Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
I 2 Orie Engineering RECEIVED I (40 ,i 414 , - . 2 ' , W- �r Structural & Bridge Engineers 16980 Via Tazon, Suite 200 SEP 12 200$ Phone: (858) 335 -7643 I San Diego, CA 92127 Fax: (858) 451 -6142 CITY OF TIGARD BUILDING DIVISION I Structural Calculations I PROJECT: Solar Electric System — Walgreens Tigard, OR I (Project # 480.134 -08) Sun Edison Project [OR -07 -0036] I I CLIENT: Sun Edison I I DESIGNED BY: On e — Structural Engineers D.R.O. /D.J.F. This signature is to be a wet signature, ' DATE: 09/08 CIS Of Tigard Y 9 not a copy A r ved Plans 1 j I B Date 1041 40E4414* tj P - Q� "j) 1:c. �\c�<tr- PROF-4- SS I 1 .- 7 3 ' Rc_ `� •` c- 812 A ' OREGON OFFICE COPY w 4 0, 31 c I CD R. Signed By: I (This set of calculations has a es. P g ) I Orie Engineering ' Structural and Bridge Engineers Structural Calculations - Table of Contents ' Solar Electric System — Walgreens — Tigard, OR Orie Job No. 480.134 -08 Sun Edison # [OR-07-0036J 1) Scope ' 2) Location Map and Project Summary 1 to 2 ' 3) Solar Panel Layout on Roof & Detail 3 to 4 4) (E) Roof Framing 5 to 6 ' 5) Design Loads 7 to 9 ' 6) Check (E) Roof Framing 10 to 13 7) Check (E) Building for Added Seismic Mass 14 ' 8) Solar Panel Manufacturer's Info Sheet 15 ' 9) Appendix A — Sliding and Uplift Mitigation Al to A9 10) Appendix B — Wind Tunnel Test Documentation B1 to 66 ' 11) Appendix C — Inverter Anchorage Cl to C3 ' 1 ' Orie Engineering Project and Location: Solar Electric System — Walgreens — Tigard, OR ' Orie Job No. 480.134 -08 [OR- 07 -0036j Scope: ' To provide a structural evaluation of this existing 1 -story building roof system to verify capacity to support weight of new Evergreen ES- 190 -SL Solar Panels. Note: The existing roof framing is checked against a total Dead Load of 15.5 psf (11.0 psf + 4.5 psf solar panel + rack weight) plus a Snow Load of 25 psf. ' Codes: 2007 Oregon Structural Specialty Code / International Building Code (2006 IBC) Design Criteria: Loads: Manufacturer Provided Design Weights Evergreen ES- 190 -SL Solar Panels, Wt. = 2.6 psf ' Material Properties: Light Gage Metal Framing: Fy = 33,000 psi for 18GA Fy = 50,000 psi for 16GA & Heavier ' Wind Design Loading: Our wind design load for the front solar panel row is based on ASCE 7 -05 using 94.5 mph basic wind speed and Exp. B. The solar racking system is considered as an "other structure" and a ' rooftop mounting factor is included of 1.9, based on ASCE 7 -05 section 6.5.15.1. Existing Structure: The existing building is a one - story, 112' -0" wide by 135' -0" long with 8" CMU walls. The existing roof consists of 3/4" plywood deck supported by 37" and 38" deep wood truss joists spaced at 4'- 0" on- center that span 36' -6" and 39' -4" respectively. These are supported by glulam girders. ' Solar Panel Rack System: The ballasted rack system is provided by SunEdison. The rack is designed utilizing brick weights and wind deflectors to eliminate any potential uplift forces. Rolled roof wear pads are used to ' prevent damage to existing roofing material as well as to cancel out sliding forces due to wind or seismic forces. These attachments lock the rack in place and are located at every third solar module. The rack design distributes the solar system load evenly throughout the roof. Each row of the solar array is interconnected via Unistrut. Findings and Recommendations: ' 1. The existing 34" and 36" deep wood trusses are Okay to support the additional 4.5 psf weight of Solar Panels and support racks. ' I Page: 1 Orie Engineering Project No.: 480.134 -08 PAGE No. OF 1 di. Structural & Bridge Engineers DATE : 09/10/08 16980 Via Tazon, Suite 200 Phone # : (858) 335 - 7643 PROJECT : Walgreens - Tigard, OR San Diego, CA 92127 FAX # : (858) 451 -6142 [OR 07 BY : D.J.F. I Walareena - Tinard. OR - Location .0.41r. s if - • 'OP : , it . ,, 3 _ 0 .O • iliM�t r 7 1 _ •�� A ci11c H. r 1 i . « . 722J • Q7 a - - ir)gt .� I 0, u :3. _c G'1�.ppSYJ � � "s , ' -eki.1412111 . 4 • r 4P ,,_ Liniewt ..attio gilt— aiw,#2,1•; 4Itri WV, _f i' Fy ¢ I II lLtraZ .:: "9 17 amefF moat I I I I I I I I I I Page: 2 Orl @ Engineering Project No.: 480.13408 PAGE No. OF_ Structural & Bridge Engineers le III DATE : 09/10/08 16980 Via Tazon, Suite 200 Phone 8 : (858) 335 -7643 PROJECT : Walgreens - Tigard, OR S an Diego, CA 92127 FAX # : (858) 451 -6142 [OR - - 0036) BY : D.J.F. I Proiect/Calculation Summary Building Information Store No: I Length: 135 ft Width:112 ft P arapet Ht. 5 ft Roof Elev. 19 ft 2nd Floor Elev. - ft (if applies) Bldg Type: 8" CMU Walls R oof Decking: 3/4" plywood deck Built -up roof Location (ZIP): 97223 I Number of Modules: 150 Roof Framing Information CHK JOIST NAME SIZE SPACING (FT.) SPAN (FT.) Capacity (PLF) Trib Area Roof Live Load (PSF) OK J1 38" TJW 4 39.33 173.0 157.32 25 I OK J2 37" TJLX 4 36.5 174.0 146 25 I CHK Solar Rack Type OK Folder Rack I Inverter Type 500kW Opt 1 500kW Opt 2 1 225kW Opt 1 225kW Opt 2 I N] 30kW Geoaraphlc Conditions I Wind Exposure: B Wind Speed: 94.5 MPH Seslmic Ss: 76.9 %g (based on latitude/longitude and USGS sesimic lookup) Si: 27.9 %g (based on latitude/longitude and USGS sesimic lookup) I Fa: 1.193 Fv: 1.842 I I I I I I W AM I I N N M M NM N mi am • M M = ,, 2 1 3 I 4 I 5 6 Sun E dison NOTE: FOR MODULE LOCATIONS SEE PAGE A.2 SRIMMIMSTAN BELT8R B LE,I AVE BELTSVIE, ND2170E (4000.7700 FULL WIND DEFLECTOR COVERS 100% OF PANEL HEIGHT. TYP, E F z W J 00 GD • W ,ainaliormissminuaisimisimminsimis i t IMMw■ ■ O MMISE S!I,■, ■ ■11■!,!■ _ (o = �L--�� U v ■1.,..i■n■i.a.. I.n4, ■ ■If ■■■■� us EN M E I & ar liii�ii�l1s+a i_■ iiiii1i ■ ■Ilirl ; ■� 1- �`��- -��.. w.. -,IMP- t¢ea W Z d ce - �. ■iMMIIM�� u.... ■ ■■�M.�..�- W W ° =,' 150 LBS BALLAST EACH END -- ■I11�r•im• W_U 111 M_ p Q (J co ROW. �•,, ! EMMEN � li-.• • • • •�. UNISTRUT 34" LONG ATTACHED 0 < r H WAN �..E■�I_ TO FRAME MEMBER WITH a" _ WA■ m ■ ■ ■ vi ■ WLV BOLTS. � r OR- !. imilm __ OR -07 0038 I � �i ■ ■■M■ _ - - ROOF IF Mi.. ■■■■ i ....., _ E __ ■i■■iw -salU \ FULL DEFLECTOR Bliffie�ARCN4 .. .c/ MINEMIllainaLliginalla1111141,5 IS O - .E----- - - - - -- \ � r �-- ..iM...........� FOLDING RACK �� �lfiiiiii'ssssa - _ ■1 ■■I1■■ ■■ ■=M!!I■IIai■s 0- Mrti..1114111111171111111.111. IMENIMINWIliii6IM -- A. mill =MI lf °- _ . flanom Elmo i��►■ �- \ . i■1lEM Ti - ss- N- - -- - - � BALLAST TRAY & BALLAST L.... ......1 ■...■ M.1 I , �■ 1■ \iwiiii iiiHai�niiNiiII111n1■!� \'S ITIM ■■N■■■■■NOMEMMrr�1 rr 4 mamma ■■■■■■■ ■�1■■■■■..�■1 ■■■■1r f 0\ \: - ��' 1�'�S�S177�l1a117�s =s����-,as�i \ ` \\ A Tro• -ro CO sp I W i ' 35' -10 MAX TRUSS SPAN (VERIFY) 1 35' -8" MAX TRUSS SPAN (VERIFY) 39 -4" MAX TRUSS SPAN (VERIFY) X S.1 - M M 1 MN an MB NS 1 r— alll r N— r r - 1111111 , �� 1 2 ' 3 I 4 5 S $lUl Edison' s MwasTKReKS 75 ..- _ m EOAEEOAI+ w —C +. ki 4' 6i ' \ ^ FLAT KaS.CR -0 5 -4 " I . „.1 f 3�DO BALTIMORE AVE 3 ' - WOE _ sr... .\ �J / / R I �� . CZ/ POP Firs Arr . M- Z MK rni¢ra5. BA. BELT ( 'Y200 I T� - o (N'"' E ,r -- FL O J 4 " X X 1. . "� 5 ._8.. 0.50 'I 1. j: X 2.00 a s+�n • • eF�a wlil rsv Z •-•• •• 24 GAUGE GALVANIZED R~ B `WM. W FR GALVANIZED OR STAINLESS STEEL BALLAST TRAY UMSTRUT P100043 CHANNEL. P1000143 BRACE LEO 41 EMI IA ROOF 24 GAUGE GALVANIZED AJ� STEEL BOLT AND WASHER (4" OVERLAP AT SPLICE) 1B0A BRACE LEG STEEL FRAMING MEMBER E re _ 1 REAR DEFLECTOR �+ S AS5EM8LV. OWE Al MR, (31 SEW l i_•L -, 4.00 A av ® R A CKCOMPONENETS FRDNO` MOOUCE CLIP iL Birk N.T F } O FILL ALL REMAINING FRAME / E Q / O g EA LL FOR ROOF ATTACHMENT k ACHMENT $EE MEMBERS BAL AST M Z 6 TRAYS W/ EXISTING ROOF 2 u, 41 ' 6 BALLAST ON BALLASTED ( � �, q 1 F., �.� 1 . ROOFS ONLY. —_ W !A 150 LB BALLAST EACH _ 3 CD 1 END OF ROW. (28) D n STANDARD BRIC l # p Ufa. F + ( E I I I INTRA -ROW / EXISTING ROOFING 1 / 4 .,..„,..... 4 .,..„,..... I CONNECTOR, 7YP. -07 O TYPICAL FOLDER RACK SECTION 44,44.: NISTRUT ATTACHED TO 82 8YYkR" 9, d F RAME MEMBER FOLDER L , I ` I I , , WITH 3/8" GALVANIZED BOLTS RACKING DETAILS H F h r w i D _ {L L © CARING sow. ..11 ..11 3�-2" �, / I . 1 IA ! Y A � �R1AL 9� 81'N� ` `J Ll ..... LJ `J WV." � 11 W.. /RAY : WAS STRUCTURE— C "" BBF MOOD. ' w r I I 5 " ® i ROOF ram 841Mi TRAY 4 .. WS' PAR PAD UNDER FRAME NOS Dw � � wonmu PADS TO EEYEL RACK As REDMBED. y:."'sAU_ r TROY SPLICES OYER FRAME E R la EY �� EBr Lt) YOWLER. ! TYPICAL FOLDER RACK PLAN 1 TYPICAL FOLDER RACK SECTION _ 7._ 70PSCON p ((((( ROVED ROOFING BRUMES ' , ' _J AE ROOF A MATERIAL E GY FOR . j � ... ~ - � .mow I ROLLED M ROOF ATTACHMENTS TO a ,Iy M �� BE GAF RUBERCD ENERGY CAP row TORCH PLUS FR MUST OR ■ wow* EOWVME E MATE NGTH OF INi9 OLB / NSED - - ..r. STR - HAVE A MINIMUM TENSILE B STRENGTH 9IN OM 1 MN. - 127 - /. — -- A OMrtN 7 ON EACH ��� Or ROM ATTACKS, . (C) ET IRDLT HOLES USING r OHAMARZm BOLT A.G.,. . �, / ��` / `a ROLLED ROOF /MANIFEST \ I C I r I - r _ y _ I • J ` � \ f.N DATE AS SHOWN FRONT _ Mt . J AND BAC OF M Ai _ 50uR uow LE5 O rt "1� + / ETCH EON' ENO 2.