PSI m PLF = ft Jr_ OVERALL PROPERTIES K r 1000.1b KSI = 1000•PSI WALL HEIGHT H = 20•ft BLOCK SIZE T = 7.625•in LENGTH OF GROUTED SECTION L = 24•in .- AREA OF STEEL AT EACH FACE 3- #5 EA FACE AS .93•in BLOCK STRENGTH FM r 1500•PSI MASONRY MODULUS OF ELASTICITY EM := 750•FM DEPTH FROM FACE TO CENTER OF REBAR D = T - 2•in WALL SECTION LOADING ROOF DEAD LOAD RD = 360•PLF • ROOF SNOW LOAD RS = 600•PLF ECENTRICITY OF ROOF LOADS E = 1•in Lo CONCENTERIC DEAD LOAD FROM LINTEL CD = 1800•lb lo''J =ti CONCENTRIC SNOW LOAD FROM LINTEL CS = 3000•lb JA. WEIGHT OF GROUTED BLOCK PER FTA2 MW = 78•PSF AXIAL LOAD STRESS CHECK PT '= CD - CS - ((RD + RS)•L) + (L• 2 •MW) PT =8280 •Ib • AG = T•L AG = 183 •in - ASTR = AG ASTR = 45.246 •PSI - PLIMIT = .04•FM PLIMIT = 60•PSI • NOTE: IF AXIAL STRESS ASTR IS GREATER THAN THE LIMIT USE A LARGER SECTION • EQUIVALENT OUT OF PLANE MOMENTS AT MIDHEIGHT OF SECTION • WIND MOMENT WM = 5250•ft•lb STRENGTH SEISMIC MOMENT EQM 5881•ft•Ib4.; J': • SERVICE SEISMIC MOMENT EQM • EQS - 1.4 EQS = 4201 -11. lb - r • DEAD LOAD MOMENTS AND AXIAL AT MIDHEIGHT RD•L•E DM 2 • DM= 30•ft•Ib L•H•MW DP - RD• L - CD 2 DP = 4080 •Ib ROOF LIVE MOMENTS AND AXIAL AT MIDHEIGHT RS•L•E ate` SM = 2 SM = 50•ft•Ib SP = RS•L - CS SP = 4200•Ib LOAD FACTORS FOR STRENGTH DESIGN AT MIDHEIGHT • PU1 1.4•DP MUI = 1.4•DM PUI = 5712•Ib MUI = 42•ft•Ib PU2 _ 1.2•DP r .5•SP MU2 = 1.2•DM + .5•SM PU2 =6996 •Ib MU2 =61 •ft•Ib PU3 - 1.2•DP - 1.6•SP MU3 = 1.2•DM + 1.6•SM + .8• WM PU3 = 11616 •Ib MU3 =4316 •ft•Ib igovsr PU4 = 1.2•DP - .5•SP MU4 = 1.2•DM +-.5•SM r I.3•WM PU4 = 6996•Ib MU4 = 6886•ft•Ib PU5 = 1.32•DP .22•SP MU5 = 1.32•DM + .22•SM + 1.1•EQM PU5 =6310 •I6 MU5 =6520 •ft•lb PU6 - .9•DP MU6 - .9•DM - 1.3•WM PU6 =3672 •Ib MU6 =6852 •ft•Ib • PU7 - 1•DP MU7 =.9•DM - 1.l•EQM PU7= 4080•Ib MU7 = 6496•ft•Ib =' • PICK OUT THE WORST CASE AND ASSIGN TO PU AND MU PU = PU4 PU= 6996•Ib MU = MU4 MU =6886 •ft•Ib • 411Np SERVICE MOMENTS [C CONTROLING WM 5250• ft. Ib EQS =4201 •ft•Ib • MS • -SM -WM • MS = 5330 •ft•Ib • Jet.. J :s 3.- } SERVICE DEFLECTION CHECK CALCULATE CRITICAL MOMENT 5' 2 FR 14• PS .• PSI S = L 6 MCR = FR•S MCR = 3002•ft•lb CALCULATE CRITICAL MOMENT OF INERTIA AS 29000•KSI RHO • L DD N EM N = 25.778 K - i 2•RHO•N • (RHO•N) r - RHO•N K = 0.444 L•( K•D)3 � ICR = N•AS•(D - K•D) ICR = 359.115 •in 3 CALCULATE GROSS MOMENT OF INERTIA • 3 IG = L 1 2 IG = 887 •in :1.1. CALCULATE EFFECTIVE MOMENT OF INERTIA IEFF - 1 l 5 ICR IG' IEFF = 511.185 •in CALCULATE CRITICAL LOAD FOR DEFLECTION MULTIPLIER PC 3.14 •EM •IEFF PC =31350 •Ib H I _ MULT PT MULT = 1.359 PC SERVICE DEFLECTION CALCULATION • 5•MS•1-1 5 •MCR •H 5 (MS MCR) H l DELTA • ' 48 EM • IG •MULT DELTB 48 •EM •IG y 48 •EM •[CR 1 I•MULT 11 SDELTA DELTA if MS <MCR DELTB otherwise .; i■. SDELTA = 0.858 •in ALLOWABLE DEFLECTION ALLDELTA .007•H ALLDELTA = 1.68 -in ULTIMATE DEFLECTION • 5•MU•H 5•(MU MCR)•H UDELTA - • 48•EM•IEFF 48•EM•IEFF , •MULT UDELTA = 1.832 in CALCULATE ULTIMATE MOMENT z�. J; MU =6886.11-lb PU = 6996 •Ib z:r PU•UDELTA ULTM MU 2 ULTM = 7420•ft•Ib CALCULATE MOMENT CAPACITY FY 60•KSI • AS•FY - PU PU r AS•FY ASE = FY A .85•FM•L A= 2.052•in Ai l MN - .8,ASEFY'D 2,,, MN= 19253•ft•lb } I4- • .: r VLMK Consulting Engineers Job fi AUTO 3933 SW KELLY AVE. / PORTLAND, OR 97201 -4393 Client (503) 222 -4453 / FAX 248 -9263 Job No. fd t O By l--f� Date _3 -00 Sheet No. LA..)-7 G— I. a roF- oFEHmtb 0 �4V _ 15 1 f T 6I 51'tlG = 17 I �5F JUST P l.o6K •4BX 101 = 5.1'3•F _. - - - molar Ui i = r ISJ(7)Cze,? %g = 5250 - - - - I oo,;; I4ro, 11 915 t -Ilt!b . 'iz toAP 61 Vi- _ X5 LL- _ 609 >C _ 3cat- CMU WALL DESIGN - - -VLMK Engineering Software - -- Client - . JOB TITLE: SCHOLLS FERRY AUTO Job NO200006 BYSWB Datel -25 -00 Sheet No. v 1.2 - Based on 1997 UBC. Software Copyright 1999 VLMK Consulting Engineers . All Rights Reserved. INPUT -g GEOMETRY Mark / hp = 0.00 feet / \ • h = 20.00 feet e = 1.00 inches e I SUPERIMPOSED LOADS hp % }= PD = 0.360 k/foot service dead load I rA Roof/U.•er Floor PL = 0.000 k/foot service floor live load / PLr = 0.000 k/foot service roof live load - PS = 0.600 k/foot service snow load fl = 0.5 load factor (UBC 1612.2.1) . f2 = 0.2 load factor (UBC 1612.2.1) ' W IND h Speed = 80 basic wind speed (UBC Figure 16 -1) Exp. = B wind exposure (UBC 1616) Iw = 1.00 importance factor (UBC Table 16 -K) /A - SEISMIC /A ' Ca = 0.36 seismic coefficient (UBC Table 16 -Q) Ip = 1.00 importance factor (UBC Table 16 -K) w O Floor . BLOCK d nom. size = 8 inch nominal block size grouting = P S/P solid, or partial grout weight = L L /M/N light, medium, or normal fm = 1500 psi strength of masonry LOAD COMBINATIONS I.4D (12 -1) _ REINFORCING 1.2D + 1.6L + 0.5 (Lr or S) (12 -2) 3_- fy = 60.00 ksi steel stress 1.2D + 1.6 (Lr or S) + (fl L or 0.8W) (12 -3) ea. face? N Y / N two curtains of reinforcing? 1.2D + 1.3W +fIL + 0.5 (Lr or S) (12 -4) bar # = 5 # rebar size #4,5,6,7,8,9, or 10 1.1 (1.2D + 1.0E + (flL + f2S)) (12 -5) spacing = 48 inches rebar spacing 1.1 (0.9D +/- 1.0E) or 0.9D +/- 1.3W (12 -6) OUTPUT Wall wt.= 49 psf weight of wall Eh = 17.9 psf ultimate lateral seismic load • d = 3.81 in. depth to reinforcing Eh s = 12.8 psf service lateral seismic load . As = 0.31 sq.in. area of reinforcing at center of wall Wind = 13.2 psf lateral wind load STEEL RATIO (UBC 2108.2.4.2) _ 0.5 rhoB = 0.0053 maximum steel ratio rho = 0.0017 OK - rho <= 0.5 rhoB VERTICAL SERVICE LOAD STRESS (UBC 2108.2.4.4) DESIGN SUMMARY Fa max = 60.00 psi maximum vertical service load stress, Fa = 0.04 fm • 20ft. Wall Height with Oft. Parapet fa s = 15.85 psi OK - vertical service load stress, fa <= 0.04 fm • #5's at 48 inches