Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report
F L , l i n a c ) 0 - < 0 3o 4-71ANTA- 5r OFFICE COPY FINAL STORMWATER REPORT ATLANTA BUILDING AKS JOB 814 DATE: JULY 30, 2004 - CLIENT: MALCOLM & SHARON ESLINGER LLC. 11575 SW PACIFIC HWY, PMB 160 TIGARD, OR 97223 PH: (503) 620 -9515 ENGINEERING CONTACT: ALEXANDER HURLEY ENGINEERING FIRM: AKS ENGINEERING & FORESTRY ENGINEERING & FORESTRY 13910 SW GALBREATH DRIVE, SUITE 100 SHERWOOD, OREGON 97140 PHONE: (503) 925 -8799 FAX: (503) 925 -8969 . eett OREGON ni n. ,*, " , R `, ° — RENEWAL DATE: (° 36)--Q:C i 1 i T ::LE OF CONTENTS 1.0 PURPOSE OF REPORT 2.0 PROJECT LOCATION/DESCRIPTION 3.0 REGULATORY DESIGN CRITERIA 3.1 STORMWATER QUANTITY MANAGEMENT CRITERIA 3.2 STORMWATER QUALITY MANAGEMENT CRITERIA 4.0 DESIGN METHODOLOGY 5.0 DESIGN PARAMETERS 5.1 DESIGN STORM 5.1.1 ON -SITE INLET AND CONDUIT SIZING 5.2 PRE- DEVELOPED SITE TOPOGRAPHY AND LAND USE 5.2.1 SITE TOPOGRAPHY 5.2.2 LAND USE 5.3 SOIL TYPE 5.4 POST - DEVELOPED SITE TOPOGRAPHY AND LAND USE 5.4.1 SITE TOPOGRAPHY 5.4.2 LAND USE 5.4.3 POST - DEVELOPED INPUT PARAMETERS 5.5 DESCRIPTION OF OFF -SITE CONTRIBUTORY BASINS 6.0 CALCULATION METHODOLOGY 6.1 PROPOSED STORMWATER CONDUIT SIZING AND INLET SPACING 6.2 PROPOSED STORMWATER QUALITY CONTROL FACILITY DESIGN 6.3 PROPOSED STORMWATER QUANTITY CONTROL FACILITY DESIGN 6.4 ENERGY DISSIPATER CALCULATIONS 6.5 DOWNSTREAM ANALYSIS APPENDIX 1 -1 VICINITY MAP • APPENDIX 1 -2 CATCHMENT MAP APPENDIX 2 -1 2 -YEAR STORM EVENT - HYDROGRAPH AND FLOW INFORMATION (2.50 ") APPENDIX 2 -2 5 -YEAR STORM EVENT - HYDROGRAPH AND FLOW INFORMATION (3.10 ") - APPENDIX 2 -3 10 -YEAR STORM EVENT - HYDROGRAPH AND FLOW INFORMATION (3.45 ") APPENDIX 2 -4 25 -YEAR STORM EVENT - HYDROGRAPH AND FLOW INFORMATION (3.90 ") APPENDIX 2 -5 100 -YEAR STORM EVENT - HYDROGRAPH AND FLOW INFORMATION (4.50 ") APPENDIX 3 -1 WATER QUALITY CALCULATIONS APPENDIX 3 -2 UNIFORM PLUMBING CODE PIPE SIZING CALCULATIONS APPENDIX 4 -1 RELEVANT INFORMATION FROM THE UNIFIED SEWERAGE AGENCY DESIGN AND CONSTRUCTION STANDARDS MANUAL FOR SURFACE WATER MANAGEMENT APPENDIX 4 -2 RELEVANT INFORMATION FROM THE KING COUNTY SURFACE WATER MANAGEMENT MANUAL APPENDIX 5 -1 SOILS INFORMATION FROM THE USDA SOIL SURVEY OF WASHINGTON COUNTY, OREGON r FINAL STORM WATER REPORT PROJECT: ATLANTA BUILDING • 1.0 PURPOSE OF REPORT The purpose of this report is to document the criteria for which the storm water system for this site was designed to meet, the sources of information on which the analysis is based, the design methodology, and • the results of the analysis. 2.0 PROJECT LOCATION /DESCRIPTION The proposed development is on a parcel of land (approximately 0.37 acres) in Section 36, Township 1 South, Range 1 West, Willamette Meridian, City of Tigard, Washington County, Oregon (Tax Lot 900). The project site is located at the southwest corner of the intersection of SW Atlanta Street and SW 68 Parkway. 3.0 REGULATORY DESIGN CRITERIA 3.1 STORMWATER QUANTITY MANAGEMENT CRITERIA The stormwater for the site is conveyed to underground detention pipe. The detention pipe is designed to detain the peak flows for the 2, 5, 10, and 25 -year storm event to pre - developed levels. The pipe releases the storm water into the existing storm conveyance system located in SW Atlanta Street. The stormwater detention pipe is designed to meet the requirements of the Clean Water Services (CWS) Design and Construction Standards Manual (R &O 03 -11). 3.2 STORMWATER QUALITY MANAGEMENT CRITERIA Stormwater quality management criteria is addressed with a "catch basin stormfilter" produced by Stormwater Management. This storm filter system is designed to meet Clean Water Services (CWS) requirements. • 4.0 DESIGN METHODOLOGY The Santa Barbara Urban Hydrograph (SBUH) Method was used for designing the storm water facility and sizing the storm water pipes. This method utilizes the SCS Type lA 24 -hour storm. Hydrocad computer software aided in the analysis. References are cited at the end of the report. 5.0 DESIGN PARAMETERS 5.1 DESIGN STORM 5.1.1 ON -SITE INLET AND CONDUIT SIZING • • Stormwater inlets for the site are placed at locations that will adequately control the storm water for the . site. The stormwater pipes are sized in accordance with the Uniform Plumbing Code (see Appendix for more information). 1 r f , 5.2 PRE- DEVELOPED SITE TOPOGRAPHY AND LAND USE 5.2.1 SITE TOPOGRAPHY The project site has slopes between 10% to 15% sloping west from SW 68` Parkway. The site is vegetated with scattered trees and grass. 5.2.2 LAND USE The current land use for this site is residential. 5.3 SOIL TYPE The soils for the site are classified as Woodburn (hydrologic group "C ") according to the USDA Soil Survey for Washington County. Information on this soil type is provided in the Appendix. 5.4 POST DEVELOPED SITE TOPOGRAPHY AND LAND USE 5.4.1 SITE TOPOGRAPHY The post - developed site topography consists of a commercial site with paved parking, a building and landscaped areas. 5.4.2 LAND USE The site will be used for commercial offices. • 5.4.3 POST - DEVELOPED INPUT PARAMETERS See Hydro CAD Analysis 5.4.4 PRE - DEVELOPED INPUT PARAMETERS See Hydro CAD Analysis 5.5 DESCRIPTION OF OFF =SITE CONTRIBUTORY BASINS There are no offsite contributory basins draining onto this site. 6.0 CALCULATION METHODOLOGY 6.1 PROPOSED STORMWATER CONDUIT SIZING AND INLET SPACING The stormwater pipes are sized in accordance with the Uniform Plumbing Code (see Appendix for more information). 6.2 PROPOSED STORMWATER QUALITY CONTROL FACILITY DESIGN The parking area and commercial building stormwater runoff will be routed to the Stormwater Management "catch basin storm filter" for treatment. The filter system is sized to meet the Clean Water Services (CWS) requirements. 6.3 PROPOSED STORMWATER QUANTITY CONTROL FACILTY DESIGN The stormwater runoff from the parking area and commercial building is to be routed to an underground detention pipe located under the parking area. The detention pipe is designed to detain the 2 -year through 25 -year storm event to pre - developed levels. An overflow structure is designed to pass flows exceeding the 25 -year storm event. 2 � l�r► 6.4 ENERGY DISSIPATER CALCULATIONS Energy dissipaters are not required for this site. 6.5 DOWNSTREAM ANALYSIS The peak stormwater flows from the site are being detained to pre - developed levels; therefore, downstream conveyance systems should not be significantly affected. I • • • • • 1 3 csfl . . . ■.................z..4,' • .,..--- • •• ,, . ..... , • . "--- \ G -•-• --...,.--- .. . . H PALATINE Jr (f) < c" c./) ••.,.. 0 L , 6 5E1 sw I ., c,-, 1 PINE ■---i .....- ,. ......,-; ,,,, ,..-:', - • ::-.., 9 4 c--)' \:\ 1 ,. ... . .. 8000 SP I , 7500 •• I= 1— i 1 c.) b SW RUCE . CY) .. „....;.r- .,.. ,.., • CD ' ....... V....)\- .).0 1. • SW _J .1 • ;6".. ' " • _THORN ST a. 1.--- >. _.,..„ , ‹c ...,' -1'''' i _ . I . i,*---+ --t in Lo Lo cp Lo >'_„.. IN_,3 . 1" , •,r --"■. '1 .• . • 3 , _ L-L./ •'-'"' r "" I -• < — >• >. 3 l• .:.„..,>•;••' c 13n .....„ co .• In " ,---. C-) _ 0._ .. . .. i SW Sld• "STEVE < ST ., < ul "3 v) .A., <<, _ m , • . „,-, . . . CT CI cl I .,--,-:- ../., sp. ( 4S ) '. -• „ I " .,•-•-' ..., \„,,, <,,,, . .< A \ - pCD 0) :I A L ES SER,....-- . . - ,- • CO (- V) 14— r-, ,...„ .. ,,,,,,0 - to '-.-1.- • .._ co co CO - 9 -, c. .-,- --I . : ::,•:.,',,, • . - -- . < :',. . ,att...wx..4 „.; .,,-. _ = LES.SER RAFFLE( K - • SW P ST In ,- -1 .,'11.- • ,, ,r ,:---:!--,..i. • fr ... -fa 2 : , :,• . 0'p x . , 8000 1 1 ALLAY.._ 04W4.,-.A -< CO PARK SW P 44,c ,,.1.--_,, 1W.W 3 RIDE ATLANTA. i ST I. SW HAINES 1 ST .- - 4'4 • C) -..- DI 11 1. cl) G , SW DAYL( ATLANTA ST ..,•...„... ( .... j ). Sv., GUNTHER \ . ..--- .. •. .\\\- -- -..---- - fa 5 ,.. - 7,--■ - ,- -/-. • . LN ' s s• = • 1 . ---- BUIL DING ----- .,' iT-• 2 9 3 i l . S __, <( x■ ......•:.— JF1. --,7,_ :16 ,, , •,:,.. , ...•. .•1 • . v) SW CL I TON cl- ST . CD ,..::, _. '....'..._ , _____ ,..........—. ' I ST >, . i_ e- , `' - P 1 ,.., sw ,,.■ : Lai-- 1 1 . . (/) ' 1 ‘, 1 -•. 1 •:',/./4, C SW F4 • . , \ DA R flvl 0 li T171 - ST , . • - - • : _ — sw ;RUSE: RIDId c-..., ..1 CD 01 1 . '' N. C2) C`..1 'Z' • = :2, RIDG 1 El 4177 SW o) co ( c•-z71 I CD BA < , ____ e (3 1 . . SW HERMOSO ELMHURST ST '•-•' <- I co ,.--.,, • C \I I-- '''• " 1 -- . • __,...., , . K 7000 ,,‹C ,=. ,:x c.) c p LA ME A c-- I ffsit - VIU RN w • i CD c3 ■ <C 0 - H- 1` 70 C..Rte : ) BLVD IBLA 1-. SW FRANKLIN ' . ST 4W/HALL EVEND SOUTH SW W OD --.., ------ v) 1--. I--- = L ceo l eD j 1 c i-) L,v _ ce rlD ROSAL11 4 1 ' . SW c0 CO i H DR I GONZAGA i co j co i , :1-• cD cD DR •`'"',/i) f'.., ......_,_ , i WE STERIV . co ..__...,,,, K _.._....„ \ 1 \ ,,,,,,_.-- 1 co (.0 , ,,,,, sw ..., /"., ST — • 1 -E--/-----Q21 I ,....,... 61 s E E v, A 4A/ IsN G A E TR L 1,i-c/a o • I, . co ix‘ I • ; CO ,,.., I SUNBROOK 3 D S ----L. --..... ST , . ---.. .,.. . 7 00 0 ...„ ........._ v -c , 13i DR 1 . . .f . . ... . ... . . . I v). v) , mEADOwc©2001 Thomas Bros Maps , H.... _ .__ . _. _..............._______ F G . .. _ . ....... _ . _ . ... ... . • it ATLANTA BUILDING: 655 H3 • • ' . D k I N ., — .- ' .•'''' -... .\::.':" ( \ ■ . '..... • 1; 1 0 1 I ( 1 1 ; I . 