-6' � j vAxii • l /�\. / \� EVERY (3) M000 L - `' ' � !! 515 ' `I A n05 resOS ./ 7......4, NOTE EXISTING BUILT - UP � $13 �'%fl' 1. DA R�FMG M BE A PLY MEM MW MLM BALUSi tPAV BRACE Eec ( GLV Bar VON A MINIMUM AST/ _ _ (0) NDARD BRICKS ♦I1 f]) 4 MTV 10 110 F AnACHES D -2178 TENSILE STRENGTH �. (mood.) 0) I I ) P.O M CONNECTOR TO I 1111 rs T TAKH r, r r - - r A N1 1 4 OF 44 LD /W PER PLY, CD ROW. BEM PADS B AAL MAMME MEMBERS ADHERED TO FMME FRAME FIELD VERITY. ALL ROW ARE 45/IT 00 STEEL T R AY CONNECT RMT ATTACKS ENDS REWIRE ROOF SALMI TRAY TO BALLAST ATTACHMENT, FRONT AND GALVANIZED EEL T own. COR. BACK OF NODDLE _ + _ J LJ JJ I- _I A MODULE ATTACHMENT DETAIL 0 RACK ISOMETRIC VIEW a ROOF ATTACHMENT DETAIL k8 S +� SmR 1•.1'd 8tr60LTS. eLWi18'� 1Y1• As -built Roof Framing Plan Page: 5 I PLYWD 11 C4_31/8412 12 ek -SEE � L C , G•0 Y8x12 '_nl i • GLS C. ��I��) 6L11/6 0 1/8x12 �— • - I SII'IPSON LTT 206 •4'- GP" o/c 4 1/ I TFtIJSSE8w24' © i�� Q d • LEDGER AI I OM Aft o E LM MI .r_ �lI� — wBLKG, - � __ IM A =IPMIL � I ■ BI'IPBON S S•Y ' EI /' � '�' 0 imo 'd M ,141.0 6' I _ ' 2 4 4FLAT BLKG. _ l _ _ _ • 4-0' do AT PLYLLD. i JO At AT.: INTS -SEE e r - - - F - 1 i 1, - m • 0 ® r I I—� 1 I I mmo= - I AC-15 V © I I I ar • P6DNLan1 S'-0' do 6 I l ME I AC -4 r A a a a" 3/4' T4 G PLYUID. U & 14 V (APA INDEX 48/ 241W/ I ... ,, • S 10Mi• EDGES AND V S • 10d•6 ° dc FiELD • hI I ° '� n I ; r 0 Q '' 4x6 FRAMPXi ® O I 641ELLITE DIB4i -SEE Q C WJDOW TO R 51 V .'� ra - 54 o 4 ABOVE,SEE • EA. JOIST { ANTENNA {E00LB ; 3 I 1 f Y U U m x 11 I�IIn,.. �_ �0 4 TR 4 DF -L LEDGER W/ I 314 "OAHQTS•16'o/c Fl _ (18' WALL IS BRICK SI PSON 1-87113 1-67115 (E 1111117 IQ •8' �'da 6 1PSON 1-6 • 8' -0° I DES4 - sN ROOF ,KJSiTSFOR TOP C �� , CHORD: TS pf LINE LOAD WI AI �' .� _ _ �� (PLUS SNOW:RFT/ IOprOEAD - BOTTOM CHORD: 5 o DEAD LOAD © AC-1 111 0 - FROM TOP OF DESIGN CANOPY TRUSSES FOR -T URNDOLLN TO ROOF JOISTS E, TOP CI -RORD: 5 LINE LOAD 9 _ 4FLAT BLK . _ 19 F e DEAD LOAF - I e ♦ • 4- O'dc.4T ' 11111 BOTTOM GH012D: 9 prPE.4D LOAD 2x 4 FLAT BL Str1P.L 6TA 36 PL1V.D.JOINT6 JOINTS -SEE { T x 4 FLAt BL.KG I e ti ST 5274 i _ •4' - P ole A TPL YLLD II1 /I JDINT6- �1 ° ,1 /,I1,•,U,i i f ; � e �� ' ! i .!` ' e TT' _ VDUUIIIIU ii 1111IIlilflh111111 • I I x � ' l' Wli �g I1�i11i11[I11ii i I ilk i i i' I1111111i�4 ilk 0 I I s e rJ�1'Q L SXYt,G.O �I ,■ a �. © " f gm GL SI /8412,C . 4T LEDGER AT BLKG © — _ - -•� _• —_ -- 44 6DF- L LEDGER IW ! /nil :d ® 2 oo. 3/4' 4 A BOLTS • 4' -0' do F.47. Q 1 . . AT • 6 WM.L ELEVATION 4(:), 6 c5 1 As - built Roof Framing Plan Page: 6 GUI- LAM BEAM AT CANOPY 502 MISSION 5TRBFF,, 5RNTS 203 URA 415 DOS 8155 SAN FRANCISCO. CA NUNS PAX U66400800 DRAWINGS/SPECIFICATIONS BV: 6 DP -L P.T. LEDGER N eh EIN 4'<A.BOLTB•4' -o v IMF de . I ❑ gT WALOREENW CONSULTANT OREFRONT AT 1 1 IN LANDLORD'S CONSULTANT - .-.._..__. • I L d.KCI. © ENTRY BELOW ick . - - - - --- © -` �E1 ALL CONSTRUCTION WORK,UNLESS NOTES OTHERWISSNY: © a LANDLORD'S CONTRACTOR (TURNKEY CONSTRUCHONI, © ��'. v 0 D WALOREEN1 CONTRACTOR dl MEGHL.VENTS- I ? © II . r SEE ARCF� ` J STORE BIULDING • —I ° —I — �� • ..). .. r MASONRY WALL �. / 1J NEW.:._.._.... r � / 3/4•1IG PLYUA. REMDDEUxG.... ❑ . ji � ' / � SHEA wSRNG .._ © v 1 �., W/ E E RELOCATION ❑ __ —__ iiiivi. -' ! \ , �md1)Z'o%FEI -D ❑ NEW SHELL ONLY ❑ 111111 ;,' © O T HERS....... IL _ m� 1 04� ,i ._:, AT CANOPY © y `I ••••••11 ' I LKG.• IA =T...1! 1t (V ■Li.w : CC 1 ,. ' • •Ale II r. ■©i5 PYw■ —,06__._ 51 / GL 5 Q ■ueg,jlot.i■ — ° v v ■■ ■ ■ ■■■ 0 6x6POSTLP.. 3 BERRY - NORDLINGENGINEERS, INC. TO ROOF GBDT S.W. CORBETT' AVENUE PHONE ( 601 ACC -1103 COLUMN CONTINUES UP TO PORTLAND. OREGON 97701 FAA '(BW).T'M. I Al e LTT T� (TUKI APL.ACES) CORNER O 1/5"•T-0' I 0 4z 12O- LLEDGERIU/ - 'Mi . I 3/4'4 ABOLT9 • 16` de BRACE FROM ENDOW Q ' (Weds LUAL IS BRICK alnk 11) A HEAD TO BEAT1 -PEE _ 11' I C I Y � 'ii'�� jl / xx, I ME Alr■ 41111 .c41314 1 7. 1;1111111:41 1:::: OM TOP OF MIN 1 200E JOISTS O Q it _ � / IIII 0 _ -_ _ -___ Sx6P09TIN WALL .._ - .. - • Lti - SEE © 5m/se REYEW/5101'ETTAL BET ® W3/00 WGB WALGREEN320EEV'DATE • (:).41 A !�PLAN UB •I -� 0 - - ._ 0 • CI AT BRACES • 1 Fa7 NOTFB : 0 Q I D ALL GLU- LAM BEAMS SHOO; HAVE ZED 1 CAMBER (C- 0)UNLESS NOTED OTHERUASE 0 ROOF JOIST SUPPLER TO VERFY SIZE. WIGHT. AND J __ Q Q LOCATION OF I'ECHANCAL UNITS. PROVIDE 1 , ADD(TONAL JOISTS F REQUIRED. v CZY _ I___ 0 PROVIDE JOIST AT EAHSDE OF DRAFT STOP AND II _ SPRINKLER MAUI SEE ARCHL. AND MCHI_. DRAFTY S, DESIGN ___ I' HP ( __ —__ FOR ADDITIONAL LOAD OF 80 PLY DUE TO DRAFT STOP zp 0 ® SHADING1501CATES EXTENDOF SNOW DRFT LOADING • 'A.J F ® ROOF HATCH- SEE ARCA& COORDINATE FRAI C TO a ACCOMMODATE HATCH AND'LADDER LOCATION. ND. DATE BY DESCRIPTION CONST I MO I 0 © NOT USED - REVISIONS CERTIRO REVISIONS AN - Fr p ® DASI -ED LINE NDICATES SOFFIT FRAYING BELOW, JOISTS TO BE DESIGNED FOR ADOMOW L 50 PLF, USE PLF AT SERA. • 1 � - T _ _ _ JJ D ES- Q SIMPSON 1 LT 5 HANGER - J_ _ 2TX I HEREBYCERRFV THAT p546OA. © ���, ❑9 ADD SMPSONF 46 AT END IAIDER CURB CA TION WAS PRE BY ©� II A 1 r MECHANICr •' AL UNIT _ DETAILS AT ME OR UNDER MY DIRECT i K i_ _- REL ONR Y WA LL IFIA S BEL.DUI -EEF MECHANICAL UNIT CURB - SUPERVISION AND THAT I . AM A DULY REGISTERED T M © © ® AAGHTECTOR /.. � UNDER THE LAWS OF THE Y' 1 � �Ii� 2 - 2 x6 ❑10 TUBE COLUMN 530 _� WALL TO - - SPANDREL AND BEAM SEE STATE OF OREGON �� . II �' AS SIGNIFIED GL 51 /B12 G.0 ANO SEAL BY MY NANO � �M O. 6E � PROJECT .. Zx DETAL b•24`o)e Li 5 /BPI-YID. 32/16)UV IExPIRES: 12/31402_ J i 110d•12'o0d•I?o / o • EELD DGES �i' - NAIE EVSOS ® COO DINATEFRAI 'BJG LAYOUT TO ACCOMODATELIGHTS, PACIFIC HWY. & GAARDE ST. A 4 ' -_- G•0 -_ © ACCESS PA ,ETC. 13945 SW PACIFIC HWY IlWir 6 g DEPRESS PL ..°..+EATHNGEf B AND 9CLIPPER -SEE ARCHL TIGARD, OREGON I ' V6 FRA�WGAT MAIN ROOF aw, D RAWING TIRE _ LINE NIA - ROOF FRAMING PLAN ES• GLS VSx IJ NOTES . ® -- - Ga I , DATE 0- 1'1 -99 STORE NO. _ . DRAMS No. • 'NAL NO SUBSTITUTION ALLOWED FOR JOISTS JMG 0261 no-e9lso R � I CI g1 DO NOT USE OSB FOR ROOF SHEATHING J08110. J08110. SCALE: AS NOTED w/ / /)�) , 1 DRAWN .. / BY: .�— RELEASED TO CONSTRUCTION \ \/{ REVIEWED Br. Brw "OF - mvGa I Page: 7 • Orie Engineering Project No.: 480.134 -08 PAGE No. OF _ Structural & Bridge Engineers DATE : 09/10/08 1 6990 Via Tazon, Suite 200 Phone # : (858) 335 -7643 PROJECT : Walgreens - Tigard, OR San Diego, CA 92127 FAX # : (858) 451-6142 [OR - - 0036] BY : D.J.F. Gravity Design Loads I CODE: 2007 Oregon Structural Specialty Code / 2006 International Building Code I ROOF DEAD LOADS: Roofing over Rigid Insul 4.0 psf • 3/4" Plywood Deck 2.5 psf TJLX Truss @ 48" o.c. 1.0 psf Suspended Acoustical Ceiling : 2.0 psf Mech /Electrical /Plumbing 1.5 psf I (ducting, conduit,piping,spriklers,etc.) Sub -Total : 11.0 psf Truss Girder 1.0 psf Total : 12.0 psf I Solar Panel + Rack DL = 4.5 psf ROOF LIVE LOADS: 2006 IBC 1607.11.2.1 I Slope = < 4 :12 Tributary Area = <= 200 ftA2 ___ => 20.0 psf I Tributary area A 200.0 SQ.FT Roof Trib Reduced Live Loac R� = 1.2- .001At =1 Rise per feet, F = 4.0 :12 1 R2 1 =1 4 = 20R Eq. 16 -24 = 20 Min Design Roof Load L,= 20.0 psf I SNOW: Roof Snow Load : 25.0 pat I I I I I I I I I I Page: 8 Orle Engineering Project No.: 480.134 -08 PAGE No. OF _ t ! 1 n` ' Structural & Bridge Engineers DATE : 09/10/08 16960 Via Tazon, Suite 200 Phone # : (858) 335 -7643 PROJECT : Walgreens - Tigard, OR San Diego, CA 92127 FAX # : (858) 451 -6142 [OR -07 -0036] BY : D.J.F. I Dead Load of Rack + Panel Dead Load of Panels I Width of panel = 37.5 in (Evergreen) L ength of panel = 61.8 in Area of panel = 16.09 ft Total weight of panel = 40.1 lb I Dead load = 2.49 psf Dead Load of Rack Determine weight of typical 20'x50' section of roof I Member Quantity Linear Ft. Unit Wt. Wt. 2 4 GA. Steel Framing Member 48 N/A 7.35 lbs ea. 352.80 lbs 24 GA. Steel Ballast Tray 3 50 ft 0.78 plf 117.00 lbs P1000 H3 Unistrut Brace Leg 12 3 ft 1.75 plf 63.00 lbs I Rear Deflector 3 50 ft 1.5 plf 225.00 lbs 900.00 lbs Ballast Bricks 168 N/A 5.35714 plf MISC. 1 N/A 20 lbs 20.00lbs Total weight = 1677.80 lbs I Total Area = 1000 ft Dead load = 1.68 psf Dead Load of Panel + Rack I Total = 2.49 + 1.68 = 4.17 psf Use 4.5 psf (conservative) n n n n n n n n n n n n n n I ' n n r n n n n n n 1 n n [ HH II { HH r n n r n n n n n ' Ili I fi ,. 