Plans = 11I V))))III 1J II11!1III1111 1 I1111111III11I1IFLI1Ii111I1 I1_ _ -�
I f 1 1 1 1 1 1 1 LI I I I I I I I I I D I I I I LI 1 I I f 11 1 I I I I I I _ I I l l l 1
J.
I. 1 I I I 1411 1 1 1 1 I I 1 1 1 1 1 1 1 1 I [ 1 L 1 T� 1 7a -0epL I I I 11 i 6 , _ C 1 _LI I I — I • I : : i"f1 r^1 I P" i — i L
1 i 1, 1 I l i LL1 i I • I i I i i I i I I I I I I I I I d I 11
_ —
I. '- I 'HI I_1 1 1 1 1 1 1 1 1 1 1 1 1 ID 1 DLI _ LI 1 t 69'- 9 "Fence
I 1 I 1 1 1 1_ ii _I 1 I_I I L I I I I I I 1 1_I1__ 1 .
_ I =� 1 n I 11 1 N 1 1 11 1 LI 1 1 1 I I i I . 1 1 1 1 1 1 1 1 i h 11 1 1 1 1 1 1 1 1 I I I
II I I 1 1 1° � 1 1 1 1 1 1 1 1 I 1 1 1 1 i i ° 1 1 1 1 1 V I I ID I 11 I I I LLD LI_L i 1_ � e I 1 i
11 _ _ 1 -11 I I Imo i 1 I 1 I— L_2a I l 1 1 i! 1-- 1 -o ^�= I I I I I 1
l _ L L 1 _ _ 1 I I I I I I I(,_1 1
1 1 N' L5' T - - -- .s 1 1 I - T1 L 1
_ 1 1 I - I 1_1_
1-
r - r 1 e 1 _I� 1 L i i 11 1 1 1 1 to u 1 1 ., 11 I I I I _I .` ' D1 - 1 6 J_
1 i ( G l l 1 I I -1 1 1 1 1 1 1 1 1 e 1 I I I I - I � _ it I_ `.jg 1 11 1
I I II I II 11 I I I 1 I I 1 1 I I 1 I_ 1 I II I I I I L _1_,_j_
I_I 1 1 . I i1 11 I I I I 1 1 1 I ` 1�7 9T2 ,3•,,, 1 T I 1 1 1 _ 11 1 1 1 1 1 1 1 1 1 1
1 11 1 _ 11 I 111 1 � 1 1 1 1 1 1 1, ' 1 • 1 � I ■
I p ° 1 LI 1 i 1 1 - l L '' - Al_ ��
— pp
I I 1 � . _^ 1 _ ___ _ e I __ _ LL 1 ID_ 1 ii 1
I _ J _ � I 1 1 1 I1Q•1 0:31 1 r . n -
I _� I I
I T1 I 1 I 1 II d _ _ �i_ _- �1_
•1 1 1 to lift V 4 N1 p • 1 1 11 1_- 1 I 1 1 _-_ - 1 �I 1 1 I _ 1 1 'I_ W 1
�� �L__I 1 1 I �'p II ,.--t _, 1 _I 1 1 j i L I IT _
11 I 1 I- � In II , 1 1 1 1 1 1 I I 1 in _ n-
k l h I 1 1 q 1 I 11 1 - I I � l-
1 1 1 I 1 L! I
i i�_L__ _ 1 __1 LI 11!_f! L 1 1 ll_11.
I k 11 1 L III 1 1 1 1 h 1 I I i I I I 1 1 1 1 1 1 1
I I I I I I 11 1 _._I ! rI e V_ -l_ _I 1 _ I 1_ 11 1 1 1 1 1 1 I 1 -1 1
_1
1 1 L 1 - fl r 11 1 1 l k YL.___ 1 I 1 1 1 I 1 - 1 r _ l 1 1 1_ i 1 11 1 ..8!_4-1.0 1 1 1 /_ { <11 i k t I L i _ill 1 1 1 � 1 I I I! -7--- -7--- ���� . ��I� I � I I I II _ I I r I I it , III M' 1.�
1 11!� f I � I t � 185 - , � �14t1 " �T! I � I I I
I I I I
1 g1�, �I I l!� -1 � � 1 i 1 2 0 . - I I I o Zi 1 I ,i) I I_ g I� ��� 1 I 1 ft �� �i - I � I �1' i I I N
1 I 1 1 1 1 li i'1— I I II l
1 it � — i =111:-' —. Lr - 1113- d
+1k-Ci41-d ae j1 ear r I 11 i _
I-1 NI I IY? --.1 I1 1 1 I I 1 II IP 1 II _ i-1 1 l_l 1 1 1 1 1 1 1 1 1 I�.I 1 1 1,t I
I L
❑I 1 '1 ■ I _Lf 1 ' _ ,_ '• II � 1 T II i I'' - T7 plier_iit is tliig t'oCOt ; ta my .' . W _ E
1 el I LI I 1 I/ 1 1 1 / 1 1 1 1/ L 1 1 1 1 1 P _ 1 " 1 1, 1 h. i 1 i 1 I I -
�l - I 1 .1 - 1
e t�r r I V- i l, ' 1, ; �s e
- 1 I_ _ -_ I __L I I I �/ I I I I; I I I I/ I _ I I I III IIII � I �i" �i 1 I � 1` i t 1 i ` . : 1 1 1 1 I � 1 r 1 1 1 1 1_1 1 1 1 I_
iL_1_ 1 1 ___. I /if I I 1 1 11 1 1 1 I III 1 I 1_1 1L 1i 1 1 1 1 1 1 111 1 1 11 1 1 1 1 1 M I N I I
L
I 1 I, 1 _ 1 I] 1 1_1 1 II I ` I I. -_ 1 1 1 1 I_I_I 1 1 1 1 1 1 1 11 I 1 1 1 1 1
1 I I _L I 1
_1_ 1_ I _I_I I I; 1 I I/1 I I/ 1 _LI I I LI e 11 B _ I - LI 1_ 11 111 1 I I I I 1 II LJ 1 I I 1_ I LL
I J L II __L Li I _1 -- � II I p I I/ I 1 I I II I _ I 11 II I I I I I I I I I I I I I I _I 1
I GI_ I _ 1 A 1 f 1 - 1 11 [_I ,I► y l� � I ' ' _I 1 1 e �T'� e ,.� I 1 1 i l
1 — I _ I L_ I _ 1. i 1 I /1 I 1 1 11 1
1 I _ L W dC6Si� I 1 1
1 I I Il 1 I/ 11 1/ 1 1 I 17 I7 1 L L I I 1 I I 1 1 I I 1 1 1 1 1 1 1 1 1 1 •• I I
III 1L /L1 d L _ 1 f 1- 1. 1 _ LJ I■ 1• - 1 0 1( 5-t t 1 1 1 I 1
_1 8 1 I _ 1 i / � L ` ` I ,, 11 I 1 II 11 _ 1 1 1 1 I I L_ _ 1 I h I 1 _I_ I
III IJ 11 I , ���1" ""'/ PPP 1 I l I III CI III _ I I I I I I 1 1 1 1 1
I 4 , -!a'!k '- ' 1 II I 1 H 1 I L 1 1 L _ LI__ -L - r 1 I -1-I 11 1 1 i 1 1 1 I 1 1 1 1 _I I 1
-
H 1 L I . { _ I _1IL%1_ I 1 / I I I 1 1 I I I 1 _ L ii I I I 1� - 1 I I I 1' I 1
— I III 1 /1 I /1 I I Y I LI 1 III I _1 1 11 1 1 1 1, 1 1 I I I I 1 1 1 1 1F Imo 1 I
