Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
PLM olo// - m 6 *qv so MIAOW- i, PERFORMANCEPIPE A Hail, $ of Corm Pi?itirs ftlfefifs:. Caw LP www.performancepipe.com Technical Note 814 -TN Engineering Considerations for Temperature Change Like most materials, polyethylene is affected by temperature change. However, polyethylene's response to temperature change is significant and unique when compared to other "traditional" piping materials. Polyethylene pipe design for thermal change may be significantly different compared to other piping materials. Polyethylene pipe can be installed and operated in sub - freezing conditions. Ice in the pipe will restrict or stop flow, but not cause pipe breakage. Care must be taken during installation to avoid impact and suddenly applied high stress. In response to changing temperature, unrestrained polyethylene pipe will undergo a length change. Anchored or end restrained pipe will develop longitudinal stresses instead of undergoing a change in length. This stress will be tensile during temperature decrease, or compressive during temperature increase. If the compressive stress level exceeds the column buckling resistance of the restrained length, then lateral buckling (or snaking) will occur. While thermal stresses are well tolerated by polyethylene pipe, anchored or restrained pipe may apply stress to restraining structures. The resulting stress or thrust loads can be significant and the restraining structures must be designed to resist the anticipated loads. The PlexCalc II program is available from Performance Pipe to aid in performing many of the calculations in this technical note. PlexCalc II is located on the Performance Pipe CD -Rom. Unrestrained Thermal Effects The theoretical change in length for an unrestrained pipe placed on a frictionless surface can be determined from Equation 1. AL =LaAT (1) where: AL = length change, in L = pipe length, in a = thermal expansion coefficient, in /in / °F AT = temperature change, °F The coefficient of thermal expansion for DriscoPlex high density polyethylene pipe material is about 9.0 • x 10 -5 in /in / °F. This coefficient results in an approximate expansion for pipe of 1/10/100, that is, 1 in for each 10° F change for each 100 ft of pipe. This is a significant length change compared to other piping materials and should be taken into account in piping system design. A temperature rise results in a length increase while a temperature drop results in a length decrease. NOTICE. This publication is for informational purposes and is intended for use as a reference guide. It should not be used in place of the advice of a professional engineer. This publication does not contain or confer any warranty or guarantee of any kind. Performance Pipe has made every reasonable effort towards the accuracy of the information contained in this publication, but it may not provide all necessary information, particularly with respect to special or unusual applications. This publication may be changed from time to time without notice. Contact Performance Pipe to ensure that you have the most current edition. Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 1 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972- 599 -7348 PERFORMANCE MPE 4: mile or 01MON 9010s (!tratlfa. COMPUx ? www.performancepipe.com End Restrained Thermal Effects A length of pipe that is restrained or anchored on both ends and placed on a frictionless surface will exhibit a substantially different reaction to temperature change than an unrestrained pipe. If the pipe is restrained in a straight line between two points and the temperature decreases, the pipe will attempt to decrease in length. Because of the end restraints, a length change is not possible, so a tensile stress is created in the longitudinal direction along the pipe. This stress can be determined using Equation 2. cr = Ea AT (2) where terms are as defined above, and a = longitudinal stress in pipe, psi E = elastic modulus, psi The selection of the modulus can have a large impact on the calculated stress. As with all thermoplastic materials, polyethylene's modulus and therefore its stiffness, is a function of temperature and the duration of the applied load. To select the appropriate elastic modulus, these two variables must be known. When determining the appropriate time interval, it is important to consider that heat transfer occurs at relatively slow rates through the wall of polyethylene pipe, therefore temperature changes do not occur rapidly. Because the temperature change does not happen rapidly, the average temperature between the initial and final temperature is often chosen for the modulus selection. Modulus values for PE 3608 (formerly PE3408) are given in Table 1 As longitudinal stress builds in the pipe wall, a thrust load is created on the end structures. This load can be significant and is determined by Equation 3. F = a A (3) where terms are as defined above, and F = end thrust, lb A = cross section area of pipe, in Equations 2 and 3 can also be used to determine the compressive stress and thrust (respectively) that is created when a temperature increase occurs. However, if the compressive thrust exceeds the critical longitudinal buckling force for the pipe segment, the pipe will deflect laterally. The critical force for a slender column can be determined using Euler's equation, assuming ends are free to rotate (which is conservative for restrained ends). Euler's Equation z F' _ E (4) ( )2 where terms are as defined above, and F' = critical thrust force, lb I = cross section moment of inertia, in ir (OD 4 —ID4 (5) 64 L' = distance between end restraints, in Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 2 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 -599 -7348 P� mAN`l�EPIPE A : 1 1>> ISION- Of {HEY6o i P!!tit03 £111M1C4;. aimpor LP www.performancepipe.com The modulus is selected using the