o.c. - Center CRACKED AND SERVICE MOMENT (UBC 2108.2.4.6) • Partially Grouted, Pm = 1500psi ' • Mcr = 702.6 lb -ft cracked moment capacity • Special Inspection Required Ms = 720.3 lb -ft applied service moment SERVICE LOAD DEFLECTION (UBC 2108.2.4.6) Delf s max = 1.7 in. maximum service load deflection, Defl s = 0.007 h Defl s = 0.17 in. OK - service load deflection < 0.007 h ''': MOMENT CAPACITY AND APPLIED FACTORED MOMENT (UBC 2108.2.4.4) 1 phiMn = 1589.4 lb -ft nominal moment strength of wall 1 lU =1235.°v 11.- && OK TiAx -P1► - tlon < YltU1 i W SCHOLLS FERRY AUTO REPAIR MASONRY LINTEL OVER OVERHEAD DOORS PSF ft2 PSI = P = ft K = 1000•Ib KSI = 1000•PSI MOMENT ON BEAM MC = 17.28•ft•K SHEAR V = 5.76•K BEAM DEPTH D 70•in BEAM WIDTH B .= 7.625•in ES = 29000 KSI MASONRY STRENGTH FM := 1500•PSI EM := 750•FM AREA OF BENDING STEEL ASB :_ .62•in 245 BARS ALLOWABLE STRESS IN 60 KSI STEEL FS .= 24•KSI ALLOWABLE COMPRESSIVE FLEXURAL STRESS FB :_ .33•FM FB =495 •PSI FLEXURAL DESIGN • N EM N = 25.778 DR = D - 2.5• in P = B DR k =[(N•P) +2•N•PJ -N•P k = 0.22 J• =1 - J =0.927 Fb := B •D k,i Fs MC FB =495 -PSI Y, ASB•J•D Fb = 54 •PSI Fs = 5 •KSI FV ( Fv DR•B•J FS = 24•KSI - • SHEAR REINFORCING SPACING IF NEEDED FV = 38.73 •PSI S 16 in ASV = 0 if FV >Fv Fv = 12.077 -PSI S•V V = 5.76 •K FS•DR otherwise • • DR = 67.5 •in FS = 24-KSI • ASV =0•in2 Uj /0 SCHOLLS FERRY AUTO REPAIR • MASONRY COLUMN WITH COMBINED LOADING PSF = ftb PSI = in PLF ft K = 1000.1b KSI := 1000•PSI MOMENT ON COLUMN MC = 10.8•ft•K AXIAL LOAD ON COLUMN PC = 18.4•K UNBRACED HEIGHT H = 20•ft . --• " UNBRACED COLUMN DIM UCD = 15.625•in a'. BRACED COLUMN DIMENSION BCD := 15.625•in ES 29000•KSI MASONRY STRENGTH FM 1500•PSI EM •= 750•FM • AREA OF COLUMN STEEL ASC := 1.76•in 446 BARS AREA OF BENDING STEEL ASB := .88•in 246 BARS ' ALLOWABLE STRESS IN 60 KSI STEEL FS 24•K51 RADIUS OF GYRATION BCD•UCD I 12 I = 4967•in AE = BCD•UCD AE = 244.141 •in / I ..5 . R AE) R = 0.376•ft RATIO R RATIO = 53.209 . ALLOWABLE COLUMN AXIAL FORCE PA C1 =1 H 2 2 1 140•R) C2 ._ (70.— l C3 := .25•FM•AE C4 .65•ASC•FS z ?_ PA = (C3 + C4 ).C1 if RATIO <99 '' I (C3 C4)•C2 otherwise PA =102 •K ' ALLOWABLE COMPRESSIVE FLEXURAL STRESS FB = .33•FM FB =495 •PSI - . FLEXURAL DESIGN N •= EM N = 25.778 D •= UCD - 2•in P •= BCD .D • 1 K = (N•P) r 2•N•P 1.5 -- N•P K =0.367 J = 1 - 3 J =0.878 Fb = f MC I ? 11 Fb = 277 . -PSI FB = 495 •PSI kBCD•D ,I '.J'K, Fs = B A B J•D = 12 -KS' FS = 24•KSI INTERACTION INTER = ( PA1 + ( FB INTER = 0.741 i is VLMK Consulting Engineers d a , o2ove _ 70 3933 SW KELLY AVENUE, PORTLAND, OREGON 97201 -4393 - (503) 222 -4453 / FAX (503) 248 -9263 / vlmk ®vlmk.com PRINCIPALS ALFRED H. VAN DOMELEN, P.E. JAMES E. KNAUF, P.E. GREGORY J. BLEFGEN, P.E. JOHN T. BROOKS STRUCTURAL CALCULATIONS KMBERLY A. SCHOENFELDER for Scholls Fer ry Auto Repair