kl i1 1 1 1/ 1 _ /1 L 1 1 11 11 1 1 I 11 1 1 1 LI 1 1 1 1 1 1 I - I — Il - 1 1 1 1 1
III _y' 1 V I_ L / I 1 1 1 I :-1 1 1 1 1 1_ 1 1 1 1 I l I l IL , I
11 1 /I I 1 - I�_I/ _ 1 1 -1 - 71 I I I I 1 I I 1 1 1 1 1 P_ 0 (Rare 11 1 I 11 _ 1 a •
- 1 I _b_I I J_I / I I I /1 1 I I_I I I I 1 I I 1 I II 111 1 1 1 11 I I I I LL1 I I 111 I I _ _�
I el _ I U 11/ I 1/ I -! III 'I II ______1� I 1 1'0, 1 1 1 I1 l I 1 1 1 1 1 _1 L_�ri 1 1
_ 1 IL =1
I k /11 1 1 ' 1 1/ 1 up _� l II= 1 1 1 Ill I 1 1 1 ,9_ 1 1 1 1 1 1 IIE _ 1 1 _ 1 1
-11 1
_ L %1 I I I I rt I - 11 1 I 1 1 1 1 1 L� I 1 1 1 1 I 1 1 - _ 1 ho r I 1
11 1 1
I I/ 1 I _ I / I_ I _ I /I I I I I I
_ A 1 1 1 J_a I I I I I_ I L 111 1 1 1 1 �; 1 1 1 I I 1 I 1 I I I 1 1 1 12. _L I n
11 I
1 11 I I 171 /iL ' 1 — I I Lam - , ,,,, �'< __L'I 11 I1 G 11 I I I I 1 I I 1 1 I 1 I � I
ll_� - el 11r f0 "__ _i= .114 i 7 • " X 1 78 , - f .�•� ° 5 1 � ,1 �49' i ,, 1i 1 11 I I 1 S, .1 1 `) ! L � = ;4 I , I HI I 1
_ F -,- �, i- ' -�_ --� �" � ; II �, . z • -s � zo?o�� Rad I I„
- I—
L 1 1 1 l r 1 i - I 1 -, 17 1 I Lit 2 ._ 3 rr z= -g z z =7 i I � 1 11; ` 1I 1 - r - - ''' .-_ R 1 a -9; 8•�R°.:e -� I I
_I 1_
1 1 1 e,o. -'r-L, 1,1 y 11 1 1 0:1 I 1 1 ILi'' 1 I� 1 -Fir 1 3o�i 1 I I ri °1 7 1 �l - 1' 1 I III I 1 1 1
I II - - o` '113'1 0 "�
-L 1_IiI 11 I I II 11 1 I 11 I I I I 1 1 1 1 1 1 '11 11 1 11 1 [j _ "" I�I L I-'t I L I 11 I 1 11 1 I I I I A I I I
L 1 11 1 l l I-1._ II _ II l I I I I I 11 ' I Ii I , 1 �,i 1 I I` 1 I' I I I I I I 11 1 I III I I I I I
I 1 I I
_ 1 1 I I L `I- - I I 1 I it', ,; l H I I
_ p... 1 1 •
_ 5 5 i i I T I 1 I I Li I I 1 I 1 I — I _ 1 7 I I I I •
_1J LI L I I I f ^ _I 1 LI 1 III =i 1 I 1 . ,, y�1� 2 1� 'I 1 I I LI I I I I I I I I I 1 1I l I I 1 1 I— � -
17 [ 1 1 I 1 I I l 1' ��. 1{ -4 1 1F- 1 - 1I 1 1 1 1°' 1 1 1 1 1 I I I 11 1 1 1 1 1 I I
L_ -- 1 1 I I I 11 Io I I I 1 I 11 1� 1 I I II_ 11 7 2 . 6 L . 1 1 12 "I 17'l 1�I 11 I � 1 I . 1 I IT�u � �
I 1 Li� I I LL I ) I I I 1 1 1 1 I-i 3 1�, r •' L IJ L C j 1 � 1 11 �' 1 ...1 _LI 11 0_ _ _ 1 1 1 L I I 1 ti
� NN fi - = - -- 1 I I I I 1 ?j i T 1 " � - I" 1 t. - I! -, °C�a I I 1 - r 11,j-fo 1� 1 1 I I I
I I
11 1 1 I D; 1 1 L -- I I ; 1 I l I I_ I I I 1. 1 I1.« a 1 1 11 I I II I I
_ I � ti �'� n I ,,L. I I 1 - . 1 ..1 - 1 I I I I I
7 J TI I I _LL � : -t 3 6 , I—�7 4 7=. 1 , - .....!! - , +• , 6 1 1 1 I _ 4 -0 ", 475- 'f•."1. 1 I „ 1 1 1 _—L. 1 I ''� 1 1 1 I I '_ I 1
I I - -1 _ T �_ rao "- - L 1 �, 1 - L^ I ^_ � 1 I I I I I � � � I I I � I I 1
I 1 I _ I 1i -1 I I � rir I - 3 ,i f "1_/ ' ' I-, , ,1 ,c., o-ur ; i T N
- I I ,_, _o_ �_ 7 = r --1-I- �, I I I I ��_ I I 1 I I_ I I I I �_
- I I l L�i I 1 I l I J _ 'T`' I j iT ��, = 1=L i L _ 1 1 _ i 1 1 il
ll . — 1 L IIII 1 - 61 I I 1 1 1 1 1 , I� -v,! = -1 , 1 -' 1 o L 1 I 1 �LI 1� 1 1 1 I I 1
1_ 1 1
1 1 1 1 -1.
I _I I 1 111 l �,]I 1 I I _ [�_ 1 I 1 J _ 1 1 1 �� ",��ok ,I I 1 1 I - L1_1
_ =
1 1 1 (- I I 1 11 I G)_ °1 I 1 _ 1 1 Ii 1 I I I I 11 1 I �; -3 ��
__ I -r�� I I I I I I ( I I I I I
I I I - 1 I [ %'e _ =35 "WI .L L I - 7 I TI •111 I
I I I I IV,,= 11 1 I 1 1 I 1 �_ I I _i. I}�_I f3R1xi0.00r 1 I 1 1 I I
1 I I I 11 1 _ 1 1 1 1 1 1 1 1 1 1 1 1 11 I 1 111 IT 1 • 1 .I ,I 1 I 1 1 I 1 I I I 11 I Z 1
1 I l
1 1 k 1 1 1 1 _ I 1 Irk III I Ll<.1aa1 1 1 1 H' ...H . 1 1 I I 1 V. r 3 s-3a 11 1 I 1 I 1 1 1 I 1 L I
1-11 - 1 -I 1 1 _ . — s n r l ,- zo,a „ ,∎ 1 _ 111 r 7 1, 17 a 0 2 arm` 39 1 ,- A1, 0 Ii -1 I
-c l
- - -I_1 i — niz Q � — 1 6 0 4v,9"- ' i 1 444.4 , 0 • - 2. � =1f �� I� I - I _ _
LL - 1 _ I — "[ I DEC " 1_, — u - _ - P.. , , 1 1 1---[--- 1 �I
I I 1 1 1 LL 1 1 11 1 1 I l I_ I ITI I 1 - I I ,I 1 1 I °- 17- '0"(OPen)I-o 11 I i 1 1 T I U L II
1_I L I I I I I I D - 1 1 11 1 1 1LL1 1 1 1 1 I i j_ _j_ " V I I I 1 _ 1 LI__I 1 I I 1
_ � � 1 I I
1
1 1 I I - _ - L. — i LI I 1 1 1 1 1 _ I - ` I II , 1 1 1 iii, 1 1 1 1 1 - I 1 1 1 1 1 _ILLI I I .