1_ gat c L L _ J L /_, I I. � f - , me. ays .lo-c m•°ma R o-as Y � ~'�� m s,a+�iwea�t� 2 / ' I. 4 I. - I. ..I I- l, a so I 20.0 w w,a o- $r °� I 2t WuGE GM VknIZEO UNIS7rtuT PIDDDH3 CHINNEL. P IDWHJ 3+ME LEG •r A GAGE ING N IIED w I--- ��� SIFEI BN.UST TRAY ISGA BRKE LEG STEEL FFAUINO MEU9ED - P r CwawP wT suCEJ RE... DEFLECTOR w MONT YOJLIE CUP I I I I Page: 9 i Orie Engineering Project No.: 480.134 -08 PAGE No. OF I Structural & Bridge Engineers DATE : 09/10/08 1 6980 Via Tazon, Suite 200 Phone fit : (858) 335 -7643 PROJECT : Waigreens - Tigard, OR San Diego, CA 92127 FAX # : (858) 451 -6142 [OR -07 -0036] BY : D.J.F. I peed Load of Rack + Panel 24 GA. Steel Framing Member ite-17- -- - X- Section: 11 II I s_ 24 GA. Thickness = 0.028 in �j Member Dim =4 "x1 -5/8 "x 24 GA. IF w = 500 lb/ft p• `mat A = 0.00121 ft I 5 � L1 = 1.25 ft X L2 = 5.33 ft L3 = 5.67 ft 24 GAUGE GALVANIZED STEEL FRAMING MEMBER W = 500 x 0.0012 x [1.25' +5.33' +5.67] I W = 7.35 lbs I P1000 H3 Unistrut Brace Leg ...bj 2'-10" Manuf. Weight = 175 lb per 100 ft I W = 175 lb /100 ft W = 1.75 lb /ft I. o .i I UNISTRUT P1000H3 CHANNEL. 16GA BRACE LEG P1000113 BRACE LEG I 24 GA. Steel Ballast Tray s CO 24 GA. Thickness = 0.028 in -,, L_____i to 1 Member Dim = 4" x 1 -5/8" x 24 GA. i w = 500 lb/ft 4 A = 0.00156 ft 24 GAUGE GALVANIZED W = 0.78 lb/ft I STEEL BALLAST TRAY (4" OVERLAP AT SPLICE) I Rear Deflector 24 GA. Thickness = 0.028 in I Member Dim = 15.1" x 24 GA. ws E TIRE *3GM of w = 500 Ib /ft / ; /24 Mocu� PRAM o uER A = 0.00294 ft W = 1.47 lb/ft REAR DEFLECTOR I Ballast Bricks I W = 5.36 lb/ea. 153 LB BALLAST EACH END DF ROW. (28) STANDN+O BRICkS. I I Page: 10 ;� Orie Engineering Project No.: 480.134 -08 PAGE No. OF & Bridge Engineers # I StflJCILff91 Via 16980 Via Tazon, Suite 200 Phone : (858) 335 -7643 PROJECT : Walgreens - Tigard, OR DATE : 09/10/08 San Diego, CA 92127 FAX it : (858) 451 -6142 [OR - - 0036] BY : D.J.F. I Check (E) 38" TJW - Series Wood Truss Joist (DL +LL) 38" TJW - Series Wood Truss Joist Cal 4 ft o.c. I Span = DL Roof 39.33 ft. trib. = 11 psf 4 ft. x 4.0 ft. = 44 lb /ft. DL Solar Panel & Rack Wt. 4.5 psf x 4.0 ft. = 18 lb/ft. LL Roof 25 psf x 4.0 ft. = 100 lb /ft. I Total Load on Truss 162 lb /ft. x 39 = 6371.46 lbs. Per Standar Load Table / Steel Joist, K Series I 38" TJW - Series Wood Truss Joist - 39.3 ft Allow TL 173 lb/ft. Applied TL 162 lb/ft. OK I Allow TL 6804.09 lbs. Applied TL 6371.46 lbs. OK I 1 I I 38" TJW - Series Wood Truss Joist @ 4 ft o.c. I are Okay for Additional DL of Solar Panels & Rack I I I I I I I Page: 11 TJWTM TRUSS ALLOWABLE UNIFORM LOAD TABLE (PLF) / PARALLEL CHORD I For economical truss design, see page 5. Deith 14" 16" 18" 20" 22" 24" 26" 28" 30" 32' 34" 36" 38" 40" 151X 115 %Tl 1116%R 115 %ft III %TL 1,5 %n 160% ft 1151, T. loo %TL „'.. 105 %R ' IN %R 100% ft ,.,.:. 150 %IL 5 3 I51 % TL 111% TT I/O %Il u5 "- TL 100011 !i5` > >: It 105 %n '115' I: 100% TL 1 15 1 , R I Span I11% LL 100% 0L MU, 11!%11 IM %LL MICR %ll 115% TT 115 LL 125%a % 125 % IW %!L 125 %11 100% IL 125 011 100% LI 125 % /L 115 011 125 %TL 151 % 11 125%10. 125 % 1111110%11 0% 125 %1L 111% LL 125 011 115 LL LL % 125% 100 % 125% R. 14, 391 445 416 466 420 484 418 490 418 477 393 452 '385 444 398 447 376 433 342 416 342 397 307 359 328 347 308 347 370 477 495 512 525 515 487 482 470 470 442 435 391 378 366 16' 320 366 358 409 375 439 395 445 394 452 389 433 385 428 373 406 364 389 364 392 338 388 305 363 305 354 305 337 I 250 398 326 437 451 460 465 460 459 439 423 415 419 386 388 366 261 298 297 339 334 382 369 400 371 410 369 406 361 406 353 392 353 382 332 353 315 353 309 360 306 352 275 326 179 326 235 370 295 394 358 405 412 414 418 415 411 383 383 371 374 344 20' 211 242 241 278 ' 269 309 '300 340 327 366 343 369 343 369 331 374 316 361 305 351 305 334 305 322 281 332 280 322 _ 132 263 174 300 ' 220 335 268 360 319 366 371 376 379 376 377 363 350 359 338 I 22, 173 204 202 233 228 263 253 289 276 316 ' 289 330 310 336 313 340 305 338 298 340 294 330 292 332 282 303 282 298 _ 101 222 132 254 168 285 206 313 246 332 333 342 345 345 344 348 342 330 327 24' 144 168 166 195 190 218 212 247 232 265 251 294 274 309 287 311 287 312 287 310 284 312 271 296 282 311 262 279 77 184 103 212 131 240 161 266 195 290 228 305 262 309 314 316 316 319 308 318 298 I 26' 61 151 121 14 1 37 160 154 178 171 254 185 215 202 233 218 25 237 266 240 265 247 267 247 291 265 286 254 268 119 137 ' 138 162 156 185 181 207 200 231 214 252 230 269 256 282 265 287 265 287 265 292 265 296 286 283 28' - 104 120 247 269 247 262 49 130 65 154 83 176 104 197 125 216 148 235 172 257 197 265 221 269 270 268 270 265 258 89 104 1106 124 119 140 134 156 - 39 92 92 105 105 122 1 137 , 149 173 130 153 163 190 179 203 193 219 208 234 215 246 227 245 230 250 230 250 230 244 I 30' 39 116 53 136 68 153 84 172 102 191 122 206 142 224 163 242 184 248 207 250 248 251 239 242 62 143 168 157 180 170 194 181 211 189 218 199 228 209 233 216 224 198 226 32' 32 100 I 43 114 56 134 69 148 85 164 101 182 117 200 135 215 1 155 222 175 233 194 231 231 224 223 34' 81 81 93 92 107 104 119 115 133 126 148 137 158 149 172 161 186 169 190 179 204 186 213 193 211 196 192 I 36' 87 36 100 47 117 58 131 71 84 159 99 174 114 187 130 198 146 216 164 215 181 217 217 213 73 62 83 82 93 92 107 102 118 112 130 120 142 131 153 141 165 151 177 160 186 168 195 175 199 178 182 74 30 91 39 104 49 117 60 129 72 144 85 155 97 168 111 180 125 192 i 140 199 155 203 170 199 199 38' 63 75 74 84 82 95 91 105 99 116 108 126 117 137 125 146 136 156 1 143 166 150 175 157 182 164 172 I 40' 63 82 33 92 42 1 51 115 61 126 72 138 83 148 95 159 1 106 171 119 179 134 188 147 188 160 172 54 68 61 76 75 87 83 96 91 105 98 115 107 125 116 135 124 144 130 152 138 160 144 167 148 172 54 72 28 86 36 95 44 105 52 115 62 126 71 137 82 148 92 155 103 166 115 174 127 176 140 174 42' 47 62 ' 72 63 80 76 88 84 96 90 105. 99 113 106 122 113 131 120 140 126 146 132 152 137 159 _ 47 63 79 31 88 38 95 45 105 53 115 ' 62 124 71 135 80 143 90 151 101 160 111 167 121 169 fi 76 44' 41 54 64 72 69 80 0 76 87 82 95 88 103 95 110 0 101 118 109 126 115 133 120 140 126 146 _ 41 54 69 78 ' 33 87 39 95 47 103 54 112 1 62 121 71 130 78 137 88 145 97 152 , 107 157 46' 48 59 65 72 68 79 75 86 81 93 87 100 93 107 99 114 105 121 110 128 116 134 48 62 71 79 34 86 41 93 47 101 54 109 62 116 70 124 78 131 86 138 1 94 145 54 60 48' 42 54 65 72 30 79 86 74 85 80 92 85 98 91 105 96 111 101 117 107 123 42 93 48 100 55 107 62 114 69 120 76 127 84 134 50' 48 56 61 67 63 73 58 79 73 85 79 90 84 105 89 111 94 108 99 114 48 60 66 73 32 79 37 86 43 92 48 98 55 105 61 111 68 117 74 123 I 52' 43 53 62 67 68 j 73 63 73 68 79 73 84 78 89 82 94 87 99 91 105 48 55 62 58 33 79 38 85 43 91 49 96 54 103 60 108 67 114 68 63 73 67 78 72 83 76 43 57 38 48 58 63 68 6 88 81 92 85 98 54' 74 34 79 39 84 44 90 49 95 54 101 60 106 56' 43 51 56 58 63 ' 68 62 73 67 77 71 82 75 86 79 91 I 58' 43 47 52 64 59 63 35 79 39 84 44 88 49 94 54 99 F 62 72 66 76 70 81 74 85 39 47 57 59 64 68 I 73 35 78 40 83 44 87 49 92 ' 43 49 53 56 59 63 67 61 71 65 75 69 79 I SO 43 51 58 60 64 68 73 36 77 40 81 44 86 • See pages 4 and 5 for available depths and profiles. For depths and profiles not shown, use Tl -8eam® software or contact your iLevel Trus Joist® Commercial representative for assistance. • Green numbers refer to 115% Total Load (TL). I General Notes • ilevel Trus Joist® Commercial open -web trusses will be custom designed • Straight line interpolations may be made between depths and spans. to the specified loads. Values shown are maximum allowable load • These tables may also be used for bottom chord bearing trusses with or without capacities based on the following assumptions: cantilevers —at one or both ends. Cantilevers are limited to A of the main span — Simple span, uniformly loaded conditions, with provisions for positive provided that the inboard shear for cantilevered conditions is limited to 2,500 lbs drainage (A4" per foot slope minimum) in roof applications. for the TM' truss series and 4,070 lbs for TIS"" truss series. — Span indicates distance from inside face to inside face of bearing plus 3 ". • Values in shaded areas maybe increased 7% (for T1W" series) and 4% (for I — Top chord no-notch bearing clips with 214° bearing for TN"' truss series and IV series) for repetitive member use. top chord standard bearing clips for TJST" truss series. Higher values may be possible with other types of bearing clips. General Notes continued on page 9 I 8 iLevel Trus Joist® Commercial Open -Web Truss Specifier's Guide COM -3000 January 2007 I Page: 12 I • Orie Engineering Project No.: 480.134 -08 PAGE No._ OF Structural & Bridge Engineers DATE : 09/10/08 16980 Via Tazon, Suite 200 Phone # : (858) 335 -7643 PROJECT : Walgreens - Tigard, OR San Diego, CA 92127 FAX # : (858) 451 -6142 [OR - - 0036] BY : D.J.F. I Check (E) 37" TJLX - Series Wood Truss Joist (DL +LL) 37" TJLX - Series Wood Truss Joist @ 4 ft o.c. I Span = 36.5 ft. trib. = 4 ft. DL Root 11 psf x 4.0 ft. = 44 lb /ft. DL Solar Panel & Rack Wt. 4.5 psf x 4.0 ft. = 18 lb /ft. LL Roof 25 psf x 4.0 ft. = 100 lb /ft. I Total Load on Truss 162 lb /ft. x 37 = 5913 lbs. Per Standar Load Table / Steel Joist, K Series I 37" TJLX - Series Wood Truss Joist - 36.5 ft Allow TL 174 lb /ft. Applied TL 162 Ib /ft. OK I Allow TL 6351 lbs. Applied TL 5913 lbs. OK I I I I 37" TJLX - Series Wood Truss Joist @ 4 ft o.c. I are Okay for Additional DL of Solar Panels & Rack I I I 1 I I I I Page: 13 TJLXT" TRUSS ALLOWABLE UNIFORM LOAD TABLE (PLF) / PARALLEL CHORD I For economical truss design, see page 5. Depth 14" 16" 18" 20" 22' 24" 26" 28" 30" 32° 34" 36" 38" 40" 111%11. 