0. I 1 I , I .. . _ ----- _4._ _ _ _ _ _1_ _ __ ___■_ _ _ _ . _,—!....=_—: L__=4____4,==1=_—_1— : —... . - 1 — .____V_.- r -- t■Al - ATLANTA TFIE'• T \ _– ---- ; ,--- \ \ — I ■ .._ _ _ _ _ _ _ _.. --\ c______ I V: I I 4E \ * . ------ s■- \ 1\ Nj A. ''s:' I • l' •• '. -/ /I ----_______ 1 I 1 ^', i I I \ ', 01‘ , _r • - . ,„„_ _ _ — ._ _ .....— _ t , I / A ' ‘■-) I \ . k, . i . • , \ \ \ \ S \ l '7 I I ( / I / \ ' ( \ 1 \ \ I I, • Pl....... I • \ I , . / I ( 0 • . . • 1 1 I 1 / / 1 , , I ,• I / /' \ • ' . - . \ ' I ! 1\ q I 1 0 1 1 / / , . • / / / 1 , • i / i 1 0 / . , . . . , . , , / , / , , 1 i Ne ; . .- , , , , ' \ . , , a.. ,/‘ . , / / 1 \ 1 1 ! i 7 1 X i 4 / ..' i I f / 1 I , , ": • * //. ,/ CO I it ii 1 I , / i , i ( P 1 i I I i / , \ . I • / / r , , . 1 I '.:--'•:)- :. . , , \ I ,7 / I - /: .- / r , „ I i r I ; ,Nir 1 1 / r i / ; i . , 1 I , I i r 3C.412 I - 10 nen . ■ / / l 1 I 1 I 1 / I ; FI-1‘15t1 • i 1 ” ' I 1 1 I ! H 11 1 1 ! 1 I PRE-DEVELOPED .., _ DIGIEERNG • PLANT =1116 • FIRESTIIT 30116,..../ MANTA BLUM , . CATCHMENT PLAN I391 SI CALBREARI 00 pREpAFED Fal, l suso=e. •,' A 814 A A Kg 0 1 xvo.o.V17.3 ................ HO ROE (W) sal-en Mt Um Ka TAX 10.. SOR 1 CF 2 i _ r i -- n -� tii ft! - - -- i r uj r 1 i ,, till ‘ 1 i go . .` r . 1 i hi g 1, FE! . 1 iiii III IMMUMMINSIORM--*NI ` ��' a 4 011 i 111 si ... .... ... i : N r i , ._ l 1 ft ( mi l WM I wit , s i ' 1 Kat , ,, .,r. 411 = II - __ Ariosliky i i _ . N. ;;: 1 6 i 1 1 \JOBS \800 - 899 \81? BAILUk ;i . . \Plnrir•:ng- 400Ucn:lonlSUEMITT AL: \P1 -0= tlwf 10 /IIi0c C953IE1 AH FBI b . . , . , .,_ --; ..,...._.. .-....., . • . . . . , . , ... . , . , .. . ' - • - • _ • - - - .• ,. . , ., .. .. . r • , , . • • .. . . . . . , . . 1 . ----, •o MI . . Drainage Diagram for 814STM 4ubc Reach on Prepared by AKS Engineering & Forestry, LLC. 10/11/2002 H ydroCAD® 6.00 s/n 001338 © 1986-2001 Applied Microcomputer Systems 814STM2 Type IA 24 -hr Rainfall= 2.50" Prepared by AKS Engineering & Forestry, LLC. Page 1 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Time span =0.00 -24.00 hrs, dt =0.05 hrs, 481 points Runoff by SBUH method, Type IA 24 -hr Rainfall= 2.50" Reach routing by Stor- Ind +Trans method - Pond routing by Stor -Ind method Subcatchment 1S: DEVELOPED SITE Tc =5.0 min CN =95 Area = 16,142 sf Runoff= 0.19 cfs 0.061 af Subcatchment 2S: PRE - DEVELOPED Tc =9.0 min CN =88 Area = 16,142 sf Runoff= 0.12 cfs 0.042 af Pond '1 P: DETENTION PIPE Peak Storage= 250 cf Inflow= 0.19 cfs 0.061 af Primary= 0.10 cfs 0.060 af Outflow= 0.10 cfs 0.060 af Runoff Area = 0.741 ac Volume = 0.103 af Average Depth = 1.67" • t 814STM2 Type IA 24 -hr Rainfall= 2.50" Prepared by AKS Engineering & Forestry, LLC. Page 2 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 1S: DEVELOPED SITE Runoff = 0.19 cfs @ 7.92 hrs, Volume= 0.061 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 2.50" Area (sf) ON Description 12,348 98 . PARKING /BUILDING • 3,794 86 LANDSCAPING 16,142 95 Weighted Average Tc 'Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 1S: DEVELOPED SITE, Hydrograph Plot 0.217 0.19,cfs, — Runoff.. 0.19 0.18= 0.17-: 0.16 0.15 0.14 =. 0.13• w 0.12= 0.11 a 0.1 LL 0.09= 0.08= 0.07; 0.06 0.05 0.04: 0.03 0.02: 0.01 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) • lM 814STM2 Type IA 24 -hr Rainfall =2.50" Prepared by AKS Engineering & Forestry, LLC. Page 3 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 2S: PRE - DEVELOPED Runoff = 0.12 cfs @ 7.99 hrs, Volume= 0.042 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 2.50" Area (sf) CN Description 11,832 85 LAWN 4,310 98 HOUSE, OUTBUILDINGS, POOL, DRIVEWAY 16,142 88 Weighted Average Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 9.0 140 0.0660 0.3 Sheet Flow, Grass: Short n= 0.150 P2= 2.50" Subcatchment 2S: PRE - DEVELOPED Hydrograph Plot 0.13 ( „012`cfs; — Runoff 0.12- 0.11 0.1 0.09. 0.08 �_ 0.07 3 0 0.06 - LL 0f05- 0.04- 0.03 - 0.02, 0.01 - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) aI 814STM2 Type IA 24 -hr Rainfall= 2.50" Prepared by AKS Engineering & Forestry, LLC. Page 4 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Inflow = 0.19 cfs @ 7.92 hrs, Volume= 0.061 af Outflow = 0.10 cfs @ 8.29 hrs, Volume= 0.060 af, Atten= 47 %, Lag= 22.1 min Primary = 0.10 cfs @ 8.29 hrs, Volume= 0.060 af Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Peak Elev= 1.80' Storage= 250 cf Plug -Flow detention time =20.2 min calculated for 0.060 af (99% of inflow) Elevation Cum.Store (feet) (cubic -feet) 0.00 0 0.87 94 1.75 241 2.62 387 3.50 481 = rimary OutFlow (Free Discharge) —1= Orifice /Grate —2= Orifice /Grate —3= Orifice /Grate # Routing Invert Outlet Devices 1 Primary 0.00' 1.7" Vert. Orifice /Grate C= 0.600 2 Primary 2.00' 1.7" Vert. Orifice /Grate C= 0.600 3 Primary 3.40' 6.0" Horiz. Orifice /Grate Limited to weir flow C= 0.600 u 814STM2 Type IA 24 -hr Rainfall= 2.50" Prepared by AKS Engineering & Forestry, LLC. Page 5 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Hydrograph Plot 0.21- 0.2 1 0:19 cfs — Inflow s 0.19= — Primary 0.18: 0.17' 0.16 - 0.15 - 0.14- 0.13- m 0.12 0.11 0A0 'de' I: 3 0.1- Li 0.09 - 0.08 0.07= 0.06= 0.05= 0.04= 0.03= - 0.02 0.01 ' 0 `. :.:... 4 5 ... � : 7 . 11 1 13 14: .,..� 0 1 2 3 15 16 17 18 19 20 21 22 23 24 Time (hours) y 1 f » N N 4- Drainage Diagram for 814STM \Subcay Reach -on. Prepared by AKS Engineering & Forestry, LLC. 10/11/2002 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems • r� 814STM2 Type IA 24 -hr Rainfall= 3.10" Prepared by AKS Engineering & Forestry, LLC. Page 1 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Time span =0.00 -24.00 hrs, dt =0.05 hrs, 481 points Runoff by SBUH method, Type IA 24 -hr Rainfall= 3.10" Reach routing by Stor- Ind +Trans method - Pond routing by Stor -Ind method Subcatchment 1S: DEVELOPED SITE Tc =5.0 min CN =95 Area = 16,142 sf Runoff= 0.24 cfs 0.079 af Subcatchment 2S: PRE - DEVELOPED Tc =9.0 min CN =88 Area = 16,142 sf Runoff= 0.17 cfs 0.059 of Pond 1P: DETENTION PIPE Peak Storage= 336 cf Inflow= 0.24 cfs 0.079 af Primary= 0.15 cfs 0.078 af Outflow= 0.15 cfs 0.078 af Runoff Area = 0.741 ac Volume = 0.137 af Average Depth = 2.22" I AI 814STM2 Type IA 24 -hr Rainfall= 3.10" Prepared by AKS Engineering & Forestry, LLC. Page 2 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 1S: DEVELOPED SITE Runoff = 0.24 cfs @ 7.91 hrs, Volume= 0.079 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 3.10" Area (sf) CN Description 12,348 98 PARKING /BUILDING 3,794 86 LANDSCAPING 16,142 95 Weighted Average Tc Length Slope Velocity Capacity Description • (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 1S: DEVELOPED SITE Hydrograph Plot 0.26- I 0,24 cfs,:, I — Runoff 0.24 0.22. 0.2- 0.187 N 0.16 0.14- 3 r ° 0.12 • 0.08 0.06 0.047 0.02= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) • 814STM2 Type IA 24 -hr Rainfall = 3.10" Prepared by AKS Engineering & Forestry, LLC. Page 3 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 2S: PRE - DEVELOPED Runoff = 0.17 cfs @ 7.99 hrs, Volume= 0.059 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 3.10" Area (sf) CN Description 11,832 85 LAWN 4,310 98 HOUSE, OUTBUILDINGS, POOL, DRIVEWAY 16,142 88 Weighted Average • Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 9.0 140 0.0660 0.3 Sheet Flow, Grass: Short n= 0.150 P2= 2.50" Subcatchment 2S: PRE - DEVELOPED Hydrograph Plot 0.18= I 0.1'7 cfs — Runoff; 0.17-: j 0.16= 0.15 0.14 0.13 0.12 0.11 0.1 o LL 0.08= 0.06 0.05 0.04 0.03 0.01 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 Time (hours) 814STM2 Type IA 24 -hr Rainfall= 3.10" Prepared by AKS Engineering & Forestry, LLC. Page 4 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Inflow = 0.24 cfs @ 7.91 hrs, Volume= 0.079 af Outflow = 0.15 cfs @ 8.20 hrs, Volume= 0.078 af, Atten= 38 %, Lag= 17.0 min Primary = 0.15 cfs @ 8.20 hrs, Volume= 0.078 af Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Peak Elev= 2.32' Storage= 336 cf Plug -Flow detention time =22.9 min calculated for 0.078 af (99% of inflow) Elevation Cum.Store (feet) (cubic -feet) 0.00 0 0.87 94 1.75 241 2.62 387 3.50 481 - Primary OutFlow (Free Discharge) —1=Orifice/G rate —2= Orifice /Grate —3= Orifice /Grate # Routing Invert Outlet Devices 1 Primary . 0.00' 1.7" Vert. Orifice /Grate C= 0.600 2 Primary 2.00' 1.7" Vert. Orifice /Grate C= 0.600 3 Primary 3.40' 6.0" Horiz. Orifice /Grate Limited to weir flow C= 0.600 1 814STM2 Type IA 24 -hr Rainfall =3.90" Prepared by AKS Engineering & Forestry, LLC. Page 5 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Hydrograph Plot 0.26 ('024;cfs — Inflow — Primary 0.24 0.22= 0.2- 0.18- N 0.16= ,015:0s u 0.14-: 0.12= 0.1. 0.08 0.06= 0.04- 0.02= p- ... .:.... .. . . 