r I l 11 11 1111 1 i 1 IL 1 IIl I I 1 1 ____1__1 1 I 11
I _ 1 I 1 _ H 1 1 I I I
I I I _ 11 11 1 II I I ITT II I II I i I
__ _ I ' 1 1 I 111 1 I I • A I_I 1 1 - I 111 h
1 .( t I _ _ J _I� 1 1 II I 1 111 I III ) — I C l � LI T �P �, 1 � - 1 I_1 1 _ 1 - 1 _ --
j l 1 1 1 1 I II1 1 L_ 1 - 184•'w, 1 I _)P "'I'�'�(` P''7 r 1 - 1 I. 1 (_ I
II I I I I II -' (`� I� III IL _ 1 6Rxt000'T L � r 1 I
an vl gn: 1-- - -I -,-
1 1 1 'Ii 1 1 1 1 III -I , - ICI
.� _I B_ TrA III 71 1 61 1 - I 1 I 1 1 1 1 1 I I 0441' ='p [-i 1 ■_ ■ 1 1 I L __—_I I F'tit l �li ar' ° � 1 11A I I 1 mpj yee i 11 p I IT 1 '.1 ��� ° t 1 • 1 t _ I 1 J 1 1 I 1 L : Mt L 1_..l -_�._ ._1�„m � ': 1 I 1 1 • 1 I I 1 � L LI III [ I T I I 1 I I I
-i - I I - ' gs o � T ai - 1 i L - 1 - 1 I L I 1 11 I I �-, 1_ •
1 I ? L) r r ` . 'or.
1 1 1 „ LLt a o- �� I ..
I 11T _ _L 1 _ _ .. I` 1 1 L-
_1_J__ 1 I _ u� . l J T 1 T I I l I1 • 1 1 � � _
h l � _ v L1 + t -
I L 1 L III 1 1 I I I I 1 1 1 1 1 1 1 1 1 1 —— 1 1 -
tl I I I - I_ f , 7 „ _._. - r - (-1 - I —T � � 1 �
I I I_'_ 1 12',-0" ' - 1 I - I I I E1 , ` I II 1 I 7o•-o1 a .i� 1_ 1 1 I I I I 1 I I _ I I I I f I
i
I 11 1 I 1 - I - H I 11 .-1;! i - 1_ _ 2r -a I I i I I I I 1 t I I I 1 I 1 LL1 _� 1 1} - 1 I I I1 - LL-I- J_{ -I-1=- — 1
I 1I 1 111111111111 1 111111 II 11111 IIII11111 1 I II -1
4 ,
al ?
Job Name: Truss ID: 20 __Qt •
_
8RG X -LOC REACT SiZE REO'D IC 2x6 SIT CI6S011.SE ••[PM).PLATE MONIIOR USED - See 20191 Report.. this design based nn Chord hr n • I -f-'E p
1 0- 2 -12 3516 5.50" 2.76" BC 2x6 SPT C1650F1.SE Designed per ANSI/TPI 1 -2002 per the following schedule:
2 19- 9- 4 3516 5.50" 2.76" WEB 2x3 SPF 51 /02 -CAN This design does not account for long term max o.c- from to
BRG REQUIREMENTS shown are based ONLY PLT BIK 20 SPF •1/12 CAN time dependent loading (creep). Building IC 24.00" 0 0 0 70 II /W
on the truss material at each hearing Refer to Joint Q: Detail Sheet for Designer must account for this. RC 170./yI" 0 0 0 /0 ii 0
MAX DEFLECTION (span) : Maximum Rotational Tolerance used 11115 DESIGN IS lilt COAPOSITE RESULT OT 0011 RTAC110N(S) : MAY 2 0
1/833 IN MEN 7 -8 (LIVE) IRC /IBC truss plate values are based on MULTIPLE LOAD CASES. Support CAC Wind Non -Wind 200
o-0.28" m0 -0.05" T. -0.33' testing and approval as required by IBC 1703 Loaded for 200 lb non - concurrent moving Bal. 1 -2107 lb •
is cos. / Tlml. (S5 and ANSI/TPI and are reported in available Heel plates analyzed for eccentricity. 2 -2107 lb Y OF TIGARD
1-i -sou 1.11 / 1471 1.W 0.17 documents such as ICBO 41607. ASCE7 -02 OW LOAD DESIGN CRITERIA:
2 - - 7147 1.11 / 4114 1.W 0.17 STRONCBACK' is recommended. Web bracing is P 25 psf. Ce . 1.0. I • 1.0, Ct . 1.10
3 - - 7147 1.11 / 4111 1.40 0.17 required at locations shown. Adequate brace 2 -PLY! Nail w /10d BOX, staggere d SN d (per NOS) ;
4.3 - 94.4 1.11 / 5491 1 .40 0.37 design per Building Designer- in: IC- 3 8C- 2 WEBS- 2 ••PER FOOT!.. OM • 1
4-7 5 DIVISION
q cPS 146 / 9151 1 4sa ) 0.7 c11 4 This truss f
Thi is designed using ed usin the
1 .40 / ��
7 - 416 I.W / 9171 LB 0.71 ASCE7 -02 Wind Specification
4 - - 9144 1.W / 9251 1.11 0.74 Bldg Enclosed . Yes, Importance Factor . 1.00 1
Truss Location . Not End Zone /.a r
M / ams.r 970 c1
. / 5. rot. 1 Hurricane /Ocean Line . No Category 9
2.7 - 111 (1.153/ u4I W 0.6
n Mors - C 07 1 / ,
1.7 - 440 1.W / 44114 1.15 0.29 81dg Length . 96.00 f[ Bldg Width . 20.00 ft r
4•7 - 3522 1.11 / Tut 1.W 0.55 Mean roof height • 17.50 ft, ugh . 100
TPI Standard Occupancy Dead Load 4.3 psf
Designed as Main Wind Force Resisting System •t �lt
and Components and Cladding tttiiillliiittt
Tributary Area - 240 sqft Q
17 187E
fit
s � - ice � r EXPIRES: 01/12/07
---s 1 I 10-0-0 i0-0.0 v ao\
R
2-PLYS . EQUIRED 1 3.x00 2 1 3 4 5
I 4, Ei'Writ F .ap
c 109 C
io-l0 r
310 PI
3-10
1 - � � •.- •.- 2 -1' -15 •
4 -12 I 4 -12 • SHI • GON Q "
2 - 15
�0 -515 ! -s n 03.15 -
b iq. OP vir
4 -12 S= MX/7 -12 L • IAES$'
13.11 i i. i7,'R'Y f3 ii• 7 ASII 7
4V 43 /Citf-
THE TRUSS PLYS MAY BE SPACED APART. I 8 20-07 8 9 •
USE SOLID BLOCKING BETWEEN. 10.0-0 1 10-0-0 I Aj f Y s d F t
TOP CHORD BLOCKS AT 24" O.C. 10.0-0 20-0-0 I ir Z 'i
BOTTOM CHORD BLOCKS AT 60" O.C. • j Z
WEB BLOCKING AS SPECIFIED BY ' ' X' • . d 0045982 7D m in
ATTACH THIS BLOCKING WITH 3 -10d NAILS •
THROUGH EACH TRUSS PLY/MEMBER. Eap: 12131106
USE A 12" MIN. BLOCK CK LENGTH.
TOP CHORD PURLINS AT 24•' O.C.
BOTTOM CHORD PURLINS AT 120" O.C. C l V l L \'
WIRL AND ATTACHMENT MENi ARE ,4 of C{►1.1c
PER BUILDING DESIGNER.