115 %TL 100 %TL - t'L 100 %TL 100 %IL l0 / %ll 115 %1L 111%15 115 %11 1110%7L '. ,, 111 %TL 100 %TL 115 %1L 1111%T1 115 %11 101 %1L 115%I'. 100 %TL '.':5'6 IL 100 %IL 111 %IL 100 %TL 115 %IL Span ' 111%11 125 511 100% LL 125% IL 100% LI 125% IL 100% LL 025 %T1 101%11 121511 ISM/ 1$511 110 %11 125 %1L 100% II 125%TL 100 %11 125X11 111 515 125 %1L 100 %11 125% TI. I10 %LI. 125 %11 100% IL 125511 111 %IL 125 %11 14, 294 348 290 . : :- 316 386 334 409 1366 377 313 360 308 354 338 351 301 327 289 325 279 321 264 306 263 302 247 283 _ 265 378 410 420 444 410 392 385 394 f 376 , 362 341 309 ' 328 308 16' 222 280 254 310 293 314 314 359 315 365 307 362 307 361 296 340 291 342 283 325 270 291 261 283 257 297 244 273 _ 16' 290 244 323 360 395 396 387 384 370 363 353 337 305 305 283 I 18, 223 253 253 289 276 315 310 344 288 343 295 339 314 338 283 326 282 334 272 313 256 300 250 294 245 282 ' 237 263 _ 130 266 172 312 217 347 265 358 360 366 360 352 352 343 325 319 306 282 20' 181 207 206 235 231 263 254 294 277 317 292 323 278 316 274 307 273 314 260 307 248 289 228 280 227 266 234 261 96 225 127 256 162 287 200 317 239 322 280 323 330 325 318 305 314 305 289 283 1 22' 154 176 176 200 197 224 ' 218 249 237 271 242 283 253 286 262 297 270 290 258 289 245 278 246 278 225 260 225 259 129 148 148 168 165 189 182 208 199 228 216 250 235 255 252 257 253 271 250 274 244 266 282 282 96 218 122 244 151 271 . 182 292 215 294 249 2% 302 302 302 282 292 24' 241 260 225 259 216 241 55 161 74 183 95 205 118 227 142 248 168 268 195 271 223 277 251 274 281 ' 282 269 ' 262 263 I 28, 108 125 126 146 142 164 159 182 174 199 184 210 198 226 212 246 225 249 236 254 232 252 237 254 221 253 213 240 43 136 58 159 75 178 93 198 113 216 135 229 157 252 180 255 203 252 227 254 260 260 239 249 28' 77 108 109 126 123 141 137 159 150 174 166 190 178 204 1188 218 200 229 205 235 214 234 214 238 209 230 204 221 34 110 46 134 60 154 74 170 91 189 108 206 126 218 146 234 165 237 187 239 207 240 242 243 231 30' 89 94 110 108 124 121 136 133 152 144 165 156 175 167 187 175 200 187 214 188 216 198 220 204 220 200 223 I 89 38 119 48 135 60 151 74 165 88 180 104 190 118 204 137 217 153 223 173 222 191 225 226 220 32' 74 77 95 95 109 106 121 117 131 127 145 137 154 147 165 1 157 176 163 186 171 196 181 204 182 205 178 201 74 31 99 40 118 50 133 61 143 73 158 86 167 99 179 1 111 191 129 203 143 208 159 210 176 212 206 34' 61 82 83 96 94 108 104 118 114 129 123 139 132 149 141 162 147 169 152 174 159 182 1167 184 168 190 I 36' 61 82 33 104 42 117 51 129 61 140 71 151 83 166 95 174 107 183 121 190 134 196 148 198 163 192 52 70 67 85 84 95 92 105 101 115 110 124 118 136 126 142 132 151 139 162 143 164 149 170 155 181 52 70 28 89 35 103 43 115 51 125 60 135 70 144 80 155 91 168 102 173 114 178 126 185 138 185 38' 44 59 76 73 86 83 95 91 103 98 111 106 122 113 127 120 135 125 146 131 150 139 154 , 141 160 I 44 59 76 30 94 36 103 43 112 51 122 60 131 1 68 138 77 147 87 157 98 165 108 169 119 172 40' 51 65 63 79 76 86 83 94 90 102 97 109 103 117 110 125 115 131 119 139 124 145 127 145 38 51 65 2 82 31 94 31 102 44 111 51 119 59 128 67 135 75 143 84 149 93 151 103 160 42' 44 57 71 78 15 85 81 92 88 99 94 106 100 113 104 120 110 127 116 133 118 137 _ 44 57 71 85 32 93 38 100 44 108 51 116 58 124 65 131 73 134 81 144 89 149 1 49 62 71 69 78 74 84 80 90 85 96 91 103 96 109 100 115 105 121 108 125 44' 38 49 62 75 28 85 33 91 39 98 44 105 50 112 57 119 64 126 71 129 78 134 101 113 46' 43 54 66 77 29 84 34 90 39 96 44 102 50 108 56 115 62 121 43 54 65 71 68 77 73 83 79 88 84 93 88 102 93 105 96 110 38 48 58 70 78 30 83 34 89 39 95 44 101 49 107 55 101 68 126 48' , 93 106 61 115 48 50' 42 52 61 66 61 71 67 76 71 80 75 85 80 90 83 95 86 98 42 52 62 72 26 77 30 82 35 88 39 93 44 98 49 104 54 107 52' 46 55 61 , 65 61 69 66 74 70 79 74 83 77 88 80 91 37 46 55 65 71 27 77 31 81 35 86 39 91 43 95 48 101 54' 41 49 56 61 66 61 70 65 74 69 78 72 81 74 85 41 49 58 67 71 27 76 31 80 35 85 39 88 43 93 44 52 57 61 65 60 69 64 73 67 76 70 79 I 44 52 61 66 71 28 75 31 79 35 83 39 86 58' 4/ 53 57 60 64 68 63 71 65 75 40 47 55 62 66 70 74 31 78 35 81 60' 43 49 53 56 60 63 67 62 70 I 43 50 I 57 61 65 , 69 73 31 77 I • See pages 4 and 5 for available depths and profiles. For depths and profiles not shown, use T1- Beam® software or contact your iLevel Trus Joist® Commercial representative for assistance. • Green numbers refer to 115% Total Load (TL). I General Notes continued from page 6 • Bold italic values are controlled by minimum concentrated load analysis of To size roof trusses: 2,000 lbs. Higher loads are possible where minimum concentrated load analysis Check the appropriate snow load area (115% TL) or non - snow load area l is not required by code. Use software or contact your iLevel Trus Joist® (125% TL) value to determine the maximum allowable total load. Total load Commercial representative for assistance. (115% TL and 125% TL) values limit truss deflection to 1/180. To size floor trusses: Consult local codes to verify deflection limits required for specific Check both total load (100% TL) and live load (100% LL). When live load is not applications. I shown, total load will control. Total load values limit deflection to L/240. Live load values are based on the Commercial Floor Deflection Limit shown in the graph on page 34, and assume a nailed floor system. Live load (100% LL) values may be increased with a glue - nailed floor system; use Ti- Beam® software or contact your iLevel Trus Joist® Commercial representative for assistance. I iLevel Trus Joist® Commercial Open -Web Truss Specifiers Guide COM -3000 January 2007 7 I Page: 14 '"' Orie Project No.: 480.134 -08 PAGE No. _ OF _ ,/ :,' I r`' Structural & Bridge Engineers DATE : 09/10/08 16960 Vie Tazon, Suite 200 Phone # : (858) 335 -7643 PROJECT : Walgreens - Tigard, OR San Diego, CA 92127 FAX # : (858) 451-6142 a2 [OR -07 -0036] BY : D.J.F. I Check (E) Building for Added Seismic Load of Solar Panels & Rack nput Building Width, W 112 ft. Building Length, L 135 ft. I nput nput Wall Unit Weight 150 pcf Unit Weights: nput Wall Thickness 7.625 in. Concrete = 150 pcf nput Roof DL w/ Girder 12 psf nput Wall Height (from base to roof) 19 ft. I nput Parapet Height 5 ft. 2nd Floor Weight DL 0 psf (if applies) Mass of Roof = 181440 lbs. Mass of Upper 1/2 of Wall + Parapet = 682723.44 lbs. I Mass of 2nd Floor = 0 lbs. (if applies) Total (E) Building Mass = I 864.16 lbs. Input Number of Solar Panels ea. I Input Square Area of 1 Solar Panel I sq. ft. Solar Panel Load (psf) r- psf Add Mass of Solar Panels & Rack = f 11,04011bs. I % Increase in Building Mass due to addition of Solar panels = 1.28% Less than 5% Okay I The increase in seismi mass is less than 5 %, therefore I I Inspection the exist shear walls, diaphragm and connections are adequate to deal with this increase. [ 1 - Indicates cells requiring user Input red - Indicates cells with formulas (do not modify these cells) I aMal 112 feet 'Length' 135 feet I I I 1 I I I I Page:15 t.iiulgiy evergreensola � , , p u � �I� �r � „ Il0oii Electrical Characteristics Mechanical Specifications I Standard Test Conditions (STC)' 37.5 Tolerance on rated power of 98 to 104% ( -2 to +4 %) m " ` ES -170 ES -180 ES -190 5'6 HOLE m I Pmp (W) RL Or SL' 170 RL or SL` 180 RIO, SL` _ 190 { GROUNDING -�' 3.5 `f \. • (W) 176.3 186.1 195.9 p,„,, max `r r' 1 r r 1 0 I m Pmp, min (W) 166.6 176.4 186.2 Ppt°3 (W) 150.6 159.7 168.8 "*., _ 10x 0.26 /�/� FOR 1/4" BOLT Vmp t v 25.3 25.9 26.7 JUNCTION BOX Imp (A) 6.72 6.95 7.12 \ (IP54) V°C M 32.4 32.6 32.8 CABLES (AWG12) Isc (A) 7.55 7.78 8.05 m L LEAK ANODIZED I �° ALUMINUM FRAME Nominal Operating Cell Temperature Conditions (NOCT) m 3 I Pmp (W) 120.4 129.0 136.7 L ( +) (-) Vmp (V) 22.7 23.3 23.8 • • C CONNECTORS Imp (A) 5.30 