same criteria used for determining the stress in the pipe wall due to the thermal change. The applicability of Euler's equation for any specific pipeline calculation must be evaluated. For pipe installed on top of a surface (i.e. the ground, a pipe rack) pipe and fluid weight in the pipe and frictional forces increase the critical thrust force whereas in aerial applications weight and initial curvature due to deflection reduce the critical thrust force. While the amount of length change experienced by polyethylene pipe during thermal changes is greater than many other materials, the amount of force required to restrain the movement is less because of its lower modulus of elasticity. Table 1 Typical Elastic Modulus for DriscoPlex PE 3608 Elastic Modulust, 1000 psi (MPa), at Temperature, °F ( °C) Load Duration -20 ( -29) 0 ( -18) 40 (4) 60 (16) 73 (23) 100 (38) 120 (49) 140 (60) Short Term 300.0 260.0 170.0 130.0 110.0 100.0 65.0 50.0 (2069) (1793) (1172) (896) (758) (690) (448) (345) 10 h 140.8 122.0 79.8 61.0 57.5 46.9 30.5 23.5 (971) (841) (550) (421) (396) (323) (210) (162) 100 h 125.4 108.7 71.0 54.3 51.2 41.8 27.2 20.9 (865) (749) (490) (374) (353) (288) (188) (144) 1000 h 107.0 92.8 60.7 46.4 43.7 35.7 23.2 17.8 (738) (640) (419) (320) (301) (246) (160) (123) 1 y 93.0 80.6 52.7 40.3 38.0 31.0 20.2 15.5 (641) (556) (363) (278) (262) (214) (139) (107) 10 y 77.4 67.1 43.9 33.5 31.6 25.8 16.8 12.9 (534) (463) (303) (231) (218) (178) (116) (89) 50 y 69.1 59.9 39.1 29.9 28.2 23.0 15.0 11.5 (476) (413) (270) (206) (194) (159) (103) (79) t Typical values based on ASTM D 638 testing of molded plaque material specimens. Modulus values for PE4710 are under development. Controlling Expansion and Contraction Black polyethylene pipe on the surface or above grade and exposed to the sun can absorb solar energy. The resulting pipe temperatures can be greater than the air temperature. To help reduce temperature changes resulting solar heating of a piping system, the pipe may be shaded or placed in a location that receives less direct sunlight. The effects of thermal expansion and contraction on a piping system can be controlled in several ways, including ❑ Lateral deflection expansion loops (snaking the pipe) ❑ Anchor and guide the pipe ❑ Conventional Expansion loops ❑ Expansion joints (non - pressures systems only) ❑ Burying pipes Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 3 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972- 599 -7348 PERFORMANCE PIPE A o or Corm P;it te.1 (mow CisvrrorIP www.performancepipe.com Lateral Deflection Expansion Loops The simplest installation involves stringing pipe between end point anchor structures. If the pipe is simply laid in a straight Figure 1 Lateral Deflection line between the end anchors the pipeline anchoring structures must be capable of handling potentially high thermal contraction thrust loads during temperature decrease. During Lateral Deflect€ n temperature increase, the thrust force on the anchoring Total Deflection structure is limited by the pipe's critical thrust force. As the g temperature increases, the pipe exerts an increasing force on :..:..._. the anchor structures. In reaction, the anchor structures apply °"° " • an increasing compressive thrust on the pipe. When the critical I thrust force is reached the pipe undergoes elastic buckling and Length deflects laterally. The force on the anchoring structures decreases. To minimize these loads, pipe may be pre- snaked during installation rather than placed in a straight line. The critical thrust force may be calculated using Equation 4. Equation 4 is based on a column with no lateral support. Where frictional resistance acts to restrain lateral movement of the pipe such as pipe on the ground or in a rack, Equation 4 may under predict the thrust force. Snaked piping installations are also referred to as lateral deflection expansion loops. These loops can be used for DriscoPlex piping systems that are laid on the surface, supported or suspended above grade on hangers or in racks, or installed underwater. An effective flexible pipe expansion loop system employs the pipe's natural tendency to deflect laterally, and its high strain tolerance. Lateral deflection expansion loops are recurrent "S- curves" (snaking) along the piping runs that provide an initial lateral deflection, and allow pipe temperature changes to result in greater or lesser lateral deflection. The required number of "S- curves" (or equivalently the number of nodal points between curves) depends on how much lateral deflection is permitted. Surface and rack supported pipe systems designed with lateral deflection expansion loops must provide sufficient width allowance for lateral pipe deflection. The amount of lateral deflection is related to the anchor or guide spacing. Lateral deflection may be approximated by y =L I a4T (6) v 2 Where y = lateral deflection, in L = distance between endpoints, in a = thermal expansion coefficient, in /in / °F AT = temperature change, °F A long, semi - restrained pipe run can snake to either side of the run centerline. Total deflection is YT = 2 (Ay) + ( where terms are as defined above and YT = total deflection, in D = pipe diameter, in Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 4 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 - 599 -7348 A: 1)061010f &Wei t.