1 ptd fP r•e W M pUtmm te t1r rii > a 9Ma a aet giv6 naD str et dales la 7IOrl. )). 1/20/2005
WIa7 N/NG Read all notes on this sheet and give a copy of it to the Erecting Contractor. Cust:
Wes Odeon o es. en adenine holding cenmemIxnot buss gybed seas been bawd on sow:Sadden wielded byMaono nndnbrod'mxr WI): Drive_C_20 stork_I.00005_100001
I " ` end done In aced..o wo, Or owed weenie of let and ArPA de.im, armed. No roopnreddey is emend Ir denw oonsl odyssey OWnenvn.
we In he . .Seel by Ow rea.,..ea ewe dodoes . dim l•d'in• •'ebw prim lo Ishweeso The editing desld., wee .,cram. md•w.... Dsgnr: GLC •LC - 44 WE: 1104
I 0 W 0. rod en VII d.ep, aim. I. n.. c.. d the Weld° Inwood byOw Send !sedgy aide end Owdubre es4_ne., tnr design we s..malWeto•rrwn TC Live 25-00 psf Durtace I -1.IS P. -1.15
' I. sod - dew Wegino ond Webra ndd dis liner eybroodby •noddy.mip dews nme .* P Rep Mbr Rnd 1.00
, wed 9' e d wn
igdroie ie IoM oo
■ ss. dCme ne,
e.w mm
g ..cebWma. d, Wes dull! d
nbedosedin TC Dead 3.30 of
an
s� ■∎�•• TRUSS w,waanpd Owl row error m. dent *weed I er coded We wood to *weed Wb d* Cade cewwceO din. mre bs
don Fn.e. Conalo MUD BC Live 0.00 psf
em Rep Mbr Comp 1.00
; b.. e b:. bow n woo dens ern Ow /Mooing .Wandrd. 'bed s d eddy Reverie eyd wee
ldee a mica hen T,dad sewed. Rep Mbr Tens 1.00
7R1/SWAt SYSTEMS • A NNnPII•. WTCA r. Wood Tom Caused el Mon. elodedOder Fiespowsiberbel. to ,aowocOUPONENr SAFETY lid owuTrotr. BC Dead 1.00 psf 0.C.Spacing 12- 0- 0
rcu dorm,.. Or . CO. Wr Iry . CO Ion, IIICSI10 5) 4 MT1CN SIANItARY !HEE ts•bywTCA rod In The Twos Rae li..ia,rOW) rs Weld asesao,eb:,orhe.mango% Design Spec IBC -2003
TRUSPLUS 6.0 VER: 76.4.1 3e0.n....svio The Manler. Fpe r. pv i Pews *wooden (AFC%)i. WOW d III I I ah 9bM UW.SW WO. Wwdodd'• TOTAL 29.30 psf DEFL RATIO: L/240 TC: L/24
I '
\ \ 2x6 EAVE GIRT W/ T
4 -20d EA END (TYP)
N GABLE END RAFTERS
N (2) 2x8 DFIR #1 `�
N i PURLINS CD 24" O.C. 2x6 SOLID BLOCKING
I 2x6 MSR 1650
in o
. I
JOIST HANG PURLINS 0
.- -- - W/ SIM LU26
I EA END (TYP) / 7- NAIL BLOCK TO EA TRUSS
W/ 2 -20d (4 PER BLOCK)
Ce
0 9' -7 1 /2" 9' -7 1 /2" A
PURLINS PURLINS
I I — — — — —
I 0 — f
N op RIDGE LINE ENDWALL COLUMNS /
x 6x6 HFIR #2
a) I PREFAB ENGRD --___, (3 REQD THIS WALL)
TRUSSES (2 TOTAL) —
' --- NDWALL COLUMNS RAFTER TO PURLIN
`_ E 6x6 HFIR #2 w/ 3 -20d (TYP) O
~� I
N \ (4 REQD THIS WALL) I 0
N
o:
✓ Q 4x4 PT TRIMMER W/ SIDEWALL COLUMNS
I 18" DIA x 30" DEEP
i D3 _ CONCRETE BACKFILL 6x6 HFIR #2
(D
0 (2 REQD)
M �� C. --2a
3030 WIN
1 o' —O" 10'-0"
/ k /
20' -0"
/ /
NOTFS;
- - - SEE I I :LISS E; RAW INU: F : .::^L'E'_C TRUSS. - - -
BLOCKING REQUIREMENTS AND WE BLOCKING
•
LOCATIONS, IF APPLICABLE.
12
•
I3
Y
W -I METAL SALES PRO -PANEL II OR EQUAL RIDGE CAP FASTEN 6 -20d EA
> Z .0165 "± GRADE E STEEL SIDING Sc W/ STITCH SCREWS 411 SIDE (TYP)
4 0 ROOFING, FASTEN W/ 1 1 /2 "CAD. �� AT ALTERNATE RIBS
W PLATED SCREWS 0 9" O/C 0 0111611 1 1 1 P W/ FOAM CLOSURES En
0 W �1i,
H
O `1 2x3 "T 6 -20d EA
LL J l BRACE I SIDE (TYP)
11111111111° � :1111►
N I 2x6 BLOCK W /2 -20d ' 2x 6 BLOCK EA SIDE __
N THRU EA TRUSS FACE W/6 -20d I
W �— 1 5/8" BOLT 8c 4 -20d (EA SIDE)
D I THRU TRUSS. DO NOT DAMAGE
4 TRUSS PLATE
D 2 x6 MSR 1650
0
2x 6 x 24 BRG BLK GIRTS W/ 2 -20d EA END
W w/ 1 O -2od za 1/16
4 I
4 O PP Pll -�- 1 1/4" MIN
10 0 1
15 EGDE DISTANCE
_I
:I:
W ] 12 1 /2„ OC -
W
F v_ •
O '
.., ] :1: .
O
I
L 4" C ONCRETE SLAB W/ NG
IO {/4 " BAR IN FOOTI
\ GRADE
\ — } :: 2x 10 PT SKIRT BOARD
24 + D IA CONCRETE W/ 6-204:1 EA END (TYP)
: 7 O 0 BACKFILL ALL
I COLUMNS (TYP)
I
SHT 1 of 2
STEVE AND DEBBIE BARTLEY t st O PRO
M & W BUILDING SUPPLY 10705 S.W. PATHFINDER WAY B1ILDINO WETLY \� z
S A O
CUSTOM POLE BUILDINGS C
TIGARD, OREGON j / :..
COUNTY: WASHINGTON /•a
20' W IDE x 20' LONG x 10' EAVE 221 S. HWY. 99E J ��
CANBY, OREGON 97013
ROOF LOAD: LIVE 25 PSF ENGINEERS DESIGN RESPONSIBILITIES ARE LIMITED EXCLUSIVELY TO (503) 263 -6953 - / Ye' Q�
DEAD LOAD: 3 PSF THOSE DOCUMENTS BEARING HIS SEAL AND SIGNATURE. ANY ALTER - (503) 266 -7102 (FAX)
ATIONS TO THESE DOCUMENTS OR THE PHYSICAL STRUCTURE BY ANY 1 + VO
W IND LOAD+ 100 MPH EXP+ B PERSONS OR AGENCY SHALL VOID SAID DOCUMENTS AND RELIEVE ENGR OF
DESIGN RESPONSIBILITY, AND MAY CREATE LIABILITY ISSUE FOR THEMSELVES SCALE NONE 1-•
y�
SEISMIC ZONE: 3 DRAWINGS ARE FOR STRUCTURAL COMPLIANCE ONLY. THEY ARE NOT TO , G� y2�J , 1AC �Q
FOUNDAT ION PRESSURE+ 1500 PSF BE CONSTRUED AS HAVING BE PREPARED FOR BUILDING USE, OCCUPANC RDO /LM 4/27/05
AND /OR FIRE & LIFE - S AFET EN Y REQUIREMENTS OF LOCAL CODES ❑R 0 C� A� �
S. LAT. SOIL BEAR I NG+ 150 PSF AGENCIES. SLAB HAIRPINS SHOWN FOR CONSTRAINMENT ONLY. DESIGN '1
MIX, THICKNESS, CJ's, & REINFORCEMENT BY OTHERS. THIS
BUIL DING DESIGN 2003 IBC STRUCTURE HAS NOT BEEN DESIGNED FOR USE WITH INTERIOR FINISH „ 1
CLOSED BUILDING MATERIALS SUBJECT TO DAMAGE OR FAILURE DUE TO LATERAL MOVEMENT BUILT MW05230 , r F C -� o /'.,
• .