5.53 5.75 1 • ITYPe 3) I sc N) 29.3 29.8 30.3 t Inc (A) 5.94 6.20 6.46 5. ( \- GR OUN DING HOLE TNOCT ( ° C) 45.9 45.9 45.9 i r r L. . I ' 1000 W/m z , 25 ° C cell temperature, AM 1.5 spectrum; ` 1.6 w GROUNDING HOLE) 3 Maximum power point or rated power 35.9 3 At PV -USA Test Conditions: 1000 W /mz, 20 ambient temperature, 1 m/s wind speed All dimensions in inches; module weight 40.1 lbs ° 800 W /mz, 20°C ambient temperature, 1 m/s wind speed, AM 1.5 spectrum I * RL model made in Germany; SL model made in USA. Product constructed with 108 poly - crystalline silicon solar cells, anti - reflective tempered solar glass, EVA encapsulant, Tedlar® back -skin and a double - walled Low Irradiance anodized aluminum frame. Product packaging tested to International Safe Transit The typical relative reduction of module efficiency at an Association (ISTA) Standard 2B. All specifications in this product information sheet irradiance of 200W /m in relation to 1000W /m both conform to EN50380. See the Evergreen Solar Safety, Installation and Opera- ' at 25 °C cell temperature and spectrum AM 1.5 is 0 %. tion Manual and Mounting Design Guide for further information on approved installation and use of this product. Due to continuous innovation, research and product improvement, the specifica- Temperature Coefficients tions in this product information sheet are subject to change without notice. No rights can be derived from this product information sheet and Evergreen Solar I a Pmp (%/ °C) - 0.49 a Vmp ( %/ °C) - 0.47 assumes no liability whatsoever connected to or resulting from the use of any information contained herein. a Imp ( %/ °C) -0.02 Partner: I a Voc ( %/ °C) -0.34 a Inc ( %/ °C) 0.06 System Design I Series Fuse Ratings 15 A UL Rated System Voltage 600 V I s Also known as Maximum Reverse Current I A ELECTRICAL EQUIPMENT CHECK WITH YOUR INSTALLER S190_US_010407; effective April 1st 2007 I Worldwide Headquarters Customer Service - Americas and Asia 138 Bartlett Street, Marlboro, MA 01752 USA 138 Bartlett Street, Marlboro, MA 01752 USA Evergreen Solar Inc. T: +1 508.357.2221 F: +1 508.229.0747 T: +1 508.357.2221 F: +1 508.229.0747 www.evergreensolar.com info @evergreensolar.com sales ©evergreensolar.com I I I I I I I Appendix A I I Sliding and Uplift Mitigation I I I I I I I I Page: Al i'z Orie Engineering Project No.: 480.134 -08 PAGE No. OF I _, ,war. Structural & Bridge Engineers 16980 Via Tazon, Suite 200 Phone S : (858) 335 -7643 PROJECT : Walpreens - Tigard, OR DATE : 09/10/08 San Diego, CA 92127 FAX * : (858) 451 -8142 [OR- 07 -0036j BY : D F. I Description: Wind Force on Rack with 10 Degree Tilt DESIGN WIND LOAD ON OTHER STRUCTURES ASCE 7 6.5.15 F = qh G Cf A, (6 -27) I q .00256 lc K Kd V I (6 -15) Exp = B H t. z at the centroid of area Af = 30 ft Exposure Coefficient K 0.7 6.5.6,6, T - for MWFR Topography factor lc, = 1,00 6.5.7.2 I Directionality factor K = 0.85 Table 6 - Wind Speed V = 94.5 Importance factor I„ mph = 1 Table 6 - q,= 13.60 psf Gust Effect factor G = 0.85 6.5.8 I Force coeff C, = 1.3 Figure 6 -21 through 6 -23 Desi wind pressure, F /A = 15.03 psi I Rooftop Factor = 1.90 6.5.15.1 I Design wind pressure x Rooftop Factor = 28.56 psf I I I I I I I I I I I i Page: A2 Orle Engineering Project No.: 480.134-08 ' war Structural & 8n PAGE No. OF dge Engineers parr DATE : 09/10/08 1698D Via Tazon, Suite 200 Phone # : (858) 335 -7643 PROJECT : Watgreens - Tigard, OR San Diego, CA 92127 FAX # : (858) 451 -6142 [OR-07 -0036) BY: D.J.F. ' Vi - Tlaard. OR - USGS Seismic Information Project Name = Tigard OR Conterminous 48 States 2005 ASCE 7 Standard ' Latitude = 45.2509 Longitude = - 122.4715 Spectral Response Accelerations Ss and Si Ss and Si = Mapped Spectral Acceleration Values ' Site Class 8- Fa = 1.0,Fv= 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (9) ' 0.2 0.769 (Ss, Site Class B) 1,0 0.279 (S1, Site Class B) ' Conterminous 48 Stales 2005 ASCE 7 Standard Latitude = 45.2509 Longitude = -122.4715 ' Spectral Response Accelerations SMs and SM1 SMs . FaSs and SM1 = FvS1 Site Class D - Fa =1.193 ,Fv = 1.842 ' Period Sa (sec) (9) 0.2 0.917 (SMs, Silo Class D) 1.0 0.514 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard ' Latitude = 45.2509 Longitude = - 122.4715 SDs = 2 3 x SMs and SDI 2 x SM1 Site Class D - Fa =1.193 ,Fv = 1.842 ' Period Sa (sec) (9) 0.2 0.611 (SOs, Site Class D) 1.0 0.342 (SDI, Site Class D) Page: A3 r Orie Engineering Project No.: 480.134 -08 PAGE No. OF ' auere SVtJ ttrrai & Bridge Engineers 76980 Via Tazon, Suite 200 Phone 6 : (858) 335 -7643 PROJECT : Walgreens - Tigard, OR DATE : 09/10/08 San Diego, CA 92127 FAX* : (858) 451 -6142 [OR -07 -0036) BY : D.J.F. 1 Seismic Loads SEISMIC DEMANDS ON NONSTRUCTURAL COMPONENTS ASCE 7- 0513.3.1 Code: 2007 Oregon Structural Specialty Code, ASCE 7 -05 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA Soil Site Class: D Table 20 -3 -1, Default = D Zip Code: S 76.9 %g Figure 22 -1 through 22 -14 - 2003 USGS S 27.9 %g Figure 22 -1 through 22 -14 - 2003 USGS F,: 1.193 Table 11.4 -1 ' F„: 1.842 Table 11.4 -2 SMg: 0.917417 F; S, SM7:0.513918 FMS, Sos: 0.611611 2r3(S ' SD7 : 0 11 .342612 2/3(SM,) Occupancy: I - Minor (lp = 1.0): II - Standard (Ip = 1.0); III - Public Hazard (ip = 125); IV - Essential (Ip = 1.5) I 1 ap = 2.5 111 Rp = 3.5 z = 30 h =30 ' Seismic Force: Fp = 0.4a x (1 +2(z/h)) X W (Fi ' F = 0.52424 x W < -- Governs Fpntln = 0.3S x W Fp, en = 0.18348 x W ' F c 1.6S x W Fgmax = 0.97858 x W F = 0.52424 x W Fp(Ag0) = F x 0.7 = 0.37446 x Wp I Page: A4 IE Orie Engineering Project No.: 480.134 -08 PAGE No. OF I 4R , Structural 5 Bridge Engineers — DATE : 09/10/06 1 8980 Via Tazon, Suite 200 Phone # : (858) 335 -7643 PROJECT : Walgreens - Tigard, OR San Diego, CA 92127 FAX # : (858) 451 -6142 [OR - 0036) BY : D.J. F I Rolled Rooflna Attachment Dated I ROLLED ROOFING BITUMEN le I ' . u ` - i' MEMBRANE MATERIAL FOR I ROLLED ROOF ATTACHMENTS TO 4" BE GAF RUBEROID ENERGY CAP TORCH PLUS FR OR EQUIVALENT. MATERIAL MUST _ I i 1 HAVE A MINIMUM TENSILE - - - STRENGTH OF 90LB /IN I — _ __ _ _ . i _ __ _ _ I ROLLED ROOF ATTACHMENT ,, X 8" LOCATE AS SHOWN, FRONT AND BACK OF MODULE AT s•.1 ii--- __ _ °" i — I u-3 EVERY (3) MODULES. d- = I t NOTE: EXISTING BUILT - UP I ROOFING MUST BE A 1 - PLY MEMBRANE MINIMUM WITH A MINIMUM ASTM D -2178 TENSILE STRENGTH - - _ _ i - _ - -- -- __- . - -= r OF 44 LB /IN PER PLY. FIELD VERIFY. ALL ROW ENDS REQUIRE ROOF I I ATTACHMENT, FRONT AND BACK OF MODULE. !! -a H -, -- .3 1 I I I - I . I I I Page: A5 I OR 1E2 0r1e Engineering Project No.: 480.134 -08 PAGE No. OF «hwr Structural & Bridge Engineers — axondK 16980 via Tazon, Suite 200 Phone # : (858) 335 -7643 PROJECT : Walpreens - Tigard, OR DATE : 09/10/08 San Diego, CA 92127 FAX # : (858) 451 -6142 [OR -07 -00361 BY : D J F. I Built Ua Rooftna - Force Transfer Built up roofs consist of multiple plys bonded together. The roof starts generally with a base felt that is nailed to the roof deck. Remaining layers are then applied and adhered to the base sheet with bitumen. Each of these plys are I required to meet ASTM standards for strength. ASTM D -2178 as well as NIST Report No. 55 ( "Performance Requirement for BUR ") contain guidelines for specimen performance of the ply sheets as well as the composite performance. The ASTM standard requires a strength of 44 lb /in of material. Assuming the bitumen is stronger than this, a 1 -ply built up roof would have a tensil strength of 44x1 ply = 44 lb /in. Although note that the industry I recommends a critical performance attribute for built up roofs to consist of a tensile strength of at least 200 lb /in. I BUILT UP ROOFING (BUR) -- �' AFFECTED IN TENSION BY RACK SLIDING FORCES / / MEW if* Sliding Force I I I -_ ��i 1 IN N I Check Built Up Roofing (BUR) Capacity to Compare w/ Rolled Roof Attachment Material Capacity Use only 12" width to be conservative. Approximate Conservative Tensile Strength = 1 pad x 12" x 44 lb /in x 1 ply = 528 LB capacity per pad I Check Rolled Roof Attachment Material Capacity I Use only 12" width of GAF material attached to BUR per pad Approximate Tensile Strength = 1 pad x 12" x 90 lb /in x 1 ply = 1080 LB capacity per pad I Since Rolled Roofing Material Capacity > BUR Capacity, the Built up roofing ply govens Material Governs Connection Design. I I I I I I I Page: A6 1E2 Orie Engineering Project No.: 480.134-08 PAGE No._ OF IC Structural & Bridge Engineers t seso via Tazon, suite 200 shone a : (1358) 335 PROJECT : Walgreeru - Tigard, OR DATE : 09/10/08 S an Rego, CA 92127 FAx s : (858) 451 [OR - - 0036) BY : D.J.F I Rack Calculations • Check Sliding SOLAR + RACK WEIGHT (Used to Calculate Seismic Force) Row