$FMku [a,uvuar/P www.performancepipe.com To minimize thrust loads on restraints or to control which side of the centerline the pipe snakes, an initial deflection can be provided so the pipe does not contract to a straight line at minimum expected temperature. Likewise, during thermal expansion, pipe that is pre- snaked requires less force than predicted using Equation 4 to continue snaking. At the time of installation, the anticipated temperature change from installation temperature to minimum temperature should be determined. Using this temperature change and the distance between points, determine lateral deflection, and install the pipe with this lateral deflection plus the minimum lateral deflection specified by the designer. The minimum allowable distance between restraining points is dependent upon pipe lateral deflection or bending strain and may be determined from D a (AT) (8) Fallow where terms are as defined above and Ea„ow = allowable bending strain, in /in Published values for allowable field cold bend radii of pressure pipe can be used to determine the allowable bending strain. Table 2 Allowable Bending Strain Pipe Dimension Ratio, DR Allowable Bending strain, Callow, in /in 513.5 0.025 >13.5 — 21 0.020 >21 -32.5 0.017 Pipe with Fittings 0.005 Figure 2 Anchoring Flange Connections Where pipe is connected to rigid devices, fabricated i Lion s directional fittings or where flanges or other rigid ? eper with Saddle connections are employed, the pipe and fittings including rcaoue ;or t' flanges must be protected from shear, flexing and bending. Flanges laid on the surface can become 1 ;E - - -, 28 anchored in the soil, and should be supported on sleepers. Figure 2 illustrates a method for protecting # connections to directional fittings and flanged connections to other appurtenances. Wrap elastomer or #'` D rubber sheet material around the pipe under the clamps. w...... '- `"" --Clearance Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 5 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 -599 -7348 PERFORMANCE PJ CP E www.pertormancepipe.com End points and mid points of pipe run lengths will require anchoring or guiding. Endpoint anchors must transfer loads and deflections to the pipe, away from rigid joints, or fittings. Midpoint anchors or guides must remain in location, but allow the pipe to move or pivot with the lateral deflection of the expansion loop. Figure 3 shows possible anchoring methods. Wrap elastomer or rubber sheeting around the pipe under clamps to protect the pipe from chafing. Figure 3 Midpoint and End Anchoring Fixed I • N M � N N fbmti.End 4nthor Midpoint Anchor 2 , - .. �^ Gia"3i<3 r3i tid • 3 3 "� 1 i . 1 I) J i'333'�f . ';f . �^ ;ti ismisosesm. Fiv t :t Above grade piping may also be hung from support rods. Hangers must allow for lateral deflection with sufficient support rod length, and with a clevis or ball type joint at the suspension point. See PP 815 -TN Above Grade Pipe Support for additional information on above grade piping. Example 1 24" SDR 11 pipe is conveying a liquid and lying on the ground with an installation temperature of 60° F and operating conditions between 20° F and 120° F. The line is to be installed in a straight line between guides. Installing a line straight between guides results in maximum end thrust loads (tension and compression) on the anchors. Pre - snaking the line will reduce the anchor thrust loads. (a) What is the minimum distance between guides? (b) How much lateral deflection occurs? (c) How much thrust load is generated at the end structures /anchors? All examples in this Technical Note are for PE 3608 pipes unless otherwise noted. Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 6 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 - 527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 - 599 -7348 PERPORMAINEPIPE AB.orsr{roor Corm Proves Co icy:.Ca mxrLP www.performancepipe.com Solution: (a) During thermal expansion, the minimum distance between guides can be determined using Equation 8. L _ 24 1 1 96 ( 9 x 10 5 )(60) 0.025 L = 691.2 in (b) The resultant lateral deflection between points is found using Equation 6. y = 691.2,IA x 10 5 (60) YY 2 y = 35.9 in The total deflection can now be determined using Equation 7. YT = 2 (35.9) + (24 ) YT = 95.8 in Equation 8 provides the minimum distance between guides based on the strain from lateral deflection. Using the Equation 6 minimum distance (spacing) between pipeline guide points provides the smallest theoretical lateral deflection. Increasing the spacing will increase the lateral deflection (offset) and require a wider pipeline right -of -way, but will decrease the compressive thrust load on end or guide points from thermal expansion. (c) An estimate of the maximum longitudinal compressive thrust force based on the minimum guide spacing of 691.2 inches, can be determined from Equation 4. F _ (3.14) (50800)(9369) (691.2) F = 9833 lb This is a theoretical value assuming the pipeline has no lateral resistance. The actual force may be higher as frictional force with the ground must be overcome before lateral deflection occurs. Lateral frictional resistance is not considered in Euler's equation. Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 7 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 -599 -7348 PERFORMANCE PIPE 4tlryu;e brftifraariPdrtrir; (rrtuitc;. (CMPtixy {P www.performancepipe.com Thermal contraction of the pipe results in a tensile stress in the pipe wall that can be determined from Equation 2. 6 = (79800) 9 x 10 -5 (40 cr = 287 psi The tensile stress should be kept below the allowable long -term tensile stress for the material which can be found using Equation 9. hallow = (1600)(0.50)(1.2) h allow = 960 psi The tensile load on the end anchors can be determined from Equation 3. F = (287)(157.57) F = 4527 lb This example assumes a straight installation. If the line is pre- snaked, additional right -of -way may be required; however the loads on the end anchors would be decreased because of the pre- snaked condition. Anchored and Guided Pipe If the space required for lateral deflection expansion loops is not available, the pipe may be anchored at the end Figure 4 Typical Guides points and guided frequently enough so that snaking (column buckling) does not occur. This method results in longitudinal thrust and may require significant end anchoring structures. • For this discussion, anchoring restrains the pipe such that movement is not allowed in any direction, that is, longitudinal, lateral or vertical. Guides between the end anchors should allow the pipe to slide freely through the • guide. Fabricated fittings and rigid connections such as " flanges and transition fittings must be protected from bending, therefore if anchors are used to protect a fitting from bending stresses, all of the fitting outlets must be anchored. Anchored and guided piping systems require analysis of both the temperature increase and decrease. Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 8 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 - 599 -7348 PERFORMAINE PIPE IN.!( Of OicroxPi nuts (mow. (i+:urorLP www.performancepipe.com As pipeline temperature decreases from weather or processing conditions, tensile stress develops along the length of the pipe. The stress can be calculated using Equation 2. Tensile stress causes an end thrust at the anchors that can be calculated using Equation 3. Anchors or end structures should be designed to withstand this thrust without allowing movement of the pipe in any direction. The tensile stress in the pipe should not exceed the allowable tensile stress determined from Equation 9. hallow = HDB f f (9) where aauow = allowable tensile stress, lb/in HDB = Hydrostatic Design Basis, lb/in (Table 1 -1, Chp. 6, Handbook of PE Pipe) f = environmental design factor (Table 1 -2, Chp. 6, Handbook of PE Pipe ) ft = service temperature design factor (Table 1-3, Chp. 6, Handbook of PE Pipe) A link to the Plastics Pipe Institute Handbook of Polyethylene Pipe is available on the Technical Library page of the Performance Pipe website. During temperature increase, the pipeline attempts to increase its length. The anchors prevent length increase, creating longitudinal compressive stress in the pipe and a thrust load against the anchors. Compressive stress can be determined using Equation 2 and should not exceed the allowable stress per Equation 9. (For convenience, the HDB value is used as a conservative value for allowable long -term compressive strength.) Guides must be placed at intervals not exceeding the column buckling length of the pipe per Equation 4. Combining Equations 3 and 4 yields Equation 10 for guide spacing. I- guide - N a AT A (10) where terms are as previously defined and Lgulde = distance between guides, in I = cross section moment of inertia, in (Equation 5) N = safety factor A = pipe cross section area, in A = 4 (OD - d 2 ) (11) where OD = pipe outside diameter, in d = pipe inside diameter, in (Formula 4 -1) Equation 11 may also be written as: 1 A = rOD - J (12) I,DR DR An appropriate safety factor should be used when determining guide spacing. While the guides allow for longitudinal movement of the pipe, they must resist lateral and vertical movement. The following rule of thumb for steel columns may be considered. When designing steel columns, a reaction load of 10% of the force that induces a longitudinal buckle of the column is used to resist lateral movement of the column and therefore resist buckling. Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 9 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 - 527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 -599 -7348 • iftWORMANCEPIPE 4 Llr>tisi or anthet Pig WS (MAW:. (auPaar www.performancepipe.com Example 2 Determine the guide spacing and anchor loads for 8" SDR 11 installed at 70° F with a maximum operating temperature of 130° F and a minimum operating temperature of 10° F. The minimum time for a processing condition temperature is 10 hours. Solution: For thermal expansion as the temperature increases from 70 ° F to 130 ° F, the average temperature is 100 ° F. Equation 2 gives the longitudinal compressive stress. As the minimum process time is 10 hours use the 10 -hour modulus at 100° F (Table 1). a = (46900 ) (9 x 10 ) a = 253 psi Crallow = (1600 ) (0.50 ) ( 0.63 ) 6 anow = 504 psi The force generated on the end structures can be determined using Equation 3. F = (253)(20.35) F = 5149 lb Use Equation 10 to determine spacing between guides. (314 ) ) L gu i de — (2)(9 x 10 5 )(60 )(20.35 L gu i de = 83.7 in For thermal contraction, use Equation 2 to determine the longitudinal tensile stress using a 10 -hour modulus at 40° F. a =(79800)(9x a = 431 psi callow = (1600)(0.50)(1.2) a a ll ow = 960 psi The force generated on the end structures can be determined using Equation 3. F = (431) (20.35 ) F = 8771 lb Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 10 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800- 527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 -599 -7348 + ThPE A &rsrO br CNfrr?ri APO £ilfM & i. CO NN?' 7 tP www.performancepipe.com Conventional Expansion Loops Conventional expansion loops reduce end point anchor Figure 5 Conventional Expansion Loop structural requirements, but may require more space. Typical expansion loop designs use fittings to create an offset and return to the original piping run. However, long runs of flexible polyethylene pipe would rather deflect laterally than push, so expansion loop designs should utilize guides that permit A longitudinal slippage, but not lateral deflection to direct length change to the expansion loop. Conventional fitting -style expansion loops are generally limited to piping systems where _- --- - - - - molded fittings are available. Large diameter fabricated fittings must be protected against bending and flexure stresses with cross bracing or other suitable means. The following protocol is for suspended expansion loops only. When designing conventional expansion loops, first determine the maximum length change from temperature change for the pipe run. The maximum run length change run may occur during expansion or contraction and can be determined using Equation 1. Next, determine the required leg length "A" for the loop. The "A -leg" length is determined from Equation 13 for