•
I '
•
1. BUILDING PAD SHALL BE CONSTRUCTED ON LEVEL SOIL 6x COLUMN
2. COLUMN SHALL FOOTING CONCRETE BACKFILL SHA BE CASTE AGAINST EXISTING
UNDISTURBED BED SOIL THE SIZE AND SHAPE SHOWN ON N DRAWINGS. AWIWINGS. GS. (U.O.N.)
3. ALL WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND ORDINANCES. I 1 - 1 /2" MIN
AND THE LATEST EDITION OF THE INTERNATIONAL BUILDING CODE
4. BOLT HEADS & NUTS BEARING ON WOOD SHALL HAVE STD. PLATE ��
WASHERS. BOLTS SHALL BE ASTM A307. BOLT HOLE DIA. SHALL BE 1/18'
LARGER THAN BOLT DIA. /1�
5
ilhF
. STRUCTURAL STEEL SHAPES AND PLATES SHALL BE ASTM A36 UNLESS �� 11'N
OTHERWISE NOTED. 4" •
CONC
6. REBAR SHALL BE GRADE 40 UNLESS OTHERWISE NOTED. (U.O.N.) FLOOR
7. CONCRETE FOR FOOTINGS It SLABS fc =2500 PSI
8. BEARING BLOCKS SHALL BE PRE - DRILLED PRIOR TO SETTING 20d NAILS /�-'--/M-------'-‘1.----
9. 20d NAILS SHALL BE GALV. BOX TYPE /I _ `i
10. BOLT HOLES SHALL BE DRILLED STRAIGHT AND PERPENDICULAR TO #4x4' "L" REBAR �
THE COLUMN PACE TO ASSURE FULL BOLT BEARING 24" EMBEDMENT
ii. SEE TRUSS DRAWINGS FOR DOUBLE TRUSS BLOCKING REQUIREMENTS INTO FOOTING #10 x 1 1/2" SCREWS ® 9" O.C.
12. ALL 6x TIMBERS SHALL BE ROUGH SAWN AND TREATED TO 0.80 RET
W/ CCA TYPE C. FASTEN AT EACH GIRT OR PURLIN
13. NO OTHER MATERIALS SHALL BE USED W/O MAW BUILDING APPROVAL
NOTES •ALL HAIR P[N (TYP) TYP. PANEL
EXCEPT CORNER COLUMNS W/O EXTENDED LEG N.T.S.
ENDWALL
COLUMN BUTT TOP 2x3
GABLE END ��
RAFTERS TIGHT TO COLUMN
_�� GIRT �y�► 2x3 �j ` a `�
�� ``R ` E � ` 2x PURLIN BLOCK G
.il�t� NAILED THRU TOP PURLIN JOIST WHAN/ •
► ♦ 1Od CD ' J ` K, / CHORD /RAFTER
I SWIM LU26 (TYP)
12" O.C. �r ✓-f.,``- _= W/ 4 -20d
.
- -. --.e y ! %��� , (2 EA SIDE TYP) \
a DOUBLE TRUSS
NAIL TO
SIDE OF TOP 2x3 RESTS I (OR RAFTERS )
ENDWALL ' ON F.c IS NAILED ��
COLUMN TO EA BOTTOM
W/ 4 -20d CHORD W/
(TYP) 2 -20d (TYP)
4 "T" BRACING DETAIL Q PURLIN BLOCK NAILING
(TRUSSED BUILDINGS ONLY)
# 1 ® 1 C ( S #1 a 1 C SCREWS
1111111111121=1...1 I? IPI. . 131:21/31111.11111
END COLUMN �7� END COLUMN Y I
BOTTOM 2x3 TO COLUMN TOP 2x3 TO BLOCK
W/ 4 -1Od (TYP) W/ 2 -20d (TYP)
1 Od 012" OC 1 Od 01 2" OC
5 T S iiiiiiiiiill
S
2x6 BLOCK TO
74 COLUMN W/ , 1
WI 2x3 • 1 • BRACE
• (1 ROW) IN LINE 4 -20d (TYP) w il
W/ END COLUMN
A END WALL SECTION END WALL SECTION
(OPTIONAL)
6 -20d EA 6 -20d EA
SIDE (TYP) SIDE (TYP)
6 -20d EA 6 -20d EA
SIDE (TYP) SIDE (TYP)
I
GIRTS OMITTED
FOR CLARITY
ENDWALL WITH OVERHEAD SHT 2 of 2
M & W BUILDING SUPPLY STEVE AND DEBBIE BARTLEY — , `�, b
Q,�CD PROf
CUSTOM POLE BUILDINGS 10705 S.W. PATHFINDER WAY �5 si
TIGARD, OREGON 4E? 2
count': WIDE x 20' LONG x 10' SAVE WASHINGTON 22175 S. HWY. 99E Q , ��� / �
CANBY, OREGON 97013 j' /
ROOF LOAD LIVE 25 PSF ENGINEERS DESIGN RESPONSIBILITIES ARE LIMITED EXCLUSIVELY TO ( 263 -6953 / / /
DEAD LOAD: 3 PSF
THOSE DOCUMENTS BEARING HIS SEAL AND SIGNATURE. ANY ALTER- (503) 266 - 7102 (FAX) - Q ,r
AT IONS TO THESE DOCUMENTS OR THE PHYSICAL STRUCTURE BY ANY
WIND LOAD. 100MPH EXP: B PERSONS OR AGENCY SHALL VOID SAID DOCUMENTS AND RELIEVE ENGR OF I I. i
DESIGN RESPONSIBILITY, AND MAY CREATE LIABILITY ISSUE FOR THEMSELVES SCALE NONE Z
SEISMIC ZONE: 3 DRAWINGS ARE FOR STRUCTURAL COMPLIANCE ONLY. THEY ARE NOT TO
FOUNDATI ON PRESSURE: 1500 PSF BE CONSTRUED AS HAVING BEEN PREPARED FOR BUILDING USE, OCCUPANCY RDO /LM 4/27/O5 % ' r25 AND /OR FIRE & LIFE - SAFETY REQUIREMENTS OF LOCAL CODES OR PS
LAT. SOIL BEARING: 150 PSF AGENCIES. SLAB 6 HAIRPINS SHOWN FOR CONSTRAINMENT ONLY. DESIGN
BUILDING DESIGN 2003 IBC MIX, THICKNESS, CJ's, & REINFORCEMENT BY OTHERS. THIS 4 SCLA ` i
STRUCTURE HAS NOT BEEN DESIGNED FOR USE WITH INTERIOR FINISH
CLOSED BUILDING MATERIALS SUBJECT TO DAMAGE OR FAILURE DUE TO LATERAL MOVEMENT BUILT MW05230 [EXPIRES: 6130
i
° 2o95 -- 2/
"Px.