End Weight Tributary to Attachment: Ballast Weight = 150Ibs ballast/2 = 75 lbs I Module Weight = 40.1 lbs Support Structure = 17.3 lbs Total = 132.4 lbs No. Modules Trib to Attachment = 1.5 (row ends see weight of 1.5 modules per attachment) Total Wt. Trib to Attachment = 198.58 lbs < - Governs over row interior tributary weight I interior Weight Tributary to Attachment: Ballast Weight = 0 lbs Module Weight = 40.1 lbs Support Structure = 17.3 Ibs I Total = 57.4 lbs No. Modules Trib to Attachment = 3 (row interiors see weight of 3 modules per attachment) Total Wt. Trib to Attachment = 172.15 lbs I Demand SEISMIC SLIDING FORCE 0,52424 F Seismic Force Coefficient 104.101 lbs Sliding Force due to Sesimic - Per (1) Attachment I WIND SLIDING FORCE 28.56 psf Wind Pressure On Other Structures (95 MPH 3- Second Guest/Exposure B, Includes Rooftop Factor) 1.083 ft Height of Surface Perpendicular to Sliding Direction 3 Tributary No. of Modules Wind Force Is Appllied to Per (1) Attachment 3.13 ft Width of (1) Module I i No. of Pads to Which Wind Force is Distributed Governs -> 289.959 bs Sliding Force Due To Wind - Per (1) Attachment Capacity ROOFING MATERIAL CAPACITY NOTE: SINCE THE BUILT UP ROOFING PLY GOVERNS OVER THE ROLLED ROOF ATTACHMENT GAF I MATERIAL, THIS CALCULATION IS BAED ON THE STRENGTH OF THE A SINGLE PLY OF BUR 1 in Rolled Roofing Material Length Attached to (E) Roof 44 Win Governing Capacity - Single Ply of Built Up Roofing 1 Number of Attachments Force Is Being Applied To 528 lbs Capacity of Roofing Material at (1) Attachment I Check Shear DEMAND Wind Shear Load: 289.959 Seismic Shear Load 104.101 Governing Sliding Force: 289.959 Lis per Attachment I CAPACITY Max. Allowable Sliding: 528 lbs per Attachment 290.0 Its e 528.0 lbs Rolled Roof Attachments OK I Factor of Safety Against Sliding= 290.0/528.0 = 1.8 t 150 lb Ballast Bricks Ea. Side of Row Rolled Roof Attachment Locations ( Shadded In Red) Area Tributary To Rolled Roof Attachment (Shadded In Yellow) I . ,._._...._........_..,.. MI El i , ar -" } —' I TYPICAL ROW 1 N f i 1 :7 1 _ � I 1 L Mill - - �M TYPICAL ROW 2 MIMI MN� 1 I I I I NI :MI I ■ —99 pp t t'' - r u I 6 n II TYPICAL ROW 3 I t� [ . i I N r I TYPICAL SOLAR ARRAY (PLAN VIEW) I Page: A7 i1EZ Orie Engineering Project No.: 480.134 - 08 PAGE No. OF I OR . r.rr Structural & Bridge Engineers ar Vi a DATE : 09110/08 16880 Via Tazon, Suite 200 Phone* : (858) 335.7643 PROJECT : W816feerts - Tigard, OR San Diego, CA 92127 FAX # : (656) 451.6142 [OR 07 BY : D.J.F. I Bunt Us RoofIno • Uollft Force Transfer Assume an ASTM D -2178 Ply Capacity of 44 lb /in for a single ply. Also assume that only a 12" section of the BUR acts to resist the uplift forces. I Built up Roofinq Ply Capacity For Uplift Forces Use only 12" width of BUR ply Approximate Tensile Strength = 1pad x 12" x 44 lb /in x 1 ply = 528 LB capacity per pad This is equivalent to 528LBS x 2 pads / (3 modules) = 352 lbs uplift resistance per module I Weight per Module at Row Ends Ballast Weight = 150lbs ballast / 2 = 75 lbs Module Weight = 40.1 lbs Support Structure = 1677.8Ibs (weight per page 8) - 900Ibs (ballast weight) = 777.8Ibs/45 modules I = 17.3 lbs Total = 132.4 lbs 0.6 x Total =79.4 lbs I Weight per Module at 2nd to Row Ends Ballast Weight = 0 lbs Module Weight = 40.1 Ibs Support Structure = 1677.81bs (weight per page 8) - 900Ibs (ballast weight) = 777.8lbs/45 modules 17.3 lbs I Total = 57.4 lbs 0.6 x Total = 34.4 lbs Weight per Module at interior I Ballast Weight = 0 lbs Module Weight = 40.1 Ibs Support Structure = 1677.81bs (weight per page 8) - 900Ibs (ballast weight) = 777.81bs/45 modules 17.3 lbs Total = 57.4 lbs I 0.6 x Total = 34.4 Ibs Module Location Uplift DL 0.6DL Uplift Resistance Safety Factor Safety Factor Safety Factor (Ibs) (lbs) (Ibs) Provided by Rolled Based on DL Based on 0.6DL 0.6D + Rolled I Roof Attachment (Ibs) Roof Attachment Row End 59.4 132.4 79.4 352 2.2 1.3 7.3 I 2nd to Row End 29.7 57.4 34.4 352 1.9 1.2 13.0 Interior 19.8 57.4 34.4 352 2.9 1.7 19.5 Conclusion: Solar System Is Okay For Uplift Forces. I I I I . I I Page: A8 2 Orie Engineering PAGE No. OF OR Structural & Bridge Engineers Project No.: 480.134 68 I 169800 Via Tazon, Suite 200 Phone 4 : (858) 335-7643 San : 09/10/08 PROJECT : Walpre -00 • Tigard, OR San Diego, CA 92127 FAX 4: (858) 451 -6142 PR - 0036] DA BY : D.J.F. I 1Jn1111 Calculations Based on Wind Tunnel Data ASCE Wind Preeeure Calculations Reference > ASCE 7 -05 6.5.15 4 = 0.00256 K, K„ Ke V` I Es (6-15) F= RFq,GC,A, Eq(6.28) 8 Sec 6.5.15.1 I EN oswe Category B May Height atove &L., z E17> 3011 oswe coefficient, K, 0.7 Sec 6.5.6.6, Table 6-3 Topography Factor, K„ 1.00 Sec 6.5.7.2 Directionality Factor, Ka 0.65 Table 6-4 I Wind Speed - 3 sec gust, V 74.5 mph knportance Factor. I 1 Table 6 -1 Velocity Pressure, q, = 13.6 psi Rooftop Factor, RF = 1.90 Sec 6.5.15.1 Gust Effect factor. G 0.85 Sec 6.5.6 I Local Design Wind Pressure = 22.0 pet Force coefficient, C, 1.3 Flg 6.21 to 6.23 Module Force per unit area. F.'0. 28.6 psi Note: A, & C, are dependent in their definitions wind tunnel C, has an A, is defined on PV surface I Wind Tunnel Calculations Single Module PV Area = 16.09 sqft Worst Case C = 0.056 Lift Coefficient from wind tunnel tests (Note: coefficient based on 1 sqft of PV area) Worst Case C,,, = 0.486 Drag Coefficient from wind tunnel tests (Note: coefficient based on 1 sift of PV area) I 1 module DRAG Force = 172 lbs 1 module UPLIFT Force = 198 lbs 2nd Module = 29.7 lbs 3 module UPLIFT Force = 59.4 lbs « wind tunnel measured the lift on a 3 module group I Anaisis of Lifi at row ends Worst case scenario would be that all lift (on 3 module goup) was generated by the upwind module only » Raw end modules Uplift = 99.4 lbe Analesis of Lift at 2nd to row ends » 2nd to row end modules Uplift = 29.7 lbs Analysis of 1 ft in Array interior » Interior modules Avg. Uplift = 19.0 lbs I I I I I I I I I I Page: A9 I I ® RUBEROID® ENERGycAp I GAF MATERIALS CORPORA TORCH PLUS FR I Description Advantages Ener Ca " Torch Plus • Vantages (Continued) FR gY P RUBEROID• EnergyCap" Torch Plus I layer ° c gY a m ailable in high reflective brilliant membrane is fire-retarding modified FR is available bitumen membrane with a factory white only. applied la er of TOPCOAT Ener Cote" elastomeric coating. RUBEROID• EnergyCap" Torch Plus FR is Meets ASTM D6222, Type II, Graoe G I manufactured to stringent GAF Materials ASTM C 1549, ASTM E903, ASTM E408 Corporation specifications. Its core is a strong, resilient non -woven polyester mat FM Approved that is coated with fire - retardant APP Meets CGSB- 37- GP -56M polymer modified asphalt and surfaced HUD Material Release #1216A I with extra fine mineral granules and EnergyCote" elastomeric coating. ICCM 1274 Uses Miami -Dade County Product Control Approval RUBEROID• EnergyCap" Torch Plus State of Florida Product Approval FR is designed for new roofing and I reroofing applications where long -term Texas Department Of Insurance roof system performance is specified. ULNLc Listed Advantages CRRC Listed • Guarantees are available for up to 15 years, Title 24 Compliant I • Cost effective —the installed cost of ENERGY STAR° Listed RUBEROID• EnergyCap" Torch Plus FR is much less than installing a Products, S, pec fjca s (non gnat l reflective coating on top of a standard `? I III • white granule membrane. 1 square Lightweight— installed premium roof Roll Size systems weigh less than 3 pounds (106.7 gross sq.ft.) (9.9m9 R per square Roll Length 32.4' (10.3m) • Resilient— R UB foot. E.ROID• EnergyCap" Torch Plus FR's polyester mat Roll Width 39.5" (1.0rnm) I core allows it to resist splits and tears due to its pliability and elongation characteristics. Approx. l Weight 106 Ibs (48akg) • Durable—specially formulated I EnergyCap Torch Plus FR modified asphalt gives RUBEROID° Product O.f6D° (4.06mm) lasting performance. Initial Thickne • RUBEROID° EnergyCap Torch EmissNiss ty 084 Plus FR membrane is backed by GAF Materials Corporation, initial I Reflectivity 0.80 company with over 100 years in the roofing business. SRI (Solar Reflectivity Index) 99 This product meets or exceeds the following ASTM 06222, Type II, Grade G minimum requirements: qty Test Method valu .. w Tensile Strength 0 0 °F (min), lbf/in ASTM D5147 90 Elongation 0 0°F (min), % ASTM 05147 15 I Low Temperature Flexibility (max), °F ASTM D5147 32 Tear Strength (min), lbf ASTM 05147 80 Dimensional Stability, (max) % ASTM D5147 0.5 I ©2007 GAF Materials Corporation 12/07 27 www.gaf.com I I I I I I I I I Appendix B I I Wind Tunnel Test Documentation I I I I I I I I I I Page: B1 1 SunEdison simplifying solar I I I I I Wind Tunnel Testing