Loading...
Plans • MAA /13/2008/THU 05:25 PM P. 002 IvICGINNIS & ASSOCIAlES 1110 WESTMARK ST. LOUIS, MO 63131 -1735 CONSULTING ENGINEERS, INC. PHONE; (314) 469 - 6460 FAx: (314) 469 - 0319 March 13 2008 RECEIVED Mr. Jim Gross MAR 1 4 Z008 Tuff Shed Store 160 CITY OF TIGARD 6500 NE Halsey St. #A BIJILDINGDItJISION Portland, OR 97213 RE: Modifications to Plans for Monte Sellers's Accessory Building 10600 SW Fairhaven, Tigard, OR Tuff Shed Project 160 - 541851 McGinnis & Associates Job #15685 Dear Mr. Gross, The following comments are regarding plans provided by McGinnis and Associates for the above referenced project dated January 7 2008. From my understanding, you wish to modify the plans such that the walls are framed using 2x4 studs rather than 2x6's as specified on the schedule on sheet A2. Hem Fir grade #1 will be used for the lumber. As the attached calculations indicate, the studs can resist the required gravity and lateral loading as specified on the general notes of the plans. It is therefore permissible to make the modification. if you have any questions or need any further information, please do not hesitate to call. Sincerely, MCGINNIS AND ASSOCIATES, CONSULTING ENGINEERS, INC. ; Jeffrey S. Austin, P.E. s o PROF r 1 73 frg • oREGO • .`y Daniel W. McGi nis, P 4 �FC W, M�Q • xrasa CJ � ,z0 OOI City of Tigard Approved Plans Byc.s• Date /s/.4,, / 6Ka. sw 1G .4 kk•Itn A(OO awn() - MAR/13/2008/THU 05:26 PM P. 003 McGINNIS & ASSOCIATES JOB: TS Accessory Building Consulting Engineers, inc. #160-541851 NO. 15685 1110 Westmark Drive SHEET NO. 7 OF 12 Saint Louis, Missouri 63131-1735 CALC. BY JSA DATE 3/13/2008 Consider 2x Wood Studs- Ott No of Members: Ir.:11 ... . , 80 . , . ' Commercial # of b d Area Sx l E Species Grade Member Size Mem. (in) (in) (in (in (1n (kel) Hem-Fir No. 1 2x4 1 1.5 3.5 5.25 3.06 5.36 1500 Plate Height: ilitri4;1906V4* Unbraced Length iggro Unbraced Length: kl := k.ht iklSd.90* Factor: Compression Parallel to Grain Non-Adjusted Design Value: Ifft PROp Grading Adjustment Factor: istigA (See NDS Section 3.7.1) e:comge - .gi b 4,10 Coefficient Used for Column RFC (See NDS Section 3.7.1) 8 3PE Stability Factor Maximum Bending giTtat4 Effective Length Factor: k := 1.84 Le := k itigl 84' lir Unbraced Length: . — (Ref NDS Table 3.3.3) IIP A oREGON . k co f / I.e '' 1: le• ell+ r3( Determine the allowable axial Compressive stress per NDS Section 3.6 $ w. .x IE 1 KciluetmtriT*Opitsi.4 '':,, :! CM C, C C1 C CT 1.00 1,00 1.00 1.00 1.15 1.00 Modified Modulus of Elasticity: E' := E-Cm-Ct E' = 1500000 psi KoE.E Stress used for column FOE := . FcE - 413.22 psi stability factor: kj )2 ( ddressed (id)) 1 + FcE ( FcE 2 FcE Column stability Fc F Fc factor: CP := 2-c 2.c c Cp = 0.28 Allowable axial compression design stress w/ no lateral load: _ 0,00: F :.= Fc lakgalta4,1 Maximum Allowable PallowNo_LL := A (id) F 151147214414M Axial Load w/no lateral load: Allowable axial compression design stress with lateral load: IORM Pc_w_LL :- Fc r!" kk4*.P01 . . __ I p;‘0_pRomorsvis000visacrokisseursisejansi • •MAr, /13 /2008 /THU 05:26 PM P. 004 McGINNIS & ASSOCIATES JOB: TS Accessory 13uildina Consulting Engineers, Inc. #160-541851 N0. 1 685 1110 Westmark Drive SHEET NO. 6 OF 12 Saint Louis, Missouri 63131 - 1735 CALC. BY JSA DATE 311312008 Determine the allowable bending stress per NDS Section 3.3 Determine the slenderness RB := if L Oft, ,1 RB = 5.86 bdressed (id) Coefficient used for beam KbE := 0.439 Stress value used for beam KbE' El stability factor: stability factor: FbE := 2 FbE = 19.1 ksi R B Tabulated bending design Fb_materlal = 975 psi value from Table 4A: Tabulated bending design value multiplied by applicable Fbstar Fb material'CM'Ct adjustment factors: _ FbE FbE 2 FbE 1+ Fbstar Fbstar Fbstar Beam stability factor. CL := If Lu > 0 •ft, 1.9 1.9 0.95 ' 1.0 CL = 0.99 Allowable bending stress: Fb allow := Fb material'CM'Ct'Ci'CD'CL'Cr ! °laj}ovii` � '�0 Lateral pressure: P w 14.17 ps Tributary width of member: logot4 Maximum moment due 2 to lateral pressure; Mmax Pwhtw-twidth•ht •0.125 Mmax = 2191b Mmax fb = 541 psi Maximum bending stress: fb := S ■ 2 Find the maximum compressive stress to f4 fb satisfy the bending and axial compression ,c + fc S 1.0 (NDS equation 3.9 -3) interaction equation. Fb_allow 1 — ') F OE 5 compressive y f:l::' 9401 Solving for the com ressive �` ��a •,,,,,,,., ;,t, stress results in: Maximum allowable Pallow w LL A(ld)•fc P'al'ow, 4v; = =L)4E', Z' axial load wd lateral load: Controlling allowable axial load; ' ' :149p lid l I .. ; ... Aid00 g0WiiiteraLlaad. goyarrrs ,. . Rroof DL+ . LL �.- Required axial load capacity: Prequired = f 4' Ilb" rtspacing - twidth �' ` Pr iliii* " 5 • Pwhtw'twldth• ht _E 1, Stud deflection @ mldheight: Alateral °lateral = 0.45 in T 5 _ ; ,AP ', { 384E 1 x(id) .44te. 44':.E: :u::,. P: \0 PROJECTS115000115600115685 75190_541851