_ - - - :1_.�_�.o _..__ __ �
I:3L`ILDII:G SUPPLY'
v61 6/%' ,A, 22175 S. Highway 99E, Canby, Oregon 97013 G 4 , 6 4
Phone: (503) 263 -6953 Fax: (503) 266 -7102 A.,
POST FRAME BUILDING
STRUCTURAL CALCULATION
(This structure has been analyzed and designed for structural adequacy only.)
PROJECT No.
MW05230
OWNER:
Steve & Debbie Bartley
10705 SW Pathfinder Way
Tigard, OR 97223
ENGINEER:
too PRQ/
r
OR OON Q
2 y Q e/ z r 25, N 4Q
(qs CIAO
EXPIRES: 6/30/ UV
I
•
4/29/2005 MW05230 (Bartley) 20x20x10.mcd 1
POST FRAME BUILDING SUMMARY:
This is a post -frame building with wooden trusses or rafters and preservately treated posts that
are pressure treated for ground contact. Post size, post embedment depth, post hole diameter
and backfill is given in the body of the calculation. The building will depend on the diaphragm
action of the roof and wall sheathing for lateral stability. The posts will be modeled as propped
cantilevers that are fixed at the base and propped by the deep beam action of the roof. The roof
structure spans horizontally between the wall diaphragms where it is simply supported. The
post frames will be assumed to act as a unit. Wind loads will be imposed on the windward and
leeward sides of the building simultaneously. The actual post length for bending will be
assumed to be measured from top of the post hole backfill to the top of the corbel block. If
there is no concrete floor, the concrete backfill will provide lateral constraint in the windward
and leeward direction. If a concrete floor is used, lateral restraint for the post will be provided
at the ground line by the concrete floor.
REFERENCES:
1. 2003 Edition of the International Building Code
2. ASCE 7 -02 - Minimum Design Loads for Buildings and Other Structures
American Society of Civil Engineers, 2003
3. 2001 Edition, National Design Specification (NDS) Supplement For Wood
Construction, American Wood Counsel
•
4/29/2005 MW05230 (Bartley) 20x20x10.mcd 2
SUMMARY OF DESIGN VALUES:
Building Dimensions
Wbldg 70 ft (Width of Building)
Lbld := 20 ft (Length of Building)
Hbld := 10 ft (Eave Height of Building)
Rpitch 3 / 12 (Roof pitch)
B := 10 ft (Greatest spacing between eavewall posts)
Wgableopenings 12 ft (Total width of openings in one gable wall)
Weaveopenings 3 ft (Total width of openings in one eave wall)
Truss heel = 12 in (Depth of truss /rafter heel)
Post Properties:
Pv idth 6 in (Post width y -axis) POST SIZE
Pdepth 6 in (Post depth x -axis)
Grade := "2" (Grade of Post ( 2, 1, or SS = Select Structural))
Fb1 = 575 psi (Allowable bending stress for the posts)
F = 575 psi (Allowable compression stress for the posts)
E = 1100000 psi (Allowable modulus of elasticity for posts)
Lpost_bndg = 108 in (Bending length of post)
Purlin Properties: Girt Properties:
Purlin spacing 24 in
Girt_spacing 29 .
Spurlin = Sx26
Sgirt Sy26
Fpurlin FbMSR1650 Fgirt FbMSR1650
•
4/29/2005 MW05230 (Bartley) 20x20x10.mcd 3
SUMMARY OF DESIGN VALUES (Continued):
Footing and Post Hole Design Values:
(soil 1500 psf (Assumed soil vertical bearing capacity)
dia_footing 2 ft (Diameter of footing)
Ssoil = 150 psf (Assumed soil lateral bearing capacity)
Design Loads for Building:
Wind Design Values: • Roof Load Design Values:
Fastest wind speed (3 second gust) p := 25 lbs (Ground snow load)
Vwind 100 MPH
pd := 3 lbs (Roof dead load)
Wind Exposure:
Exposure "B"
Seismic Design Values:
S := 106.1 Mapped spectral acceleration for short period
SI := 37.2 Mapped spectral acceleration for 1 second period
IE := 1.0 Importance factor
W = Dead load of building (See analysis below)
R := 7 Response modification factor
(GO TO LAST PAGE FOR SUMMARY OF RESULTS)
• . • 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 4
SNOW LOAD ANALYSIS:
Design per IBC 2003
For roof slopes greater than 5 degrees, and less than 70 degrees.
p = 25 psf Ground Snow Load (from above)
C := 1.0 Exposure factor
C := 1.0 Thermal Factor
C = 1.00 Roof slope factor
I := 1.0 Importance factor
p Flat roof snow load, psf (see analysis below)
p Sloped roof snow load, psf (see analysis below)
1. Determine p
Pf .7•Ce'Crls'Pg Equation 1
pi = 17.5 )sf
Ps PFCs Equation 2
Ps = 17.5 psf This is the balanced snow load on the roof.
2. Determine the unbalanced snow load
Equation 3
Psul •= 1 .• Ps
' —
C
Equation 4
Psu2 1.2(1 + a C P
e
p = 26 psf This is the unbalanced snow load on the leeward side of the roof.
• 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 5
WIND ANALYSIS:
Design per IBC 2003
Method 2 - Analytical Procedure
1 := 1.0 Importance factor
Vwind = 100 Basic Wind Speed
kd := .85 Wind Directionality Factor
kzt = 1.0 Topographic Factor
k = 0.701 Wind Exposure Factor
qh := . uwind�'1w Velocity Pressure
qh = 15.24 psf
Calculated Wind Pressures:
Windward Eave Wall: Leeward Eave Wall:
gww := gh•GCpl\ qlw := gh'GCpf w
g = 7.29 psf ql = —5.71 psf
Windward Gable Wall: Leeward Gable Wall:
gww8 := gh glwg := gh'GCpflwg
gwwg = 6.10 psf glwg = —4.42 psf
Windward Roof: Leeward Roof:
gwT := gh'GCpfwr
glr := gh'GCptlr
q = —10.52 psf
qir = - 6.65 psf
Wall Elements: Roof Elements:
qwe := gh•GCpfw qr := gh'GCpn
qwe = - 15.55 psf q = - 22.56 psf
Internal Wind Pressure ( +/ -):
qi gh•GCpi
qi = 2.74 psf
•
4/29/2005 MW05230 (Bartley) 20x20x10.mcd 6
BUILDING MODEL:
STEP 1: CALCULATE THE SHEAR STIFFNESS OF THE TEST PANEL
This procedure relies on tests conducted by the National Frame Builders Association.
The test was conducted using 29 gauge ribbed steel panels. These ribbed steel panels are similar
to Strongpanel, Norclad, and Delta -Rib which are in common use by builders in this area. The
material and section properties for the test panels are thus reasonable and will be used throughout.
The stiffness of the test panel was calculated to be: c = 2166 Ibfin
STEP 2: CALCULATED ROOF DIAPHRAGM STIFFNESS OF THE TEST PANEL
c' = (E X t) / (2 X (1+V) X (g /p) +(K2 /(b'Xt)"2))
Where: E = 27.5x10^6 psi (modulus of elasticity for steel)
t = 0.017" (thickness of 29 gauge steel)
V = 0.3 (Poisson's Ratio for steel)
g/p = 1.139 ratio of sheathing corrugation length to corrugation pitch
b' = 144" (12' -0" length of test panel)
STEP 2.1
This equation was set equal to the stiffness of the test panel (2166 lb/in) and the unknown value
(K was solved for.