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) • i Z1 •. ( ( 1 4Libc Reach •ons Drainage Diagram for 814STM Prepared by AKS Engineering & Forestry, LLC. 10/11/2002 HydroCAD® 6.00 s/n 001338 © 1986-2001 Applied Microcomputer Systems 814STM2 Type IA 24 -hr Rainfall = 3.45" Prepared by AKS Engineering & Forestry, LLC. Page 1 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Time span =0.00 -24.00 hrs, dt =0.05 hrs, 481 points Runoff by SBUH method, Type IA 24 -hr Rainfall= 3.45" Reach routing by Stor- Ind +Trans method - Pond routing by Stor -Ind method Subcatchment 1S: DEVELOPED SITE Tc =5.0 min CN =95 Area = 16,142 sf Runoff= 0.28 cfs 0.089 of Subcatchment 2S: PRE - DEVELOPED Tc =9.0 min CN =88 Area = 16,142 sf Runoff= 0.20 cfs 0.068 of Pond 1P: DETENTION PIPE Peak Storage= 383 cf Inflow= 0.28 cfs 0.089 af Primary= 0.18 cfs 0.089 of Outflow= 0.18 cfs 0.089 af Runoff Area = 0.741 ac Volume = 0.157 af Average Depth = 2.55" ; " • 814STM2 Type IA 24 -hr Rainfall= 3.45" Prepared by AKS Engineering & Forestry, LLC. Page 2 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 1S: DEVELOPED SITE Runoff = 0.28 cfs @ 7.91 hrs, Volume= 0.089 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 3.45" Area (sf) CN Description 12,348 98 PARKING /BUILDING 3,794 86 LANDSCAPING 16,142 95 Weighted Average Tc Length Slope Velocity Capacity Description _ (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 1S: DEVELOPED SITE Hydrograph Plot — Runoff. 0 28;;cfs ' 0.28 0.26 ) • 0.22= 0.2= 0.16: 0 0.14= LL 0.12= 0.1-: 0.08 = 0.06 - 0.04- 0.02 • 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 814STM2 Type IA 24 -hr Rainfall= 3.45" Prepared by AKS Engineering & Forestry, LLC. Page 3 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 2S: PRE- DEVELOPED Runoff = 0.20 cfs @ 7.99 hrs, Volume= 0.068 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 3.45" Area (sf) CN Description 11,832 85 LAWN 4,310 98 HOUSE, OUTBUILDINGS, POOL, DRIVEWAY 16,142 88 Weighted Average _ Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 9.0 140 0.0660 0.3 Sheet Flow, Grass: Short n= 0.150 P2= 2.50" Subcatchment 2S: PRE - DEVELOPED Hydrograph Plot 0.22 0.21 = 0:20 cfs — Runoff 0.2 f ) ... 1 0.19 0.18 0.17 0.16: 0.15 0.14- w 0.13° 0.12 0.11 ° 0.1 LL 0.09= 0.08 0.07= 0.06 0.05" 0.04 0.03i 0.02= 0.01- 0 ,.,..,., 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 814STM2 Type IA 24 -hr Rainfall= 3.45" Prepared by AKS Engineering & Forestry, LLC. Page 4 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Inflow = 0.28 cfs @ 7.91 hrs, Volume= 0.089 af Outflow = 0.18 cfs @ 8.18 hrs, Volume= 0.089 af, Atten= 37 %, Lag= 16.3 min Primary = 0.18 cfs @ 8.18 hrs, Volume= 0.089 af Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Peak Elev= 2.60' Storage= 383 cf Plug -Flow detention time =23.8 min calculated for 0.088 af (99% of inflow) Elevation Cum.Store (feet) (cubic -feet) 0.00 0 0.87 94 1.75 241 2.62 387 3.50 481 Primary OutFlow (Free Discharge) —1= Orifice /Grate —2= Orifice /Grate —3= Orifice /Grate # Routing Invert Outlet Devices 1 Primary 0.00' 1.7" Vert. Orifice /Grate C= 0.600 2 Primary 2.00' 1.7" Vert. Orifice /Grate C= 0.600 3 Primary 3.40' 6.0" Horiz. Orifice /Grate Limited to weir flow C= 0.600 e. 814STM2 Type IA 24 -hr Rainfall= 3.45" Prepared by AKS Engineering & Forestry, LLC. Page 5 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Hydrograph Plot 0.3 — Inflow 028'cfs — 0.28= Primary ,� 0.26= 0.24 0.22 0.2 _:0:18:cfs I 0.16= 0 0.14= 0.12= 0.1= 0.08= 0.06= 0.04: 0.02 0' 0...,1..:.2.. 3 4...5...,6...,7....,.. 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) • ,j' , c1 1/ ,-- - , . .. ,...._, _ . _ - .._ .. . . _ •.• . , , . . .' . . .. .. . , . .• ,.._ ._ K : . 1 . . . . . Drainage Diagram for 814STM ubc Reach eon 1:1 11 Prepared by AKS Engineering & Forestry, LLC. 10/11/2002 HydroCAD® 6.00 s/n 001338 © 1986-2001 Applied Microcomputer Systems 814STM2 Type IA 24 -hr Rainfall= 3.90" Prepared by AKS Engineering & Forestry, LLC. Page 1 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Time span =0.00 -24.00 hrs, dt =0.05 hrs, 481 points Runoff by SBUH method, Type IA 24 -hr Rainfall= 3.90" Reach routing by Stor- Ind +Trans method - Pond routing by Stor -Ind method Subcatchment 1S: DEVELOPED SITE Tc =5.0 min CN =95 Area = 16,142 sf Runoff= 0.32 cfs 0.103 af Subcatchment 2S: PRE - DEVELOPED Tc =9.0 min CN =88 Area = 16,142 sf Runoff= 0.24 cfs 0.081 af Pond 1P: DETENTION PIPE Peak Storage= 443 cf Inflow= 0.32 cfs 0.103 af Primary= 0.21 cfs 0.102 af Outflow= 0.21 cfs 0.102 af Runoff Area = 0.741 ac Volume = 0.184 af Average Depth = 2.98" • • • S14STM2 Type IA 24 -hr Rainfall= 3.90" Prepared by AKS Engineering & Forestry, LLC. Page 2 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 1S: DEVELOPED SITE Runoff = 0.32 cfs @ 7.91 hrs, Volume= 0.103 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 3.90" Area (sf) CN Description 12,348 98 PARKING /BUILDING 3,794 86 LANDSCAPING 16,142 95 Weighted Average Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 1S: DEVELOPED SITE Hydrograph Plot 0.34= 110.32 cfs — Runoff ; 0.32= 0.3= ` 0.287 0.26= 0.24- 0.22 - 3 0.18w 0.16 0.14 • 0.12= 0.11 0.08= 0.06 0.04= 0.02 0-• .• 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) • 814STM2 Type IA 24 -hr Rainfall= 3.90" Prepared by AKS Engineering & Forestry, LLC. Page 3 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 2S: PRE - DEVELOPED Runoff = 0.24 cfs @ 7.98 hrs, Volume= 0.081 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 3.90" Area (sf) CN Description 11,832 85 LAWN 4,310 98 HOUSE, OUTBUILDINGS, POOL, DRIVEWAY 16,142 88 Weighted Average Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 9.0 140 0.0660 0.3 Sheet Flow, Grass: Short n= 0.150 P2= 2.50" Subcatchment 2S: PRE - DEVELOPED Hydrograph Plot 0.26- 0:24 cf4, — Runoff, 0.24 0.2 0.18- 0.16- N 0.14- 0 0.12- 0.1- 0.08 - 0.06 - 0.04 - 0.02- 0 - . , . . , . . . . . , . . .. . .... .... . . , . . . . , . . . : , . . 1 - • F 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 314STM2 Type IA 24 -hr Rainfall= 3.90" Prepared by AKS Engineering & Forestry, LLC. Page 4 ? HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 �.. Pond 1P: DETENTION PIPE Inflow = 0.32 cfs @ 7.91 hrs, Volume= 0.103 of Outflow = 0.21 cfs @ 8.16 hrs, Volume= 0.102 af, Atten= 34 %, Lag= 15.2 min Primary = 0.21 cfs @ 8.16 hrs, Volume= 0.102 af Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Peak Elev= 3.14' Storage= 443 cf Plug -Flow detention time =25.1 min calculated for 0.102 of (100% of inflow) Elevation Cum.Store (feet) (cubic -feet) 0.00 0 0.87 94 1.75 241 2.62 387 3.50 481 Erimar OutFlow (Free Discharge) —1= Orifice /Grate —2= Orifice /Grate —3= Orifice /Grate # Routing Invert Outlet Devices 1 Primary 0.00' 1.7" Vert. Orifice /Grate C= 0.600 2 Primary 2.00' 1.7" Vert. Orifice /Grate C= 0.600 3 Primary 3.40' 6.0" Horiz. Orifice /Grate Limited to weir flow C= 0.600 814STM2 Type IA 24 -hr Rainfall= 3.90" Prepared by AKS Engineering & Forestry, LLC. Page 5 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Hydrograph Plot — Inflow 0.32: — Primary 0.3 0.26-1 0.24 0.22 1;.0:21 :,cfs w 0.2= U 0.18 0 0.16= L 0.14= 0.12W 0.1= 0.08 - 0.06 0.04= 0.02 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) • U 5 i lSl . _ ....... ....... ... .. :.,;:,. ;::-. • ' :).; .: .:._ : . :. . ,,..'.:,-., .:, ; ...,, . , . , . . , . . , ... ' ,:: ". -':'.::-. , — ''.'[.--,::'-',:::•.-:'; . '.-, -:-• __.. libc Reach •on. Prepared by AKS Eng ineering It D ra i n HydroCAD® 6.00 s age Diagram for 814STM & Forestry, LLC. 10/11/2002 /n 001338 © 1986-2001 Applied Microcomputer Systems 814STM2 Type IA 24 -hr Rainfall= 4.50" Prepared by AKS Engineering & Forestry, LLC. Page 1 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Time span =0.00 -24.00 hrs, dt =0.05 hrs, 481 points Runoff by SBUH method, Type IA 24 -hr Rainfall= 4.50" Reach routing by Stor- Ind +Trans method - Pond routing by Stor -Ind method Subcatchment 1S: DEVELOPED SITE Tc =5.0 min CN =95 Area = 16,142 sf Runoff= 0.37 cfs 0.121 of Subcatchment 2S: PRE - DEVELOPED Tc =9.0 min CN =88 Area = 16,142 sf Runoff= 0.29 cfs 0.098 of Pond 1P: DETENTION PIPE Peak Storage= 481 cf Inflow= 0.37 cfs 0.121 of Primary= 0.38 cfs 0.120 af Outflow= 0.38 cfs 0.120 af Runoff Area = 0.741 ac Volume = 0.219 af Average Depth = 3.55" • 814STM2 Type IA 24 -hr Rainfall = 4.50" Prepared by AKS Engineering & Forestry, LLC. Page 2 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 1S: DEVELOPED SITE Runoff = 0.37 cfs @ 7.91 hrs, Volume= 0.121 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 4.50" Area (sf) CN Description 12,348 98 PARKING /BUILDING 3,794 86 LANDSCAPING 16,142 95 Weighted Average Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 1S: DEVELOPED SITE Hydrograph Plot — Runoff 0.38 ( • 0.34 1 ) 0.32 0.3-1 0.28 0.26- 0.24- 3 0.2 0.18 0.16- 0.14 = 0.12 0.1 0.08 0.06' 0.04t. 0.02-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 814STM2 Type IA 24 -hr Rainfall= 4.50" . Prepared by AKS Engineering & Forestry, LLC. Page 3 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Subcatchment 2S: PRE- DEVELOPED Runoff = 0.29 cfs @ 7.98 hrs, Volume= 0.098 of Runoff by SBUH method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Type IA 24 -hr Rainfall= 4.50" Area (sf) CN Description 11,832 85 LAWN 4,310 98 HOUSE, OUTBUILDINGS, POOL, DRIVEWAY 16,142 88 Weighted Average Tc Length Slope Velocity Capacity Description (min) . (feet) (ft/ft) (ft/sec) (cfs) 9.0 140 0.0660 0.3 Sheet Flow, Grass: Short n= 0.150 P2= 2.50" Subcatchment 2S: PRE - DEVELOPED Hydrograph Plot 0.327. 