a cantilever beam with a concentrated load. — D AL L = 1 2 (13) ` Sallow where LA = expansion loop leg "A" length, in OD = pipe outside diameter, in AL = length change In pipe run, In Ealpow = allowable bending strain for pipe with fittings, in /in (Table 2) The length of the "B -leg" is typically one half the "A -leg" length. L LB = 2 (14) Once the dimensions of the loop have been determined, the next step is to determine the frequency at which the runs must be guided so that the activation force required for the loop is not greater than the column buckling resistance strength of the run. Combining Euler's equation (Equation 4) with Equation 13 yields I L guide = 1_2 (LA )3 ( 3 AL where Lgu,de = pipe run guide spacing, in OD = pipe outside diameter, in AL = length change in pipe run, in Eaiiow = allowable bending strain for pipe with fittings, in /in (Table 2) Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 11 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972- 599 -7348 ; PE A, ale§ or (wog Pates (mow w,. Nowiar IP www.performancepipe.com Guides should allow for longitudinal pipe slippage. For above grade piping, the guide spacing is the smaller of the result from Equation 14 or from Performance Pipe's PP 815 -TN Above Grade Pipe Support, Equation 1. Where the pipe is to be anchored or terminated, the end or anchor structure must be designed to withstand the force necessary to activate the expansion loop. This force can be theoretically determined by from Equation 16. 4L3E1 F� s (16) L A where FL = force required to active expansion loop, lb Two guides may be required on each side of the expansion loop to restrict bending of the pipeline run. The guide closest to the loop should be placed far enough back from the 90° elbow so that the fitting does not contact the guide. The second guide should be placed about ten (10) pipe diameters back from the first guide. Expansion loops that are on the surface must take the frictional resistance between the pipe and surface into account in determining guide spacing. Also, see Performance Pipe's PP 815 -TN Above Grade Pipe Support, for more information. Example 3 Determine the A and B leg lengths, and the activation force for a suspended 4" SDR 17 pipeline installed with conventional expansion loops every 200 feet (2400 in). The minimum operating temperature is 40° F with an installation temperature of 80° F and a maximum temperature of 100° F. Solution: First determine the maximum length change, using Equation 1. In this case, the maximum length change results from the greater temperature difference during contraction (80 °F - 40 °F = 40 °F) rather than during expansion (100 °F — 80 °F = 20 °F). AL= (2400 (9x10 -5 (60) AL =12.96 in Next, determine leg length "A" of the expansion loop using equation (13). 2 (4.5)(12.96) LA 0.005 LA = 132.3 in From Equation 14, leg length "B" is half of length "A ". LB = 132.3 = 66.2 in Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 12 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 -527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 -599 -7348 • Par HlOThPE A:11r;ls, po pi 006.0 Prrr ii ^s £irteixr:. Ciivraar LP www.performancepipe.com Now determine the guide spacing from Equation 15. L guide = 3.14 ) 2 (132.3 ) 3)(12.96) Lguide = 766 In While the guides allow for longitudinal movement, end structures /anchors are designed to withstand the activation force determined from Equation 16. A short -term modulus provides conservative results. FL _ (12.96X3X110000X8.31) 132.3) F� = 15.3 lb Expansion Joints If used, expansion joints must be specifically Figure 6 Longitudinal Force Thrust Block intended for use with HDPE pipe. These joints activate at very low longitudinal forces and permit Y" large movements. Expansion joints intended for use it P(4etiivit4le piping i, > FIttii1Q with other i in materials are not recommended for several reasons. 1 Expansion allowance is �' () p Contmt..7i�r���. frequently insufficient for polyethylene. (2) The force . Block e3ftz0 ci;�ii required to activate the joint may exceed the column to i i;not she ni buckling strength or tensile strength of the • ;r polyethylene pipe. (3) Expansion joints for pressure 3?ut �?. service may include internal components that when exposed to internal pressure, result in a longitudinal • thrust which may exceed the column buckling resistance of polyethylene pipe. Contact the expansion joint manufacturer prior to use. Buried Piping Systems A buried pipe is generally well restrained by soil friction along its length, and with moderate or low temperature change, soil friction alone is usually sufficient to prevent dimensional change and expansion movement. Therefore, a buried polyethylene pipe will usually experience, a change in internal stress rather than dimensional change and movement. A very significant temperature decrease may exceed soil friction <restraint, and apply contraction thrust loads to pipeline appurtenances. Thrust blocks for underground pipelines are usually not required unless great temperature change is anticipated. When transitioning from DriscoPlex pipe to bell and spigot style pipes such as ductile iron or PVC, the combination of thermal change and thrust load from internal pressure may cause sufficient contraction to pull apart the transition joint or other bell and spigot joints in the pipeline. The connection between the PE pipe • and the other style pipe needs to be restrained from longitudinal pullout. Additionally, either the Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 13 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800- 527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 - 599 -7348 PARFORMANCEPIPE A &wok Of (*Ilk Pki tes (!Ifdtica CQSlP,j?Y IP www.performancepipe.com PE pipe needs to be restrained from longitudinal movement (in -line anchor) or a sufficient number of upstream (or downstream) bell and spigot joints