K2 = 1275 in sheet edge purlin fastening constant
STEP 2.2:
Use new building width to determine stiffness of new roof diaphragm (cIJ:
Wbldg' 12 K� := 1275 Ibf / ft
bnew t := 0.017 n
cos(0) I O = 14.036 deg (roof angle of incline)
b 124 in E := 27500000
ne�v =
c
(E.t)
c = 1605 Ibf / in
2.961 +
(bnew •t)2
• 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 7
STEP 2.3 & 2.4:
Calculate the equivalent horizontal roof stiffness (ch) for the full roof:
Since ch is for the full roof, the roof length must be ratioed by the aspect ratio of the roof panel (b / a) •
where "a" is the truss spacing in inches.
a := Bay12 2 b
ch := 2.c•cos(0 )
a= 120 in a
ch = 3114 IDt ► to
STEP 3: CALCULATE THE STIFFNESS OF THE POST FRAME (k):
Since the connection between the posts and the rafters can be assumed to be a pinned joint, the model
for the post frame can be assumed to be the sum of two cantilevers (the posts) that act in parallel. The
stiffness of the post frame can be calculated from the amount of force required to deflect the system one
inch. The spring constant (k) in pounds per inch of deflection results directly.
k = 566 lbffin
STEP 4: CALCULATE TOTAL SIDE SWAY FORCE (R):
Apply wind loads to the walls to determine moment (Mwind), fiber stress (fwind) and end reaction at
prop point (R).
Calculate Total Wind Pressure:
qe := i f(gww — qlw s 10,10, qww — qlw) q = 13 psf
a
gwwpost qe'
12.12 qtot gwwpost
gwwpost = 10.83 p11 qtot = 10.83 pli
2
M Lpost_bndg� M 15796 in-lbf
Mwind (tot' wind =
Mwind
lwind ( wind = 219 psi
2 t
Lpost_bndg
R := 3 gtot• 8 R = 439 lbs
STEP 5: CALCULATE THE RATIO OF THE FRAME STIFFNESS TO THE ROOF STIFFNESS:
This ratio (k/ch) will be used to determine the side sway force modifiers.
1:
— =0.182
ch
•
•
• ti ' • 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 8
STEP 6: DETERMINE SIDE SWAY RESISTANCE FORCE:
rnD = 0.91
STEP 7: CALCULATE THE ROOF DIAPHRAGM SIDE SWAY RESISTANCE FORCE:
Q := mD R Q = 399 Ibf
Since not all of the total side sway force (R) is resisted by the roof diaphragm, some translation will
occur at the top of the post. The distributed load that is not resisted by the roof diaphragm will apply
additional moment and fiber stress to the post.
Mdtl = 5741 in -Ibf
fdtl = 80 psi
Calculate the total moment (M and the total fiber stress (hot).
Mtot mD'Mwind + Mdtl W 20101 in -Ibf
ftot mD fwind + fdtl ftot = 279 psi
•
• y • 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 9
POST DESIGN:
Assume the following post properties:
1. The posts will be modeled as propped cantilevers fixed at the base and propped at the eave
line by the roof diaphram. The two posts will act at each frame to resist bending.
2. The roof will act as a diaphragm and act as a simple support for the posts.
3. The roof will act as a simple horizontal beam spanning between shear walls.
4. The posts will be pressure treated for ground contact.
Calculate allowable unit stress (compression F").
F l = 575 psi F := F 1.15•.80
F = 529 psi (Allowable compression stress including load factors)
Lpost_bndg = 108 in (Bending length of post) dpost = 6 in (Minimum unbraced dimension of post)
K := 0.8 c := 0.8 K := 0.3 E = 1100000 psi
le Ke'Lpost_bndg l = 86.4 in
.95•E�
F := K F = 1512
k
post
2
1 + FcE + FcE FcE
F F F
Cp '—
2.c — 2 c — c C = 0.91
F := F C F = 484 psi
Wroof = 29.25 psf (Total roof loading)
Psnowpost = 2625 lbs (Axial loading per post due to roof snow load)
Pdeadpost = 300 lbs (Axial loading per post due to roof dead load)
Fb := Fbl . 1.6..80 Fb = 736 psi (Allowable bending stress per post including load factors)
• 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 10
Check Load Cases:
Load Case 1: Dead Load + .75 ' Wind Load + .75 * Snow Load
ft.] := . fbl = 209 psi (Actual bending stress on post)
• + Pdeadpost
f := f = 63 psi (Actual compression stress per post)
Apost
—
f
CCFALI I:= + bl
Fcc fc CCFALI I = 0.31
Fb I FcE
■
Load Case 2: Dead Load + Wind Load
fb1 := ttot fbl = 279 psi (Actual bending stress on post)
Pdeadpost
f := f = 8 psi (Actual compression stress per post)
Apost
fb ] CCFALI2:= (- +
F CCFALI2 = 0.38
Fb 1 —
c E
-
Load Case 3: Dead Load + Snow Load
fbI := 0 fbl = 0 psi (Actual bending stress on post)
f • - P snowpost + Pdeadpost f = 81 psi (Actual compression stress per post)
Apost
2
f
CCFALI3 := + bl —
Fcc Fb. I — —fc CCFALI3 = 0.03
cE
CCFALI = 0.38 Less than or equal to 1.00 thus OK
• 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 11
•
POST EMBEDMENT FOR CONSTRAINED CONDITION:
Calculate the required post depth. The concrete floor will provide a constrained condition for the post.
yltot = 20(01 in - lbs
Ph = applied lateral force (P) and distance from ground to applied lateral force (h).
1yltot
Ph :=
2.12
S = 150 [psf] (Assumed soil lateral bearing capacity)
depth_postc = 3.5 [ft] Trial depth of embedment.
S3 = 1397 (calculated using a trial depth of embedment)
(Ph)
4.25
depthc b depthe = 1.9 [ft] (minimum required post embedment depth)
S 3
12
Wbldg
Hroof 2 t� Hroof = 2.5 ft
0 . 375 •mD•(Hbldg)' Lbldg' qe
Veave wind
2
Veave_wind = 443 lbs (Total load transferred into each gable wall)
Veave_wind•Hbld
Cpost Cpost = 554 lbf (This is the uplift load on one gable wall post)
Wbldg — Wgableopenings
Assume a total weight of roof and wall area to be 2.0 psf. The area of the roof and wall that will tend
to keep the gable wall post in the ground will be as follows:
Lbldg „ Wbldg Wbldg
Eave_wall := Hbldg' 2 2 Roof 2 2 2 Gable_wall Hbldg' 2 •2
Eave wall = 200 lbf R = 200 lbs Gable wall = 200 lbf
2
Posts (Hbldg + depthc)'Wpost dia footing — Apos
Post_hole 150•depth_poste 3.14 4 144
Posts = 104 lbf Post hole = 1517 lbs
Wttot = Eave wall + Gable wall + Roof + Posts
Wttot = 704 lbf (Note that Wttot is greater than Cpost• Thus OK.)
4/29/2005 MW05230 (Bartley) 20x20x10.mcd 12
FOOTING DESIGN:
Check the soil bearing capacity of the punch pads. .
Afooting din 3.14. - footing 2 ft This is the area of the footing)
9soil = 1500 psf
din_footing = 2 ft
depth_postc = 3.5 ft (Minimum embedment depth)
Pfooting Afooting'9soil'dfactor Pfooting = 7065 lbf (End bearing capacity of footing)
Psnow = 2925 lbf
Note that the end bearing capacity (P fmhn9 ) is greater than the snow load (P This is OK.