Shop Tigard, Oregon for Joseph Hughes Construction 7035 S.W. Hampton Street Tigard, Oregon 97223 40 PROF 4 -(_, 602* arm I OREGON 1 0. Van < N `c3 N.2/ �� h`• Van • VLMK Job Number 200006 for MEMBER i. SCHOLLS FERRY AUTO REPAIR SHOP VLMK JOB NO. 200006 STRUCTURAL CALCULATIONS FOR BUILDING PERMIT MARCH 3, 2000 TABLE OF CONTENTS 1. Roof Framing Design R -1 — R -2 2. Lateral Design L-1 — L -3 3. Mezzanine Design M -1 4. Mezzanine Lateral M1-1 5. Wall Analysis W -1 — W -10 VLMK Consulting Engineers Job 3933 SW KELLY AVE. / PORTLAND, OR 97201 -4393 Client _ (503) 222 -4453 / FAX 248 -9263 Job No. By Date Sheet No. JI t I I I f I. 50 z5Pff-- r ~1 61�77G — z1 ZOt Lci4 rcvF yog_ zio VLF - 7-1510;667 14 . zet& 611-17 r 7 - . 7 _ 3 . nrt = 1505 x2= 31W O - 6fl1Porl H f,K210 =2 P = # S�NczAc� - 10.1% RF',&cri9r{ 60 o = 550 * 11-17 ZAP = X 1 - - A , • • SNOW DRIFT CALCULATIONS • PSF = ft� PSI ='l PLF = ft K 1000.1b KSI = 1000•PSI GROUND SNOW LOAD PG = 25•PSF CE = .7 ROOF SNOW LOAD PF = PG•CE PF =17.5 •PSF i'; DRIFT LOADS ON LOW ROOFS AND PROJECTIONS ':t HIGH ROOF /LOW ROOF DIFERENCE OR PROJECTION HEIGHTHR = 6•ft • DIMENSION OF ROOF NOT LESS THAN 50' ws = soft • MAX HEIGHT OF THE DRIFT • HD .43 . ) 3 I PSF + 101 - 1.51•ft HD =1.882 •ft = [F HEIGHT OF REG ROOF SNOW . D = .13•PG r 14•PSF HB = j PF ). TT ! ft FIB = 1.014•ft WIDTH OF THE DRIFT WDl = 4•HD WD2 = 4•(HR - HD) WD = I WD1 if WD1 <WD2 WD =8•ft s' WD2 otherwise z2, MAXIMUM INTENSITY OF SNOW DRIFT • r- i PM = ft + HB) PM =50 •PSF . IF DESIGNING FOR ROOF PROJECTION AT EDGE OF ROOF REDUCE SNOW DRIFTING BY ONE HALF AND USE WB = 50 FEET N • SLIDING SNOW IF HIGH ROOF HAS SLOPE GREATER THAN 2/12 PFS = ft ( 1.4 HD + HB) PFS =63 •PSF MAXIMUM POSSIBLE DRIFT INTENSITY BASED ON HR PMAX ft HR PMAX = 104 •PSF A 4 r 7 7- VLMK Consulting Engineers Job 1-1 F1 Ariz:) 3933 SW KELLY AVE. / PORTLAND, OR 97201-4393 Client (503) 222-4453 / FAX 248-9263 Job No. Z 06 By -■ Date I2 -629 Sheet No. LA LATML-. AtiAl:f.3. i.uiTh t-r-VArq - = - i . I IS , e , 0 FArtio&- G:frtxtra 5:)r,-sr.. lc . .. . . . N , , e ro5P istiztifi will? vocic7iiiLT Wriii- wcr 1:5 'k 1.7 P-5F fir z,rF Ze_ --- fee/PV soar-F ;---. I. 3 ovrVa.-- I 515F G --- 1 . 2_ tri * car wALL Irilitt =--- 1. cat . w0E- an,FT: - icgl = lo_1 FvF 1,1117r1+ ? coml. _ -_ 1(.2_1 ---=-- 16 FF = _ VLMK Consulting Engineers Jobs A-�D 3933 SW KELLY AVE. / PORTLAND, OR 97201 -4393 Client I (503) 222 -4453 / FAX 248 -9263 Jab No. c ' � By / I.4I3 Date I -2-5 _7 Sheet No. LZ f X t . l0]`I r]/ KT -= 4,0 Giricu FLWX tAr_ G v s G �� • OZ a 0) s I ECG � .► LILT- o?-wrt ;-- ,(2 , 5)C. 3 = 2Z-14 141 -= 1,4 11A eTcc E4=--(6.)(50)(2_)+- 5I'(Izrr)] °I6. =194 tF c °' Lu = (a)e) (z)-t- � I c IzmF)] • I _ - 257 P - T t4c7 XI'Ml XZ- t 2 b,e07(2 57) = Z4 . 