need to be restrained against pull out. The manufacturers of ductile iron and PVC pipe typically provide methods for calculating the number of joints that need to be restrained for a given axial force. If temperature change is extreme, low thrust capacity (unrestrained) connections to manholes may require longitudinal force thrust block (in -line anchor) protection. See Figure 6. The longitudinal stress from temperature change may be estimated using Equation 2. Soil load bearing capacity will require appropriate soils testing. Temperature changes below grade usually are not instantaneous, so an appropriate long -term elastic modulus from Table 1 should be selected. Figure 6 illustrates a typical thrust block design. Heat Transfer Polyethylene pipe may be heat traced, insulated, or both. Temperature limited (120 °F maximum) heat tracing tape should be used, and the tape should be installed over a pressure- sensitive metallic tape installed on the pipe. The metallic tape helps distribute heat over the pipe surface. Thermal conductivity terms: k = thermal conductivity, Btu /(h- ft °F - /in) C = thermal conductance, BTU /(hr- ft - °F) C = (17) t = thickness, in R = thermal resistance, (hr- ft - °F) /Btu R = C (18) R = (19) Table 3Thermal Properties Property ASTM Reference Nominal Value Thermal Conductivity, k C 177 3.5 Thermal Resistance, R _ 0.3 (1" thickness) Bulletin: PP 814 -TN March 2007 Supersedes all previous publications Page 14 of 14 © 2007 Chevron Phillips Chemical Company LP Performance Pipe, a division of PO Box 269006 Phone: 800 - 527 -0662 Chevron Phillips Chemical Company LP Plano, TX 75026 -9066 Fax: 972 -599 -7348 A + }' Si ;?ti i e 4It U;: P.. tt> }5' (? +i i:: (0.? 40' • www.performancepipe.com ' . . - .t : •J ii f :.v ,tom ..., ............ ... .. .�` ~'' ,.,1,..„....",:w. • » •v�} }i7} } .; ' .rii f i: :i C :t Y.Sn� ... .... .S ' v ::: + } } �i; 2„ 4 t „ , f $ s f S . E . >,}° ' t ; K S' .0 m • . , , J ` . >u £ ri f &z . ;c.f r :.:> ?" } F } £ £ f y f o f 4 l . v : : ' f id y ..}Y J } v � : : •: • f -- , -. { - ; . }. 4 : C .5 ,0 F 'rks• .t, : < E t a i f ' < .,, ° G `'` ' ;, x ! € szz0:1?:.....:** � i, �J;}7"}n , • k ; ?> 2 J f .. f f i i.' . ; E f r. x r ;" � f � , >: : �#.. ,� ,d •:,.• • :::t ' ^'' .. . �' . '; k. ".Y ..CE .f£. f. f6>: .""` :J• ^fa"'':.'� ' f. .� y� . . ': t5rascaplex/ Pipe Features Seties >.::. . p l]� ab le �tandarc�s f� s gnat�t5n (f'PI T0 0 TRA: ?' 1000 (IPS) IPS (Iron Pipe Size) ASTM D3035 (Industrial, International, Black pipe is standard ASTM F714 PE4710 various, etc.) IPS (Iron Pipe Size) 1500 (IPS) DIPS (Ductile iron pipe size) FMA Class Number 1613 1600 (DIPS) Solid black, AVWVAC901, AVVWAC906 PE3608 (Fire Main applications) Black w/ red stripes ASTM D3035, NSF /ANSI 61 Black w/ blue stripes 4100 (IPS) IPS (Iron Pipe Size) Black pipe is standard (Municipal & Industrial pota- ASTM F714 & ASTM D3035 ble water, raw water, process Optional Color Striping Available: Black w/ AVWVA C901 & AWWA C906 PE4710 blue stripes water, NSF /ANSI 61 various) Black w/ green Stripes Black w/ lavender stripes DIPS (Ductile iron pipe size) 4000 (DIPS) 3 pair of equally spaced blue stripes is (Municipal & Industrial pota- standard ASTM F714 & ASTM D3035 ble water, raw water, process Optional Color Striping Available: AWWA C901 & AWWA C906 PE4710 water, Black w/ green Stripes NSF /ANSI 61 various) Black w/ lavender stripes Optional: Black Pipe: (No Stripe) 4600 (IPS) IPS (Iron Pipe Size) 4700 (DIPS) DIPS (Ductile iron pipe size) ASTM F714 & ASTM D3035 Mu Grey Pipe is standard AVWVA C901 & AVWVA C906 PE3608 (Municipal & sewer, vous, etc.) Optional Color Striping Available: Grey pipe with green stripes 5100 (IPS, CTS & SIDR) Black pipe with blue or white ASTM 02737, ASTM 02239 Potable water print line or ASTM 03035 PE4710 AVVWAC901 NSF /ANSI 14 5300 (IPS) PE3608 Black pipe is standard ASTM D3035 (Geothermal) PE4710 6400 IPS (Iron Pipe Size) (Oil field, landfill, coal bed API 15LE PE3608 methane, gas gathering, etc.) Black pipe is standard ASTM D2513 PE4710 1700 IPS (Iron Pipe Size) ASTM D3035 (Mining & industrial, DR Single color stripe to identify DR ASTM F714 PE4710 striped applications) . 9200 OD size and tolerances are specified by ASTM 03035 PE4710 (Customer spec liner) customer ASTM F714 e ig P 1rmanee Mal H ea 1 January 2011 Bulletin PP515 © 2009 Chevron Phillips Chemical Company LP Performance Pipe, a division of Chevron Phillips Chemical Company LP 1 5085 W. Park Blvd I Suite 500 I Plano, TX 75093 I Phone: 800 - 527 -0662 I Fax: 972 -599 -7348 • M ir rihl A afia, i w Ciii:M .Ii OMIPd,yv LP Revised 04-07 -2009 IPS Size and Dimension Data PE4710 (PE3408) DriscoPlex Municipal & Industrial & Energy Series /IPS Pipe Data Pressure Ratings are calculated using 0.63 design factor for HDS at 73 °F as listed in PPI TR -4 for PE 4710 materials. Temperature, Chemical, and Environmental use considerations may require use of additional design factors. Pressure 125 psi 100 psi 80 psi 63 psi Rating DR 17.0 DR 21.0 DR 26.0 DR 32.5 `::> ` ; >'.:Aver e<:ID Weight , - i • it:: : Ave. e::ID Weight :::Mltth tt :> Avera geaID Weight �::::: Avera �'e_ID Weight .::::;;: €#�•,��,.::.:•:....:� >: Nominal ... At#e �[1YL#tr3::......�9.. 9 • l� f€t� .: :::..:..::::!'a9.::::::. 9 g.::::.::. 9 9:::._::. 9 OD in (lbs/ft) `:EF'k ` >'> Ib /ft(lbsift) • ;- �:- :::: -�.. .., :•. •::. 1.660 1.900 ::::.:.:...... ...... :......................., 5 0.43 2.37 ': : '�$ :'::<:: ..................... ..................... 3.500 0.94 ;:.::• ::::::::: ::::::::....................... ..::::..:::.:•.:.:.;. �:.:; :;:....................... :: ::::.::.::::.:.::::.. 2 1.55 1. 7 :» i:::t#:;:<:::'•<:; 4.500 BRAUN - ;•::.,,, ..: :..:::..: :.::::::.,•::::::_ ::.::::::::::::::::: .:::::::::..:..:: :... +.::.::::::.: >::::::::::::: rlllllllllll.. ... ... illl -. : -: � ....... ^.. 11- .0 : 1 :. µ.�:.�::. :..; .: �:.:.:. 111111,111 ": - 111: 1':. 1 -I,i .:.