and Design Method for the Folded Solar Rack I I I i Chris Needham, Product Development Engineer cneedhamPsunedison. com 443 -909 -7259 SunEdison- Applied Engineering and Development 8/26/2008 i This document contains information that SunEdison LLC considers proprietary and confidential. No portion may be reproduced or copied without prior written permission of SunEdison LLC. I I I Page: 9 B2 I Introduction: I This document is intended to describe the design approach used by SunEdison for "Folded Rack" installations in Oregon. The approach described in this report supersedes any other methods described to date and should be considered as a complete description of SunEdison's current I design method for use in that city. The analysis of the folder rack is based on a wind tunnel test performed by Sun Edison in August of 2007 in which a scaled model of one row of (3) 3'x5' modules was rotated through 180 degrees I of yaw angle in 5 degree increments to determine the maximum lift and drag coefficients that the system would likely see. The 5 degree increment was chosen, rather than the 45 degree increments required by ASCE 7 -05, due to the predicted highly non - linear behavior of the system. I The wind tunnel test data is summarized in Table 2. Wind Tunnel Results and Discussion: I This rack structure employs a 100% deflector, meaning that the deflector covers 100% of the vertical height of a module as viewed from a horizontal wind. Under a wind blowing directly from the North or South, there is considerable down force present on the array. However, as the wind I direction approaches the side (East or West wind origin) there is opportunity for a reduction in this down force and a potential uplift. The wind tunnel testing revealed this to be a complex interaction between deflector and module. SunEdison's evaluation of this interaction is as follows. I In the region between 0 and 45 degrees yaw angle from the North, the down force from the deflector is the dominant force acting on the module / deflector pairing. This region is also where the component of wind acting against the system is at a maximum. I In the region between 45 and 90 degrees, the greater penetration of wind into the array sides translates into an increasing amount of uplift on the module, while at the same time the component of the wind direction acting on the deflector is reducing. In this region, internal I pressurization of the module / deflector is increased as well. The open region between the modules and roof and the deflector and roof as well as cooling holes and open sides serve to allow the release of this pressure, but this effect is captured within the wind tunnel test. It is inside of this region (75 degrees yaw) that the maximum uplift was seen in the test as well. It is at this I point that the combination of wind exposure of the module (uplift), internal pressurization, and reduced down force from the deflector allowed for the maximum average design lift coefficient of .057 to occur. The loss of much of the component of wind into the planes of the deflector and module can be seen to occur as the yaw angle approaches 90 degrees. I In the region of 90 and 135 degrees, the wind component acting on the plane of the module / deflector is again increasing from its low around 90 degrees yaw and again a transition can be seen where the module down force eventually overpowers the uplift on the deflector and internal I pressurization of the array. As with the 45 to 90 degree case, it can't be said what each of these uplift components (deflector uplift and internal pressurization) is contributing, but the overall magnitude of these forces is captured by the test. I In the region of 135 and 180 degree yaw, the module down force clearly dominates the forces of uplift from the deflector and pressurization inside the array. This region is the most secure of the measured conditions. I The drag design condition used will be for the 0 degree yaw case. This value will be discussed later on. I I I 1 Page: B3 I Uplift Design Approach: I SunEdison will use the data from this test to provide lift and drag coefficients that can be applied throughout the array. In order to utilize these values, some conservative estimation was required, I although the application of forces is rather simple. For modules at the very ends of rows, SunEdison is assuming that all wind force acting on the (3) module assembly occurs at the very outside module. SunEdison therefore assumes that the lift I coefficient acting on this module is 3 x .057, or .171. For the second module in from a row end, Sun Edison is assuming that the forces recorded for the three module assembly occur evenly over the outer two modules. This yielded a lift coefficient of I .0855 for the second module in. The third module and all interior modules in a given row are designed to the average of the (3) module test. This applies a .057 lift coefficient. These values and those above are summarized in I Table 1 below. Module Location Lift Coef. I (from row end) 1 0.057 2 0.086 I 3 or Greater 0.171 Table 1: Lift Coefficient Based on Module Location I The end module of a row is actually the worst place for this to occur as there will be no outside modules to brace against uplift should that module fail. This weakness will be addressed in the following section by looking at the security afforded by the adhered / torched down attachment I points used by the folded rack. I I I I I I I Page: B4 Uplift Design Forces Discussion: ' Due to the assumptions put forward under the section "Uplift Design Approach ", the outer modules have a calculated uplift safety factor close to unity. For this reason, SunEdison has developed a redundant attachment method to rigidly connect the system through built -up or ' membrane roofs to the underlying building structure. The amount of uplift security afforded by this attachment will be discussed in this section. ' The roof connection SunEdison is using with this rack claims an uplift resistance of 528Ibs at each attachment point. This value is based on the roof membrane governing over the GAF roofing. These attachment points are located ahead and behind of each module and are spaced every (3) modules and always at the very ends of each row. Each module therefore has 704 lbs ' (4pads * 528Ibs / 3 modules) of additional uplift retention that Sun Edison is not claiming in the design, but that in reality could be called upon to provide uplift resistance. As built -up roofs and mechanically and adhered membrane roofs are attached securely to the building structure to prevent against building pressurization, this connection would carry the uplift load through the structure and restrain the modules if it were called upon to do so. If all wind force is assumed to act on the outer module only, even building code force coefficients (ASCE 7 -05 Figure 6 -18) under the module will not overload this connection. This proof can be found in the equation: ' [(C,, + c design pressure ' module area] < total uplift resistance As the outer module of a given row of a solar array is the most likely failure point, this provides considerable peace of mind in design. ' Another issue to consider is whether or not the folder rack would overload the system attaching the roofing membrane / built -up roof to the building structure. Roofing systems are designed to withstand the pressure differential between a closed building and the environment. They have ' substantial resistance against uplift built into the design. Additionally, any pressurization between the solar module / deflector and the building roof will also act on the roof structure which removes much of the uplift concern. That is, pressure under the solar modules will press down on the roof whenever it presses up on the bottom of the modules. The relationship is very complex in reality ' and the uplift on the modules is not completely cancelled out by the pressure pushing down on the building roof, but a simple pressure diagram showing the air pressure above the modules, the pressure between the modules and the roof, and the pressure inside the building shows the logic of this benefit. I Page: B5 I Sliding Design Forces Discussion: I The maximum design sliding force coefficient used in this rack design is .2248, again from Table 2. This value was recorded at a yaw angle of zero degrees and is based on the module area as the uplift value was. Normalizing this value to the cross sectional area of the deflector rather than I the module area, the drag coefficient is approximately 1.29 ASCE code gives this value as 1.3 and is supported by many wind tunnel tests performed on