0:29 cfs — Runoff 0.3= ( .._, i ) = 0.26= 0.24 0.22 0.2= 0.18= 0.16 o LL 0.14-; 0.12= r 0.1 0.08= • 0.06= 0.02= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 814STM2 Type IA 24 -hr Rainfall= 4.50" Prepared by AKS Engineering & Forestry, LLC. Page 4 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Inflow = 0.37 cfs @ 7.91 hrs, Volume= 0.121 af Outflow = 0.38 cfs @ 8.02 hrs, Volume= 0.120 af, Atten= 0 %, Lag= 6.6 min Primary = 0.38 cfs @ 8.02 hrs, Volume= 0.120 af Routing by Stor -Ind method, Time Span= 0.00 -24.00 hrs, dt= 0.05 hrs Peak Elev= 3.50' Storage= 481 cf Plug -Flow detention time =26.5 min calculated for 0.120 af (99% of inflow) Elevation Cum.Store (feet) (cubic -feet) 0.00 0 0.87 94 1.75 241 2.62 387 3.50 481 Erimary OutFlow (Free Discharge) —1= Orifice /Grate —2= Orifice /Grate —3= Orifice /Grate # Routing Invert Outlet Devices 1 Primary 0.00' 1.7" Vert. Orifice /Grate C= 0.600 2 Primary 2.00' 1.7" Vert. Orifice /Grate C= 0.600 3 Primary . 3.40' 6.0" Horiz. Orifice /Grate Limited to weir flow C= 0.600 814STM2 Type IA 24 -hr Rainfall = 4.50" Prepared by AKS Engineering & Forestry, LLC. Page 5 HydroCAD® 6.00 s/n 001338 © 1986 -2001 Applied Microcomputer Systems 7/29/2004 Pond 1P: DETENTION PIPE Hydrograph Plot 0.42- 0 4 -_ 0:38 _cfs — Inflow 0.38: — Primary 0.36= 0.34= 0.32 0.3 0.284 0.26 w 0.244 U 0.224 0 0.24 LL 0.18= 0.16= 0.14 0.124. 0.14 0.084 0.064 – - 0.04 0.02 4 0= ...............:........ . . :.:.:................. : .,. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) � r D r X ■ W UbJCI, I v v ✓ 13910 SW Galbreath Drive, Suite 100 14/A-7-r'1t- 6",i)rfiUi f % Li:. T1 Sherwood, OR 97140 DATE /C" f/- 07— BY � �� PROJECT NO. 8/ Phone (503) 925 -8799 Fax (503) 925 -8969 • 72 //tii i4 vle c)-� 72 - . .. -. .2 , 35 , SQ u fe/ z= T . • W S?/ V - .2, , t-i; r.!(/ _/„ ✓ . 36.� _ + 3 .I , ' _....,.. .O G? G//!� -iNG /i✓ � fiov2 S -L - W !/oi_u hE _ .._ o,.G 3 -/Z 3 -8 . ' TaT'9 7 ,..._, , y ' Fr v 1...1 = : ' 3: 'f . 1 _ ` too _. z D 3 _ G S . SF G �, /3/5,14. c /fy ` gi/v -I C_ P /7/ d•F G Tl�f / , /' to <.-f5 ,,-: n37 c/4---s ,. _ ' _ ._.- _. .. � T , E .+s oRH' /tr/ f — /; , _ 3 CF = .9. , O 3 cis w�xar : % + <ar -.. , i , F , , , . . ; i € , , ,m. n.�w.....,.........a -. •e.,..:«.,a,m� :_:..-.aasr�xe..r - j • i a ` j •• 3 , € i , I f r { 1 .STORMWATER / MANAGEMENT INC. 11 4 `l l i© " lr@M p� ° g4'Q` R PQL4E ' Stormwater Management's StormFilter is now available fi in a catch basin configuration. The Catch Basin StormFilter system, an extension of the widely accepted Storm Filter Best Management Practice, has been engineered to replace the standard catch basin. In the Catch Basin StormFilter, polluted runoff enters the system through a traffic-bearing grate into the primary settling chamber where heavier solids drop to a sump. Lighter solids and dissolved pollutants are then directed under a baffle into the cartridge chamber where the StormFilter cartridge is housed. During filtration, lighter solids and soluble pollutants are removed and clean water is discharged from the filter into the outlet. During extremely heavy storms, water in the primary settling chamber overflows the bypass weir, preventing the re-suspension of sediments and pollutants trapped in the cartridge chamber. SYSTEM FEATURES AND BENEFITS • Proven StormFilter technology targets site-specific pollutants • Low cost, heavy gauge, all steel construction 1 ( ° • Internal bypass that minimizes re-suspension of trapped pollutants • • Simple, low cost installation • Easy maintenance • Operation & Maintenance Guidelines available from Stormwater Management GENERAL SPECIFICATIONS Inlet to Stormfllter • StormFilter capacity — 15 gpm /cartridge (up to 4 cartridges) • Peak hydraulic capacity — 1.0 CFS Solid Cover • Hydraulic drop (Rim to Invert) — 26.75" cartridge • Outlet pipe diameter — up to 8" • Load - bearing capacity — 14,000 lbs - Grate (H -20 optional) • �*4 Pool (For higher flows or heavier loads, contact the «;f'""''Y � T Pool , t - application engineers at Stormwater Management) I � �r •+ N Co—/ Baffle ;+ 2" Outlet Pipe K 4`� )s .: 44 1 1 Sediments -�' Sediments ,� mo d; � � L a 8" Outlet Pipe Weir _ - 2035 NE Columbia Blvd. Portland, OR 97211 I ?0 503.240.3393 800.548.4667 0 503.240.9553 0 stormwatermgt.com DIMENSIONS OF A STANDARD SINGLE CARTRIDGE UNIT 1 • B . STORMFILTER OUTLET CARTRIDGE A r ® � te a. o A ° ° r� Ask ,. 0 000 00 11 [If' 1 0 00000 ° .,��� °0000 °° °° °0000°°° B TRAFFIC BEARING COVER TRAFFIC BEARING GRATE CATCH BASIN STORMFILTER - PLAN SCALE: N.T.S. - D.S. PATENT No. 5.122.829, , No. 5.829.576. AND OTHER D.S. AND FOREIGN PATENTS PENDING , 4' - 10 1/2" ■ i 2' - 5 1/2" ■i.tri■i� l l.11MUMuii i - - FILTER �, �-- CHAMBER L � - - -- � , INLET OVERFLOW I � I � �I / 2' -2 314" t ::::,,1R BAFFLE / / 10 GA. STL. 3' - 8 3/4" / / (fYP SIDES 4� • ��; & BO TTOM ( 1j /\ / / / /IlpglgW' I \/ X110 �1' OVERFLOW 1111 BYPASS WEIR �!! �!! ��6' CORROSION RISISTANT INLET CHAMBER FILTER CHAMBER COATING, FILTER EXTERIOR OUTLET & INTERIOR 2' - 4 3/4" 2' CATCH BASIN STORMFILTER - SECTION A - A SECTION B - B SCALE: N.T.S. SCALE: N.T.S. • ..f "0 O k 7" )•) SUBJECT : - ' :— - - - - .„/-41..nk_, ...ci CC H. ur .... ... • ;57 ,5 . - _...... ., 13910 SW Galbreath Drive, Suite 100 .. 2...-A r.1., 4.-1, 5..,.. . , 5, , Sherwood, OR 97140 _,-,,,, DATE :---' k — --• - BY ---, "' 's."' PROJECT NO. ft...--- ---.: Phone (503) 925-8799 Fax (503) 925-8969 . , e rc-7 - : - f . . . i ' ' ; , - ' ..- , • 1 ';`..,1: ..7, , ',- a — 7 •., . ) 0 .-': , ..,. : ; ". , , .' : ; ' ',. •- . i . , '. , .' - . , ?•.,„ ,,,,,,,,....,,,,,,,,,t4tr,s.,..,,s „,,,, a ,,,,,,, ■ -,,,,,,,,,, , , ,',.' i' , i ''. ': : — ' ' ' ' i A ' 1 ''' . ''''''''' : --''' '• ', '' Vt__ \i'l.:›"If ' '' ' Cr '' , -q -4-r ----, r-r,_,_5.-:_.• .-..-....., ; k"7- I ■": .. - .).: ic -. , .... , ..J , .” i...-J.:,:''. \`7.:.7..t.0 ; - , : ! ...--, ?..N....4.1;,1 t,...2.4.,-.1......1 . --: •••': :: ; '; ; i • ' :: r. ". : : !, ' i k : • :•• • ••• ; -; .,, ::: :: : ; • , . . • •• ;,• .; •.< 1 ' •• , —1 7 ,- .) - t - r...- , ,, t pA,.(- 1,1," i`it .,3 .,.- 1,A--',-1.,;...' -7--p, ', \ 2i:. 74 ,-;',+'Si i -, W. :. i '. ' f.: i. ':, i', ' ', 1 ... :.'" , ' • k , ; ; . % , % ; ; '. i .: ; .; ' 1 .: i ' :: ! .", : , %:". % % ; ; ,...-, '?,,,,,, F-.^..,....,. ,,,,,,,,4,6,... E ?,... 6 ' . .','n- ■ ,, . ' ,,,,,,,,, .2 t.",s,".. tit1,..at ,tta444,14.1tft't t ',Ult., ..St94,... 't,t, 94 ii....ti Nt,tt ft.,'" Wstsitt,... , .t. te %,,,..t.. 5 ? t.",,, ■ .... ., tr.... tttti.,..-",,,Ittetti t ' ' •'''''' 4 : 't ' ' i . '', ' ..1 ' : ': t . t t : -' :1 ', It / . '.: \ --, ' ' ,- ' r. .. ._ p 1 '2_ PsAstib /14-te... ITV ', 6 --F ' ' 5. r ; '; • '' r 5 '. ; 5 ;- ' 1 ? ; - 41 '54,4 : Srr . 5 , 11 S - 11 4 , , , ____.....„...........„...........;........._ ,, .: .._. .:,..„..,,,,„...-,..„..- 41.27.1;,...., ,t47 ,:1,1V ''.)Y,f.,,,, , , I,. ,...,,...4 •!........ .....!.... " .1s 30.,,,,, ,,,..1.4r......, .V.11 ,..p.ft,,,,,,,,,,,nwsi : — • ; : , . . ; ' : ; ', :: % , . , % ; ft ? , '. % " ' t ;% . ..' 1 ::: ' • 1 ', ,: % ' .,; i :, , ; ' ; :•;. I : ,, ;. . ' , ; ; 4 , . ; I ....; : , ; ? • ta : ; , ; , ; ■` , ! • .: : ., : , , ; , : ; . • . ; +, , . ,, i ; t ; ;, 1, : : • i; ; :.; ; 5 ',,, t ; ; :, ; .,• , :,, 1 ; , ; :". ; ' ;, " :, ; ; : € :,; ; ' i; : ' ; '': . • . ' ' , , • • ', ' ; ; , ; '. ,, ■ . , .; .% ", i ; ' : ; ; . ;% • . ' '''..: ". , e : r: : ' : ' t; . ' ; : • , % ; • ;: .....__„..; 1,..,..... %.,,,,,- ,,,,,,, ..,„.',,,,,,,,,,,,,:,,,,,,, ,........,,,,,,,,, tr, %.,-,,,,,,,•;,,,,,,,,, tt t ,...IFtettiti.t.."1 ?",,,, ..r. 4 . , ..,,,,,,, .. ,„ ...... ; :VI 4 ; `.. ' : . , , ' , • :: i , ', ': ':. 1 • i .. , • ; '': ',. ;,..: , :::: ' ' %. ■ ; % , :' , " ! , . , % t .; . % • ; t ';'. , : ; ', . t • • ; t : :: , % '; : .; • % ; . "; ' : ! ; ": : ;:;: '' ' :::' ' 4,,,,,,..% " ,,,,,,, , ,...;.,„,,A,,,,,, %,,,,,,,,,,,,,,,,,,,,,, ,..,,,,,,,I.,,,,,,* ,, LaseRtt.k .7,...,..15,,,,;;;.5'5.555 -;;;;.....;4.;;;;;...,• 1 ; i i 5 ' r: ; : ; 5 -,;• 5 , : 55 ; :5 ; 5 ; ; I ;, 5 ; ; 1 ;; ; ; -: : 5 r 5 5 ; i ;!. , ; ; ; 1 ; : ' tr; ; 5 ; = ;-• ; r 5 ) . ; ; ; 5; . 5 r ; 51 ; r ' .5 ; ., : 5: 5; 5 j ; 1 : 5 ; i ; I -• ...5 5 , . , -.: z '5 5 • 5: : . ' r -: : 5 - 5 , 5 ; ; " ; r5 ; 5 ; ; ;" ; r ; r • • 5 - 4 ,.. , , , ,. • , : 4,,,,,,If,,,! ttt,..143 ttli...,, >1%.t ,....... .,.. •;-• - 5; ; r • 5 • r i 5 "; 1 ' , r ,r. 5 : ; 1 ..: r ; 5 ; 5;:' '1 1 ; • : ; ; : ' :: ' ; 5 r ; ' ; ' ; ; ; t 5 5 5 :. ; ; 5; r. r; : : , , r. , ; ; 5' ,, • ; , ; ; 1 5" • 5 ,, 5 5 5 5 :5 5 : L ; :: 1 5 5 : I -; • 5 -• 55 : r 5 .; ;;; ' 5 : : :, ; 1 ; , , : ; 5 5 r, 5 ; ; ; '" 5: 5 " i. 5 • 5 ' • 5 ; ' i 1 - . 5 ; - ; ; ; 5 : 5 5 5 -1 , ; i ; ; ,r ; • ; 5 r.: : ..• 5 ; : ' , 1 • 5: . r5 i 5 ; : ; 5 ' ;;, : 5. , ; 5 , 5 55 ; : • ;;,,,F1..;;;,,,,-;;;;.,,..,..;;;;;,....,.;;;;.55,,,,,,kme;;;.',...,,,,:;,..,50,5,7,..,_ p.s......; is ; ; - %%%:- • 1;s:;.. 6....311% A - ...%. e.s;sx:asr..,,,s1- sas.s.... ....se.. r s ,.,........; s r s; s s'ssos..........., : :;",.....,%",...--, .; `.... ' ' • : s % ' : : ; • : s ' . . . . .... '; 1 % .... : % -, • % ..; . % ''; .., : - : . % :: % : . % ' . : : % ..; ..% , . . :. % ; % i ; . ; ; ' • . % ; % . : ' % . . ' ; % ; . %. ... % . . ; ; ; ... I ) ' • . ; s ,.. . % : .: ; . % % .. .. ; : . i % : '; ; ; . 