�:..:.., . :.:.. _'.:.:.:. �::::.:_._ .�::::::: 24 1,81.'::::.: 6.625 :::::..• - ::::::.; .; .: 3.36 ::: <.:<::: .... -. ;: 2.75 '`:':`;�......�.E.:::::: -..... :� - :.::::: >:: >:�:1�3....;:: 80 3,07 z;;zz <::::::: ; >:::;;:::. 50::: >:: >: 5.69 : #::s` �'��'.:::: >:::«<:7 >754::<:: 4.66 ::':: >_ � -... • ::::: =:: »:::7:921:: >:::> ......�,�t.......... , 8.625 . �f ..:`..::.:..:��........... ... �:! ��� ..,,:........................ :.::: :#�'........................... 1 4.77 .::.;:;.:.. ::..:.:::: >:: >::: :..:.. ;. >:.;; 8.83 ::.::: .. ; :• ;.:;.::.::: >:: >:: >:: >:::: >:: 7.24 : ::: >: :. � :.:: ;::::; :::.::::.:.: :.. :.::.::: 5.9 :- ::; >: -.. . ;:;:::•:.;;:.;:3:.:t?48:::<: >: 10.750 .:.:.:.:1:�:.t�`�: » »..... 5;41.x. ::.: ::� +'`�.�:� ..::::.....�.... ...-- �: '��Lr�......._..��.�`14.. ... .....'i•,� >4`......... � ., ��.... .:: ::t tt .r v :R:::::: .:: !"..::. :::: ::. iiiiii• :... : ttttt:• . .:;;.:.: .1 2 :::::: >::..f'�•' -, 12.750 :: i::>:: i�;. �i <::z::::: >::::'E >'1:: >1$0 >: >;: 12.43 ... ::: ...E��t�'...,.......1'E.- 4b3... 10.1 .-- .- .�.... 3 ; �:: >:: >: 6.71 10.02 8. 09 8 : > ........... .::::.:.. 0 :::::::1;;;;;;M42::: : .:.:::.:.:.:: ..:: >:: >: 14.98 12.2 :::: 14.00 >::1:4 <69t3::<:: 13.09 >:1:4957> 1 0.56 :•:::•::::;.:. :.:::.... - • : :: 1:4'005::::<: 19.57 •.:::•:: • .. : »> 1604 :•::::•:1�� �'1:5::�:�::: >: .:::�`0:. '�.�.�'•`•::�. ?;::? 16.000 . <i >«::E:>�<�:' ":• ::> <>.::.:.. �.......... �;.• >;:; .:::: :.::.:. ,� :;.. :::::•:::: 0.30 16533<< 16.57 ' <1'!> ?: ;: :•Aa25 <:: 13.37 24.77 <:z ; >; . : 2 - ��<`: -?;' .; ::::.:::, , 18.000 <»,;. :- �; .:.::.:.. 15 <756::?: ��`.�:•.`:'•::<: >1:6"f8'3:: »_ �, :.: - .... a r... ! ! :::::.` :::::. .:...:::: ..,- -s -, .. -:: +:? 16.50 7 20.45 >!!: :.,.. »,•:.: . :::::. -::.- 1:•�::� � =' :::: >::::; :7 7:: >:<: 30.58 ;�• -:: •: � . :•<;<s _.':::::. 25.0 8s31?.... 20.000 ::�3<�'#��:::::: :::::: ,. ..... >< :..:..:..�::. <,.:�::: 4 75 Vii: »:> 19.9 •:,• >:< >� ?#:<::::::: <::::<:::'t�267: >::> 37.00 -::•::�{��:;:<;:;z•:<: »:�9 >778 `:: 30.33 `.:`: "€1�'<` »?�0 : ^:��;•...�•:'::�::; :< ?<': >•:'��.�,.`.,`.:::::::::::: 22.000 ............... ...................... :: ;:::; :.:................. •.:::;;.. • . �:;; >.::::;: ; ; :.:.:<::<: 29.45 :::: >: 23.76 : ;;;.::;;;z�'�...',:`• :;;;;;;;:� 24.000 ;;;;;.:: �::? �: �:::;. >;:: >:. >:29;a7(}�'::;:.:; 44.03 �:;>.: :1:;.'�?:«;;;._::.�;E..���7.... 36.10 ,::. ...�.�..J.:::::� > ; ; 22,t143,... :<>: : >:::�# >: ,.�.<::<:: » >�Z.. _ . ,...., :- �:::.:.. � ::<fsi? :::: »::; ::::::. ;;:.:: :.:..:::..:. ::.:;.;:::.;::. .::.::...:.:::. .:::z;;.- :..::;:sue:.;:.;; .:::. .:.::. <zz:::.: ..:..::.:.;:.;:<: ::... .::::. 26. 000 ;;;:: :;<I.:.$::..::.:::::22:759::::. 51.67 +:- ...;#.,�*.,�.:- ::::...:::23.375.::. 42.36 .::.,:.:7:_t:.::.::�::::23. 880.... 34.57 >:- >:- :�<:•::::. :.....24.304::::. 27.89 40.09 32.34 s:28'ss::s :::ss:: 7�7 >:: >< ;:: >26 >173:::::<:: .:,:..::•.::. .:...::. ::.: :_.•:- :.:.:....:..:..::::.:. ..: .:. _;;:.; 59.93 •;:::::.,; :... :..::..:::. .::�� 49.13 >:25 : .. :;::::�#:$ » »: �,�' -.;- 28.000 '�;•°. }`:;:• >:•: ;.;:::24:.5D8.:::: .:::::.:'€..�+3�: ::::;:- ::: :25,...x::::: > - -: , -...:: � ::::::._;. " 111 � 1,1 � •VIII) I ,. :�,{Nil'1'1 " " "�1 �1 Milly "'•1•I �I N' 37.13 46.02 >'!<:: >: 56.40 ��� • :�> i.28s(? >< 68.80 < > <7��': � ` 7 '�7;55±1<> 30.000 >:��<:� :. >.' ~�` '�:::.': is 52.36 42.24 .......... .: »:::::.. ..,.:.. 7828 - :::: >:..: : .,•::.:: >:<:> .: 64.17 � :�- ::: :�:::: »29 390:::::: :: >:29a�2;::.; 32.000 :::::..:'. I.,- * �'- ::<::<.:::::25 >01: ©:: >:: >: ---:.. ::::: •::::•:: - l::;ll�'•Il : ............ y � .............................. •• •• .:::.:......28759::: >:::: : »:.::.• >. ........... •::::::. •: . • .:;;» :;:.;: :...:. :::::.::: • ;: , :> 59.11 782:;:;::;: ;:'......... ......'�•.;,:• ?.::•::. 34.000 .: :• >::•.�:::.. >:;; 2€3..7613..;:. 88.37 .:::•:.:' �• :�'.I:`�i•:::::..:.:3Q. 72.44 47.69 �::... a:: >:<::�3:tlG 4:: >::> 66.27 � :::<: >:336s3::: ><' 5 3.46 - -::::: •:..: .:: .::::::::..:...:.:.::.:: :: > -� •; : �:z: >::: >:: >:::.. ,:...:: >::> 81.21 �::::<::� .. :.,.,. 36.000 .,::: :2;.7.:#5...........31..530.... 99.07 : .....'t �.':€�...........82.36E.... ::;;;.;:-....:,:;::;.:......._....... _... _..... .....:..:. ....- .. -:... .::.: .. ............. ........ ...:....... ... ..... :. >:.:::.:: :�: . :.:•.:.;;:.;: ;.; 90.20 : >� >�: #� - -� >:: >:::':::: >::: .261::':<:: x2......... 42.000 ::::. ?��`:�::::::.....3�x,7fa1..... 134.84 ::::::�€•:, ».....37. ?�Q.... 110.54 .. ....'�. - �,t.......�$,�7 : 6:. 72.77 ..:-- ..�,�......: �9....... _... ,1111111111111111111111111 - {tllllll :11111• : :•: :::::: : . ::. ;1;111;1111111111111111 ;;;;;; ,;; ,, ,; ;; : :. M.; " IM " . � ;,;; :;,: _ : . :. :: IIIlllll . ltllllll' 11;1 ,,,,,, :, _: ' -- 48,000 :z< 176,12 4 144.38 44086 <: 117.81 �"{:: .::44; 95.05 149.1 �77<'. 120,29 >> 18273 + > :•:.. ..::.�: >x9 €597::: >:` 0 a8.. :::.:::.,•.tom•..... . ..: :.::::.::: Pipe weights are calculated in accordance with PPI TR -7. Average inside diameter is calculated using nomnal OD and Minimum wall plus 6% for use in estimating fluid flows. Actual ID will vary. When designing components to fit the pipe ID, refer to pipe dimension and tolerances in the applicable pipe manufacturing specification. April 2009Supersedes all previous publications Bulletin: PP 152-4710 © 2001 -2009 Chevron Phillips Chemical Company LP PERFORIVIANCEPPE A Drrrstatt aE CHEYRott PY UlPS.(HEMI((t (wurattr GP Revised 04-07-2009 IPS Size and Dimension Data PE4710 (PE3408) DriscoPlex Municipal & Industrial & Energy Series /IPS Pipe Data Pressure Ratings are calculated using 0.63 design factor for HDS at 73 °F as listed in PPI TR -4 for PE 4710 materials. Temperature, Chemical, and Environmental use considerations may require use of additional design factors. Pressure 317 psi 250 psi 200 psi 160 psi Rating DR 7.3 DR 9.0 DR 11.0 DR 13.5 ----- �1�<•: ::::. Nominal .:..31ikt#�k: er.. e Weight ,. � . Ave. Weight :::-Avera'. Weight l 3Ei Yi Aveia°e:ID Weight Ibs /ft Ibsfft Ibs /ft ::::::fit€ ?:ice ` = > >; `` ID i _itt » #<' ...... ;: . ::�``� >> ����% fit'::::-:: <<> �� :::. � ........ . ...... •: ... �� :: • . ::,: '.: � . :: ::. <: >:::::399::: >::::> 0.26 :::::::- :•::::<«::: >:: >:: > ::::.::: ::::: >::> 0.45 0.37 0.31 <:: >; ..;x...:......1..270:::::. ::::::D >����:: » »:= »::;:3.34........ >:: 1. 1.660 :.:::: �` t' �...� .::.::.::::::11.7J...... ......� ::::....................... 0 1 601 0.34 `:< < ' > < <>_. 0.49 ..533:> :�::�#'� ;� ..... 1.900 :::;::- .: -�. ' ::<:<•:> 059 :;: >:°): <3�t�:::: > <::: . •::: �.. ; ;. Innn..,..., ,1 ���u .. !!+ ....... ..... ...._ • 11111 .: • .. .:: �� :: � :_;:_:;: Ij.7i�pn�in�l: . :!�w. . ?� ;.;:;:_; .. _ ... . ��������unn!! ^3"" 7 •1 0.53 :- :�;:•::•�:, •.:::;•:.: >.: 2.375 ::::.:. •' � ' :::: >s ;.::...... 0.92 .::: >:;' : � .'::: ?::...... x.;$'1:5...;::: 0.77 0.64 :>::: ��:� >:::::.:.,..3;.9�......;:_: ......:.;;;;; 1.66 28�E >. 1.39 <�<`sf > > >Z >9a'1 >> 1.16 3500 . .:§::- �a�:�� >::: >::: >:::<::�.485.;:.;:; 1.99 . �«: � ;::: >'s:::a:<:::�:575:::: >::::: i� >z ?$� »? =. 2.31 1.92 :�:�:;�:�:- ::: :::�:•:� 4. 500 <::>< z:# i.:. �`' i�..: .::: »:: > >:: >:: »�::7:��4:::: >::: 3.29 ::;:>. :.�tv`t::.:::.:::::3.4�W..... 2.75 :::::.�>:.:.......�.63�.... ......:�r..y.......... �:< >: -:::: - : > > > »:� � >:< 6.625 iii:'>. <�;�<zi«::::i:::<:4s700:<: >:<:: 7.12 ::<::; .:::. < >:::.;:. >:.:.'_ :....': >:::» �:i: >:z:::: ..:::: :._::.;:.;:. ; ;:s::. >•::: • �• .:::::::: >:: >:: >5:584 >:<::: >: 4.15 ... . ::::::::::..�"�.:- :.:::::,-- ,.........._........ - :: <. >:<.;�.t�2a:;::: 5.96 ..:::: ..#3:.::::.,.......5.349...... 5.00 : :.. ::f ::::.�....._. _...._ ..... ....,.,,,.. . . , . . . . . ::s- 8.47 7.04 ....... ::..:::::... . «:::.:::::: ..:.;:. 1207 10.11 - '' >�963 >' .......�::s:= :::: >:: ...::. :..:.:::.:.,.. 8.625 . .:: .:.:::::. 6 >::1.:..;.; ....::...- ....................... 10.750 ::.::::#. >?<3:�i`.3.:: ::.:::.: ���7.:::. 18.75 1,:� ::.::. .......... .......... 13.16 10.93 � >: -1 �;:: ;:- ::•;:- - :::z1:0 >293_ >_> 18.51 ::.;:.;:.1.0:.749;;::.: 15 38 #< =<< ::,::. :....::::.: ; :. »: ' - 26.38 -- :::::, -�• �; :. ;.;'<.:::::9;7�E6::: >:::: 22.08 :;:::�a:#::::::::... -: �::- ::- :::.'���',:.`,:::- :::;:.:•. 12.750 ::::.."�:;.- ��:�:;:; ; >:: >9:D46 >:: >: >:: : : w ,: •�� - ..1........1 ....... . ::::: ::::::: . : ... :::. :: v: : x .:.1 . "III : ..' : : '.' .'ii:.:: 22.32 1 ; 18.54 �# '.; >: ::. ..:: •:...... 6.63 `z':1;��� :: � 1;: 't,8f32> ...�........::� >:= 14.000 1. : • •.:,; :- 4...;r: 31.81 �:: >::•: �• 1.E),7�3`I;; >::: 2 ��'• .I:ff��...:.'1.'f..3t).. :: :�:. .�.�.....:. ;: ;:.. ........ ............_ .. ' " ": 34 78 :: >:::::z : • >sz<:::;::<3.2_:9'k:' ss >. .15 1.3 �t88_«: 24.22 16.000 ,:: � >:�:1.:: >:::::::1::1::�353.... 41.55 •». »"t>:�'f#�� :: ^t:2'237 .......1>>:..... :...................... 44.02 >14 >53_> 36.89 ;<15<774:<; 30 65 000 52.58 <::�1:5z t �it7 «�z�<<< ::::•: -'. - : ; > :g7 : >:::2 .. :«<:.: * ": .. -1 ::. :::::... :. k ::..:........... . ' ::.;:.;:.1.6.:86Q:::: >::: zz<: >::2[�:`:;;::<:: >.:::: .... -..... >::: :::::::. .: � : »:� >:= ::: >:: >:1:6 >'E:4� ;:: >: 45.54 20.000 ::::::::'., a ,*'•'�'I�zzz«:: » »'E3;'f�'(:;;:: 64.91 ::z:'��•' .:.........15.285.... 54.34 .....��:€�....." >:::::�;.....�:::s >: 37.84 : : ...... ......... 45.79 55.10 :: >; >::1854:4::: >::: : >:� »3 #:-'' » >::;;:' ......... �.....;..:. 22. 000 <' ?� <?�< <::<::::3a<61:0:::::» 78.55 ; . :.+4...�::::1.6.i3�#..s` :::. 65.75 >:; >::- �:#:..... :::.:...: ... ............................... 65.58 : > ?�i-:�: 4 49 :..:::.:::::.:.> :::.:: � . ':::: �: _ ' >:::: 78.25 :. :. 3� � >;1:�::37....... :...��.��«< >'s23.. . 24.000 'f;7:p29<:;::; 93.48 ::: 84 :::::20;9 76.96 ?,Lsl9tX: >: 63.95 : ' a'1; ;; : 28.000 ....... :. ::::::;.:,; ::::::.::: 26.000 ..........::.:.:.......:.. ................ :. :•::.� :•. 91. v :::::::::19:875::::: >:: ': ": >•��'��<��•`:_ 74.17 89.26 6t�s3" - >23 . 106.51 22:605:::: >:: ��:�`� > > <; .. ` :::::................. »:::� �:�:'€:: >::> ::: - :::.::: ....11.1 11.....11 . .a .........:...:....:.., c•::::!..:..... ,..... .::.;: ;........;�:�*:.. . _ . ::.:.,:.. . >::<z:::::: >::; : ;: 7 ;:::::24:2'19:: >::: 102.47 :: <::::<:25289:::> 85.14 ...�••`•...,•::::::. 30.000 ... ..... 3:x. »::::: 122.2 :::`.`:��> >� �:::::�:�:� : :. 96.87 0 116.58v`"_> • :<:;:: » >: 32.00 >:� >:� »:�:� >::: >:;;:z::: >:: >:::: > <;: >:: >:::: >:::<:<: >::> .:.::.::.::•::..; 111111111.1111 1 11111 4""1:'1,1,1,:..1 _,: . : :: :: 11111111111111111 �I; /1: - 13.1 109.36 34.000 «zz<:: ::.::::':. .......... , ...:.... : :.:: :.::::::::::: : : : .:. :::::.......... 147 55 ....................... 36.000 ;•»>:;: s:.:::;:. ss; :::::::::::::::::::::::::::: .::.::.:::::::.:>.>.< z< z< ;:: >: >::: >:::: >:::: >::;:::;;::: ;:::::��� » »= :::::::29:061 >: >:: 122.60 : ?en::.::: > >: 42.000 .8 :.::.: :.:::::::.:::::::: ::::..:.::.:::::: ::: :: :...... :..........::::::: ::..:,•:::: ;.:::: ;: ±4 : 166 8 .:::..::..:.. ...:::..:..:::.. 48.000 •::: ::: :: ::.::::::::.: • ::::.: ::::.:::: ::.;.. :...........: ::.:::.: :...................... ..:.:.::.::;..:::.:• :.:<.:.::::::::::: :::::::::.::. •:::^•::•::::::: ..: :.::.::::::::::::::::::::::. ..................:::::::. 54.000 ....., ........ ............................... .............:...... Pipe weights are calculated in accordance with PPI TR -7. Average inside diameter is calculated using nomnal OD and Minimum wall plus 6% for use in estimating fluid flows. Actual ID will vary. When designing components to fit the pipe ID, refer to pipe dimension and tolerances in the applicable pipe manufacturing specification. Visit www.performancepipe.com for the most current literature. April 2009Supersedes all previous publications Bulletin: PP 152 -4710 © 2001 -2009 Chevron Phillips Chemical Company LP