flat plates. Every module in the array will be designed to this value. SunEdison is not claiming any shading effect for this design. In I reality, secondary module rows are shielded from full exposure winds by a factor of 5 to 10, depending on location. This has a direct correlation to a reduction in drag. As SunEdison is not claiming this effect, no data is provided on this trend, although it lends tremendously to the security of this rack against sliding. SunEdison is also not claiming any sliding resistance due to I static friction, which modeling has shown is sufficient to resist any movement in most array layouts. Conclusion: I The Folded rack, as designed for Oregon technically satisfies the design uplift and sliding requirements when based on wind tunnel testing performed in August of 2007. However, the I folded rack has been developed with an additional restraint system that rigidly connects it through the building envelope. This approach lends tremendous security under real world conditions and provides for a safe solar mounting structure. I I I I I I I 3 I I I I I Page: B6 I Table 2: 10 Degree Tilt, 180 Degree Yaw Rotation Study. Rec yaw CN CA Cm Cn CI CY qx I [deg] [Pe] 0 - 0.1337 0.2248 -1.42 -0.05 1.42 0.01 0.05 0.02 8.94 2 5 - 0.1392 0.2223 -1.4 0.04 -0.19 0.02 9.09 I 3 10 - 0.1326 0.2206 -1.42 0.06 -0.03 -0.01 9.15 4 15 -0.1086 0.2117 -1.35 0.08 -0.06 -0.02 9.04 5 20 - 0.0635 0.2279 -1.34 0.12 -0.04 -0.02 9.33 6 25 - 0.0482 0.2306 -1.27 0.15 -0.03 -0.04 9.28 ' 7 30 - 0.0363 0.2443 -1.26 0.19 -0.03 -0.04 9.35 8 35 -0.048 0.2276 -1.12 0.22 -0.03 -0.03 9.43 9 40 - 0.0417 0.2175 -1.01 0.22 -0.02 -0.06 9.5 I 10 45 - 0.0169 0.1865 -0.91 0.18 0.05 -0.13 9.64 11 50 -0.0097 0.1683 -0.83 0.17 0.19 -0.07 9.57 12 55 0.0042 0.1463 -0.69 0.15 0.12 -0.08 9.4 I 13 60 0.0079 0.125 -0.64 0.14 0.25 -0.13 9.74 14 65 0.0256 0.0996 -0.55 0.09 0.24 -0.08 9.71 15 70 0.0377 0.0702 -0.49 0.07 0.25 -0.15 9.65 16 75 0.0565 0.0438 -0.32 0.02 0.21 -0.08 9.55 I 17 18 80 0.0412 0.0176 -0.21 85 0.0095 0.0123 0.01 0.18 -0.13 9.64 0.1 0.03 0.16 -0.11 9.69 19 90 0.0009 0.0266 -0.04 -0.02 0.09 -0.07 9.4 I 20 21 95 0.0276 0.0098 -0.32 -0.06 0.17 -0.19 9.39 100 0.0466 0.0173 -0.51 0.02 0.25 -0.16 9.74 22 105 0.034 0.045 -0.79 0.07 0.32 -0.16 9.76 23 110 -0.043 0.0716 -0.99 0.15 0.16 -0.08 9.93 I 24 115 - 0.0786 0.0977 -1.27 0.13 0.18 -0.14 9.92 25 120 - 0.1015 0.1224 -1.4 0.19 0.19 -0.08 9.86 26 125 - 0.1373 0.1426 -1.62 0.22 0.1 -0.16 9.92 I 27 130 - 0.2488 0.1588 -1.88 0.22 0.07 -0.07 9.83 28 135 - 0.1699 0.1639 -1.94 0.23 0.17 -0.06 9.5 29 140 - 0.1908 0.1654 -2.01 0.19 0.17 -0.06 9.61 30 145 - 0.2023 0.1558 -1.98 0.18 0.12 -0.04 9.42 I 31 150 - 0.3556 0.1567 -1.99 0.14 0.06 -0.03 9.48 32 155 -0.6479 0.1432 -1.88 0.13 0.03 -0.04 9.67 33 160 - 0.7514 0.1483 -1.9 0.08 0.02 -0.01 9.19 I 34 35 165 - 0.9932 0.1462 -1.93 0.05 -0.06 -0.02 9.13 170 - 1.0379 0.1527 -1.95 0.06 -0.09 -0.01 9.04 36 175 -1.082 0.1493 -1.98 0.03 -0.12 0.01 9.1 37 180 - 1.0704 0.1467 -1.94 0.02 -0.05 0.01 9.08 I I I 1 I I I I I I i Appendix C 1 1 Inverter Anchorage I I I I I I I I I , ` : x z Page: Cl _ Orie Engineering .".. _ Structural & Bridge Engineers I x JOB #: 16980 Via Tazon, Suite 200 Phone # : (858) 335 -7643 PROJECT : San Diego, CA 92127 FAX # : 858 451 -6142 DATE : 09/10/08 ( ) DESCRIPTION : Inverter ao KW DESIGNED : "' Floor Mounted E. ui • ment Stabilit Check ... I Description: 30kW Inverter Output Input I -- Base Shear - -- I SEISMIC DEMANDS ON NONSTRUCTURAL COMPONENTS ASCE 7 -05 13.3.1 Fp = Fac'Wp (lbs.) = 98 lbs. [ASDI Code: 2007 Oregon SS Code, ASCE 7 -05 CHAPTER 11, 12, 13 I Site Class: D Table 20 -3 -1, Default = D Vert. Comp. 1 /3'Fp (lbs.) = 33 lbs. [ASDJ Zip Code: - -- Overturning and Uplift Forces (Diagonal) --- 111 S,: 76.9000 %g S 27.9000 %g Crit. O.T. Angle (Theta) = tan- 1(b2/b1) = 0.8406 radians Fp: 1.1930 Table 11.4 -1 48.2 degrees F,,: 1.8420 Table 11.4 -2 9 Sus: 0.9174 Fa So (0.9 "W - Fpv) /N = 651.5 lbs. I S 0.5139 F S S 0.6116 2/3(SMS) [Fph'sin(th)'h/(1 /2'N'b2)J = 103.2 lbs. Sot: 0.3426 2/3(S Occupancy: II (Fph'cos(th)'h/(1 /2'N•b1)) = 103.2 lbs. I 1p: 1 Total -445.1 lbs. No Uplift ap = 1 Rp = 2.5 z = 0 Uplift Pt (per A.B.) a 0.0 lbs. per A.B. h = 30 Seismic Force: Overturning and Uplift Forces (Short Direction) - -- Fp = 0.4aPSDSWo lRo/Io) x (1 +2(z/h }) x Wo OTM = Fph * h = 1.49 kip-in Fp = 0.0979 xW 0.35 I RM =(0.9'W- Fpv)'b1 /2= 6,27 kip-in I F q,mo = os o x W F = 0.1835 it W <.- Governs Uplift Pt = (OTM - RM) / bt = PI ( ) -248.4 lbs. No Uplift F = 1.6S x Wo Uplift Pt (per A.B.) = 0.0 lbs. per A.B. ' F, = 0.9786 x W F = 0.1835 x Wo - -- Load to Single Bolt --- F qml = F x 0.7 = 0.1284 it W Tension per Bolt (lbs.): 0 Shear per Batt (lbs.) : 24 - -- Equipment Wt. and C.G. Location - -- -- Combined Shear and Tension - -- I Wt. of Equip. - W (lbs.) 760 V /Vallow. = 0.009 Horiz. Width of Unit - b1 (in.): 19.25 Horiz. Length of Unit - b2 (in.) : 21.5 T/Tallow. = 0.000 Vert. Dist. to C.G. - h (in.) : 15.25 Anchor Bolt Information I --. 0.009 < 1.0 OK Total No. of A.B's • 4 No. of A.B.'s at Corner - N : 1 Anchor Bott Size and Type : 1/2" Hilti KB TZ Min. Embeddment Depth (in.) : 3.00 I Allow. Shear /bolt (lbs.) Use 1/2" Hilti KB TZ with 3.00 in. Min. Embed. ICBO Value - -• 2839 2839 and Min. Edge Distance of 6.0 in. Allow. Tension/bolt (lbs.) 1065 1065 Special Inspection Req'd Proof load (lbs.) I (For f c = (Min Edge Distance: 2500 psi) 6 in.) (For f'c = 2500 psi) Per ICBO ESR -1917 b2 Fp,v r Fp, 1 ...o p_fp,h b 1 9 • ,FP , h h W I o- Tmax k T b 1 C T b2 4C Plan View Side Elevations I Page: C2 I Page 11 of 14 ESR -1917 I TABLE 9 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC TENSION (ASD), NORMAL - WEIGHT CRACKED CONCRETE, CONDITION B (pounds) Nominal Embedment Concrete Compressive Strength Anchor De P111 h ft - 2,500 psi Pc = 3,000 I P « psi Pc =4,000 psi Pc = 6,000 psi Diameter (in.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel 318 2 1,006 1,037 1,102 1,136 1,273 1,312 1,559 1.607 1/2 2 1,065 1,212 1,167 1,328 1,348 1,533 1,651 1.878 31/4 2,178 2,207 2,386 2,418 2,755 2,792 3,375 3,419 5/8 3 1/8 2,081 2,081 2,280 2,280 2,632 2,632 3,224 3,224 • 4 3.014 2,588 3,301 2,835 3,812 3,274 4,669 4,010 I 3/4 3 3/4 2,736 3,694 2,997 3,937 3,460 4,546 4,238 5,568 4 314 3,900 3,900 4,272 4.272 4,933 4.933 6,042 6,042 For SI: 1 Ibt = 4.45 N, 1 psi = 0.00689 MPa For pound-Inch units: 1 mm = 0.03937 inches - I 'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of R, as per ACI 318 - 05 and conversion to ASD in accordance with Section 4.2.1 Eq. (5) is required. 'Values are for normal weight concrete. For sand - lightweight concrete, multiply values by 0.60. Condition B applies where supplementary reinforcement in conformance with ACI 318-05 Section D.4.4 is not provided. or where pullout or pryout strength governs_ For cases where the presence of supplementary reinforcement can be verified the strength reduction factors I associated with Condition A may be used. TABLE 10 -KB -TZ CARBON AND STAINLESS I STEEL ALLOWABLE SEISMIC SHEAR LOAD (ASD), (pounds) Nominal Allowable Steel Capacity, Seismic Shear Anchor I Diameter Carbon Steel Stainless Steel 3/8 999 1,252 1/2 2,839 3,049 I 518 4,678 5,245 3/4 6,313 6,477 For SI: 1 lbf = 4.45 N 'Values are for single anchors with no edge distance or spacing reduction due to concrete failure. I I I I I I I I Page: C3 I I DIMENSIONS PVP- 30kW -LV mJ OR m r," DC INPUT AC OUTPUT I NR ENHAUST TOOL ACCESSIBLE CONDUIT CONNECTIONS FROM CONNECTIONS LOUVER Lip LATC 2 SOLAR ARRAYS) TO GRID 5�4 111■ siiim I _ TOP WIN Er ��� DC INPUT FROM q q CONNECTIONS DC JI SOLAR ARRAY(S) DISCONNECT I l i I m2 ¢" ': CONEUR C.C. • - B� �� I I 1 1 q wommi 1� _ __ I- ■���■ 11 T I 1 M I 8Y. L 7 VET ODE SWAN FROM NFW y � Yt MFW MOUNTING SLOTS B ong °0. art BOTTOM Y6?y MN I POWER CHARACTERISTICS MODEL PVP- 30kW -1V I Continuous Output Power (kW) 30 Weighted CEC Efficiency ( %) 208 93.0 I 480 93.5 M aximum DC Input Voltage (VOC) 600 DC Peak Power Tracking Range (V) 295 - 500 I DC Imp Nominal Current (A) 109 AC Nominal Voltage -Field Configurable (V) 208 and 480 AC Operating Range (V) 1 208 183 - 228 480 422 - 528 AC Frequency Range (Hz) 59.3 - 60.5 I AC Maximum Continuous Current (A) 83 (208V), 36 (480V) Standby Losses (W) 17 Harmonic Distortion ( %THD) <3% I Power Factor >.99 I MECHANICAL SPECIFICATIONS MODEL PVP- 30kW -LV Enclosure NEMA 3R I Construction Aluminum Mounting Pad Mount Weight Os) 760 I Cooling Forced Convection ( ETjI Te mperature Range ( °C) -25 to 45 Isolation Transformer Yes us Standards Approvals UL 1741, IEEE 1547 Compliant Electromagnetic Interference FCC Class A for conducted, FCC Class B for radiated ©2008 PV Powered