's ....... — s % "; ... ; ' S , ; S ; , i . . • %. . % : S ' % 1. . s ; . . , ' ' . . s • Table 11 -2 UNIFORM PLUMBING CODE • TABLE 11 -2 Size of Horizontal Rainwater Piping Size of Pipe in Inches Maximum Rainfall In Inches per Hour 1/8 "Slope 2 3 4 5 6 3 1644 1096 822 657 548 4 3760 2506 1880 1504 1253 5 6680 4453 3340 2672 2227 6 10,700 7133 5350 4280 3566 8 23,000 15,330 11,500 9200 7600 10 41,400 27,600 20,700 16,580 13.800 12 66.600 44,400 33,300 26,650 22,200 Size of Pipe in Inches Maximum Rainfall In Inches per Hour 1/4 "Slope 2 3 4 5 6 • 3 2320 - 1546 1160 .928 773 4 5300 3533 2650 2120 1766 5 9440 6293 4720 3776 3146 6 1 5,100 10,066 7550 6040 5033 8 32.600 21,733 16,300 13,040 10.866 ) 10 58. 400 38.950 29,200 23.350 19,450 12 94.000 62,600 47,000 37,600 31.350 Size of Pipe in !riche Maximum Rainfall In Inches per Hour 1/2 "Slope 2 3 4 5 6 3 3288 2295 1644 1310 1096 4 7520 5010 3760 3010 2500 5 13.360 8900 6680 5320 4450 6 21,400 13,700 10,700 8580 7140 8 46,000 30,650 23,000 18,400 15,320 10 82.800 55,200 41,400 33,150 27,600 12 133.200 88,800 66,600 53,200 44,400 15 238.000 158,800 119,000 95,300 79.250 90 D X • n ter vices ..._ k S1.% :Yi Pl sfw Y_ V1 1 i I v I'N +_I�.js N• r�C; r ry 7J'� Iri °.t ��J t iru4 • ''� if r ill f 4 4 � 5 �,�.�� w �� i ; 7 Ii 1 -i ,.. y 1. l T 1 v � (I �N�y FS i `r I -K' '�"` r � "• � �„r' ` 1 - �``�� � 16�' '� f''?p�1� • WI_ • • • DESIGN AND CONSTRUCTION STANDARDS Resolution and Order 03 -11 • June 2003 • • • • • • i' 2) The following table contains the NRCS Type 1A precipitation distribution. DESIGN STORM DISTRIBUTION CHART Rainfall Depth. (Inches) Percent Rainfall 2YR 5YR 10YR 25YR 50YR 100YR Hour Incremental Cumulative 2.50 3.10 3.45 3.90 4.20 4.50 1 2.40 2.40 0.06 0.07 0.08 0.09 0.10 0.11 2 2.60 5.00 0.07 0.08 0.09 0.10 0.11 0.12 3 3.20 8.20 0.08 0.10 0.11 0.12 0.13 0.14 4 '3.80 12.00 0.10 0.12 0.13 0.15 0.16 0.17 • 5 4.44 16.44 0.11 0.14 0.15 0.17 0.19 0.20 6 5.18 21.62 0.13 0.16 0.18 0.20 0.22 0.23 7 6.48 28.10 0.16 0.20 0.22 0.25 0.27 0.29 8 16.44 44.54 0.41 0.51 0.57 0.64 0.69 0.74 9 7.58 52.12 0.19 0.23 0.26 0.30 0.32 0.34 10 5.28 57.40 0.13 0.16 0.18 0.21 0.22 0.24 _ _ 11 4.96 62.36 0.12 0.15 0.17 0.19 0.21 0.22 ( ) 12 4.32 66.68 0.11 0.13 0.15 0.17 0.18 0.19 13 4.02 70.70 0.10 0.12 0.14 0.16 0.17 0.18 14 3.42 74.12 0.09 0.11 0.12 0.13 0.14 0.15 15 3.28 77.40 0.08 0.10 0.11 0.13 0.14 0.15 16 3.00 80.40 0.08 0.09 0.10 0.12 0.13 0.14 17 2.80 83.20 0.07 0.09 0.10 0.11 0.12 0.13 18 2.40 85.60 0.06 0.07 0.08 0.09 0.10 0.11 19 2.40 88.00 0.06 0.07 0.08 0.09 0.10 0.11 20 2.40 90.40 0.06 0.07 0.08 0.09 0.10 0.11 21 2.40 92.80 0.06 0.07 0.08 0.09 0.10 0.11 22 2.40. 95.20 0.06 0.07 0.08 0.09 0.10 0.11 23 2.40 97.60 0.06 0.07 0.08 0.09 0.10 0.11 24 2.40 100.00 0.06 0.07 0.08 0.09 0.10 0.11 The above table is from the "Subbasin Hydrologic Modeling Criteria" by Kramer, Chin, & Mayo Inc., 1991. ' Hydrology and Hydraulics Appendix A - - Page 4 d. Runoff Parameters The physical drainage basin characteristics listed below shall be used to develop the runoff hydrograph. 1) Area 2) Curve Number 3) Time of Concentration a) Selection of Area: To obtain the highest degree of accuracy in hydrograph analysis requires the proper selection of homogeneous basin areas. Significant differences in land use within a given basin must be addressed by dividing the basin area into subbasin areas of similar land use and /or runoff characteristics. Hydrographs should be computed for each subbasin area and superimposed to form the total runoff hydrograph for the basin. All pervious and impervious areas within a given basin or subbasin shall be analyzed separately. This may be done by either computing separate hydrographs or computing the precipitation excess. The total precipitation excess is then used to develop the runoff hydrograph. By analyzing pervious and impervious areas separately the cumulative errors associated with averaging these areas are avoided and the true shape of the runoff hydrograph is better approximated. b) Selection of Curve Number: • The Natural Resources Conservation Service (NRCS) (formerly referred to as the Soil Conservation Service (SCS)) has developed "curve number" (CN) values based on soil type and land use. The combination of these two factors is called the "soil -cover complex." The soil -cover complexes have been assigned to one of four hydrologic soil groups, according to their runoff characteristics. Soil Hydrologic Groups may be found in Table 13, Soil Survey of Washington County, Oregon (SCS July 1982). . Hydrology and Hydraulics Appendix A - - Page 5 The following are important criteria /considerations for selection of CN values: (1) Many factors may affect the CN value for a given land use. For example, the movement of heavy equipment over bare ground may compact the soil so that it has a lower infiltration rate and greater runoff potential. (2) CN values can be area weighted when they apply to pervious areas of similar CN (within 20 CN points). However, high CN areas should not be combined with low CN areas (unless the low CN areas are less than 15 percent of the subbasin). (3) Antecedent soil moisture values should be considered. Soil should be considered to be moist prior to the start of the precipitation event. c) SCS Curve Number Equations: The rainfall- runoff equations of the NRCS curve number method relates a land areas runoff depth (precipitation excess) to the precipitation it receives and to its natural storage capacity, as follows: Od = (PR - 0.2S) /(PR + 0.8S) for PR > 0.2S; and Qd = O for PR < 0.2S Where Qd = runoff depth in inches over the area, PR = precipitation depth in inches over the area, S = potential maximum natural detention; in inches over the area, due to infiltration, storage, etc. The area's potential maximum detention, S, is related to its curve number, CN: S = (1000 /CV) —10 The computed runoff represents inches over the tributary area. Therefore, the total volume of runoff is found by multiplying Qd by the area (with necessary conversions): Total Runoff Volume (cubic feet) = Q (in) x A (ac) x 3,630 (cubic- feet /(ac -in)) Hydrology and Hydraulics Appendix A - - Page 6 • When developing the runoff hydrograph, the above equation for Qd is used to compute the incremental runoff depth for each time interval from the incremental precipitation depth given by the design storm hyetograph. This time distribution runoff depth is often referred to as the precipitation excess and provides the basis for synthesizing the runoff hydro graph. d) Time of Concentration: Time of concentration (TO is the time for runoff to travel from the hydraulically most distant point of the watershed to the point where the hydrograph is to be calculated. Travel time (T is the time it takes water to travel from one location to another in a watershed. T is a component of time of concentration (TO. T, is computed by summing all the travel times for consecutive components of the drainage conveyance system. T, influences the shape and peak of the runoff hydrograph. (1) Sheet Flow Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. For sheet flow up to 300 feet, use the kinematics solution below to directly compute T Sheet Flow: T, = (0.93L x n 0.3) / (10.4 x 50.3) Where T = travel time (min) n = Manning's effective roughness coefficient for sheet flow L = flow length (ft) I = rainfall intensity in inches per hour S = slope of hydraulic grade line (ft/ft) Sheet flow shall not be used for distances exceeding 300 -feet. (2) Shallow Concentrated Flow For slopes less than 0.005 ft/ft the following equations can be used: a) For Unpaved Surfaces: V = 16.1345 (S) b) For Paved Surfaces: V = 20.3282 (S)o.s Hydrology and Hydraulics Appendix A - - Page 7 I , Where: V = velocity in feet per second S = Slope in ft/ft (3) Channel Flow A commonly used method of computing average velocity of flow, once it has measurable depth, is the following equation: V = (1.486/n) x R x 50.3 Where: V = velocity (ft/s) n = Manning's roughness coefficient S = slope of flow path (ft/ft) R = area/perimeter 1.3 Water Quality Hydrology Water Quality The water quality storm is the storm required by regulations to be treated. The storm defines both the volume and rate of runoff. a. Water Quality Storm: Total precipitation of 0.36 inches falling in 4 hours with a j storm return period of 96 hours. Water quality volume (WQV) is the volume of water that is produced by the water quality storm. b. Water Quality Volume (WQV): 0.36- inches over 100- percent of the new impervious area. Water Quality Volume (cf = 0.36(in) x Area (sf) 12 (in/ft) c. Water Quality Flow (WQF): The average design flow anticipated from the water quality storm. Water Quality Flow (cfs) = Water Quality Volume (cf) 14,4000 Sec or Water Quality Flow (cfs) = 0.36(in) x Area (sf) 12(in/ft)(4 hr)(60 min/hr)(60 sec /min) Hydrology and Hydraulics Appendix A - - Page 8 reference shall be cited on the construction plan submittal. 3.11 Water Quantity Facility Design Standards 3.11.1 Mitigation Requirement for Quantity Each new development must incorporate techniques for mitigating its impacts on the public stormwater system. The District shall determine which of the following techniques may be used to satisfy this mitigation requirement. a. Construction of permanent on -site stormwater quantity detention facilities designed in accordance with Appendix B: Water Quality & Quantity Facility Design; or b. Enlargement or improvement of the downstream conveyance system in accordance with Appendix B: Water Quality & Quantity Facility Design; or c. Payment of a Storm and Surface Water Management System Development Charge (SWM SDC), as provided in CWS Ordinance 28, which includes a water quantity component to meet these requirements. 