4/29/2005 MW05230 (Bartley) 20x20x10.mcd 13
SEISMIC CALCULATIONS
Design per IBC 2003
S = 106.1 Mapped spectral acceleration for short periods (from above)
S1 = 37.2 Mapped spectral acceleration for 1 -second period (from above)
I := 1.0 Importance factor
W = Dead load of building
R = 7 Response modification factor (from above)
1. Determine the Seismic Design Category
a. Calculate S and S0
For SDs: For S01:
For S = 1.06 For Si = 0.37
F 1.1 F 1.66
SMS := Ss
SM1 := SlTv
SMS = 1.14 SM I = 0.62
SDS 1 3J'SMS SDI := ( ) • 3 M1
SDS = 0.76 SDI = 0.41
Seismic_Design_Category = "D"
4/29/2005 MW05230 (Bartley) 20x20x10.mcd 14
2. Determine the building parameters
Building dead load weight, W: 11
W := [Wbldg'Lbldg'(Pe. + [(wbldg1dg) + 2 '(Wbldg Hdg 3
W = 2400 lbf
Building area, Ab:
Ab Lbldg' Wbldg Ab = 400 ft
Determine the shortest shear panel, L
Lwg Wbldg – Wgableopenings
Lwe Lbldg – Weaveopenings
L := WO-1.1%7 < Lwe Lw = 8 ft
3. Determine the shear force to be applied
(1.2.$)
Vbaseshear = IZ
s
V base shear = 313 Ibf
4. Determine the seismic load on the building:
Per IBC, for Seismic Design Category's A, B, and C, p =1.0. For Seismic Design Category D, E, or F, p
shall be calculated using r
4a. Determine p for Seismic Design Category D, E or F (only if required).
]0
[ (Vbnse shear)'
rmax r max = I
Vbase shear
p: =2 –
20
rmax•Ab 5
p = 1.00
E := p•Vbase shear + .2•SDS•W •
•
E = 678 lb
Y • 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 15
ANALYSIS FOR GABLE WALL:
1. Check Wind Loads:
Hroof = 2.5 ft Hbldg = 10 ft q = 13 psf
Lbldg = 20 ft
0 . 375 •mD•(Hbldj . Lbldgge
Veave wind
Veave wind = 443 lbf
2. Check Seismic Loads:
Veave seismic := E Veave seismic = 339 lbf
2
The controlling load = "Veave wind" . Therefore, Vgable_shear = 443 lbf
This is the lateral load that is transmitted to each gable wall. This load will be transmitted through
the roof diaphragm to the gable walls. Normalize the load to a per foot basis.
Vgable_shear
vgablewall W W v ablewall = 55 plf
bldg — gableopenings g
The gable wall diaphragms can resist the shear loads as follows:
If vgablewall < 142 plf Then no additional sheathing is required.
•
• 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 16
ANALYSIS FOR EAVE WALL:
1. Check Wind Loads:
Hroof = 7.5 ft Hhlde = 10 ft q = 10.5 psf
Wbldg = 20 ft 1 •hldg = 20 ft
0.375.mD•(Hbldg).Wbldg'gg + 0.5•(Hroof).Wbldg.gg
Vgable_wind
Vgable_wind = 490 lbf
2. Check Seismic Loads:
Vgable_seismic := E Vgable_seismic = 339 lbf
2
• The controlling load = " Vgable_wind" . Therefore, V evve shear = 490 lbf
This is the lateral load that is transmitted to each eave wall. This load will be transmitted through
the roof diaphragm to the eave walls. Normalize the load to a per foot basis.
Veave_shear
veavewall W veavewall = 29 plf
bldg — eaveopenings
The eave wall diaphragms can resist the shear loads as follows:
If vcavc„all < 142 plf Then no additional sheathing is required.
4 • 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 17
GIRT DESIGN:
The gins will simple span between posts. Calculate bending stress (fb to wind loading
(q and determine the required girt size.
Girt_spacing
gwegirt qwe 12.12 gwegirt = 2.29 pli Lgirt_span = 1 14 in
I
Lgirt_span
Mgirt gwegirt' 8 Mgirt = 3722 in
fbgirt Mgirt fbgirt = 1807 psi (Stress applied to the girt due to wind loading)
Sgi rt
Determine the allowable member stress.
LDFwind 1.6 Cfugirt = 1.15 Cfgirt = 1.00 C := 1.15 Fgirt = 1650 psi
Fbgirt := LDFwind'C Fbgirt = 3491 > fbgirt Psi This is OK.
PURLIN DESIGN:
Assume that the purlins simply span between pairs of trusses or rafters. Determine the required purlin
size.
Lpurlin span = 1 1 1 in (Bending length of purlin)
Wpurlin = 4.73 pli (Distributed snow load along top edge of purlin)
wpurl i n' Lpurl i n_span
Mpurlin 8 Mpurlin = 7284 in
F Mpurlin F = 963 psi (Stress applied bpurlin �= bpurlin = P ( PP ed to the purlin due to
Spurlin snow and dead load)
Determine the allowable member stress.
LDFsnow 1.15 Cfpurlin = 1.00 C := 1.1 Cfupurlin = 1.00 Fpuriin = 1650 psi
Fbpurlin LDFsnow 'Cfpurlin'Cr'Cfupurlin'Fpurlin
Fbpurlin = 2182 psi > Fbpurlin This is OK.
•
• 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 18
CORBEL BLOCK DESIGN:
Determine the required number and size of bolts required in the truss block.
Assume full snow load and dead load on the roof.
Pbolt 58 := 1590 lbf pbolt 34 2190 lbf Pbolt 10 := 3600 lbf p16d := 122 lbf
Psnow = 2925 ibf P20d ;= 147 lbf
If 5/8 dia. bolts are used:
Nbolts58 = 1.6 Number of 5/8" dia. bolts required in the corbel block
If 3/4 dia. bolts are used:
Nbolts34 = 1.2 Number of 3/4" dia. bolts required in the corbel block
If 1 dia. bolts are used:
Nbolts10 = 0.7 Number of 1" dia. bolts required in the corbel block •
If 20d nails are to be used:
Nailsiod = 8.7 number of 20d nails required in each corbel block.
If 16d nails are to be used:
Nails16d = 10.4 number of 16d nails required in each corbel block.
• 4/29/2005 MW05230 (Bartley) 20x20x10.mcd 19
SUMMARY OF RESULTS:
Building Dimensions Building Design Loads
Wbldg = 20 ft (Width of Building) Wind speed = 100 MPH Ground_snow_load = 25 psf
Lbldg = 20 ft (Length of Building) Wind_exposure = "B" Roof _ dead _ load = 3 psf
Hbldg = 10 ft (Eave Height of Building) Seismic_Design_Category = "D"
Rpiteh = 3 / 12 (Roof pitch)
Footing Details:
Post Details
Postdepth = 3.5 ft (Design Post Depth)
Post size = "6x6"
Post_grade = "No. 2 Hem-Fir" di = 2 ft (Design Footing Diameter)
Usage = 38 % (Combined stress usage of post) Footingusage = 41 % (Stress usage of footing)
Shear Wall Details:
V'gablewall = 55 plf (Max. shear in gable wall)
veavewall = 29 plf (Max. shear in eave wall)
Girt Details:
Girt_usage = 52 % (Stress usage of wall girt)
Orientation = "Flat"
Purlin Details:
Purlin_usage = 44 % (Stress usage of roof purlin for snow loading)
Corbel Block Bolts:
Nbolts58 = 1.6 Number of 5/8" dia. bolts required in the corbel block if used.
Nbolts34 = 1.2 Number of 3/4" dia. bolts required in the corbel block if used.
Nbolts10 = 0. Number of 1" dia. bolts required in the corbel block if used.
Nails2t d = 8.7 Number of 20d nails required in each corbel block if used.
Nailsi6d = 10.4 Number of 16d nails required in each corbel block if used.
• SPECIAL NOTE:
• The drawings attendant to this calculation shall not be modified by the builder unless authorized in
writing by the engineer. No special inspections are required. No structural observation by the
design engineer is required.