7 K _ Lthip Kie = 9 - rpmfio 17_11' -o Y = 6' x ZP ) ( < <�') - ►� ���v co s. L _ (pox soi)XZ.. V`21 ='}U1 X 44 ' = 17. K L ,lam - S. klV /. I°c Ib, �>; = 10.3 .K (2-x � �C � Zv Job fi MK( Arr0 VLMK Consulting Engineers 3933 SW KELLY AVE. / PORTLAND, OR 97201 4393 Client -----..---:- ._ g (503) 222-4453 / FAX 248-9263 Job No.X279 ?Z By Date I --- Z - ef Sheet No. I-3 gcc F piApftrkim 6- • = 5c,3/ ,I )1 =411 12LF licrz 2_K Art . _ . 4z 176 /z_x 10 - =---- 7L- . 10J 6 itRo, V =-3b$11-P-' (..■. 1----.11 x ' - 7 - * 101 £ ao,4,-• V /i• / ii .7%. . tatezroz,- t - • ••-.- -7 0/ -4 / / (-' . ,/ / ' • ' I i 1 LIT14-- 17M . ei-a.t• gcoF- • vik == VLMK Consulting Engineers Job �iff - 3933 SW KELLY AVE. / PORTLAND, OR 97201 -4393 Client ____ ___ (503) 222 -4453 / FAX 248 -9263 Job No. By Date Sheet No. AA -1 11'? 1A l l 1 1 I L , I I .. - -- ti = 6 7 / 4 4 ' i 1 _ { l 1170 13( - /6 �p-rr WALL ►-0,k17. - 5 %8 - (I & 46) = Z&,0 r X& e(6. Fg, - . -- r .. =- - j r MK Consulting Engineers Job _ = = 3933 SW KELLY AVE. / PORTLAND, OR 97201 4393 Client - _ - - _ _ _ _ — . _ 1 (503) 222 -4453 / FAX 248 -9263 Job No. By Date 1 . Sh eec No. MI.- I L - 257 of 11-5 = 1 - == 1 1 tom ; • V -= (2‘s5C. ) Ll --- • la 44 S. (I. 4) 9e4 L ir . _ . , d -114 Pry �za,i R I = 135$ i1 R Ia. - l ' Z3I8 -! C = 1 1 = 75 PL orb 4 100 Pi - -- 0r \ = 131.&// 1 = I28 TI Pr ae< zoo d Y — % ` = 53 71R-►° 5 = ?. .o PL oK / 2 i�� U 31,Q- 7 G L° 7 L, van= /GYM FLF GI-I - UPU Fr 1 ; 2 ,1 X z + 135 37Z ` Mr =13,5« �o� OIL T: tir - ' k I.l ., U K 13 l H 7 r ri , - W � ` v �' j ,.o e 4gHoi 6 . r ► VLMK Consulting Engineers Job r��n .t) t = 3933 SW KELLY AVE. / PORTLAND, OR 97201 -4393 Client _ � (503) 222 -4453 / FAX 248 -9263 Job No. B JK1 Date I - ZS 00 � Sheet Nol/ 1 }^w r✓ AI I AL � 3 . 1Zt - 44/z_ -I- Z _ 1 I�O1�'l G trt 1 u , ICU. - - - oV z-TA G X 1Z _ a " — 70 " - 7 6 SP 'I = 1 T1 = (bO)(12 , = 17. ZSK — 227, 4.1( Y = (• 96)(6 = 5.76. Ho - rixicaPS ?) K 4 1,0 VL = 360 X [3,34' _ ,8 I� LL -6 9X I3.34' ^8 oK tANLL1- b -pL = 6.x o X12 ' = 3.6k -hW r'-- Z, 47X75) lo = 2.0 K .rarAt AK141, = 18,4 K e M 1D rt #fl C1 or1F t. J = 1(01-1 x13,54 = 2I� - h'1 (Zoe% = 10,8 = I 1 4.Z. I 6 X(cp , X , r)a I, 2 _ 3Z'� A ' 5 =, 4 .4 x4 =1.76 kt - VLMK Consulting Engineers Job 3933 SW KELLY AVE. / PORTLAND, OR 97201 4393 client (503) 222-4453 / FAX 248-9263 Job No. By Date Sheet No. Z— tiAl/ GPI 9F 11E /04211i6 ziw6v_ _ (4) 7 17..1 > 1 6 , Z iatt17. • • 3(1,4) atr o1 1 gvA4Tiert c Top ea-f74 • _ 1 (17 (ia 171 e.A44 1T- - A34 • \ I . x -•; - . \o•K irk 4X TIAII-Vr, \A-1. --= 2/0b 5 V0E3/171 123 6 • W' = 41z- . e517 7_ 5 , ' - Lint Fr . -6 * zo. mruAt,- 169, 2_ (cp5 20,5) 15 F5F 1\11. VmeItt telAgl? 116c OP UPI= 31 Waal FM x 3V 7Z ftP 60.-tp')-1 alp Vok- 11zij6e-, ,L111Y- 7Z-X2 144 ( Tai51.0 oThf ar- zee od< 04' 5111' 141 teas? 4 / 6 1V . 