3.11.2 Criteria for Requiring On -Site Detention ( l ) a. If the on -site facility is required to be constructed, the development shall be eligible for a credit against SWM SDC fees, as provided in District Ordinance and Rules. b. On -site facilities shall be constructed when any of the following conditions exist: 1) ` There is an identified downstream deficiency, and detention rather than conveyance system enlargement is determined to be the more effective solution. 2) There is an identified regional detention site within the boundary of the development. 3) There is a site within the boundary of the development, which would qualify as a regional detention site under criteria or capital plan adopted by the District. 4) Water quantity facilities are required by District adopted watershed management plans or adopted subbasin master plans. I Storm and Surface Water Rules Chapter 3 - - Page 28 3.11.3 Water Quantity Facility Design Criteria a. All water quantity facilities shall be designed in accordance with District guidance documents and be consistent with Appendix B: Water Quality and Quantity Facility Design. b. When required, stormwater quantity on -site detention facilities shall be designed to capture runoff so the post - development runoff rates from the site do not exceed the pre - development runoff rates from the site, based on a 2 through 25 -year, 24 -hour return storm. Specifically, the 2, 10, and 25- year post development runoff rates will not exceed their respective 2, 10, and 25 -year pre - development runoff rates; unless other criteria is • identified in an adopted watershed management plan or subbasin master plan. c. When required because of an identified downstream deficiency, stormwater quantity on -site detention facilities shall be designed such that the peak runoff rates will not exceed pre - development rates for the specific range of storms which cause the downstream deficiency. d. Construction of on -site detention shall not be allowed as an option if such a detention facility would have an adverse effect upon receiving waters in the basin or subbasin in the event of flooding, or would increase the likelihood or severity of flooding problems downstream of the site. 3.11.4 Water Quantity Facility Design Standards All water quantity facilities shall be designed in accordance with Appendix B: Water Quality and Quantity Facility Design. 3.12 Water Quality Facility Design Standards a. Purpose Owners of new development and other activities which create new impervious surfaces or increase the amount of stormwater runoff or pollution leaving the site are required to construct or fund permanent water quality facilities to reduce contaminants entering the storm and surface water system. b. Criteria for Requiring Construction of a Water Quality Facility 1) A water quality facility shall be constructed on -site unless, in the judgment of the District or City, any of the following conditions exist: Storm and Surface Water Rules Chapter 3 - - Page 29 1 a) The site topography or soils makes it impractical, or ineffective to construct an on -site facility; b) The site is small, and the loss of area for the on -site facility would preclude the effective development. c) There is a more efficient and effective regional site within the subbasin that was designed to incorporate the development or is in the near vicinity with the capacity to treat the site. d) The development is for the construction of one or two family (duplex) dwellings on an existing lot of record. 2) If construction of an on -site facility is not required, the owner of thedevelopment shall pay a System Development Charge in accordance with District's Rules and Regulations. c. Design Standards 1) The stormwater quality facilities shall be designed to remove 65 percent of the total phosphorous from the runoff from 100 percent of the newly constructed impervious surfaces. 2) The phosphorous removal efficiency specifies only the design requirements and is not intended as a basis for performance evaluation or compliance determination of the stormwater quality control facility installed or constructed pursuant to this Chapter. 3) If an onsite water quality facility cannot be constructed to treat the runoff from the development's impervious surface, then with District or City approval, an on- or off -site water quality facility may be designed to treat runoff from an equivalent area of adjacent untreated impervious surfaces. 4) The stormwater quality facilities shall be designed for a dry weather storm event totaling 0.36 inches of precipitation falling in 4 hours with an average storm return period of 96 hours. 5) The water quality facilities shall be sized for impervious area as outlined in 3.12.d. 6) Such facilities shall be constructed as part of the subdivision public improvements. 7) Other design options for meeting this section may be considered by the District for approval. Storm and Surface Water Rules Chapter 3 - - Page 30 11 w 8) All water quality facilities shall be designed in accordance with Appendix B: Water Quality and Quantity Facility Design. d. Impervious Area Used In Design 1) For single family and duplex residential subdivisions, stormwater quality facilities shall be sized for all impervious areas created by the subdivision, including all residences on individual lots at the current rate of 2640 - square feet of impervious surface area per dwelling unit. 2) For all developments other than single family and duplex, including rowhouses and condominiums, the sizing of stormwater quality facilities shall be based on the impervious area to be created by the development, including structures and all roads and impervious areas. Impervious surfaces shall be determined based upon building permits, construction plans, or other appropriate methods of measurement deemed reliable by District and/or City. 3) The District encourages design initiatives that reduce effective impervious area. In developments other than single family and duplex, a decrease in the size of the water quality facility may be possible. 3.13 Flood Management Design Standards a. Purpose The purpose of these standards is to reduce the risk of flooding, prevent or reduce the risk to human life and property, and maintain the functions and values of floodplains, such as allowing for the storage and conveyance of stream flows through existing and natural flood conveyance systems. b. . Flood Management Areas Defined Flood management areas shall include, but are not limited to, the following: 1) Land identified within the 100 year floodplain and floodway as shown on the Federal Emergency Management Agency Flood Insurance maps 2) Land identified in updated flood studies or any other authoritative data documenting flood elevations as approved by the District or City /County Jurisdictions shall use the most recent and technically accurate information available to determine flood areas. Notwithstanding any other provision of these rules, the area within the town center of the City of Tualatin, more particularly described in Attachment 1, which Storm and Surface Water Rules Chapter 3 - - Page 31 b 1 7) aft D 1,) _ . S . • .; ,k' _Ift‘ft 11.. , . , 1 .,, , a , 1 . ., .. - , - , „i 't I lit I,. t II ,., . , ,,I ,,# - , s - ‘k . 4 % , t , " .1 ' I ' i . .. , . • " `'1 ,s1 .1 0 • l' I P ; 1 i Iiiii t., • 1 I s • , at 4' I d. 1*- 1!:, ....i, ''li W 11 .' 4 1 1 ''^.*,,..1.„ '' -- ' i ; ' :.' I ' . S • ,. ,, ,',. • . r , ,,,, , .: , 444 : -:, . - , . ' ' . ' it' J 'V li,,,,, '1.,,, 4,1 , j - , 1 ,, 1 i „p,,it,, I • ,, , . , . ...i i. . , , , , sk ■-e., 1 4.1 - 1 0 ' 1 . I - , 's . !: ,.,. . 4 . 4 t - iiI)ij I ' , - 0 it ,' " 1 • . I ' 1, -... - . I 0 ,, ,,, • - .11 it '-' ''' istit:19701 4, ' ii ' . , ‘ ' ' el,' : . _, Cif) I ;21 . . , ..i . II .1. til 4 i ". . "avalti I -7 0,, 1 .- : /I 1 : 'I - . ' • • 1 1 tt ■:- ', Ili ,, 5. . ' L L ,( i v / - t - J t-', r , , )1 'I'fi , k ( 1, , , • , c4 1 , *4 1 iL t i ..., , i ' 1 i , ti , ' . . Ce) p CI) , .... 4 , i ,--"' . ., 1 - • ' ,‘; • ,,i) ,ti, 1 l; . 1 h' I, , }, l*trigi _., ( , 4 t, . ,■■• / i :; , ( . i . I , ) l ) 7] I ' , , • ,, il , . . i ' r V, V ' '‘ Ai. 4V- ' i)Ifi til `• i, ''. IA i .' , ,, •\ '`IV r 1 ' I ' .. 1 I!' —1 ..e 1, P r 1 4•1t.i , ,44,i i ‘t '4. , .g.,,, , 0,, I ' • ' I , ' b t 1 1 i- r i r 1 i k ( 11 l'H ' I i ' $ 1 qi itt) , 4 --.. i ,., '• 1 4 , i .,,..,:, , , 1 I ) ( 1 1 tx u ; ,,i .. . , 1040 1 1 . 1 4 , i ‘. •• .• t —, --; ---) . I i . I. I i I t + 1 , • t I I-11 -K. til 1 « . • ' r i.; . i. -4, ,i; n :V' 1..1) . ' s ' I , --4 ' 1---t .r';.4 .,'h 0 i2A, k . „Ty ir g! - 'Ai' ' :1. 7,. ±1 C IR"4 ille64" 'Z' . ■ :3 : 4;7 PC: n- AV Is- ,,-.. . , , 4 ° - 11 tc)f i . 3 ; 1 , ( -' 1 1 . t ry) c..., r —I p [711 ' .> , C , .r - ... 