01( 1Are 465 =it- -51404t- TP-Art5V-- =45/ z4-Z-PLF- 0 nee .0.K. 4zLr mirl(-111 1 - 24Z 1 Avp ,34a-IF • uk)--3 • • SLENDER WALL SECTION PSF = ftb PSI := lb PLF = ft J:t OVERALL PROPERTIES K = 1000•1b KSI = 1000•PSI •' WALL HEIGHT H = 20•ft BLOCK SIZE T = 7.625-in LENGTH OF GROUTED SECTION L - 24•in AREA OF STEEL AT EACH FACE 3- #5 EA FACE AS = .93•in BLOCK STRENGTH FM = 1500•PSI MASONRY MODULUS OF ELASTICITY EM •= 750•FM DEPTH FROM FACE TO CENTER OF REBAR • D = T - 2•in WALL SECTION LOADING ROOF DEAD LOAD RD = 360•PLF ROOF SNOW LOAD RS •= 600•PLF ECENTRICITY OF ROOF LOADS E = 1•in (a CONCENTERIC DEAD LOAD FROM LINTEL CD = 1800.1b to t) CONCENTRIC SNOW LOAD FROM LINTEL CS = 3000.1b • .I 11 WEIGHT OF GROUTED BLOCK PER FTA2 MW = 78•PSF AXIAL LOAD STRESS CHECK PT= CD }- CS +((RD +RS)•L) +(L• PT= 8280•Ib AG = T•L AG = 183 •in - ASTR = AG ASTR = 45.246 •PSI - PLIMIT = .04 -FM PLIMIT = 60 •PSI • NOTE: IF AXIAL STRESS ASTR IS GREATER THAN THE LIMIT USE A LARGER SECTION • EQUIVALENT OUT OF PLANE MOMENTS AT MIDHEIGHT OF SECTION • • WIND MOMENT WM = 5250•ft•lb i .. y . STRENGTH SEISMIC MOMENT EQM - 5881•ft•Ib SERVICE SEISMIC MOMENT EQM • EQS = 1.4 EQS = 4201 •ft lb • • DEAD LOAD MOMENTS AND AXIAL AT MIDHEIGHT RD•L•E DM = 2 DM = 30• ft. Ib L•H•MW DP RD .L CD 2 DP =4080 •Ib ROOF LIVE MOMENTS AND AXIAL AT MIDHEIGHT RS•L•E SM = 2 SM =50•ft•lb Jr. SP = RS•L CS SP =4200 •Ib • LOAD FACTORS FOR STRENGTH DESIGN AT MIDHEIGHT • PU1 = 1.4•DP MU1 = 1.4•DM PUI = 5712•Ib MUI = 42•ft•Ib PU2 = I.2•DP - .5.SP MU2 = 1.2•DM + .5•SM PU2 =6996 •Ib MU2 =61 •ft•lb PU3 - 1.2•DP + I.6•SP MU3 = 1.2•DM + 1.6•SM + .8• WM PU3 = 11616 •Ib MU3 =4316 •ft•Ib PU4 = I.2•DP .5•SP MU4 = 1.2•DM + .5.SM + 1.3. WM PU4 =6996.1b MU4 =6886 -ft. lb 4 . PU5 = 1.32. DP •- .22•SP MU5 = 1.32•DM +.22•SM+ 1.1•EQM PU5 = 6310•Ib MU5 = 6520•ft•Ib PU6 - .9•DP MU6 = .9•DM + 1.3•WM PU6 =3672 •Ib MU6 =6852 .ft. lb PU7 I • DP MU7 :.9-DM 1.1 • EQM PU7 = 4080 -lb MU7 = 6496 -ft. lb PICK OUT THE WORST CASE AND ASSIGN TO PU AND MU y„• PU = PU4 PU = 6996 -lb s .r MU = MU4 MU = 6886 •ft lb • lAirrp SERVICE MOMENTS ,C CONTROLING WM • 5250•ft•Ib EQS =4201 .ft. lb • • MS DM •- SM - WM MS = 5330 •ft• lb 1:� SERVICE DEFLECTION CHECK CALCULATE CRITICAL MOMENT 5 2 • FR 4• PS ;•PSI S - - MCR - FR•S MCR = 3002•ft•lb CALCULATE CRITICAL MOMENT OF INERTIA RHO AS N 29000. KS[ N = 25.778 L• D EM K ; 2•RHO•N (RHO•N)2 I - RHO•N K = 0.444 ICR - L •(K •D)3 ! + N•AS•(D - K•D) ICR = 359.115 •in CALCULATE GROSS MOMENT OF INERTIA 3 IG = L1 22 IG = 887 •in CALCULATE EFFECTIVE MOMENT OF INERTIA at 1 ` 1EFF .5. ICR lG IEFF = 511.185 •in CALCULATE CRITICAL LOAD FOR DEFLECTION MULTIPLIER 3.14•EM•IEFF • PC - PC = 31350 •Ib H 2 1 MULT PT MULT = 1.359 PC SERVICE DEFLECTION CALCULATION . ' 5•MS•H , 5•MCR•H 5•(MS - MCR)•H211 J DELTA - : 48•EM•IG •MULT DELTB 48 •EM •IG I 48 •EM •ICR I 'MULT SDELTA DELTA if MS <MCR DELTB otherwise ALLOWABLE DEFLECTION SDELTA =0 -in • ALLDELTA .007•H ALLDELTA = 1.68 •in • • kJ CA' ULTIMATE DEFLECTION 5 MU H 5.( MU MCR)• • UDELTA 48 EM • IEFF. 48•EM•IEFF i �•MULT UDELTA =1.832 •in CALCULATE ULTIMATE MOMENT J iG MU = 6886•ft•Ib PU = 6996•Ib -Is PU• UDELTA :'`. ULTM = MU 2 ULTM = 7420 •ft•Ib CALCULATE MOMENT CAPACITY FY = 60•KSI AS. FY PU PU AS-FY ASE - FY A .85 FM L A =2.052 -in MN = .8.1 ASE•FY•' D - I ! 2 , MN = 19253 -ft. lb J it. iS•. ? I4- • 2 t ..• • •� ijr -:.y J - t• } _ VLMK Consulting Engineers Job 4" �A � \-- 3933 SW KELLY AVE. / PORTLAND, OR 97201 -439 Client �p __ _ , - - __ (503) 222 -4453 / FAX 248 -9263 Job No. a(O By `vim Date -3 - Sheet No. LA) "-] ' a A WIC ahoy H 6 o r o m w4-- kJ0 _ as-6 - 1 7 2_6914 1--1 1Dr4} - IO' O _.. - - - -- - J 1.: ; f , -�- lit 7 LO__ P = I, :5 1'SF .05 t�IG 17. IF .1u�r �t:oc� / - 14 1,11-r = .48 sops _ iiii5r - o 4 X IoPSF --- 5F F p1om-t1' wiN]7 = 15)(7)(zo) = 5250 B " fral0 r . 61 - ti - ..ir------11 100. ;.... -,i Wlttb cottS . Y /-.0A ; -61.17 _ VL — 3(.00 X5 IBS - AU- Co1 t1 1C.-- Li- = 6.69 X, s -L 3zot- CMU WALL DESIGN -- -VLMK Engineering Software - -- Client _ . JOB TITLE: SCHOLLS FERRY AUTO Job NO200006 BYSWB Datel -25 -00 Sheet No. v 1.2 - Based on 1997 UBC. Software Copyright 1999 VLMK Consulting Engineers. All Rights Reserved. INPUT .g GEOMETRY Mark hp = 0.00 feet h = 20.00 feet e = 1.00 inches e - SUPERIMPOSED LOADS hp I }' PD = 0.360 k/foot service dead load Roof/U..er Floor PL = 0.000 k/foot service floor live load I V PLr = 0.000 k/foot service roof live load PS = 0.600 k/foot service snow load F fl = 0.5 load factor (UBC 1612.2.1) . f2 = 0.2 load factor (UBC 1612.2.1) FA : WIND h Speed = 80 basic wind speed (UBC Figure 16 -1) IA Exp. = B wind exposure (UBC 1616) I = 1.00 importance factor (UBC Table 16 -K) SEISMIC /A • . Ca = 0.36 seismic coefficient (UBC Table 16 -Q) Ip = 1.00 importance factor (UBC Table 16 -K) . V 0 Floor . BLOCK • nom. size = 8 inch • nominal block size grouting = P S/P solid, or partial grout weight = L L /M/N light, medium, or normal • •• fm = 1500 psi strength of masonry LOAD COMBINATIONS . 1.4D (12 -1) ;.•` REINFORCING 1.2D + 1.6L + 0.5 (Lr or S) (12 -2) - i a, fy = 60.00 ksi steel stress 1.2D + 1.6 (Lr or S) + (flL or 0.8W) (12 -3) ea. face? N Y / N two curtains of reinforcing? 1.2D + 1.3W +flL + 0.5 (Lr or S) (12 -4) bar # = 5 # rebar size #4,5,6,7,8,9, or 10 1.1 (1.2D + 1.0E + (flL + f2S) ) (12 -5) spacing = 48 inches rebar spacing 1.1 (0.9D +/- 1.0E) or 0.9D +/- 1.3W (12 -6) OUTPUT Wall wt.