4 , * • 4 , 1 1 — " ,■ .', ‘; !, .., , i , i I • , '" , ,,, ,h 1 d • t , 1 rk. . ,, Ig ') , Iii '4 I. ; , V ,-, ,_... ,„1 ; i, .,,, -iii, 0 1,' . I, litif A •••••••• - 1 ' - - • .. 0 11 )1 t 1 I .1,' L,:,, 1 - ,` ; itp... . . . . . s tiING • CCUNTY, ASHi 4 TGN _ F. T1.J T. z: _? y 7IUP1 ".1.;" T,'- 1 .T.TE.S USED 'it,' Sheet =ow cctiaticn Manning's Veiues (For the «°ttal ] n M save ' n. • • ji Smooth striates (eon:Tete. up:slt grave( or are imr-C nackez ) D:Dt l Fallow fields or lease sot eunase (no res ue) 0.26 Cultivated stfl with rescue Inver (s c Q. n /h) p.as Cultivated sal with residue cover (3>. 020 t /rt) Short prairie ,.sr and lawn; D.;; • Dense grasoes • 0.'3 024 • • Bermuda grass Range (natural) D.4t :.57 Woods or forest why light ur • 0.40 Woods or !crest with 'dense urderorush "Manning values far meat `ow only, iron. Overran arts Mae. ows 7575 (See 7S--S5, 1986 - 1 'L'' Values Used•dt'Ta ai l me /7une of ;.onaerr.ratlon Cal - tas:nns ' Shallow Con.-_an•.r red stow (Ater the ir,;t al COO ft. of :nee: f, ow, n . O. 1) k, t. Fires with Heavy g �ttrd an; nsadows (n. p. ^ . Brushy ; otra with same tees (n Di Q. 7 I 7. Fallow or nani,-t tillage „titivation (n .n.0=0) , r 4. High ;nus in • 0 O:Lij - 9 Shen ;: .__ ==ore 3rd lawns t,, . Q.00 3+1 S. 1t 6. Nearly :are ground (n.0.025) 17 • 7. Pave_ std ravel areas (n•0.012) Channel Flew (lcterMarent) (At the begtrrt n9 Cf visible � ar: as: R .C.2) k- t. Fcrestaz swale wail heav run graunn liner (n • 0.10) • Z Fnris:eo :mirage ecur >'ejraviri wen 06An eC o ar-w_; dal (nz0_CSp) 10 7. Rook-lined waterway (n.0.025) 4. Grassed waterwa l n•D.a� 1 15 E. �rih4ined waterway n. f i yl app) 6. CMP e (n.0.72.) ro r • 7. -Cane :ere pipe (D.Di2( - :1 I 8. Other warerwa Y s end p pes .I2 0.5:3 /n • Channel Roy. ( - ntlrwc s steam. A • lc 9. Meaneerin stream wrth some profs (.-t - 0.0=0) • tQ. Rcek.;ned r sam n. ( 0,006) 11. Graas.ined stream n. ( O.C70) 12. Other =rea than. . trade onanneis arc pic D.x7 /n _'See G seer E. Table 5 SC far addidor at Mannin5s 'n_al Le i �'xnrrnela — • • • 3.5. 1I90 '-- '' 3 .r.? R!JNC ==. PARA METERS • ' • 'i All storm event hydrogreoh methods r edui -e the input of parameters drainage basin characteristics. These De`rr3,T18t_rs flr3rne�_,S from which d °SC.'1Llc un physical c bvide the basis from which the runc;; i hydrograp,h is developed. This section describes the three key param= -ter (area, :curve u end t of cancenuatlCn) used LO dev&op t e runDi h dro ra r n ��L'rf ! y g ph using the method of hydrograpi .5.3. � � synthesis in Section 3 Area • To obtain the highest degree of accuracy in hydrogr- hC1fnO�Efleou5 basin areas. Si n!TlCant differences `p'h analysis requires the proper seiacrrCn of g diffrerence in land use within a given drainage basin must be addressed by dividing the basin area into subbasin areas of similar land use and/or runoff characteristics. For example, a drainage basin consisting, of a• concentrated residential area and a large forested area should be divided into two subbasin areas accordingly, Hydro r then be computed for each subbasin area and summed to forrn the total runor-, g atchs should basin. • hYdrogr-agh for the • To further enhance the accuracy of hydrograpn anaiysis, a(( ervious and impervious • separat3l p eith areas within s given basin or subbasin shall be analyzed y This may be done by either computing Separate nyorographs for each area and combinin them reputing separ utjn the combining th-mtp forth the total run** hydrograpi or, corn A g h precipitation e for each area and combining the.w^ precipitation excess which is then used t0 develop the runoff r to i s p ed i :performed ed autornatica hyC]rGgra�n this procedure t5 automatically by the Sante Barbara Urban iydrograph method explained fur =her in Section 3.5.3, "Hydrograph Synthesis "). By analyzing pervious and impervious areas separet' ly the errors associated with averaging these areas are a avoided. and the true shape of the runthff i .. hydrograph is better approximated. • • Curve Number •r' ' The Soil Conservation Service (SCS) has y ears o c .. for many o characteristics Of various land _ - conducted studies fi,t0 the run �:�i �a ci types. ' •' L =r gathering and analyzing extensive i - ✓_.sped relationships be *.uva_n land use, oil y v_ga_ atiOn cover , - 9 five data, SOS has • ` P , �, interception, Su, f a ce storage, and runoff, ! These ralaaonehips have been ` 11- - _Asian, runoff r f COQh coefficient iCicnt called a "curve number." e n Gh - ai characterized 7V single I inE National r zee _ aln�i r I- - iy , — L' ;UST 1572) contains a detailed- da_scaij ;ton the - Section. -o Iej� (N= -4, SCS, A curve number m. hod, a development and use- C , the . SCS has dev_iopa_d "curve number" (CN) v - OT these r" values cased on soil type and land use. The combination two factors is called the ,Di{ -cover compl assigned to one or four hydrologic soil according The soil -cover complexes have b�sr, oil groups a assigned ov o �C soil n- - g to their runoff characteristics. SCS has types into these four soil groups. Table 3..5.2,A shows the hydrologic soil group of the most common soils in ( King County and provides a brief description of the fo • hydrologic soil group classification_, prjon, r Tabl ! able 3.5.25 shows tile'CN`S by land use de5crj - King Cour.,� numbers for the four hydrologic soil groups found in - y These number are for a 24 -hour duration Storm and typical antecedent conditions preceding 7 *� l 3rcda � i�.il moisture " g 4 -hour storms in Western g - "average.," but rather calibrated the Washington. � these CN's are IlC1t. d by _he SCS for Western Washington therefore, "wet" or "dry" modifications when fol(owin � +ion and should not be used w;`;� • SCS method "d c _ g the method as applied in this manual. If using the • anbrat_d to actual rain =all and /or runoff data, .;.hen start with the original SCS ON's • published in jR -55 and r., n d make modifications as n_o - e_ary. Th following are important criteria/considerations �icns ror selection of CN values: s: • (1) Many factors may affect the value nee o CN for a gwein lard use. For example, the movement of . VY puipment over bare ground may compact the soil so that it has a lesser inriltrCC on rate and greater runoff potential than would be indicated by strict application or tea CN value based on predeve(opment conditions at the site. 3.5.2 -I • 11/9.S, • - - - _. ., - ., .. (...• ...._ WATER D =Si G?ti ivi 1$ :IN U Yi at !r A �. T 9 ,7 C.5 WLJ 1 ' �-^ - CURVE NUMB B$ (' I 5C5 WEB • i cRN 44'AS ;- it7�tGTON R Ut+lp -= _ CuiRV_ NUMBERS (rubirshed b y SCS to i :9c?) I Runoff curve numbers for selected 3CI1 Jl:u;7(. subur rainfall distribution, 2c -hour storm d urban land use for Type 1 = ri duration. an and CURVE NUM? -RS EY f Cultivated lan D US. Dc "SCRIr'i7DAt H"DROLO IC SD1•L OUR d .1' : - D () winter condition I S1 S14 20 Mountain open areas: /ow _,owing brush and grasslands I 74 82 Rc Meadow or pasture: S ., • Wood or fore I . a 78 55 89. st land: undisturbed or older second g 42 Woo or forest land; Orchard: ycuna szcand growth or brush - �" 'O 81 with cover crop 81 72 6 i 86 B1 E° S4 I part__ , coif Open spaces, lawns. , _ courses, cemeteries., landscaping. • • COO rass cover on 7E% • fair condition: or more of the area 5:8 80 se sc grass cover on 50°' to•7S of the are= • 77 co 22 . I G =vet roads and perking lets Die road; and parking lots I Imeervicus.sur w ace= pavement, reefs - _ I ` o; ?g Open water badies� 1 faxes, wetiano_, ponds, e *.c. eg ` j I 100 100 1 10 D G 10 100 Single Ramify Residential (2) • Dwelling Unit /Gress Acre % 1.0 DU /GA 1, tpervious (3) 1 .5 - DU /GA .15 D DU /GA 20 Separate curve number 2.5 DU/GA 2S • shell be selected 30 for pervious and 3.D DU /GA impervious portion 35 DU /GA 34 • 4.0 DU /GA • 33 of the sire or basin 42 • 4.5 DU /GA 5.0 DU /GA 45 i 5 5 DU /GA 43 0 E • .0 DU /G, SD ' • fi.= DU/GA 52 • 7.0 DU /GA 54 5 Planned unit deveropments. % condominiums; acarnar S , ° impervious t_ must be computed corn t r ia l a business an industrial a r (1) f For more description of eerie .!rural land o a re detail r mo r, Set ion 4, Hydrology, t use curve numbers refer T' ( Assumes roof and driveay Q r Aucust 1S7? to National cngine_ring (3) The remaining pervious areas wn are directed into street/storm system. (a ) are ►onsid er=d t0 be L ^, g • ood condition for these curve numbers. — • • �`,& • 3.5.2 -3 ii /` • • • d X iNt) geo,, i • .,, .. _. • • , , ,. ..,• -, t • I : 1 ;.`;',. ,' • :::: • ):::: •-..e 7 .I. .. , , , , , . , ,„, ... • .: ...,;., .. .! . • ',N,i 1,-...„....;;,.,. il''::' . -i, ',...• 1. :4•:,- • . • `i ',■ 41.. ,.:i. • .), * lik v. Sc'1'. - ' c I it- I ' .. , ; "....' k ,.''.-.''• ' • .' '::,----- .', 1 `<`. - -• 1:0,',- , -!,,, -..,•,. ' •,... .: • ii., ..., .,:.. . •, -ti - . ' L . • • .••• 41.,; .1,:n- • ,•,1":,.:t•V VI tIVe It't I:' `-' 8_ 1 .iik, 4, ...; 1 ..... ,. , 4,"„ ,- \ ,.. . • ‘•,..,... , -.....,, iN . V..; L. ' L2'. 1'1 1.5 ; I , 1 5 .' ' . j 4,,-„*„ ,. I.- 4, -..... .......,'-i''' Ii...! . ;‘•;.. -. .'''') t'c'01::: 7•4 ! .".i•-,c,-,1.1y. F.' -, ..:„ . -1' • • - Lil -1 '''''..4 1/4. .k. , :.t-,,.......',;7 ..,-,., „-,;-. :,..'......, -.•,- ,, ,:,. -,,,o.r • ./ ., c! • J.- ' , 1 .1,t. i 'n,V..: ' ,., -• •,, -. ;.,r ;:-.,,'..1 t,'" •.'•.