= 49 psf weight of wall Eh = 17.9 psf ultimate lateral seismic load d = 3.81 in. depth to reinforcing Eh s = 12.8 psf service lateral seismic load . As = 0.31 sq.in. area of reinforcing at center of wall Wind = 13.2 psf lateral wind load STEEL RATIO (UBC 2108.2.4.2) 1 _ 0.5 rhoB = 0.0053 maximum steel ratio rho = 0.0017 OK - rho <= 0.5 rhoB - VERTICAL SERVICE LOAD STRESS (UBC 2108.2.4.4) DESIGN SUMMARY Fa max = 60.00 psi maximum vertical service load stress, Fa = 0.04 fm • 20ft. Wall Height with Oft. Parapet fa s = 15.85 psi OK - vertical service load stress, fa <= 0.04 fm • #5's at 48 inches o.c. - Center ' CRACKED AND SERVICE MOMENT (UBC 2108.2.4.6) • Partially Grouted, fm = 1500psi Mcr = 702.6 lb -ft cracked moment capacity • Special Inspection Required . Ms = 720.3 lb -ft applied service moment SERVICE LOAD DEFLECTION (UBC 2108.2.4.6) Delf s max = 1.7 in. maximum service load deflection, Defl s = 0.007 h Defl s = 0.17 in. OK - service load deflection < 0.007 h z. MOMENT CAPACITY AND APPLIED FACTORED MOMENT (UBC 2108.2.4.4) 1; phiMn = 1589.4 lb -ft nominal moment strength of wall rill - 1235. °v Il, -frl - OK r1NC 4 tiOr1 4 vii . SCHOLLS FERRY AUTO REPAIR MASONRY LINTEL OVER OVERHEAD DOORS PSF = lb lb PSI = nb PLF = ft K = 1 KSI = 1000•PSI • MOMENT ON BEAM MC = 17.28•ft•K SHEAR V = 5.76•K BEAM DEPTH D = 70•in BEAM WIDTH B = 7.625-in ES = 29000 KSI MASONRY STRENGTH FM = 1500•PSI EM 750•FM AREA OF BENDING STEEL ASB = .62•in 245 BARS ALLOWABLE STRESS IN 60 KSI STEEL FS = 24•KSI ALLOWABLE COMPRESSIVE FLEXURAL STRESS FB = .33•FM FB =495 •PSI FLEXURAL DESIGN • N N = 25.778 DR = D - 2.5 • in P = EM B • DR k = [(N•P) 2•N•P] 5 - N•P k =0.22 J = 1 - J =0.927 rMC /2 4. • Fb = B D 1 J.k; Fs A B J •D FB =495 -PSI Fb =54 •PSI Fs = 5 -KS' (FM' .5 V FV = `PSI PSI Fv = DR•B•J FS = 24•KSI _ SHEAR REINFORCING SPACING IF NEEDED FV =38.73 •PSI • S = 16 in ASV = 0 if FV >Fv Fv = 12.077 -PSI S.V V = 5.76 •K FS•DR otherwise DR = 67.5 •in FS = 24•KS1 • ASV =0•in ' SCHOLLS FERRY AUTO REPAIR • MASONRY COLUMN WITH COMBINED LOADING • PSF = 8b PSI - r 'n PLF - ft K = 1000.1b KSI = 1000•PSI MOMENT ON COLUMN MC = 10.8•ft•K ., AXIAL LOAD ON COLUMN PC = 18.4•K UNBRACED HEIGHT H = 20•ft UNBRACED COLUMN DIM UCD = 15.625•in BRACED COLUMN DIMENSION BCD 15.625•in ES = 29000•KSI MASONRY STRENGTH FM = 1500•PSI EM 750•FM • AREA OF COLUMN STEEL ASC := 1.76•in 446 BARS • AREA OF BENDING STEEL ASB :_ .88•in 246 BARS • ALLOWABLE STRESS IN 60 KSI STEEL FS •= 24•KSI RADIUS OF GYRATION BCD• UCD I = 12 I = 4967•in AE .= BCD•UCD AE = 244.141 •in 5 R = (-- A I E ) . R = 0.376•ft RATIO R RATIO = 53.209 ALLOWABLE COLUMN AXIAL FORCE PA ( l4R 2 C1 = 1 I C2 :_ �70 H I C3 :_ .25•FM•AE C4 .65•ASC•FS ;L PA = I(C3 +C4)•Cl if RATIO <99 ( C3 - C4 ).C2 otherwise PA =102 •K ALLOWABLE COMPRESSIVE FLEXURAL STRESS FB = .33•FM FB =495 •PSI • FLEXURAL DESIGN N EM N = 25.778 D = UCD - 2• in P • BCD .D 1 5 K K= I (N•P) r 2•N•P -- N•P K =0.367 J 1- 3 J =0.878 - Fb = IBCD•DMC 2 )` I J K ) Fb = 277 •PSI FB = 495 •PSI Fs = AS B D Fs = 12 •KSI FS = 24 •KSI INTERACTION INTER = ( PA) - ; FB INTER = 0.741 •