•:',''.0 . . :•• : r',47, 't:;".1:: • t .... • ‘,1 , 1 ,- t•I'/.1'''..1 . :•., ---:,' 3" ' •,:' . I ' .+.•.:. , 0 t' P ' ,, '' , :,, .- 1.., j• • .1 t i • , •• • L Z) 1 I • ,/,1 LP.P•7,41(r• • V10 L., ..,';.; ..,4,-.i ,' I i ...1 .T..r.- ..' i • 2.•• 1 • . i ' . .. - ,. ' - ':Lt •i .° L • ', ,'L . L ',,.',.■.:AN4`fe?"191'"' ./.. 1,,,,;,„.:,,,;‘,. 0 • ', .c-N -....17 • -i-11 li 4 &* '' ''':/• ' ' ' '' " • • • '' ' • - :..T. '' ' ' ''''' ..:'' '-' -‘-'---- P,t, I)) 1 I I I ' ------- 0 ; 7 +•KL ` f. !".: .". . ' LIN .... -,” IL A . • L.L...., • ,.. . • , . _iL • _;__ 1 41 i tn ....,_ --1. kl) . : . 1 2 S.1 I . I S. (Joins sheet 4 4) n (H)()ti 1 1 s .....,., 4 ....; ; 3 trkr. ..., , ,,..,,,.. ,,;,-; ,,...4a7 r. , r r ; ,: irt v 744441 .,t,■: NW. '''. -,,,,._ ,......1 4. ....., . 1 0 , 4 .. \rritri. . L•Ad.. , , . fp, r • :. v ,.-. .,. ,,. AN, a ,..- , - V' + t r,§,:i.'N.P ''' ; .4.. . ' ',i.:':::;.? ''■t5'..,i,l', ..$11)1MiWnitaVIRV7 . • - A - •.' --- , , • it 1 1_,/ .- .. , ',....*Ait * : ,, .'" ' ...... Ill.t" ,r • ... d'i;t....A .* ■-.i 7„ ' -,.np 4 - 5 . ■ ' . ..! -t rf ... ' . . s,...; '7 .-., oti. ., --. • , ..•.4 • -•• - 'g -... - 1 1 :1 1'174 .. @ 4" d ::( .."...;•14t1t.''' ift' li ii ::-.. ...:-..• :.‘-, , ;.....r il J i) Y: ^.. lc: 1.. ''•'''• ' :"..- - \ ,.,- 471\:.! .fl . ' '-' '''''-r:' ,. • '....-• • ''..,-.' ' - ,. ■•;".•/: •. r. ;.-;,',., ,..••.; - t•-,-.4" . ' L : 44' i Tr, . cv i ,,. 1.., • . ' . 1 ; • - • . ' ` . '4" 'el ' ' • • - • f:i : .'' ..., ■ ;I' i..)..'! 3 : , ,,D, ,--_, 'F ,fp.i ..:.t -: : - ::. - /..,., '-', . - ';;;1":'•:' .;*".; I ' . te'", .. ." ,.,11 -„ .4 1 . --1.;- , ... 1 ..) e, .., , , , ., ::::. .'..... i ., '' .„-- i • • ; . , . 10: - -.:f . - ....,;-' ' .. 0 - .-. - fi - --, .1 ,,, , .' ‘3..• ... L4A•••':.' 4 I. •••1.:i'' '.:,4 -:: - 3 -.4 "+-0 f.o- t :1-.: ' ! $' ''' ; ' ' ' '..;...1 ' ( :•-','• 7, ...1i , ';',:',; ,, .. 117 ' . .f. , -;'...;) 1: -'' . '' I. 7.... ; ; ; ;4 : : :.„;',";;; . -... " ' '''' ', e . :.:0 11 ;,. (.4: : : i ' '', 1 - .i '...P; • . :•11 ' ;' 0 ": ,.:7 • !'• ?° '-&-- '12 I,a• 0 ' 7 10 •: ., 1 ' > . ';- A -71::' • ..,;414ir . ii •-•..' • ; „::••• - ' - ' A '-' ,.... ' '-• _.-••• .... , . ...., r •-..b.r. iiirs.. ..cr)., ,., .. 4 . . ',..' 7' " :„. ./..4::,-'T'' - • i, ... aj .V,k '. ' l'- l'i;\ • , S'' itt.i. • ' - bl:.' • ..,• '--- r D -. ■• ,1,,:r...... ,,.........„,..„.,..„,.,„,........,,,,,.... 4......4..„..r.pr,-:-.-,9,7-.-ir,717...1.44,..,:::„4 .40 ,,■ •;.,,J -• f A.; • It. f'iwis - ', ,:". . ' 1 s- .: law''' k it 1 . .4* f i V 4 ' . ' , . - x '.1 • • • ' . ),' , ...'' ••! • ::. o ' ) , 11 , ii , _,,, , , ;. ,. -.. !:,,,,, : . „„,, fa ..7.• , : --... :', *. ". I, . : • '.' • ,.. ...., l'ep,'' ' ' • ' , . ,I • i Yi . .1 k .... 4 1/4', :i . : ' r,• ;11,.? 01 • , ,,A utf, • ,„..,.:,,,...., ....,• .. .. . .‘,........ .,... .:.,,,:;., .,........,,,,,,..,,. , ..,,,,.,". , , .. , i- ...,t1 ,•i".01 1 4)'-• .'kir,.11 J /.‘, •'' 1' i.. . •'. ..-1. . ' . ' i s i '' . • ' '''' - ' ..11'..1.*. • . le ' i • .tril .IM. ,l ' • ''.'. t.''', ,'•1 4 ..... I e?,• - • , ,.„ • • : ,,, ; , .. • . ! . . .,,. .:, • /4:07 ' r • ! ri ' • 'II.' f '‘' k . . 1. N tiv, ...I"( ni . , „ .,-. st , ,.,...Mt• . ',i, ; '• '.4 '. '.' s. ci :?:' ':'; , 't:;'.': • • . '-',...',..:-',. ..). -..."'''.4 , , ,,..;;*: ' .. ; • i ft'il cl ''.., . . , ,,','...., „! ....,,,,.... ' ..y.',•:;;IA•4 ii.1.).- 'Lfii ...1 s„ ,.;• , „..,_ : ... - :: :;.„.11, ..,;.;,..„■,,,..:,,, • , ..1 , s.„ .,,,,, it.11 . . „.• • , ... .. - .,. . , 1 , ..1-,-. , .,.1•.:-:-,; u i , ) 0 . - -,.\ . „... l e i : ..p.1,.; J • i ' -.' . .. .. • '. ...' I . $.1 ...; ' / ',. i k t. t • •,;,'' • .k.• - r:':'x =,. kr . '4'14, :". -.' ! . : 'Iil: -'. c.... ^ektailk •.' 2 <-•„-,,,,,.,,,, f-t-,:i., -t • .1- .- -- - -•' , ,- , : ,. ,..z.-•••4. • ,- A . . N., .„ \ k•-? • --,-- ,,,,......- . t. . i t .e, :1; .., I.:. . ‘. .,/-, 4.1 i, t‘,(.., ,,,, --.. •,, ::: - * to,, ,,,,•::,, .).,..,. ....., , - .... , - „, .i.. .. ••.....- .. i i : ... ',.. or 7 N;, .,,•• ., ,,•,,,,,;. . t,p• ,i ,,\ , , 0•1 . -:, ..r.... z .•'.,'..3 ' ' .. • .? .r; • L : 5: i" -'',:' ' • .,•'•''' omill If • .--. G6b00011.11 (Joins sheet 38) ,•'-') T. • • ‘ . , . . .. 'cot. A.1.1;"' ' ' 4 ..... Yr '''-':.;?'::::!■.:-''''• fall . .....f" - " -- :-.11e).47;"..' I . ' 7 -, -,:: 1 ''Ik5 - 111 ::, i "Cr. • (J. , - • . ii.,1 . L It t ..- 4 , ,17 . ,, , ,wit e rdi .., :: 4 ,' 0 . z-_ I t 1 *: . 17' ; - ... " -:Lci ..t....!k%'-'6 -'''''.::'!'''' '-)' . ( ' 'L.' ': .. , :,', ''..:' 1'. ipp '-• V.:', IL 0 '••,iti 't- : 7;r 4.41 A ...''IT A '.-' ift, • r ''','4'-'•. • " .... .,• .''. '!?,Q.; 7r. ""11111WF .. .. .'i ,,,, '.;' -'_'. ' .... l '' .. ... . 's ." ' . *; ' ciVrrl- littitiit."Ailf-i.;■:,°-.....•'• ''''' ' -97 " ! 4 1 1%,$,,, , ,..• . f. i.t. -'•,: • '' . :' -' ;.,-'... :14:0i : .' ,'. ' - ,- ,i'N. , .7-`'',i ;,.',:ii : .''''' ::..i t ' :..:Arish. . .,.. '•., . • ' vp,...fv. " •-•- - - w • - 34,414. ''. T. ..''''• 'r' . ':'," ..... ,, .i -.4- .... ' . ,1 1, . '• Stk I) ' i. /ii . • . - - -;noviiiiiillgrr,, .:_:: . , '''' r ,' - . ,. l 'i L.:1 A..; :' ''', ' i 1 ' ' •• . . ii::. . . • r1 - ,:• r erat:11"., • - -'0 ', ' •; .- .- - -.-.-. . . ,.. -' :."- • ..' ; 0 - :'' 4 .- - r. 2 c: . . , el. . , lq •Ni , . • .4 , .. , , .,',‘ . • • •.•0 • , 1.• 41 i '.. b.:. - 7V., -- ' A .., . ,,/,,, - T-, .- 't,,,,c."...tf I- : -',-,,,, , • . _ ... , _, _ 3-6,, • ,.. • • ' - ' '• • • t . , :- . t ., A •' Al, • '',1 ;.: .c.- 1 ., .:\ : I'," • - .1 ry.'•.:Ii" v -.. • . •:•• • s ?A.' .! . . - .. - .1 ;- - ...-- r. ii , • .- Kt; ; ..,, Ai .1 '...,... 0., .., ..,..-, : ,..- 1 1 . „,,.... ....- .-,..., r'.- -„ r ,.„..-- . • _.,. ,... 4 . : .. ,, , ,,, c .; - - cli t 14.' , t ( 4 , -", . -. •...., . y..14 _."...:. ..,-; -......: 0 17t 474141".-)11. ■?.- - • ,,, ..i.• z - _, , " 1,? .-;; .0,1.4i ' / • • ."- • • i...' t "( , ' , • ik . •: tl.,-t. 4;• A-Yu% -. . 4 ' es, - .; . ' .. ,' .-'-' .., • .:.-', ... • : • '. '`tf.i.. ' * '', - , ' '-' fil..,•-•'''' ' * ib '-' ' ' ' ''.; 'efti''' ik414 '' . .:, . i :i . , 1.:;:;;1, .:•."'. ' . t' -': • .• -:- ' •:,i) Ettl".■.''' Rat ..4..00' . al . • . . 9. '...',,,.. ,1 •.t --. +- - .. ' • •_,.. . • a , ' - 1 Ilf-i , ...• -..rc..limilat -': '1. ' ' '''' r .7.'1! :' - . - - . -J• - •••,• , :••• 1 ' ', •• I ' * I' . P .kl '''. t.:..4: 4 / ' . ' lir '''','' r;. ''.: " 7 . f ' S, ; ' AILI L9 - OM Aii .1 :-.`---f h ' 4 ; 1 it' I 4 1 •,,...'ir '-o t• ";:.• it•-::.; ..• .. . 4 1 E-f• -.- --- 47 :if,Veii iiI- ... -, lc :L..' "h,%i?r-'.. , .' , - . •:'---. -. ., 7: ..' Lit :_4- .:7•.? • ''‘') - " • • , . • s. . '.') t :''' .4 ...r -'.h. l'! ri, ..,. .- ' - it:' - ...; - -...':!: . i' , ...;.i-.1 ., •-•• .',..'..--: - : ti:, - r , v- . % • . .-.• ....-i:„. .;,-,,,!,.. - ...i• ;--,... -.17;. , , '1c i ,!' . c . ,k ::, It. ••■•:: , • 1 ., , i' t;., ,,•S, .....t .;,:-;„ „,t, .-: ,-;„..... 4.. .., ;...' ';. • ,;',• :: `.,... - r' '''' • ' 4. .-_'' y ' • . .. .,...-!:.-:`. :.:-.',. .,' ',.`..., ' 1 - .t i -*"*../■• , .,:; : J O' • ' ; ' t 1 . • :',.• I ;i.-- • • • f ••; ij . U: , , ..1 1 ' 4 ' r : :..,..' ' ..::': '#. „: • - ,,' . • '. k -qt.',4t ' ' t •.' ,i ' ,.' „ i . ' kr • ; ,t . ;',i,'r ielif-f. . . - .(,,t',' , .'' - . '''''.',-, ( ":,, - :,•!'!iv-. :,,, . : „ : ,I• •-......;-..-,:,..-.,..• • ,•,.,...-:_.- z... :, . • , tv .......' ...k.,•: .4-.,:. • •II .; 4... -"ill : t.'''''i'ii".1'; : ?'!' . ,. ri':',' 4. -?' • • .. ' -.4 !Ill,: i - .k.1 ' .' ..''''if. i • ' :.. 1 : I ' ,''''.'*'..:f.;.,',.. '''' '''' ' . , ., ic ' - . ..,. .,, „.. . • ,,, .,, .; , .: 4' rr .„.. .,. , :„.:,,,,..,. ,. • • • ,..• ..,. •,,.:„ i • . ,, . , : .., 4 ... qt i . ,: -.. 1L'L'•i' . ' !'ll . , '31 e ' ,„f ...• ' ', .0,;,. ' , ,:, ;'.7 • '00 i' i0 00y:',,,•A i • ••1: . ; , .'''' ii ; ' . ,, , ., 1 ' 1. .? ,', I 5: f . - : "k,„. 4 , . • -. 0 . !..? y 4 • ,, , f: . ; :. .i.;,, .;. i t . 4, . .. 4 . ■..- . . . -, - :1 „.. , -,. . i ...,-;. !. . , .. -. . c4- • r...11111::,:tul,..1,:..;*, .. • • ei... • ( .7 I NIN/f1III I --- . . . 4 t"N kr, 199 SOIL SURVEY l • TABLE 13. -Soil and Hydro_ Flooding Soil name and logic map symbol group Frequency Duration Months Klickitat: 25E, 25F, 25G B None Knappa: 26 B None Labish : 27 D Frequent Very long Dec -Apr Laurelwood : 288, 280, 28D, 28E, 29E, 29F B None McBee: 30 B Frequent Brief Nov -May Melbourne: • 3 1 B , 310, 31D, 3 1 E, 3 1 F - B None Melby: 32C. 32D, 32E, 33E, 335, 330 C None Olyic: 34C, 34D, 34E, 35E, 35F, 350 B None Pervina : . 360, 36D, 36E, 36F C None �, -- Quatama: i , 37A, 37B, 37C, 37D C None ■ Saum: 388, 39C, 38D, 38E, 38F C None Tolke: 39E, 39F B None Udifluvents : 40 B Frequent Very brief Nov -Apr Verboort: 42 D Frequent Brief Dec -Apr r Wapato : • 43 D Frequent Brief Dec -Apr Vrillamette : 44A, 44B, 440, 44D B None ---- -------- - - - - -- ---- --- --- --- ----------- Woodburn: 45A, 45B, 450, 45D 0 None -------------- - - - - -- --. Xerochrepts: 1 46F: Xerochrepts part B None ______________________________________ - Haploxerolls part C None ____________ __ 1 47D: I Xerochrepts part D None _______ - -- Rock outcrop part. j 9 1 This mapping unit is made up of two or more dominant kinds of soil. See mapping unit description for the composition all behavior of the whole mapping unit. ■ =1